Home Seminários Details - Bruno Inchausp:Interacting center vortex worldline in Yang-Mills

EMail Print

Seminários

Event 

Title:
Bruno Inchausp:Interacting center vortex worldline in Yang-Mills
When:
22.10.2012 15.00 h
Where:
Sala A5-01 - Niteroi
Category:
Seminários

Description

Seminário dos alunos da Pós-graduação

Sala A5-01 (a ser confirmado), 22/10/2012, 15h.

Palestrante: Bruno Inchausp (UFF)

Título da apresentação:
End-to-end probability for an interacting center vortex worldline in Yang-Mills theory

Resumo:
The understanding of quark confinement is a very important open problem in Yang-Mills theory. In this regard, nontrivial topological defects are expected to play a relevant role to achieve a solution. Here we are interested in how to deal with these structures, relying on the Cho-Faddeev-Niemi decomposition and the possibility it offers to describe defects in terms of a local color frame. In particular, the path integral for a single center vortex is a fundamental object to handle the ensemble integration. As is well-known, in three dimensions center vortices are string-like and the associated physics is closely related with that of polymers. Using recent techniques developed in the latter context, we present in this work a detailed derivation of the equation for the end-to-end probability for a center vortex worldline, including the effects of interactions. Its solution can be associated with a Green function that depends on the position and orientation at the boundaries, where monopole-like instantons are placed. In the limit of semiflexible polymers, an expansion only keeping the lower angular momenta for the final orientation leads to a reduced Green function for a complex vortex field minimally coupled to the dual Yang-Mills fields. This constitutes a key ingredient to propose an effective model for correlated monopoles, center vortices and the dual fields.

Venue

Group:
Sala A5-01
Street:
Instituto de Física da UFF
ZIP:
24210-346
City:
Niteroi
State:
RJ
Country:
Country: br

Description

Sorry, no description available
<<  Nov 24  >>
 Su  Mo  Tu  We  Th  Fr  Sa 
       1  2
  3  4  5  6  7  8  9
10111213141516
17181920212223
2425262730