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Abstract

This thesis studies the quantum transport properties of two-dimensional materials in different
settings, both in the stationary and the time-dependent regimes. The presentation is divided
into two main parts. The first one is devoted to the DC quantum transport, the stationary
transport theory in the linear response regime. To this end, we provide a discussion about a
numerical method for the efficient calculation of the stationary quantum transport properties
of scattering systems in tight-binding representation. We present a self-contained description
of the wave function matching (WFM) method to calculate electronic quantum transport
properties of nanostructures using the Landauer-Büttiker approach. We demonstrate that the
number of operations involved in computing the system conductance scales linearly with the
number of sites of the system of interest, O(N). It also scales linearly with the number of
conducting channels. We discuss two applications.

The first one is the study the effect of ripples on the weak-localization effect in the
magnetoconductance of disordered graphene samples. We investigate two different types of
disorder in graphene, namely, ripples and scalar random Gaussian disorder. The former has
been predicted to originate random pseudomagnetic fields, which are expected to affect the
phase coherence and the momentum relaxation times in conductivity measurements. The
latter critically affects the sign of quantum correction to the conductivity at low external
magnetic fields, making the magnetoconductivity crossover from the weak-localization to
the anti-weak-localization regime, as a function of the disorder correlation length. We numer-
ically demonstrate that ripples are responsible for the suppression of the weak-localization
correction term as a result of the random pseudomagnetic field. We also analyze the in-plane
deformations in graphene lattice considering the interaction with a substrate and the inclusion
of in-plane magnetic field. These effects can be used as a probe for the underlying sources of
disorder.

Our second application of the stationary WFM method is the investigation of the mag-
netotransport properties of disordered graphene samples in the quantum Hall (QH) regime.
We study the effects of the disorder on the transition states between Hall plateaus, especially
regarding scaling properties, which have not been addressed in graphene systems yet. Such
transition states have been intensively studied in the context of two-dimensional electron
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gases and found to exhibit universal scaling behavior. However, the situation is less clear in
graphene, which displays an anomalous quantum Hall effect as a consequence of the valley
degeneracy. To this end, we discuss how intervalley and intravalley scattering processes,
modeled by different configurations of disorder, affect the QH transition states in graphene.

The second part of this thesis is devoted to a time-dependent study of the transport
theory. We extend the WFM formalism of the first part of the thesis to the time-domain
and discuss the inclusion of a time-dependent perturbation. Afterward, we present a review
of a time-dependent method in the tight-binding approximation under the influence of a
time-dependent drive. We introduce local operators under this regime as probes of transient
effects. As an application to such formalism, we propose the model of a collider between
two interacting electronic voltage pulses. The pulse is generated of electronic states of
quasi-one-dimensional wires that function as guides to a perpendicular collision. We discuss
the possibility of focusing the pulse trajectory using DC studies. Next, we include Coulomb
interactions in the time-dependent Hartree-Fock approximation. When we compare the local
quantities variations due to a relative time-delay between the pulses, we observe that the
current deviation is maximal away from the synchronized collision.



Resumo

A presente tese aborda propriedades de transporte eletrônico quântico em materiais bidi-
mensionais sob diferentes configurações, tanto nos regimes estacionário quanto dependente
do tempo. A apresentação do conteúdo desta tese é dividida em duas partes principais. A
primeira parte dedica-se ao transporte quântico em correntes DC no regime de resposta linear.
Para este fim, apresentamos uma discussão sobre um método numericamente eficiente para o
cálculo das propriedades de transporte em sistemas de espalhamento na representação tight-
binding. Usando o formalismo de Landauer-Büttiker, descrevemos de forma auto-contida, o
método da Correspondência de Função de Onda (Wave Function Matching - WFM), o qual
permite calcular propriedades de transporte em nanoestruturas. Em seguida, demonstramos
que o número de operações numéricas envolvidas na computação da condutância escala
linearmente com o número de sítios discretos do sistema de interesse, O(N) e linearmente
com o número de canais de condução, para um modelo realístico de uma nanoestrutura.
Ainda na primeira parte desta tese, discutimos duas aplicações.

A primeira aplicação consiste no estudo do efeito de corrugações na localização fraca
demonstrada através da magnetocondutância em amostras de grafeno desordenado. Para
tanto, investigamos dois tipos diferentes de desordem: quiral e escalar. Sabe-se que o
primeiro tipo é responsável por gerar campos pseudomagnéticos aleatórios, os quais devem
afetar a coerência de fase e os tempos de relaxação de momento no sistema. O segundo tipo
de desorder afeta criticamente o sinal da correção quântica na condutividade para campos
magnéticos externos baixos, fazendo com que a magnetocondutividade transite entre a
localização fraca e anti localização fraca, em função do comprimento de correlação das
deformações. Demonsramos numericamente que as deformaccões em nanofitas de grafeno
são responsáveis pela supressão do termo de correção de localização fraca como resultado da
presença do campo pseudomagnético aleatório. Também analisamos as deformações que
ocorrem paralelamente ao plano do grafeno de duas formas: considerando a interação da
nanofita com um substrato e com a inclusão de um campo magnético paralelo. O total destes
efeitos pode ser usado como uma fonte de medição das características dos possíveis tipos de
desordem subjacentes.
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Quanto à segunda aplicação do método WFM estacionério, investigamos as propriedades
de magnetotransporte em amostras de grafeno desordenadas sob regime Hall quântico
(Quantum Hall - QH). Estudamos o efeito da desordem em estados na região de transição
entre plateaus Hall, especialmente quanto as propriedades de escala. Tais estados de transição
são bem conhecidos no contexto de gases de elétrons bidimensionais e tem demonstrado
um comportamento universal. Contudo, em grafeno, o qual exibe um efeito Hall quântico
anômalo como conseqüência da degeneração de vale, os estados de transiçãção ainda não
foram abordados. Portanto, discutimos como os processos de espalhamento inter-vales e
intra-vales, modelados pelas diferentes configurações de desordem, afetam os estados de
transição entre plateaus Hall no grafeno.

A segunda parte desta tese é dedicada ao estudo da teoria de transporte dependente do
tempo. Para isso, estendemos o formalismo WFM, discutido na primeira parte da presente
tese, para o domínio temporal, donde incluímos uma perturbação dependente do tempo. Em
seguida, apresentamos uma revisão de um método dependente do tempo na aproximação tight-
binding sob a influência de uma perturbação externa dependente do tempo. Introduzimos
então operadores locais que funcionam como sondas de efeitos transitórios. Como aplicação
a tal formalismo, propomos o modelo de um colisor de pulsos eletrônicos de tensão em
regime interagente. O pulso é gerado por estados eletrônicos projetados em estados de fios
quase unidimensionais, os quais funcionam como guias para uma colisão perpendicular.
Usando estudos com correntes DC, discutimos possíveis configurações estacionárias as
quais permitem criar um potencial focalizador de pulsos. Por último, incluímos interações
Coulombianas utilizando a aproximação de Hartree-Fock dependente do tempo. Comparando
as colisões em função de um atraso relativo entre a emissão dos pulsos, observamos que o
desvio de corrente por interação de Coulomb é máximal fora da situação sincronizada.
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Chapter 1

Introduction

Advances in the fabrication of high-quality samples at the micro and nanoscale paved
the way for the discovery of fascinating transport properties. In particular, the synthesis
of new two-dimensional materials, such as graphene[1], phosphorene[2], transition metal
dichalcogenides[3], among others has revealed a plethora of new phenomena that could offer
interesting theoretical challenges[4–7]. As a consequence, the demand for numerical studies
that realistically describe and provide insight on such systems on an atomistic/microscopic
basis has dramatically increased.

1.1 The numerical approaches for large-scale transport prob-
lems

|
To have a computational method that comprises systems as general as possible, one can

resort to a discrete representation. Typically, the most used discretization scheme in quantum
transport theory is the tight-binding representation, which can describe either finite difference
grids[8] or atomistic basis[9]. In any case, the tight-binding Hamiltonian usually yields a
sparse matrix. Therefore, one may benefit from this fact by reducing unnecessary products
with large blocks of zeros.

In this sense, one method - which is based on the Landauer-Büttiker formalism - that
stands out is the Recursive Green’s Function (RGF). The RGF method consists in cutting the
system into slices and calculating the unperturbed Green’s function of each slice. Then, a
fully perturbed Green’s function of the system is calculated from a recursive scheme based
on the Dysons series. This method can reduce the sparsity of the linear problem and can
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even support multiple probes - especially if one applies a strategical slicing scheme [10]. The
RGF method has a simple implementation and has been used by numerous groups.

An alternative approach to the RGF is the Wave Function Matching (WFM) method. It
is based on the matching of the wave-function of the scattering region with the system’s
boundary conditions. Both methods, RGF and WFM, have been successfully used to study
the transport properties of large-scale systems [11, 12, 10, 13]. Moreover, it can be shown
that they are equivalent to each other through the Fisher-Lee relations [14, 15]. For the WFM
method, the way in which the matching conditions are built may prohibit the system to be
sliced on the same fashion as the RGF method. Here we discuss an efficient implementation
of the WFM method where this limitation is overcome, making the method easily applied to
systems at the micron scale.

Several groups have put an enormous effort to provide computational frameworks that
efficiently implements one or more of these methods[16–19, 19–35]. A particular imple-
mentation of the WFM method is coded in the Kwant package[21]. The package is boosted
by the MUMPS libraries, a forefront package for sparse linear algebra[36] and that Kwant
outperforms a C implementation of the RGF method in one order of magnitude, regarding
the system size. In addition to the conductance, the Kwant package also has several tools to
compute transport quantities such as conductance, local density, local current, shot noise,
band structure, and so on. It is developed under a user-friendly platform coded in Python and
has a cutting-edge scheme to handle general-shaped scattering regions, multiple orbitals and
multiprobes[37].

Later on, an extension to the Kwant package to the time-domain has been joined[38].
Motivated by the recent advances in experimental techniques in electron dynamic devices,
a set of numerical methods for the time-dependent transport theory has been developed
by the group headed by Prof. Xavier Waintal [39–43]. It comprises in a framework time-
dependent perturbations in the scattering problem in tight-binding approximation, ranging
from propagating voltage pulses to AC current perturbations, and has been successfully
applied to several problems up to the present[44–46, 43]. More recently, inside the T-Kwant
package, a dedicated suit to the manybody physics has been developed[47] that handles
electronic interactions in the time-dependent Hartree-Fock approximation[48]. Due to
efficient implementation techniques, the method presents a linear scaling in time[44], which
is also a novelty to the field. Together, Kwant and T-Kwant, they represent the state-of-the-
art techniques for transport problems under the scattering formalism of the tight-binding
approach. Understanding and applying such set of cutting-edge tools to interesting problems
in condensed matter physics constitutes the main motivation behind this whole thesis.
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1.2 Outline of this thesis

This thesis can be outlined as follows:

• Chapter 2: An investigation of the wave-function matching method, implemented in
the Kwant package;

• Chapter 3: The effects of impurities and ripples on the weak-localization correction
in the magnetoconductance in graphene;

• Chapter 4: The effects of disorder and temperature to the quantum phase transitions
in graphene in the quantum Hall regime;

• Chapter 5: The time-dependent extension of the wave function matching formalism
and its relation to the nonequilibrium Green’s function formalism, and a review of the
T-Kwant techniques;

• Chapter 6: A proposal for a plasmon-plasmon collider in 2DEG devices to study
Coulomb interactions.

• Chapter 7: Summary of the results of this thesis and final remarks.





Part I

DC quantum transport





Chapter 2

Numerical methods for the calculation of
DC electronic transport

In this chapter, we critically analyze the Wave Function Matching (WFM) method [21, 49,
13], whose numerical implementations allow to efficiently compute the quantum transport
properties of electrons in nanostructures, modeling realistic sample sizes and non-trivial
geometries.

Quantum electronic transport in mesoscopic systems is usually described by the Landauer-
Büttiker approach [8], that gives a simple relation between the conductance and the quantum
transmission coefficients of a single-particle scattering problem. In other words, the problem
is reduced to solving a Schrödinger equation for an open quantum system. Here, we show in
this chapter that the WFM method is one of the most efficient numerical tools for this task.
The latter introduces a partition between a central or scattering region (“conductor”) and the
asymptotic one (“leads” or terminals) and, by matching the corresponding wave function at
the partition boundaries, gives the system scattering matrix S [50].

Alternatively, transport properties in mesoscopic systems can be calculated using non-
equilibrium Green’s function (NEGF) techniques [8], the standard tools that has been used in
our group. This formalism is widely used due to its successful combination with Density
Function Theory [51, 20, 52, 17, 23, 30, 32]. At the single-particle level, NEGF is equivalent
to the Landauer-Büttiker approach (see, for instance, Ref. [15]). The standard method
to compute transport properties in large systems using NEGF is the Recursive Green’s
Function (RGF) method [53, 54, 10]. The latter takes advantage of the sparsity of the
system Hamiltonian to partition the scattering region into conveniently chosen small domains
[55, 56]. The corresponding Green’s functions are recursively combined using the Dyson
equation to obtain matrix elements of the full system Green’s function that are relevant for
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transport calculations. The RGF method is robust, accurate, has a simple implementation,
and has been widely used [57, 58, 11, 18, 59, 12, 60].

A recent open source implementation of the WFM method, the Kwant package [21], has
significantly increased its usage. Kwant is developed under a user-friendly platform coded in
Python and handles general-shaped scattering regions, multiple orbitals, and multi-probes
[37]. Furthermore, extensions to the Kwant package can be easily joined [38]. Kwant also
explores the sparsity of the system Hamiltonian by using the MUMPS libraries, a forefront
package for sparse linear algebra [36]. Ref. [21] shows that Kwant significantly outperforms
the RGF method in a wide range of applications.

We show that the number of operations required by the WFM method to compute the
conductance of a given system is much smaller than previously claimed [21]. To explain this
finding, we first give a self-contained presentation of the method – whose documentation is
scattered and scarce – critically analyzing its main features. Next, we numerically study a
number of systems to corroborate our analytical findings.

This chapter is organized as follows: In Sec. 2.1 we provide a short review of the relation
between quantum transport and the scattering theory. Next, we adapt the theory for the
tight-binding approximation and cast the scattering problem as the solution of a linear system.
In Sec. 2.2 we describe the WFM method and discuss its computational cost. In Sec. 2.3 we
benchmark the WFM method comparing its CPU time, memory usage and precision with a
standard RGF implementation.

2.1 Theoretical background

The WFM method is suited to calculate the scattering properties of a system with arbitrary
geometry and dimension d = 1,2, or 3. It is aimed to describe the non-interacting on-shell
scattering processes in mesoscopic samples or crystalline structures coupled to multiple
terminals.

Figure 2.1 illustrates a generic multi-terminal two-dimensional (d = 2) system. A central
scattering region is coupled to electrodes represented by semi-infinite leads labeled by
α = 1, · · · ,Λ, where incoming and outgoing electrons propagate coherently. Due to the
transverse confinement, the leads states are quantized in open modes (scattering channels)
labeled by n = 1, . . . ,Nα . The index n labels both the transverse modes and the electron spin
projection. The mesoscopic sample corresponds to the central or scattering region, while the
leads are associated to the asymptotic domain.

Let us describe the system single-particle Hamiltonian by a tight-binding model. This
approximation is suited to model both an atomistic system represented by a linear combination
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Fig. 2.1 Illustration of a generic multi-terminal two-dimensional system. The dashed lines
indicate the partition between the scattering and the asymptotic regions. The latter is modelled
by or semi-infinite periodic lattices.

of atomic orbitals and a continuous system in a finite element representation [8]. The system
Hamiltonian is written as

H = ∑
j, j′

H j, j′| j⟩⟨ j′|, (2.1)

where the index j = (rrri,σ) labels both the position in the lattice and the internal degrees of
freedom σ such as spin, atomic orbital, etc., of the state | j⟩.

2.1.1 Quantum transport and scattering theory

The Schrödinger equation of the scattering system reads

H
∣∣Ψ±

m(E)
〉
= E

∣∣Ψ±
m(E)

〉
, (2.2)

where |Ψ+
m(E)⟩ (|Ψ−

m(E)⟩) stands for the outgoing (incoming) scattering state at channel
m. Here m labels both α and n. The S-matrix is defined by the scattering amplitudes
⟨Ψ−

m(E)|Ψ+
m′(E)⟩= Smm′(E)δ (E −E ′).

The scattering matrix S can be formally written in terms of projection operators that
decompose the Hilbert space in the partition described by Fig. 2.1 [61]. Let us assume,
for instance, normal boundary conditions at the interface B between the scattering and
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asymptotic regions. One defines the projection operator

Q = ∑
µ

∣∣φµ

〉〈
φµ

∣∣ (2.3)

in terms of the complete set of discrete orthonormal states
〈
φµ

∣∣φµ ′
〉
= δµµ ′ defined in the

scattering (or central) region and obeying the boundary conditions at B. In turn, at the
asymptotic region, one defines

P = ∑
m∈α

∫
dE |χm(E)⟩⟨χm(E)| , (2.4)

where |χm(E)⟩ form a complete set of continuous orthogonal states, ⟨χm(E)|χm′(E ′)⟩ =
δmm′δ (E −E ′), defined in the asymptotic (or leads) region. Since the asymptotic region is
not compact, the projection operator P is continuous. By construction, P and Q span the
system Hilbert space and, hence, P+Q = 1.

The system Hamiltonian is conveniently decomposed into three pieces

H = HPP +HQQ +(HPQ +HQP), (2.5)

where we introduced the notation AHB = HAB
1.

The projection operators allow one to write Eq. (2.2) as a Lippmann-Schwinger equation,
namely

P
∣∣Ψ±

m(E)
〉
= |χm(E)⟩+

1
E±−HPP

HQQQ
∣∣Ψ±

m(E)
〉

(2.6)

Q
∣∣Ψ±

m(E)
〉
=

1
E±−HQQ

HQPP
∣∣Ψ±

m(E)
〉
, (2.7)

where E± = E ± iη , with η an infinitesimal positive number. After some algebra, one writes
the S-matrix as [61, 50]

Smm′(E) = δmm′ −2iπρ
1/2
m (E)∑

µµ ′
[HPQ]mµ

[
1

E −HQQ −Σ+(E)

]
µµ ′

[HQP]µ ′m′ρ
1/2
m′ (E),

(2.8)
where Σ±(E) = HQP(E±−HPP)

−1HPQ is the embedding self-energy, which accounts for
coupling the to the continuum and describes the resonance processes, while ρm(E) stands for
the electronic density of states at the channel m. Here we explicitly neglect direct tunneling

1It is convenient to use as the channel basis in the asymptotic region the eigenfunctions of HPP, namely,
HPP |χm(E)⟩= E |χm(E)⟩ with normal boundary conditions at B.
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processes between different electrodes [61, 50]. This approximation is accurate provided the
central region is sufficiently large to prevent direct tunneling processes across the system.
This condition is true for most mesoscopic systems, except for small molecular junctions (for
more details, see, for instance, Ref. [62]).

The Landauer-Büttiker theory [8] relates the linear conductance of an electronic sample
to the transmission probability as

Gαβ =
e2

h

∫ ∞

−∞
dE
(
− ∂ f

∂E

)
Tαβ (E), (2.9)

where f (E) =
[
1+ e(E−µ)/kT

]−1
is the Fermi-Dirac distribution with µ and T giving the

equilibrium chemical potential and temperature of the reservoirs 2 . The transmission Tαβ (E)
is given by

Tαβ (E) = ∑
n∈α
m∈β

|Snm(E)|2 , (2.10)

where Snm(E) is given by Eq. (2.8). The WFM method also gives local properties such as
local currents and the local density of states (LDOS), as discussed in Sec. 2.3.

2.1.2 The scattering problem in tight-binding approximation

Let us now write the system Hamiltonian in a suitable form to implement the WFM method.
For the sake of simplicity, we discuss in detail the two-terminal case and, at the end, we
generalize the results to the multi-terminal case.

Let us consider a mesoscopic system attached to semi-infinite leads, α = R,L, as il-
lustrated by Fig. 2.2a. Following the partition operators presented in the previous section,
we introduce the standard matrix representation: (i) HQQ ↔ HS for the scattering region
Hamiltonian; (ii) HPP ↔ HL +HR, for the leads Hamiltonian; (iii) HQP ↔VSL +VSR, for the
coupling term connecting the mesoscopic system to the leads.

The full Hamiltonian is written in a block matrix form as

H =

HL VLS 0
VSL HS VSR

0 VRS HR

 . (2.11)

2In general, the reservoirs have different chemical potentials and temperatures, thus, fα(E) = [1 +
e(E−µα )/kTα ]−1. For simplicity we take all temperatures equal to T and since we restrict ourselves to lin-
ear response, the small differences between µα and the equilibrium µ lead to Eq. (2.9).
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(a) (b)

Fig. 2.2 (a) Sketch of a mesoscopic system (S) coupled to Left (L) and Right (R) semi-infinite
leads with periodic lattice structure. (b) Equivalent system with the L and R terminal (in
general, α = 1, · · ·Λ) mapped into a single-lead.

HL and HR can be written in the block-diagonal structure

HL =


. . . . . .
. . . Hl Vl

V †
l Hl Vl

V †
l Hl

 HR =


Hr V †

r

Vr Hr V †
r

Vr Hr
. . .

. . . . . .

 , (2.12)

where Hl(r) stands for suitable L(R)-lead unit cell Hamiltonian of dimension ML(R) (repre-
sented by boxes in Fig. 2.2). Vl(r) are the hopping matrices between nearest-neighboring
unit-cells and the unwritten matrix elements are identically zero.

It is advantageous to use the structure of the leads matrices HL and HR to group them into
an effective single-lead with disjoint sections. The rearranged layout is depicted in Fig. 2.2b.
The modified H reads

H =



HS−E V †
SL V †

SR

VSL Hl−E 0 V †
l 0

VSR 0 Hr−E 0 V †
r

Vl 0 Hl−E 0

0 Vr 0 Hr−E
. . .

. . . . . .


. (2.13)
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The effective lead, hereafter denoted by T , compacts the eigenvalue problem to a single
semi-infinite partition, namely

HS −E V †
T S

VT S HT −E V †
T

VT HT −E . . .
. . . . . .




ψS

ψ0

ψ1
...

=


0
0
0
...

 , (2.14)

where ψS corresponds to the scattering wave function at the central region and ψn, to the
lead wave function at the n-th slice, with n = 0,0,2, . . . (see Fig. 2.2). The generalization
to a multi-terminal setup is straightforward. In this case, HT accounts for all Hα , with
α = 1, . . . ,Λ and has dimension MT = ∑Λ

α=1 Mα .

2.2 The wave function matching method

Let us now solve Eq. (2.14). For that purpose we introduce the eigenmode basis φn:

VT φn−1 +(HT −E)φn +V †
T φn+1 = 0, (2.15)

which corresponds to rows of Eq. (2.14) far from the scattering region. Due to translational
symmetry, one can use Bloch’s theorem to conveniently write φn as

φn = χλ
n, (2.16)

where χ is the lead unit cell eigenfunction (independent of n) and λ is a complex constant.
Hence,

VT χ +(HT −E)χλ +V †
T χλ

2 = 0. (2.17)

The standard procedure to solve this quadratic eigenvalue problem (QEP) in λ is to introduce
an auxiliary vector

χ
′ ≡ λ

−1VT χ (2.18)

and to linearize Eq. (2.17)[63] as(
HT −E 1̂

VT 0̂

)(
χ

χ ′

)
= λ

(
−V †

T 0̂
0̂ 1̂

)(
χ

χ ′

)
. (2.19)
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The advantage of casting Eq. (2.17) as a Generalized eigenvalue problem (GEP) is that
one can calculate the eigenvalue λ , which is associated to the crystal momentum k (using
λ = eikaα , where aα is the α-lead lattice constant), and the eigenvector χ as a function of the
electronic energy E. The QEP is translated into a linear problem at the expense of doubling
the equation dimension. Hence, the number of eigenvalues is twice the rank MT of the
matrices VT and HT .

One can solve the GEP in Eq. (2.19) by means of well-known numerical algorithms
[63–66]. Given an electronic energy E, we calculate the eigenvectors (χp,χ

′
p) and the

corresponding eigenvalues λp, where p = 1, · · · ,2MT .
We can infer from the scattering problem that the 2MT solutions correspond to MT

incoming modes and MT outgoing modes, as depicted in Fig. 2.3. Since the terminals are
uncoupled, the eigenstate χp has a block structure

χp =
(
· · · ,0,χα

p ,0, · · ·
)
, (2.20)

where each block χα
p describes the eigenstate of the α-lead with eigenvalue λp for p =

1, · · · ,Mα and α = 1, · · · ,Λ.
The modes can be propagating |λp| = 1 or evanescent |λp| < 1 (|λp| > 1 gives a non-

physical behavior). The probability current for the p-th propagating mode reads [67]

jp =−2
h̄

Im
(

λpχ
†
pVT χp

)
. (2.21)

The incoming modes correspond to jp > 0 and the outgoing ones to jp < 0. We label those
two sets of solutions as λ±

p ,χ±
p for p = 1, . . . ,NP, where ± indicates the corresponding

current direction and NP ≤ MT is the number of incoming/outgoing propagating channels at
the electronic energy E. See Fig. 2.3. Since we are interested in transmission coefficients, we
restrict ourselves to the analysis of the propagating modes. The evanescent modes ( jp = 0)
can be treated straightforwardly as a generalization of this method.

Using the sets χ±
p as basis, we write the wave functions ψn as

ψn =
NP

∑
q=1

A−
q χ

−
q (λ−

q )n +
NP

∑
p=1

A+
p χ

+
p (λ

+
p )n, (2.22)

where n = 0,1, · · · , and A±
p are unknown amplitudes.
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...
...

A1
-

A1
+

A2
-

ANp
-

A2
+

ANp
+

scattering

region

Fig. 2.3 Multi-mode representation of the scattering process of a single-lead with MT = ∑Λ
α=1 Mα

modes. The sign − (+) indicates incoming (outgoing) modes with amplitude A−
p (A+

p ), where
p = 1,2, · · · ,NP.

One defines the scattering matrix S̃ that relates incoming with outgoing amplitudes as
A+

1

A+
2
...

A+
NP

= S̃


A−

1

A−
2
...

A−
NP

 . (2.23)

Since the eigenchannel basis used by the WFM method is not normalized as the one intro-
duced in Sec. 2.1, the matrix S̃ does not preserve the flux. As we discuss below, S is obtained
from S̃ by a simple relation.

To calculate the S-matrix, we consider the scattering process of a single incoming mode
q, namely

ψnq = χ
−
q (λ−

q )n +
NP

∑
p=1

χ
+
p (λ

+
p )nS̃pq. (2.24)

The corresponding S-matrix can be obtained by solving the first two lines of Eq. (2.14)

(HS −E)ψSq +V †
T Sψ0q = 0, (2.25)

VT SψSq +(HT −E)ψ0q +V †
T ψ1q = 0, (2.26)

where ψSq is the scattering region wave function upon injection from mode q. Substituting
Eq. (2.24) into Eq. (2.26) and recalling that the basis functions χ±

p satisfy Eq. (2.17), we find

VT SψSq =VT ψ−1q, (2.27)



16 Numerical methods for the calculation of DC electronic transport

where ψ−1q is also given by Eq. (2.24). Note, however, that ψ−1q has no physical meaning,
since in Eq. (2.14) there is no slice defined for n =−1. Here, ψ−1q is an auxiliary mathemat-
ical quantity designed to represent the contributions of the terms including ψ0q and ψ1q in
Eq. (2.26).

Applying the definition of χ ′, Eq. (2.18), to each propagating mode as

χ
′±
q =

(
λ
±
q
)−1VT χ

±
q , (2.28)

Eq. (2.27) becomes

VT SψSq = χ
′−
q +

NP

∑
p=1

χ
′+
p S̃pq = χ

′−
q +χ

′+S̃q, (2.29)

where χ ′± ≡ (χ ′±
1 ,χ

′±
2 , · · · ,χ ′±

NP
) with dimension MT ×NP and S̃q is the column q of the

S-matrix with dimension NP ×1. Analogously, using Eq. (2.24) we write ψ0q as

ψ0q = χ
−
q +χ

+S̃q. (2.30)

The linear system composed by Eqs. (2.25) and (2.29) reads(
HS −E V †

T Sχ+

VT S −χ ′+

)(
ψSq

S̃q

)
=

(
−V †

T Sχ−
q

χ ′−
q

)
. (2.31)

Let us now generalize Eq. (2.31) to account for different q-modes(
HS −E V †

T Sχ+

VT S −χ ′+

)(
ψS1 ψS2 · · · ψSNP

S̃1 S̃2 · · · S̃NP

)
=

(
−V †

T Sχ
−
1 −V †

T Sχ
−
2 · · · −V †

T Sχ
−
NP

χ ′−
1 χ ′−

2 · · · χ ′−
NP

)
.

(2.32)

We cast this result into the compact form(
HS −E V †

T Sχ+

VT S −χ ′+

)(
ψS

S̃

)
=

(
−V †

T Sχ−

χ ′−

)
, (2.33)

where S̃ is the full S-matrix and ψS =
(

ψS1 ψS2 · · · ψSNP

)
is the wave function of the

scattering region. The S-matrix has dimension NP ×NP while ψS has dimension NS ×NP,
since it is defined for all the NS sites in the central region upon injection from all the NP

channels.
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Hence, the solution of Eq. (2.33) has a computational cost that depends on the number of
propagating channels NP at the electronic energy E. Due to the sparsity of HS, we infer that
CPU time required to compute a given system conductance scales as NS ×NP. In Sec. 2.3 we
numerically verify that the WMF method indeed follows this prediction.

Note that Eq. (2.33) involves representations in different spaces, while the scattering
wave function is given in the tight-binding basis, the S-matrix is expressed in eigenmode
basis. The matrices χ± give a connection between theses two basis [68]. For a sufficiently
large system, HS and VT S are sparse matrices making the problem appropriate to the sparse
solvers.

2.2.1 Connection to Green’s functions

The coupling with leads gives a finite line-width to the resonances in the scattering region
via a so-called self-energy. In the non-equilibrium Green’s functions formalism (NEGF)
(see, for instance, Refs. [8, 62]) the embedding self-energy modifies the scattering region
Hamiltonian as HS → HS +Σ. In what follows we demonstrate that Σ can be calculated from
the presented equations.

Let us define the dual space states χ̃±
p , where

(
χ̃
±
p
)†

χ
±
p′ = δpp′, (2.34)

and identify the first and the second terms on the RHS of Eq. (2.24) with

ψnq− ≡ (λ−
p )n

χ
−
q , and ψnq+ ≡

NP

∑
p=1

(λ+
p )n

χ
+
p S̃pq. (2.35)

Introducing the translation operator F± [13]

F±ψnq± = ψn+1,q±, (2.36)

where

F± ≡
NP

∑
p

λ
±
p χ

±
p
(
χ̃
±
p
)†
, (2.37)



18 Numerical methods for the calculation of DC electronic transport

one can write ψ0q and ψ1q, respectively, as

ψ0q = ψ0q−+ψ0q+, (2.38)

ψ1q = F−ψ0q−+F+ψ0q+ = (F−−F+)χ−
q +F+ψ0q. (2.39)

Substituting Eq. (2.39) into Eq. (2.26) and solving Eq. (2.25) for ψSq we find

(E −HS −Σ)ψSq = Q−
q , (2.40)

where

Q−
q ≡V †

T SGTV †
T (F−−F+)χ−

q (2.41)

is a source term dependent of which channel q is injecting,

Σ =V †
T SGTVT S (2.42)

is the embedding self-energy, and

GT =
(

E −HT −V †
T F+

)−1
(2.43)

is the surface Green’s function of the semi-infinite leads. Since Eq. (2.43) involves outgoing
states F+, GT and Σ correspond to retarded Green’s function and self-energy, respectively
[8].

We stress that both Σ and GT are independent of q and contain information about all the
propagating modes at the energy E.

Notice that we can solve Eq. (2.40) for ψSq as

ψSq = GSQ−
q , (2.44)

where GS is the scattering region Green’s function given by

GS ≡ (E −HS −Σ)−1 . (2.45)

Thus, knowing the full Green’s function matrix GS, we can calculate ψSq for any q using
Eq. (2.44).
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With the help of the dual vector χ̃+
p defined in Eq. (2.34) and the definition of ψ0q+ given

by Eq. (2.35), we calculate the amplitudes S̃pq as

S̃pq =
(
χ̃
+
p
)†

ψ0q+. (2.46)

The outgoing wave function ψ0q+ is a superposition of states χ+
p with amplitudes S̃pq. Those

states carry a probability current

jpq = jp
∣∣S̃pq

∣∣2 . (2.47)

Here jpq depends on the injecting mode q and jp is given by Eq. (2.21).
The transport coefficients Ppq defined as the ratio between the incoming probability

current jq and the outgoing probability current jpq at mode p reads

Ppq =
jpq

jq
=

∣∣∣∣∣
√

jp

jq
S̃pq

∣∣∣∣∣
2

=
∣∣Spq

∣∣2 , (2.48)

where we defined the scattering amplitudes Spq as [8]

Spq ≡

√
jp

jq
S̃pq. (2.49)

where S is unitary and conserves the current probability [8].

2.2.2 The generalized Fisher-Lee relation

Let us use the WFM method elements introduced above to derive the relation between the
transmission amplitudes as functions of the scattering region Green’s functions.

First we write ψ0q+ in the RHS of Eq. (2.38) as a function of the scattering region wave
function ψSq using Eqs. (2.39) and Eq. (2.26), namely

ψ0q+ = GTVT SψSq +
[
GTV †

T (F−−F+)−1
]

χ
−
q . (2.50)

Hence, the scattering amplitude Spq =
√

jp/ jqS̃pq reads

Spq =

√
jp

jq

(
χ̃
+
p
)† GTVT SGSVST GTV †

T (F−−F+)χ−
q +

(
χ̃
+
p
)†
[
GTV †

T (F−−F+)−1
]

χ
−
q .

(2.51)
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Here we used Eqs. (2.41) and (2.44) to substitute the dependence on ψSq by a dependence on
the scattering region Green’s function GS.

We assume that the modes q and p belong to different leads α and β , respectively. Due
to the block structure of Eq. (2.20) and to the absence of coupling between the leads, the
matrices GT , V †

T and (F−−F+) are block diagonal in the leads subspace. The two-contacts
Hamiltonian in Eq. (2.13) illustrates the diagonal block structure of V †

T , for instance. Thus,
the second term in Eq. (2.51) identically vanishes.

In this case, the scattering amplitude in Eq. (2.51) becomes

tβα
pq =

√
jp

jq

(
χ̃
+
p
)† GTVT SGSVST GTV †

T (F−−F+)χ−
q , (2.52)

where tβα
pq is the current-normalized transmission amplitude for the scattering from mode q

in the lead α to the mode p in the lead β .
Although one can calculate the transmission coefficients by means of GS from Eq. (2.52),

only few Green’s functions matrix elements, such as the elements connecting sites belonging
to the interface with the leads, are required to compute the transmission (see, for instance
Ref. [10]). Therefore, a simplification of Eq. (2.52) is desirable. For that purpose we use a
sub-block division of the scattering region similar to the one used in Ref. [10].

We divide the scattering region into Λ+1 blocks, where C is the a central block, which
has no connection with the leads, and α represents the α-interface, which is connected to C
and only to the lead α , where α = 1, · · · ,Λ. In this picture, GS and VT S read

GS =


[GS]CC [GS]C1 · · · [GS]CΛ

[GS]1C [GS]11 · · · [GS]1Λ
...

...
...

[GS]ΛC [GS]Λ1 · · · [GS]ΛΛ

 , (2.53)

VT S =


0 V11 0 · · · 0
0 0 V22 · · · 0
...

...
...

...
0 0 0 · · · VΛΛ

 . (2.54)

Since GTV †
T (F−−F+) is diagonal, where:

[GT ]αβ = δαβ GαV †
α

(
Fα
− −Fα

+

)
(2.55)
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and

Fα
± ≡

NP

∑
p∈α

λ
±
p χ

±α
p
(
χ̃
±α
p
)†
, (2.56)

and the states χ−
q and χ̃+

p have different non-vanishing blocks given by Eq. (2.20), we find

tβα
pq =

√
jp

jq

(
χ̃
+β
p

)†
GβVββ [GS]βα

VααGαV †
α (F

α
− −Fα

+ )χ−α
q , (2.57)

which is the generalized Fisher-Lee expression [8].

2.3 A detailed benchmark study of the KWANT package

Let us now demonstrate the efficiency of the sparse solvers associated with the WFM method
implemented in the Kwant package. To this end, we compare the processing time and
memory usage of the WFM method with the standard RGF approach for a two-dimensional
model system as a function of its size and aspect ratio. We conclude this section by discussing
an application of the WFM method, namely, the calculation of longitudinal and transverse
resistance of a realistic-sized graphene Hall bar.

As mentioned in the introduction, nowadays the RGF method is one of the most standard
technique to compute the conductance of nanoscale systems. This method is designed to
compute only the system full Green’s function matrix elements related to transport properties
[8]. For that purpose, the system is divided into partitions. The computational time necessary
to calculate the transmission scales with the number of partitions times the cube of the typical
number of sites within the partitions.

We recall that Ref. [21] draws conclusions by comparing the performance of the RGF
and WFM methods for a square lattice system with L×L sites as a function of L. The authors
[21] find that the CPU time required to compute the conductance using the RGF method
scales with L4, while the WFM implementation in Kwant scales with L3. Here we explore
more diverse situations to numerically verify that the WFM method is more efficient than L3,
as discussed in Sec. 2.2.

Let us begin considering a nearest neighbor (nn) tight-binding Hamiltonian in a two-
dimension square-lattice of length L and width W in number of sites. We take W ′ as the
width of the leads (see inset of Fig. 2.5a). We set E = 0. In this case, we recall that for
semi-infinite square lattice leads the number of open channels at the left and right leads
NL = NR =W ′. This model stems for instance from a finite-difference discretization of the
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Fig. 2.4 CPU time for the computation of the conductance as a function for a square lattice
system of (a) length L (for W and W ′ fixed), (b) width W (for L and W ′ fixed), and (c) lead
width W ′ (for L and W constant). Since E = 0, W ′ = NR = NL. Solid lines indicate linear
fittings.

Schrödinger equation of a mesoscopic two-dimensional electron gas (2DEG) [68, 8]. For this
model, the optimal partition of the RGF consists of L partitions (slices) with W sites each.

Figure 2.4 gives the CPU time (in arbitrary units) necessary to compute the conductance
of the system, Eq. (2.9), as a function of L, W , and W ′. It should be emphasized that in
both implementations, the linear algebra calculations are coded in lower level programming
languages, making this comparison possible.

As discussed in Sec. 2.2 one has to solve NP times the sparse linear system of dimension
NS +MT , Eq.(2.32). Since the number of operations to solve a sparse system scales as O(N)

[63] and here MT = 2W ′, the WFM is expected scale as (LW +2W ′)W ′. Figure 2.4a to 2.4c
verify that this conjecture is indeed correct. As a consequence, the performance of the WFM
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Fig. 2.5 CPU time as a function of the side of a L×L system. The lines correspond to the
best aW b fit. For Kwant (nn) b ≈ 2.7 (dotted line), for RGF (nn) b ≈ 3.8 (dashed line), and
for RGF (3nn) (solid line). Kwant 3nn displayed the same trend as the corresponding nn.

method is much better than previously believed [21] for a realistic model of a nanostructure,
MT = 2W ′ ≪W .

Let us now examine a situation where W =W ′. Figure 2.5 clearly shows that the CPU
time of the RGF (nn) method scales with L4, as expected by the matrix multiplication and
diagonalization operations involved. In distinction, the WFM shows a much better CPU
performance scaling as L3 (here L =W =W ′). However, the overall pre-factor is typically
large, making the method clearly advantageous only for W ≳ 102 sites.

We use this setting to investigate the efficiency of the WFM method when dealing with
tight-binding Hamiltonians that consider hopping matrix elements beyond nearest-neighbor
sites. This is the case in tight-binding models based on Wannier wave functions [69], that are
very practical and accurate tools to model large scale disorder systems. Let us consider a
square lattice tight-binding Hamiltonian with up to the 3-rd nearest-neighbor (3nn) hopping
terms. Since for the RGF method, only neighboring partitions should be connected in this
model, one has to double the size of each slice, W → 2W , reducing the total number of slices
by half L → L/2. Hence the CPU time grows by a factor of 4 (solid line of Fig. 2.5). In
Fig. 2.5 we show that Kwant is practically insensitive to the coordination number of the
lattice model, which represents a huge advantage over RGF.

Let us now analyze the memory usage of both methods. As already pointed out in Ref.
[21], the memory usage in Kwant can be ten times larger than an RGF implementation
which is a problem for computation of transport properties in large systems. In what follows



24 Numerical methods for the calculation of DC electronic transport

0

50

100

150 (ii)
(iv)

(a)

CPU time (a.u.)
0

1000

2000

(i)
(ii)

(iii) (iv)

(b)

M
em

or
y

us
ag

e
(M

iB
)

Fig. 2.6 Memory usage as a function of processing time in the calculation of the conductance
for a nearest-neighbor tight-binding model of square lattice of dimensions L = 1000 and
W = 600 for (a) the RGF and (b) the Kwant method. The different stages of the computation
are indicated by (i) to (iv), see main text.

we study this issue in more detail, examining the intermediate processes, such as the leads
eigenmodes calculation, the linear system construction and factorization, and the solving
stage, regions (ii)-(iv) of Fig. 2.6, respectively. This stage-by-stage information of the
memory usage gives a clear view of the method advantages and bottlenecks.

Figure 2.6 shows the memory usage in a conductance calculation for both the WFM and
the RGF implementations. A huge difference can be noted between the maximum memory
used for each method. In Kwant, a preliminary time is spent in reading the input parameters,
stage (i), which is negligible in the RGF Fortran 90 implementation and it is not displayed.
The next stage in both methods, indicated by (ii) in Fig. 2.6, is related to the computation
of the lead contribution, namely, the lead surface Green’s function in the RGF [8] and the
eigenmode diagonalization in WFM. In both methods, this is done twice for our two-probe
model and Λ−times in general systems. Kwant spends an extra time in the factorization of
the linear system, Eq. (2.33).

At the solving stage, indicated by (iv) in Fig. 2.6, we observe that Kwant requires one
order of magnitude more memory than the RGF method. This is the only feature where
the RGF outperforms the WFM methods. We note however that WFM approach allows for
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the computation of local operators (such as local currents and LDOS) with no significant
additional cost, which is not the case for the RGF method.

Both methods are very robust and accurate. In our extensive tests, the computed conduc-
tances agree within the numerical precision. Even in the cases where the Green’s function
regularization factor η is known to require a special choice in RGF, suc as transmission
by evanescent modes in graphene [70], the WFM method gives reliable results without any
particular adjustment.

We conclude this chapter by mentioning that the WFM method allows for a straightfor-
ward generalization for multi-terminal systems with nontrivial sample geometries, while
the RGF approach resorts on ingenious schemes to deal with such situations [11, 10]. In
addition, the Kwant package also offers a set of implementation tools to facilitate the study
of a wide range of settings, such as multi-orbital atomic states, general lattice connectivity
and geometry, to name a few. Several of these tools are largely used throughout this thesis.

In the following chapter, we discuss two applications.





Chapter 3

Application I: Weak-localization in
rippled disordered graphene sheets

Disorder is ubiquitous in graphene systems. The main sources of disorder in deposited
graphene single crystal monolayers can be either intrinsic, such as vacancies, or extrinsic,
such as adatoms and charge puddles. Vacancies are believed to give small contribution to the
conductivity in exfoliated samples of graphene, strain fields can be the dominant scattering
mechanism for high-quality samples by causing distortions over the lattice in the form of
ripples [71]. It has been shown [72] that ripples in graphene can affect the mobility of charge
carriers by two mechanisms. Ripples are deformations with typical lengths much larger than
the lattice parameter smoothly changing the interatomic distance can be mapped into an
effective pseudo-magnetic vector potential whose magnitude scales with lattice distortions.
The other feature appears by applying an in-plane magnetic field to a rippled surface. The
disordered local curvature of the graphene surface gives rise to a random magnetic field
perpendicular to the sheet. It is known that competition between the two mechanisms
generates a strong anisotropic conductivity tensor.

In this chapter we numerically study the weak localization (WL) and the weak anti-
localization (WAL) effect, the leading quantum correction terms to the conductivity of
disordered graphene systems. The available analysis of WAL and WL in disordered graphene
uses a theory [73] based on a diagrammatic perturbation in powers of (kF le)−1. Close to
the charge neutrality point kF le → 0, the problem becomes non-perturbative. Despite the
importance of the problem, with few exceptions[74, 75], the previous theoretical approaches
used to interpret WL and WAL in graphene are not quantitatively adequate[76]. Therefore,
one needs to resort to numerical methods.

Hence, we study this problem by means of numerical calculation of the conductivity using
the Kwant package, whose methods are documented in the previous chapter. Ripple disorder
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is modeled by properly accounting for the hopping integrals between neighboring sites. We
show that these types of disorder critically affects the sign of the quantum corrections to the
conductivity at low external magnetic fields, causing a crossover of the magneto-conductivity
from a weak-localization (WL) and an weak-anti-localization profile (WAL) as function of
the disorder strength and range.

We also present a method to show the competition between the pseudomagnetic field
effect due to rippled graphene and a geometric contribution comming from an external
field. The motivation for this study is to show that the current models used in most strained-
graphene simulations in literature can overestimate the pseudomagnetic field and neglects
the geometric contribution of the ripples to the external field in some cases. By the end of
the chapter, we draw a few conclusions.

3.1 Theoretical background

In the following section, we define the important transport length scales to discuss localization
in the diffusive regime.

3.1.1 The characteristic lengths of the mesoscopic transport

The different mesoscopic regimes can be classified by using a few characteristic length scales,
namely, the conductors size L, the Fermi wavelength λF , the elastic mean free path le adn
the phase coherence length lφ . The Fermi wavelength λF is the wavelength of conducting
electrons of highest kinetic energies and defines the current wavelength. The electrons mean
free path le is the average length an electron travels before its momentum is relaxed due to
elastic disorder scatterings. The phase coherence length lφ is the largest scale over which
one can observe electrons phase interference phenomena. Inelastic scattering processes
such as phonons and electron-electron interactions, destroy the single-particle electronic
phase coherence. All these length scales are material-dependent and are strongly affected by
temperature[8].

Macroscopic conductors of ohmic behavior are diffusive (L≫ le) and have a characteristic
size much larger than the phase coherence length, L ≫ lφ > λF . The quantum mechanical
nature of the conductors charge carriers is lost causing the electronic current properties
to be well-described by the classical Drude model, which predicts a conductivity of of
σD = 2e2τ/m where τ = le/vF , vF is the Fermi velocity and m is the effective charge carrier
mass. Within such regime, electrons can be scattered by impurities but interference effects
between different scattering events are negligible.
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Fig. 3.1 Picture of characteristic transport scales exemplifying a ballistic device of size Lb,Wb
(green region) and a diffusive device of size Ld,Wd (purple region).

le

Fig. 3.2 Example of closed Feynman path (red) and its time-reversed counterpart (blue) that
causes particle enhanced backscattering in the presence of quantum coherence.

In contrast, when the system size is smaller than electronic mean free path and the phase
coherence length, such as lφ > le > L > λF , the charge transport is ballistic. In this case, the
transport properties can be cast into boundary conditions problems (see Fig. 3.1).

There is also an intermediate regime where the system size is typically much larger than
electrons mean free path but still smaller than the phase coherence length lφ ≳ L > le > λF ,
namely, the diffusive regime. In this case, electrons are frequently scattered by impurities
but preserve their quantum coherence over the system length scale L. Therefore, quantum
interference gives rise to significant quantum corrections to the Drude formula due to the
presence of localization effects.

Electronic scatterings due to disorder tend to localize the wave-functions[77] in a finite
region of length inversely proportional to the disorder strength. This led us to the definition
of a localization length ξ , whose a small ξ defines a localized state while a large ξ defines
an extended state.
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A coherent conductor is said to be under the strong localization regime if the localization
length is comparable to or smaller than the conductor’s length (L ≳ ξ ). In this case, electronic
wave functions are predicted to decay exponentially in space and proportionally to the
localization length. From the other hand, if the conductors’ length is much smaller than the
localization length (L ≪ ξ ), the system is in the weak localization regime, and a perturbation
theory predicts the existence of disorder-dependent correction terms to Drude classical
conductivity due to quantum interference.

From the other and, there is the weak localization regime in coherent conductors. The
contributions from the quantum interference of weak localizations to electronic transport
can be qualitatively understood as follows: in Feynman path approach, transport through a
disordered media can be seen as the sum of all possible paths from source to drain. Disorder
(see Fig.3.2)can originate backscattering, that is the scattering toward the same state i from
which the particle comes. The set of all such paths contributes to the reflection coefficient Rii

associated to the current. According to Feynman theory, these paths form closed loops and
their time-reversed counterparts also counts in the sum. By denoting a single path probability
amplitude as A+ and its time-reversed counterpart as A−, the corresponding backscattering
probability is given by:

Ri→i = |A++A−|2 = |A+|2 + |A−|2︸ ︷︷ ︸
Drude

+ A+∗A−+A+A−∗︸ ︷︷ ︸
quantum interference

(3.1)

We note that at zero magnetic field, |A+| = |A−| = A and the reflection probability is
Ri→i = 4|A|2, while a decoherent backscattering has a probability of reflection of RCl = 2|A|2

due to the vanishing of the second term of Eq (3.1). The paths interference leads to the
enhancement of the backscattering and consequently to an increased resistance in mesoscopic
devices. This phenomenon is called weak localization.

The application of an external magnetic field adds an area-dependent Aharonov-Bohm
(AB) phase to the scattering amplitudes, A± = Ae±iφAB(S). As a consequence, reflection has a
parameterized interference term:

Ri→i = 2|A|2 +2|A|2 cos [2φAB(S)] . (3.2)

If we now consider all possible paths corresponding to the i → i transition amplitude, the
interference term has to be replaced by its average. For small values of the magnetic field,
such that most paths correspond to φAB ≪ π , the correction is small. On the other hand, for
sufficiently large N, φAB can be large and, on average, the cosine term vanishes. Hence:
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Ri→i = RCl, (3.3)

which corresponds to the classical Drude term. Therefore, the quantum correction contri-
bution to backscattering is maximal when B = 0. As the field is increased, one observes a
suppression of backscattering and the quantum correction to the Drude conductivity disap-
pears. Such weak-localization curve as a function of the magnetic field B has a dependence
on the disorder characteristics by means of scattering rates [78].

3.1.2 General electronic aspects of graphene

Let us briefly review the general electronic aspects of pristine graphene to obtain the effective
tight-binding model, suitable for the methods described in the previous section. Then, we
proceed by discussing the Dirac model of the Hamiltonian near charge neutrality point until
second order correction term. We show how the two kinds of disorder discussed in this
chapter can be included under tight-binding representation and modify the onsite and hopping
energies. Finally, we address an external magnetic field, included by Peierls substitution, and
a pseudomagnetic strain field to the model, respectively.

Graphene is a sheet of carbon atoms arranged in honeycomb lattice. The carbons ordinary
orbitals s, px and py of the outermost shell couple to form the sp2 hybrid orbitals constituting
the localized σ -bonds each carbon forms with its neighbors. The remaining pz orbital is
directed perpendicularly to the σ -bonds plane forming the delocalized π-bonds and are
responsible for most of the transport phenomena observed[4]. The lattice can be seen as a
triangular lattice with a two-atoms unit cell, from now on labeled as A and B. Each atom of
the unit cell is bonded to its neighbors in a trigonal planar structure with reflection symmetry
to each other. The primitive lattice vectors are:

a1 =
a
2

(√
3,1
)

a2 = a(0,1) (3.4)

with a lattice parameter of a = 2.46Å. The vector connecting A to its neighbors are1 (see
picture 3.1.2):

∆1 =
a
2

(√
3

3
,1

)
, ∆2 =

a
2

(√
3

3
,−1

)
, ∆3 =−a

(√
3

3
,0

)
(3.5)

1This is a convenient choice of reference system when one is interested in armchair cut pointed to x direction
and zig-zag cut in y direction, as seen in picture 3.1.2. Other forms of orientation are also possible.
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δ1

a1 a2

δ3
δ2

A
B

Fig. 3.3 Sublattices of the honeycomb lattice with example of basis vector and displacement
vectors.

Position of atoms over the lattice are then given by the two Bravais lattices vectors:

RA = na1 +ma2 RB = RA +∆1 (3.6)

where m and n are integer indices that run over the whole lattice. Now we are abled to write
down the nearest-neighbors tight-binding Hamiltonian including the hopping t(R,∆i) and
onsite ε(R) energies to the pz electrons:

H = ∑
R

i=1,2,3

[
t(R,∆i)a†(R)b(R+∆i)+H.c.

]
+∑

R

[
ε

A(R)a†(R)a(R)+ ε
B(R+∆1)b†(R+∆1)b(R+∆1)

]
(3.7)

The position dependent hopping and onsite energies are useful for the inclusion of scalar
and vector disorder models. This is the Hamiltonian model used in the numerical methods.
From now on, we review the translational symmetric analytical model in momentum-space
representation to formulate the foundations over which the disorder theory is based.

3.1.3 Pristine graphene near charge neutrality point

The flat graphene infinite sheet in the absence of disorder is translational invariant. The hop-
ping amplitude for this situation is 2.7eV [4]. The onsite energies are also space-independent
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and should be taken as zero εA = εB = 0 once they contribute only for a constant shift in
energy.In reciprocal space the basis operators read [9]:

a(R) = ∑
k∈ZB

eik·Ra(k), b(R) = ∑
k∈ZB

eik·Rb(k) (3.8)

The Hamiltonian (3.7) in momentum space becomes:

H = ∑
k∈ZB

[
a†(k) f (k)b(k)+b†(k) f ∗(k)a(k)

]
(3.9)

Where f (k) reads:
f (k) =−t(e−ik·∆1 + e−ik·∆2 + e−ik·∆3) (3.10)

Writing down the Hamiltonian in matrix form, we have:

H =

(
0 f (k)

f ∗(k) 0

)
(3.11)

whose eigenvalues are:

E±(k) =±| f (k)|=±t

√√√√3+2cos(kya)+4cos
(

kya
2

)
cos

(√
3kxa
2

)
(3.12)

The ± sign of equation (3.12) are represent the π bond and π∗ anti-bond discussed
previously. The bands have two nonequivalent high symmetry crystal points K of the
Brillouin zone where the energy vanishes f (K) = 0, labelled K(K′). To understand the
electronic properties around E ≈ 0, the Fermi energy in undoped regime, we expand f (k)
for K(K′)+q where |K(K′)| ≫ |q| until second order gives:

f (K±+q)≈ f (0)(q)+ f (1)(q)+ f (2)(q)

=− 3ta
2
√

3
(qx ± iqy)−

ta2

4
(
q2

x −q2
y ± i2qxqy

)
(3.13)

The Hamiltonian has four dimensions (KA,KB,K′B,K′A) and can be expresses compactly
using a set of Pauli matrices for each degree of freedom and substituting q → k:

H =−vFζz ⊗σ ·k−µ
[
σx(k2

x − k2
y)−σy(kxky)

]
(3.14)
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Fig. 3.4 Graphene band structure

The first term constitutes the Dirac-like term for a fermionic particle of velocity vF . The
second term gives the trigonal warping correction which is responsible for the rotational
symmetry breaking of the Dirac cones.

According to McCann and co-workers[73], the weak localization effect captures the
valley symmetry breaking caused by the warping term. To point out the associated isospin
and pseudospin symmetry breaking, the set of 4×4 matrices Σx,Σy,Σz and Λx,Λy,Λz were
introduced and are associated with the Pauli matrices by:

Σx = ζz ⊗σx, Σy = ζz ⊗σy, Σz = ζ0 ⊗σz

Λx = ζx ⊗σz, Λy = ζy ⊗σz, Λz = ζz ⊗σ0 (3.15)

They allow us to rewrite equation (3.13) in the convenient way[73]:

H = v f (Σ ·k)−µΣx(Σ ·k)ΛzΣx(Σ ·k)Σx (3.16)

Disorder can be included in the effective Hamiltonian by adding a general term of the
form[75]:

Himp =V0,0(r)+ ∑
i, j=x,y,z

ΣiΛ jVi, j(r) (3.17)
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Fig. 3.5 Schematic picture of intervalley and intravalley scatterings and the respective
scattering rates τ

−1
i and τ−1

∗ . For energies sufficiently far from the charge neutrality point,
the Dirac cones lose rotational symmetry and a warping correction of second order in
momentum expansion have to be taken into account into the Hamiltonian.

the corresponding scattering rates in first Born approximation are then:

τ
−1
i j =

2πν

h̄
V 2

i, j (3.18)

where ν is the density of states.
Let us now discuss how the character of the disorder terms Vi, j can influence transport

properties in graphene.

3.1.4 Impurities in graphene: long range vs short range disorder

Applying the Fourier transform to the disorder elements, one obtains its momentum component[79]:

V A
k =

√
3a2

2 ∑V (R)e−ik·R (3.19)

V B
k =

√
3a2

2 ∑
R

V (R−∆1)e−k·R (3.20)
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Using the four components matrix form, V A,B
k reads:

V A
K =


V0 0 0 Vk0e−2ik0·R

0 V ′
0 0 0

0 0 V ′
0 0

Vk0e2ik0·R 0 0 V0

 (3.21)

V B
K =


V0 0 0 0
0 V ′

0 Vk0e−2ik0·R 0
0 Vk0e2ik0·R V ′

0 0
0 0 0 V0

 (3.22)

where k0 is the distance between to inequivalent Dirac cones in k-space. For short-range
impurities:

V0 =Vk0 =V, V ′
0 =V ′

k0
= 0 (3.23)

electrons are scattered in the same sublattice, which is equivalent to a potential shift only at a
particular position of the lattice. Similarly, for long-range impurities:

V0 =V ′
0 =V/2, Vk0 =V ′

k0
= 0 (3.24)

impurities cause electrons to scatter in sublattices equally but within the same valley. The
scattering length is dependent on correlation length of scatterers and are considered in the
Gaussian impurity models discussed in the next sections.

3.2 Motivations

The theory of quantum corrections in diffusive disordered electronic systems is based on a
diagrammatic perturbation theory in inverse powers of kF le, where le is the characteristic
electronic elastic mean free path. This theory has been used to interpret weak localization
(WL) and weak anti-localization (WAL) regimes in graphene close to the charge neutrality
point. However, in this regime, kF l → 0 which makes the perturbation theory questionable.

3.2.1 The conductivity correction term in graphene

Theory predicts that the conductivity in 2D metallic samples at mesoscopic scale shows
quantum corrections due called weak localization (WL), that depend locarithmically on the
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phase-coherence scattering rate τφ and elastic mean free time τe[80]:

∆σ =− e2

πh
ln
(

τφ

τe

)
(3.25)

Weak localization corrections are ubiquitous in a number of experimental settings. Weak
localization contributes to the decrease in the Drude conductivity due to enhanced backscat-
tering caused by quantum interference of time-reversed closed paths. The dephasing time τφ

accounts for inelastic processes that destroy quantum coherence. In the presence of external
magnetic field, coherence phases are area-dependent and vanishes out at mesoscopic averages
causing an increase in conductivity.

However, an increase in the conductivity was also observed for a class of mesoscopic
materials, a phenomenon subsequently explained by strong spin-orbit interactions[81]. A
conductivity correction formula was derived by diagrammatic technique containing extra
terms logarithmically dependent on the characteristic spin-orbit scattering rates τSO.

Although graphene typically has a weak spin-orbit interaction[82], electrons in graphene
have a chiral nature due to sublattice degree of freedom. Large momentum scattering due to
short range impurities can give rise to an intravalley scattering rate τi. There is also another
spin-like component associated with valey degeneracy that also results in an intervalley
scattering rate τz. Ref. [73] gives an expression for the magnetoconductance in graphene,
taking into account all these possible scattering processes, namely:

∆σ(B) =
e2

πh

[
F

(
τ
−1
B

τ
−1
φ

)
−F

(
τ
−1
B

τ
−1
φ

+2τ
−1
i

)
−2F

(
τ
−1
B

τ
−1
φ

+ τ
−1
i + τ

−1
∗

)]
(3.26)

where τ∗ = τz + τw is incremented by an intravalley scattering rate τw due to the second
order term in the expansion of the Hamiltonian for low energies, the warping term. Here
F(x) = ln(x) +ψ

(1
x +

1
2

)
and ψ(x) is a digamma function. Together, they account for

intravalley and intervalley scattering but misses contributions from the pseudomagnetic field
due to ripples. Also, an in-plane magnetic field could have an explicit contribution to this
equation in the form of a perpendicular random field projected over the graphene sheet.

3.2.2 The suppression of the WL effect in parallel magnetic field

From the experimental side, WL effects have been extensively investigated motivated by
the quest for a quantitative understanding of the scattering disorder processes in graphene.
Along with conductance fluctuations, these scattering phenomena could act as a probe to
nanoscopic characteristics due to its sensibility to the size and strength of impurities[83].
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By means of magnetotransport measurements, one estimates scattering rates by fitting the
weak localization behavior under the external magnetic field with the predicted curve Eq.
3.26. One can also include an external in-plane magnetic field sensible to the curvatures of
graphene ripples[84].

It has been experimentally demonstrated that the application of a in-plane magnetic field
B∥ to a graphene flake on SiO2 substrate cooled to 40mK in a weak localization experiment
is capable to suppress the weak localization effect where B∥ effectively decreases τφ . Also,
a strong anisotropic magnetoconductance has been verified over the dependence of the
direction of the applied in-plane field.

Fig. 3.6 The magnetic field dependence of mangetoconductance shows an increase of conduc-
tance and suppression of weak localization over the sample for a perpendicular field B⊥ as
expected from the break of coherent-phases of the increased back-scattering effect. Then, a
parallel magnetic field was applied B∥ causing a smoothing to the whole curve, fact attributed
to the dephasing of a random effective perpendicular gauge field δB⊥.[84]
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3.2.3 Ripples: random fields contributions to conductivity

An external in-plane magnetic field applied to a graphene sheet has been recently consid-
ered in the theoretical approach motivated by the Lundeberg-Folk experiments[84], among
others[72].There, the effect of strain random fields on the Drude conductivity was addressed
in the form of two mechanisms: (i) A pseudo magnetic-field is generated due to the strained
bonds between the carbon atoms. (ii) A random effective field projected perpendicularly
to the surface is obtained as the result of the applied in-plane field. An anisotropy due to
the in-plane field was found due to the effective field while the strained pseudomagnetic
field contributed isotropically to the conductivity[84, 72]. Although Ref. [84] successfully
reproduces the measurements of anisotropy by introducing in the model surface roughness
inferred by the AFM measurements, as mentioned in the introduction, the effective low-
energy Hamiltonian is the result of an expansion taken near the charge neutrality point and
the standard diagrammatic perturbative expansion that describes well the conductivity of
a disordered graphene[85] considers the high doping regime, taking (kF l)−1 as its small
parameters. Hence, a numerical investigation is in order for testing the a diagrammatic
perturbation approach predictions.

3.3 The disorder models in tight-binding approximation

We describe the electronic dynamics in graphene using the tight-binding approximation
described in section 3.1. The Kwant package also offers a suite of functionalities to facilitate
the process of writing the Hamiltonian matrix. The user only needs to know the lattice
primitive vectors and the system tight-binding values, i.e., the onsite and hopping energies.

Now we discuss how to include the two disorder models considered in this study, which
describes both scalar and vector random disorder scattering processes.

3.3.1 The onsite disorder

We model the local scalar disorder as a Gaussian white-noise:

V (ri) =
Nimp

∑
n=1

une−|ri−Rn|2/2σ2
(3.27)
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(a) Long-range (b) Short-range (Anderson)

Fig. 3.7 Examples of disorder realizations for L = 40a and W = 3L and nimp = 0.022.

where ri is the real-space coordinate of the lattice site2. V (ri) is a sum of Nimp Gaussians with
random amplitude uniformly distributed in the interval un ∈ [−hmax,hmax] and centralized at
random sites Rn = (Xn,Yn) ∈ [0,L]× [0,W ] . We keep the correlation length σ as a constant.

The total number of atoms in the sample is Ntot =
4
√

3
3

LW
a2 . For long range correlation

lengths σ ≫ a, we consider the diluted case of impurity density, nimp = Nimp/Ntot . For the
opposite case σ ≪ a, we study the Anderson disordered model where Nimp = Ntot . A useful
quantity to characterize the disorder strength is the dimensionless correlator is[83]:

K0 =
LW

(h̄vF)2N2
tot

Ntot

∑
i=1

Ntot

∑
j=1

⟨V (ri)V (r j)⟩ (3.28)

For sufficiently large systems, taking the average value of 3000 realizations of the
disordered onsite potential in graphene samples, we readily verified in our simulations the
theoretically predicted limiting cases of K0 for both regimes:

2In this part we do not distinguish between the sublattices A and B when referring to the lattice sites as this
is a general formulation
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K =

√
3

9

(
hmax

t

)2

σ ≪ a (3.29)

K =
8π

9

(
hmax

t

)2(
σ

a

) Nimp

Ntot
σ ≫ a (3.30)

Figure 3.8 shows the dependence of the correlation strength on the maximum height
squared hmax

2 which is preserved for both regimes so as the multiplicative term is convergent.
The correlation strength is the one responsible to determine the mean free path in Born
approximation when kF l ≫ 1.
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Fig. 3.8 Comparison of the curves with numerical data for the dependence of mean correlation
strength with maximum intensity of potential for long range (black circles) and short range -
Anderson (white squares) disorder models and respective curved

We calculate the conductance G using the methods described in the previous chapter
using the Landauer formula G = 2e2

h Tr{tt†}. The average conductance ⟨G⟩ and variance
VarG = ⟨G2⟩−⟨G⟩2 are depicted in figure (3.3.1). They are in agreement with the results
of [83] for both long range and short range regimes and evidence increased conductance
fluctuations for the stronger disordered. One expects long ranged disorder to behave such
as the Anderson disorder where conductance vanishes for large values. However, due to
valley symmetry discussed previously, graphene presents increased mean conductance for
stronger impurities when correlation is sufficiently large. More discussions regarding mean
conductance in graphene can be found in ref. [83].
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Fig. 3.9 Left pannels: mean and variance of the conductance of 3000 realizations of onsite
disorder in graphene with increasing impurity strength K flutuating around the Dirac point
(undopped regime). Right pannels: the same as the left pannels but with a small dopping of
t/2. The correlation length used for the long range case where nimp = 0.022 was ξ =

√
3a

while Anderson disorder nimp = 1 have no spatial correlation ξ = 0.

This model of Gaussian disorder can be used for both electrostatic scalar potential due to
charge inhomogeneities in the substrate as well as for long range random ripples in graphene
which causes a random vector potential, as discussed later.

3.3.2 The hopping integrals disorder

Lattice deformations change the interatomic distances as well as the local orientation of the
π orbitals with respect to the graphene plane. These effects change the value of hopping
integrals in the tight-binding model. For small deformations, the hopping integral between
two atoms can be successfully modelled by an exponentially decaying dependence on the
interatomic distance[86]:

ti j = t0e−β

( di j
a −1

)
, (3.31)
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where di j = |ri − r j| is the distance between two neighboring carbon atoms and β is a
material-dependent decaying rate that can be infered from experiments

3.4 The effects of magnetic field in a rippled graphene

Fig. 3.10 Illustration of disordered ripples in graphene with applied parallel and effective
perpendicular magnetic fields

3.4.1 The pseudomagnetic field due to strain

To construct a Gaussian model for ripples in graphene due to random surface deformation,
we define the following displacement height field:

h(r) =
Nrip

∑
n=1

hne−|r−Rn|2/2ξ 2
(3.32)

where, similarly, hn ∈ [−zmax,zmax] and Rn ∈ [0,L]× [0,W ]. The typical displacement of the
deformations in graphene are much smaller then the correlation length ξ ≫ zmax [86]. In
this regime of small curvatures, where also ξ ≫ a, several authors have used elements of
the theory of elastic media in tight-binding model and discussed how the ripples h( r) can
modify the low-energy dynamics of electrons in graphene sheets.
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The strain tensor components ui j of a membrane can be associated to out-of-plane
deformations h(r) ad in-plane displacements u(r) by[87]:

uxx(r) =
∂ux(r)

∂x
+

1
2

[
∂h(r)

∂x

]2

,

uyy(r) =
∂uy(r)

∂y
+

1
2

[
∂h(r)

∂y

]2

,

uxy(r) =
1
2

[
∂ux(r)

∂y
+

∂uy(r)
∂x

]
+

1
2

∂h(r)
∂x

∂h(r)
∂y

. (3.33)

Strain can be effectively accounted for in the low-energy electronic structure of graphene
by introducing in the Hamiltonian a scalar potential V [88]:

V (0)(r) = g [uxx(r)+uyy(r)] , (3.34)

and a vector gauge potential A(r) = (Ax(r),Ay(r)):

Ax(r) =
h̄βκ

ea
[uxx(r)−uyy(r)],

Ay(r) =−2
h̄βκ

ea
uxy(r) , (3.35)

for the K-valley and armchair crystallographic orientation along the x-axis. Here, e is the
electron charge, t is the hopping integral and g≈ 4 eV, κ ≈ 1/3 , and β =−∂ log t/∂ loga≈ 2
are dimensionless material parameters that characterize the coupling between the graphene
electrons with the lattice deformations.

When in-plane deformations are small, the ux and uy derivatives in Eq. (3.33) are negligi-
ble. Therefore, for a known deformation profile h(r), the strain associated pseudomagnetic
field B = ∇×A can be estimated directly from h(r). We can see from the vector potential
Eqs. (3.35) that B points in the z direction. Its intensity is shown in Fig. 3.11.

It was found that the spatial autocorrelation function of the field Bint has a six-fold
symmetry in absence of in-plane deformations exihibiting the graphene hexagonal lattice
characteristics survives disorder averaging[72]. There is still room for the inclusion of
in-plane deformations in these studies and will be addressed in this work in the future.

3.4.2 The effective field due to strain

The external magnetic field can be accounted for in the tight-binding model by Peierls
substitution[8]. Let us consider first the case of a general external 3D magnetic field B =
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Fig. 3.11 An example of realization of the deformations z = h(r) and the resulting intrin-
sic pseudomagnetic field Bint neglecting in-plane deformations. The extrinsic effective
perpendicular field Bext due to the applied parallel field.

(Bx,By,Bz) applied to a rippled graphene sheet placed along the xy-plane with arbitrary
deformations. For a uniform magnetic field B, the vector potential can be written as[89]:

A(r) =
1
2

B× r. (3.36)

which can be read as a linear combination of several possible gauges. Choosing the more
convenient one, A(r) = (Byz,Bzx,Bxy) from where one can readily verify that B = ∇×A,
we calculate the hopping complex phase between sites k,k′, that is tk,k′ = t0eiφk,k′ using the
Peierls substitution formula[8]:

φk,k′ =
e
h̄

∫ k′

k
A(r) ·dr. (3.37)

To integrate, we consider the magnetic flux path integral over an arbitrary straight path
r(t) = rk+ t(rk′ −rk) where r(t) = (x(t),y(t),z(t)) and t ∈ [0,1]. The resulting Peierls phase
is:

φk,k′ =
e
h̄

{
By(xk − xk′)

(zk′ + zk)

2
+Bz(yk − yk′)

(xk′ + xk)

2
+Bx(zk − zk′)

(yk′ + yk)

2

}
.

(3.38)
For a uniform field in z direction B = Bzẑ, the magnetic phase φk,k′ is independent of the z
component of sites positions, namely:

φk,k′(B = Bzẑ) =
eBz

h̄
(yk − yk′)

(xk′ + xk)

2
(3.39)

This means that for the model of z displaced atomic positions, given in Eq. (3.32), the
magnetic field is not affected by the deformations as expected from a Lorentz force. Thus, to
account for the effect of deformations on an external field as a whole, one needs to resolute to
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(i) include components of the external field other than Bz and/or (ii) find the correct in-plane
displacement of atoms. Next, we discuss the two cases.

The in-plane magnetic field

Now, let us consider an external magnetic field B∥ parallel to the plane z = 0 over which the
graphene sheet is deposited.

Due to ripples, the local magnetic field component perpendicular to the surface is:

Bext(r) =−B∥ · n̂(r) (3.40)

where n̂(r) is the field of normal vectors perpendicular to the surface of atoms. In a discrete
surface of equation f (xi,yi,zi) =C, each point ri has Ni neighboring points ri1,ri2, · · · ,riNi

.
We are interested in the differences ∆ri, j = ri−ri j of each point with its neighbors ∆ri,1, · · · ,∆ri,Ni .
Making sure that the neighbors are indexed in the counterclockwise order, the normal vector
ni j to the surface spanned by each trio of vector positions ri,ri j ,ri j+1 is given by:

ni j =
∆ri, j+1 ×∆ri, j

|∆ri, j+1 ×∆ri, j|
(3.41)

where j should vary cyclically through the set 1, · · · ,Ni. Finally, the normal vector to the
surface at each point ri will be the average of all individual normals of surface-trios:

ni =
1
Ni

Ni

∑
j=1

ni j (3.42)

Then, the magnetic field is projected over this normal vector field using equation (3.40)
and the components obtained in the normal direction can be inserted in the general equation
(3.38). This method of normal vectors could be improved using an interpolation algorithm
for the surface of points.

In-plane deformations of a graphene membrane deposited on a substrate

For the weak localization theory to work as probe for the deformations in the disordered
graphene we need to specify the parameters of disorder such as correlation strength ξ and
maximum height zmax. Accordingly, the in-plane deformations of the graphene surface should
preserve well-defined values for this quantities to compare the numerical simulations with
the theoretical predictions.
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Fig. 3.12 Example of a normal vector field calculated for a rippled graphene.

To this end, we consider the model of a graphene layer h(r) deposited over a rough
substrate of a give shape h0(r) specified by the pair of parameters (zmax,ξ ) but separated
from the surface by a distance d(r) = h(r)− h0(r). In such case, the interaction of the
membrane with the substrate competes with the carbon-carbon bonds.

The Hamiltonian that comprises the graphene deformations and interaction with the
substrate is given by[87]:

H =
g
2

∫
d2r [h(r)−h0(r)]2

+
κ

2

∫
d2r
[
∇2h(r)

]2
+
∫

d2r

λ

2

[
∑

i
uii(r)

]2

+µ ∑
i j

[
ui j(r)

]2 (3.43)

with the material dependent bending rigidity κ ≈ 1eV and in-plane elastic constants µ,λ ≈
1eV of graphene[87]. The first term accounts for the graphene sheet substrate interaction
and the two terms regard surface strain with the strain tensor components given by (3.33).
The value of the coupling membrane-substrate g is less understood. It comprehends to
different sorts of interactions between the surfaces. One could resort on an estimation of
the parameters of Van der Waals interaction between graphene with an specific substrate.
However, any quantity at mesoscopic scale needs to be averaged over thousands of disorder
realizations and this could be a difficult practical task.

To make the model more computationally feasible, we assume this interaction as an
electrostatic spring-like potential between the graphene surface h(r) and the substrate h0(r)
where g as the spring constant. The interaction between atoms with the surface can be
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estimated by minimizing a pair-wise interaction energy between carbon atoms with the
constraint that they can only move when compensating the substrate spring force. This is
achievable using Molecular Dynamics energy minimization framework which would find the
position of carbon atoms of minimum energy considering a parameterized pair-wise potential
between carbon atoms under a fictitious external attractive force. A similar approach has been
successfully applied to a suspended graphene kirigami stretched in one direction where the
authors estimated the conductance for different values of a parameterized deformation[90].

3.5 Results and Discussions

We used the Kwant package to built lattice Hamiltonians according to the disorder models
presented in the previous sections and calculate the magnetoconductance using the Landauer
formula G = 2e2

h Tr
{

t†t
}

. We consider graphene samples of width and length W ≈ L ≈
70a for our tests. The sample is connected to two semi-infinite leads of square lattice
representing discretized metallic contacts similarly to quantum wires of a bi-dimensional
electron gas. They are coupled to the zig-zag edges of graphene following the contact model
provided in the literature[91]. This scheme allow us to compare our results with previous
weak localization studies present in the literature[75]. The hopping and lattice parameters
considered are t = 2.7eV and a = 2.46Å. We consider the presence of an external magnetic
field B perpendicular to the sample accounted by the Peierls substitution formula (3.39). The
magnitude of B is expressed in terms of the magnetic flux taken through the whole sample
area in units of magnetic flux quantum φ0. In order to account for the effect of the magnetic
field to the metallic leads, we choose a gauge that increases in y but is x-independent, and
include Peierls substitution also in the leads hopping integrals.

3.5.1 Magnetic field intensity decaying in leads region

We consider a set of samples of same size in that the calculated conductance is taken from a
point away from the central region subjected to a magnetic field with intensity decaying in
the lead region as |B|= |B0|e−(x−x0)

2/2σ2
B where x0 =±L/2 is the positions of the interfaces

between lead and graphene sample (see Fig. 3.14). We can verify in figure 3.15 that the tail
inclination is changing with the field range σB over the leads region.

Now, we consider onsite disordered graphene nanoribbon with an applied perpendicular
field Bz without ripples. We used the dimensionless disorder strength of K = 4 and Gaussian
correlation length of σ = a which can be considered as a short ranged disorder. Differently
from Anderson model of section 3.3, we use a small impurity density nimp = 0.03, that is,
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Fig. 3.13 Example of a graphene nanoribbon with armchair edges coupled to square lattice
leads.
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Fig. 3.14 (a)System considered to the inclusion of a decaying magnetic field at the leads
region (black square lattice for right lead and white square lattice for left lead). Leads are of
the same size as he central region. (b) Example of the profile of the B(x) curve for a region
of length L/σ = 10.

3% of the total number of sites contains a localized impurity. We observe a typical weak
localization curve for this set of parameters (see figure 3.5.1).

We note that it is possible to fit the data with the predicted curve presented in Eq. (3.26)
for a class of parameters. A careful analysis of the fitted parameters is still under development.
We can observe that the curve has a non-monotonic behavior in agreement with experimental
results[84].
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Fig. 3.15 Magnetoconductance with decaying magnetic field at the edges for different
correlation lengths σB as funcion of L
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Fig. 3.16 Magnetoconductance for a graphene nanoribbon with only onsite disorder with a
fitted curve. Parameters used are mentioned in the text.

3.5.2 WL-WAL crossover in the absence of strain

Now, we show the magnetoconductance calculated for different values of disorder strength
ranging from K = 0.5 to K = 4 for two values of correlation length of σ = 1.33a and
σ = 2.58a. We verify a WL-WAL crossover for this set of disorder strengths. We see that an
increase in the correlation length leads to greater values of WAL quantum corrections at zero
B. The curves shows a tendency of converging the same conductance until the half of the
curve but start to get separated after this points. This increasing difference between curves
for fields higher than ≈ 15φ0 is under discussion.



3.5 Results and Discussions 51

 
G
[2
e2
/h
]

1

1.2

1.4

 

φ[φ0]
0 10 20 30 40

ξ/a=1.33

K=4.0
K=3.3
K=2.6
K=1.9
K=1.2
K=0.5

 

1

1.2

1.4

 

φ[φ0]
0 10 20 30 40

ξ/a=2.58

K=4.0
K=3.3
K=2.6
K=1.9
K=1.2
K=0.5

Fig. 3.17 Magnetoconductance for different values fo onsite disorder strength K and two
correlation lengths σ = 1.33a (left) and σ = 2.58a (right).

3.5.3 The effect of an in-plane magnetic field on the WL curve

To simulate ripples, we consider the maximum height as zmax = 3a while a correlation
length of ξ = 10a which means that zmax/ξ = 30% . The ripple density considered is also
nimp = 0.03. The onsite disorder is also present and has the same values for σ = 1 and K = 4
as considered in the calculations of conductances of figure 3.5.1.
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Fig. 3.18 Magnetoconductance for a graphene sample with only onsite disorder (black), with
ripples (red) and with ripples and a parallel magnetic field (pink).

Including rippling, wee see that the whole curve is decreased at zero magnetic field until
its maximum value but converges to the same value as the perpendicular field is increased.
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Now, we study ripples in graphene by the inclusion of an in-plane magnetic field using
the methods described in last section. For now, units of the parallel magnetic flux are for a
different normalized magnetic flux quantum ϕ0 and will be quantitatively discussed later. We
can see that the inclusion of ripples causes a smoothing in the conductance (see black and red
curves of picture 3.18) in a similar way as observed in experiments (figure 3.6). The in-plane
magnetic field causes a phase oscillation over the surface that is proportional to the height of
the deformations and causes a phase coherence breaking that suppress quantum interference
contributions. In-plane magnetic field is suppressing the weak-localization effect by breaking
coherent phases even for small values of the perpendicular magnetic field. Another example
can be verified in smaller Gaussians of height zmax = 1a pictured in (3.19). As a next step,
we should investigate the effect quantitatively and the angular dependence of this suppression
and verify anisotropic effects compared to theoretical models[72].
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Fig. 3.19 Magnetoconductance for some values of in-plane magnetic field in units of ϕ0.

3.6 Conclusions

We discussed the problem of weak localization curves of a graphene nanoribbon coupled to
metallic leads for two kinds of disorder, onsite and hopping integral disorder. The former
has been shown that for long range correlation length, conductance increases even for the
stronger disorders as a result of the weak anti-localization mechanism. The latter cause a
suppression to the conductance due to the pseudomagnetic field generated by the strain. More
calculations are necessary to quantify the effects.

Additionally, we discussed the effects of ripples in the model and how the application of
an in-plane field could be added to the problem to probe effects of graphene deformations to
the weak localization curve. We also considered the study of in-plane relaxations in graphene
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considering the interaction with a substrate. The in-plane relaxations could account for
more realistic deformations in graphene surfaces. We expect that the inclusion of in-plane
deformations makes rippled graphene samples to be affected by perpendicular magnetic field
and also account for more precise pseudomagnetic field contributions. In some situations,
the pseudomagnetic field could be overestimated in the absence of in-plane relaxations due
to highly sloped regions on the surface. This could be a drawback to the modeling of highly
sensible quantities extracted from strained surfaces such as the weak localization.





Chapter 4

Application II: Quantum phase
transitions in the anomalous quantum
Hall effect of graphene

One of the most interesting features reported in the first seminal graphene papers [92–94, 1]
is the anomalous Quantum Hal effect. As discussed in the previous chapter, graphene has a
unique band structure whose charge carrier wave-function can be effectively represented by
a four-component relativistic-like spinorial behavior. As a consequence, the quantum Hall
effect in graphene shows unusual features. Due to graphene sublattice pseudospin degree
of freedom, current in graphene allows for transport of both electrons and holes causing
quantized Hall conductance for negative and positive charges. When sublattice symmetry is
preserved, the quantum Hall effect is also electron-hole symmetric. Graphene valley isospin
degree of freedom causes the Hall conductivity quantum to be four-fold degenerated, two
from the electron intrinsic spin and two from the K and K′ degeneracy. Such degeneracy has
been associated with graphene’s momentum inversion symmetry[73].

In the past decade, triggered by the discovery of the anomalous quantum Hall effect
in graphene[92], several theoretical studies have been devoted to understand the graphene
quantum Hall physics. In particular, it has been predicted that the disorder plays a central
role in the transport characteristics of graphene in the quantum Hall regime [95]. In summary,
theory predicts that the quantized Hall plateaus could be affected in two main categories: (i)
the anomalous Hall effect could transit to the normal Hall effect by displaying steps of two-
fold spin degenerated Landau levels and (ii) a plateau at zero energy could emerge. Despite
some evidences of level splittings and a plateau at zero Hall conductivity have been found
experimentally, an explanation for such remains incomplete. In Ref.[96], the emergence of
new plateaus has been attributed to Zeeman splitting, despite this effect being known as weak
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in graphene. Alternatively, Ref.[97] argued that electron-electron interaction are responsible
for degeneracy breaking and, as a consequence, for the level splitting observed in graphene
in the quantum Hall regime[98]. However, due to the lack of information about which kind
of disorder scatterings is the dominant one, it is difficult to attribute such findings to the
particular cases of disorder symmetries discussed in literature[79].

It has been established that the quantum Hall effect in two-dimensional electron gas
(2DEG) systems implies in localization effects. In the quantum Hall regime, the density
of states is characterized by discrete peaks called Landau Levels (LL). These peaks are
broaden by the disorder. The states that are in the tails of the LL are localized in the bulk
and the ones close to the center of the LL peak are fully delocalized, displaying critical
behavior[99]. At zero temperature, when the Fermi energy is tuned through the critical
energies, the system undergoes a quantum phase transition[100]. The set of disorder-driven
quantum phase transition are known as Anderson transitions, where the localization length at
the critical points Ec is characterized by the power-law divergence ξ ∼ |E −Ec|−ν , with a
critical exponent ν . This exponent is not directly assessed by transport experiments, however,
it can be related to the temperature dependence of the phase coherence length lφ ∼ T−p/2

where p = 2 for graphene[101]. According to finite size scaling theory[102], the power-law
behavior of the magneto-conductivity tensor at this transition has also the parameter scaling:

σαβ ∼ l1/ν

e f f (B−Bc) (4.1)

where Bc is the critical magnetic field and le f f is the effective system size. At zero temper-
ature le f f → L and at nonzero temperatures le f f → lφ [103]. Therefore, one can write the
temperature dependence of the critical behavior of the conductivity tensor as:

max
(

dσxy

dB

)
∼ T−κ , ∆σxx ∼ T−κ (4.2)

where κ =−p/2ν . Indeed, the diagram of σxy versus σxx as function of temperature shows
universal features for 2DEG systems under quantum Hall regime[104]. It was shown that
σxy and σxx are not independent and follow a scaling behavior over one parameter changing.
Also, a temperature-driven flow diagram towards (σxx,σxy) = (0,n)e2/h where n is an integer
has been observed[105]. However, there is an experimental difficulty to obtain reliable flow
diagrams close to the transition region between Hall plateaus due to the sensitivity of
delocalized states to sample inhomogeneities. A detailed analysis has demonstrated that
Hall plateaus follows mathematical phase diagrams with modular symmetry[106] and at
quantum critical points, where states are delocalized, corresponds to unstable fixed points
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while plateau states are represented by stable fixed points of the flow. The Renormalization
Group (RG) flow obtained from the nonlinear σ model [104] is able to explain the flow
stability, but falls short on providing quantitative predictions. Therefore, a numerical analysis
is the most promising tool to associate the flow diagrams to disorder.

In graphene, a σ model taking into account isospin degeneracies and nonzero magnetic
field containing two independent sectors corresponding to two valleys has been derived[95].
It was shown that for decoupled and weakly mixed valleys, the flow diagrams displays
very different features from 2DEG systems (see Fig. 4.1). As discussed in chapter 3, the
coupling between sublattices ad valleys can be tuned by the disorder properties. Despite the
importance of such class of systems, few numerical studies have addressed the longitudinal
and transverse resistances in Hall bar geometries due to the lack of an efficient multi-terminal
electronic transport code.

Fig. 4.1 Theoretical Renormalization Group flow of the σxx and σxy diagram for graphene with
(red) and without (blue) valley mixing. The unstable fixed points (open circles) correspond
to transition states between Hall plateaus. Stable points (closed circles) correspond to the
Hall plateaus states. Solid lines are transition between different Hall regimes in graphene as
predicted in Ref. [95]. g∗U is the longitudinal conductivity for the quantum Hall effect in an
ordinary material. Figure adapted from Ref. [95].

In this chapter, we numerically study the longitudinal and Hall conductivities of disor-
dered graphene samples for both chiral and scalar disorder. To this end, in section 4.1, we
revise the theory of the quantum Hall effect in disordered graphene systems at low energy. In
section 4.2, we derive the conductivity and resistivity tensors at nonzero temperature for a
six-terminal system. In section 4.3, we discuss the effect of temperature on the conductivity
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curves and display the numerically obtained temperature-driven flow diagrams for graphene.
In section 4.4, we draw our conclusions.

4.1 Theoretical background

Here, we review the theory of the anomalous quantum Hall effect in graphene in the contin-
uum limit. Next, we address the effect of disorder in the quantum Hall regime in the context
of localization theory. Finally, we discuss the effect of different types of disorder scattering
to the anomalous Hall effect in graphene.

4.1.1 The anomalous quantum Hall effect

The quantum Hall effect is universally characterized by quantized plateaux in the transverse
conductivity in multiples of e2/h. The key ingredient to differentiate the quantum Hall effect
in graphene from the usual effect in 2DEG samples is the relativistic-like nature of the charge
carriers close to charge neutrality point. In this section, we discuss the continuum model for
the graphene electronic band structure under a strong magnetic field and low doping, where
one can successfully describe the electrons by Dirac Hamiltonian for massless particles.

We start this derivation by considering the Hamiltonian of a pristine graphene near the
charge neutrality point, Eq. (3.11):

H =−h̄vFζz ⊗σ ·k (4.3)

where only the linear term is taken into account. The coupling of the electrons to a perpen-
dicular magnetic field can be accounted for by the substitution[107]:

ΠΠΠ/h̄ = k+ eA/h̄ (4.4)

which is valid always that the characteristic magnetic length lB =
√

h̄/eB is much larger
than the lattice spacing a and A is sufficiently smooth, such that the Dirac Hamiltonian
(continuum limit) is a meaningful approximation.

Substituting ΠΠΠ into Eq.(4.3), it is convenient to write the Hamiltonian in terms of a pair
of conjugate operators[108]:

â =
lB√
2h̄

(Πx − iΠy) , â† =
lB√
2h̄

(Πx + iΠy) (4.5)
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which satisfies the normalized commutation relation:

[â, â†] = 1. (4.6)

The low-energy Hamiltonian under magnetic field becomes:

HB =

√
2h̄vF

lB
ζz ⊗

(
0 â
â† 0

)
(4.7)

In the subspace of each valley, the eigenproblem HBψn = εnψn with ψn = (un,vn)
T becomes

a set of two coupled equations:

âvn =
lb√
2h̄vF

εnun (4.8)

â†un =
lb√
2h̄vF

εnvn. (4.9)

Each one can be transformed into an one-dimensional harmonic oscillator problem whose
eigenvalues can be readily obtained:

ε
±
n =± h̄vF

lB

√
2n (4.10)

where ± stands for two possible solutions, a positive and a negative, for each n. The
eigenenergies ε±n correspond to the quantized Landau energy levels for the Dirac Hamiltonian
under a magnetic field. Due to the two-fold degenerated valley spectrum, the level density
acquires a global factor of 2. Also, another factor of 2 must be taken into account for
sufficiently low magnetic fields, when Zeeman splittings are negligible. It is worth mentioning
how the dispersion relation in graphene εn ∼

√
Bn differs from the quantum Hall effect in

standard 2D electron systems, namely εn ∼ Bn. Due to the linear dependence in the latter
case, energy intervals ∆E are independent of n (for a review, see Refs. [109, 110]).

The corresponding eigenvectors are:

ψ
±
n =

1√
2

(
|n−1⟩
±|n⟩

)
(4.11)

whose components follow the usual harmonic oscillator properties â |n⟩ =
√

n |n−1⟩ and
â† |n⟩ =

√
n+1 |n+1⟩ for n > 1. An extra attention should be given to the ground state
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Fig. 4.2 Comparison of band structure and Landau level spacings for a semiconductor (left)
and graphene (right)

n = 0, where â |0⟩= 0 and ε0 = 0. In this case, the spinor ψ0 becomes:

ψ0 =

(
0
|0⟩

)
(4.12)

The nonzero term correspond to the A sublattice in the K valley and to the B sublattice in
the K′ valley. In this case, scalar disorder is ineffective to cause intervalley mixing, making
the scattering purely intravalley to this state, as verified in Ref. [111]. Also, as noted in
Ref.[112], the Landau levels at energy ε0 are independent of the magnetic field intensity.

The k−independence of the Landau levels leads to another degeneracy: there are = nBA
states for each n, where nB ≡ 1/2πl2

B, which comprehends to ratio between the irreducible
area of a single Landau level 1/nB and the area of the sample A. Also, nBA = φA/φ0, where
φA = BA is the magnetic flux over the area A and φ0 is the magnetic flux quantum. The area
n−1

B is independent of n and any particle will contribute to the same area. Therefore, an
electronic density of ne should give a filling factor of ν = ne

nB
. One can compare graphene’s

filling factor to the usual quantum Hall effect (see Fig. 4.5a). By filling the available states in
the conducting band of a 2DEG, the filling factor becomes ν2DEG = 2n, where 2 stands for
spin degeneracy, while graphene, which comprehends to available states also in the valence ,
the filling factor is given by νG = 2(2n+1) where the second factor of 2 stands for valley
degeneracy. Therefore, at n = 0, there is exactly one Landau level with 2 states, one spin-up
and one spin-down.

The quantum Hall effect is a macroscopic manifestation of Landau level degeneracy.
From the classical mechanics point of view, one can calculate the conductivity tensor of a
2D conductor of length L and width W under an electric field E = Ex̂ and magnetic field
B = Bẑ (see Fig. 4.3). The field E accelerates the charges on the plane along the x direction
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Fig. 4.3 Schematics of the Hall effect. An electric current Ix is passing through a 2D conductor
of length L and width W with a perpendicular magnetic field B.

resulting in the current Ix. The magnetic field B bends the current towards the y direction due
to the Lorentz force causing a voltage drop of VH which can be associated to a perpendicular
component of the electric field Ey =VH/W . In the Drude model, charges are deaccelerated
by a linear friction term mv/τ , where m is the electronic mass, τ is the mean free time.
Therefore:

m
dv
dt

=−eE− ev×B− mv
τ
. (4.13)

The equilibrium solution
(dv

dt = 0
)

gives:

E =
m

τne2

(
1 τ

eB
m

−τ
eB
m 1

)
J. (4.14)

Using Ohm’s law E = ρJ, one obtains the resistivity components:

ρxx =
m

τnee2 , ρxy =
B

nee
. (4.15)

From the resistivity tensor in the classical Hall regime, one can observe that ρxy is insensitive
to the scattering processes that causes τ , while ρxx → 0 when τ → ∞ (see Fig. 4.4). From the
quantum mechanics point of view, the charge density ne is filled with particles that occupy an
incompressible area n−1

B . Hence, when a gate voltage causing a carrier density ne electrons
in graphene, if ne is an integer multiple of nB, than the conductance is suddenly increased by
an integer factor responsible to the observed conductance quantization in the Hall effect.

From graphene’s filling factor ne = 2(2n+1)nB, we obtain the quantized Hall transverse
resistance in graphene:

ρxy =
h

2e2
1

2n+1
(4.16)
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Fig. 4.4 Classical longitudinal ρxx and transverse ρxy resistivity derived from Drude model.

i.e., the inverse of odd multiples of the conductance quantum g = 2e2/h, as observed
experimentally (see Fig. 4.5b). Note that, differently from the classical picture, the quantum
Hall conductivity is independent of the magnetic field.
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Fig. 4.5 (a) Integer quantum Hall effect: experimental measurements of Hall and longitudinal
resistances as function of the magnetic field B for a 2DEG at the interface of a GaAs/AlGaAs
heterostructure at temperature 0.1K. Adapted figure from Ref.[113]. (b) Anomalous quantum
Hall effect: experimental Hall conductivity σxy and longitudinal resistivity ρxx in graphene
as a function of charge concentration n for B = 14T . σ is calculated from measurements of
the tensor ρ . Adapted figure from Ref.[93].

In the longitudinal resistance, the Drude’s scattering term is not adequate to model
coherent scattering processes and would lead us to ρxx → 0. In the next section, we discuss
the effects of disorder in the quantum Hall effect in the diffusive regime.
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4.1.2 The effect of disorder on the Landau Levels

To the quantum Hall effect take place, the translational invariance symmetry has to be
broken[108]. The translational symmetry in Hall bar geometries can be broken even by impu-
rity scattering or by the sample finiteness. In particular, disorder breaks levels degeneracy by
causing spatial-dependent fluctuations to n−1

B and causes a finite width to the levels density,
associated to the disorder intensity (see Fig. 4.6).

n=1 n=2 n=3
E

ρ
(E

)

Fig. 4.6 Density of states of Landau Levels broaden by disorder. Bue region The peaks
displays levels broaden by disorder (blue). The vertical dashed lines are the respective
energies En of the levels. Vertical bars (red) shows the energy intervals of extended states.

For a two-dimensional conductor in diffusive regime, the scaling theory of localization
predicts that all systems behave as insulating - vanishing of conductivity while lowering
temperature - as a consequence of interference effects. However, since the magnetic field
breaks the time-reversal symmetry, due to disorder the area-dependent coherent phases tends
to average out. Therefore, under a strong magnetic field, the conditions for applying the
standard localization theory are violated and a nonzero current are usually observed. This is
the case for the quantum Hall effect in disordered samples, where both insulating-conducting
phases coexist. In the insulating phase, where σxx = 0, all electronic states are localized and
the filling factor is far from the Landau levels. From the other hand, in the conducting phase
σxx ̸= 0 and all states are extended, while the filling factor is at the top of a Landau level. The
critical energy associated to the filling factor value that separates the extended states from the
localized ones is defined as mobility edge. The existence of a metal-insulator transition at a
critical energy with mobility edges characterizes the quantum Hall effect as a disorder-driven
quantum phase transition and universal critical properties are expected.

As demonstrated in the previous chapter, the different sources of disorder in graphene
couple isospin and pseudospin degrees of freedom in several ways. While the observed
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σxy = 0 in graphene is due to preserved sublattice symmetry, the anomalous Hall quantization
accounts for a disorder that preserves valley symmetry.

In this sense, several theoretical models have been proposed to explain the anomalous
Hall quantization and predict different kinds of symmetry breaking. Here, we discuss what
has been predicted in literature and propose numerical tests to verify four special cases: the
chiral long-range disorder, the chiral short-range disorder, the scalar long-range disorder and
the scalar short-range disorder.

4.1.3 Intervalley vs intravalley scatterings in the QHE of graphene

Here we discuss the short and long range, scalar and chiral disorder effects in graphene in
the quantum Hall regime (see discussion in section 3.1.4 ).

The short-range scalar disorder causes intra-lattice scatterings. In the four-component
(AK,BK,BK′,AK′) matrix notation, the associated matrix to a scatterer on a site of sublattice
A located at RA is given by [79]:

V A =


V0 0 0 V0e−2ik0·RA

0 0 0 0
0 0 0 0

V0e2ik0·RA 0 0 V0

 (4.17)

while a scatterer on B at RB gives:

V B =


0 0 0 0
0 V0 V0e−2ik0·RB 0
0 V0e2ik0·RB V0 0
0 0 0 0

 (4.18)

where k0 = K−K′. Regarding chiral disorder, the hopping integral that couples inter-lattice
scatterings from a site at RA to another one at RB is associated to the matrix[111]:

V AB =


0 z∗AzB z∗Az′B 0

z∗BzA 0 0 z∗Bz′A
z′∗BzA 0 0 z′∗Bz′A

0 z′∗AzB z′∗Az′B 0

 (4.19)

where zA = δ teiK·RA , zB = δ teiK·RB , z′A = δ teiK′·RA and z′B = δ teiK′·RB and δ t is the hopping
linear distortion term. Note that matrices (4.17), (4.18) and (4.19) complements each other.
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Using the graphene quantum Hall wave functions derived in the previous section, Ref.
[111] calculated the matrix elements of the quantum Hall states coupled by disorder, namely,
ψ†

nV X ψn, where X = A,B,AB.
The authors shown that, fr n = 0, where the wave function amplitudes are localized in

one of the sublattices per valley, pure onsite disorder should give intravalley scatterings and
pure hopping disorder should give intervalley scatterings in the short-range limit. For n ̸= 0,
both kinds of disorder should contribute to intervalley scatterings.

Another approach to the effects of the different types of disorder to the quantum Hall effect
in graphene has been demonstrated in Ref.[95]. The authors attributed the disorder-driven
localizations in the quantum Hall effect in graphene to the disorder symmetry and considered
it as fundamental for the effect to take place. Using a self-consistent Born approximation
(SCBA) and a nonlinear sigma model, they concluded that while long-range scalar disorder
causes the anomalous quantum Hall effect, short-range disorder allows intervalley scattering
and ordinary quantum Hall effect should be observed in this case. Moreover, a crossover
from the anomalous to the ordinary effect should occur at a critical temperature. Chiral
disorder should lead to a linear dependence of σxy with the charge density ne, similar to the
classical effect Eq. (4.15), around the charge neutrality point.

It should be emphasized that the Self-consistent Born approximation is based on a
diagrammatic approach and, as was the case in the previous chapter, is valid when kF le ≫ 1,
far from the charge neutrality point. The considerations on the N = 0 level of Ref. [95]
based on the SCBA are speculations and, even for qualitative estimates, should be considered
carefully.

In the next section, we present our methodology to study this problem numerically and
compare our findings with the ones discussed above.

4.2 The conductivity tensor at nonzero temperature

In this section, we derive the conductivity tensor equations at nonzero temperature for a Hall
bar geometry.

To observe the longitudinal and transverse conductivities from a given experimental
setup, one needs at least four electric contacts [77]. However, in experiments using a Hall bar
geometry (six-terminals), the current can be driven in two contacts while other two contacts,
working as voltage probes, are places longitudinally to the current. The remaining other two
contacts are perpendicularly placed. Together, the six contacts guarantee the performance of
both transverse and longitudinal measurements in a noninvasive manner (see Fig. 4.7).
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Fig. 4.7 Schematics of the description of a Hall bar. The system is considered to be in the
xy plane and a magnetic field is applied in the z direction. A current I along the x axis is
induced between the horizontal contacts 1 and 4, while the voltage probes at the contacts
2,6,5 measures potential differences VH and VL that are used to calculate the longitudinal
and transverse resistance through the relation V = RI.

In the linear response theory, the conductance in a multi-terminal setup can be calculated
via the Landauer-Büttiker formalism. The relation between the electronic current Iα that
passes through terminal α and the voltages Vβ applied in terminal β is given by:

Iα =
6

∑
β=1

Gαβ (Vα −Vβ ). (4.20)

The conductance Gαβ is obtained from the scattering matrix coefficients discussed in chapter
2. Considering electrons reservoirs with a nonzero temperature T and chemical potential µ ,
the conductance is related to transmission probability as:

Gαβ =
2e2

h

∫ ∞

−∞
dE
(
− ∂ f

∂E

)
Tαβ (E), (4.21)

where f (E) = [1+e(E −µ)/kBT ]−1 is the Fermi-Dirac distribution. Equation (4.20) gives a
set of six coupled equations. We consider the case of a current applied between terminals 1
and 4, which makes I2 = I3 = I5 = I6 and I1 =−I4 = I, as depicted in Fig.4.7. If the magnetic
field is sufficiently strong in such way that the edge states localization width is smaller than
the width of the terminals bar, the Lorentz force completely deviates the electrons from a
terminal to the neighboring terminalThe sense of the bending depends on the charge of the
particles. leading to the vanishing of the all conductances, except the following ones:

G21 = G32 = G43 = G54 = G65 = G16 ≡ Ḡ (4.22)
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where Ḡ is some conductance value. Therefore, in matrix notation, the Landauer-Büttiker
reads: 

I
0
0
−I
0
0


=



Ḡ 0 0 0 0 −Ḡ
−Ḡ Ḡ 0 0 0 0
0 −Ḡ Ḡ 0 0 0
0 0 −Ḡ Ḡ 0 0
0 0 0 −Ḡ Ḡ 0
0 0 0 0 −Ḡ Ḡ





V1

V2

V3

V4

V5

V6


(4.23)

whose solutions are:

V1 =V2 =V3, V4 =V5 =V6, I = Ḡ(V1 −V6), I = Ḡ(V4 −V3) (4.24)

From this model, one can theoretically predict the resistance values in the quantum Hall
regime. The resistances Rαβ ,γδ between contacts α and β with a current between γ and δ

read:

Rxy ≡ R26,14 = R35,14 = Ḡ−1 Rxx ≡ R65,14 = R32,14 = 0 (4.25)

At zero temperature, Ḡ → e2

h ν where ν is the Hall filling factor. Therefore, the transverse
resistances Rxy display the expected quantized Hall value RH = h

e2
1
ν

while the longitudinal
resistances Rxx vanish, as observed experimentally[77].

In the numerical calculations, one is interested in the calculation of the voltages Vα as the
outputs and currents Iβ as the inputs and a dense conductance matrix ahousl be considered.
To this end, we define the voltages and currents as column vectors V = (V1,V2,V3,V4,V5,V6)

and I = (I1, I2, I3, I4, I5, I6), respectively. In order to obtain the solution for the voltages
instead of the currents, one needs to invert the conductance matrix G−1 ≡ F. However, due to
conservation laws, the equations are linearly dependent, which means that G is not invertible.
Hence, we skip the line and column in the conductance matrix regarding the terminal that the
current leaves, say terminal δ , and solve the linear system ṼVV = F̃FF · ĨII for a 5×5 matrix F̃FF . The
solution for a current injected in terminal γ that leaves from terminal δ for α ̸= δ ̸= β ̸= γ

reads:
Rαβ ,γδ = F̃α−Θ(α−δ ),γ − F̃β−Θ(β−δ ),γ . (4.26)

Here, Θ(x) denotes the discrete step function and is necessary to account for the fact that the
resistance ath the left hand side considers all the terminals, and the matrix at the right hand
side has one missing terminal.
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It should be emphasized that, at stage of the matrix inversion, the elements of matrix
G already carry the temperature dependence. That is to say that the thermal average Eq.
(4.21) should be taken before Eq. (4.20) and, because temperature can affect the transport
probabilities and change the result of the inversion, they do not commute.

4.2.1 The conductivity/resistivity tensor

As resistance and conductance are geometry-dependent, we calculate the resistivity and
conductivity tensors. The resistivity tensor of a 2D system is obtained from the relation
between the electric field and the linear current density:

Ek = ∑
l=x,y

ρkl jl, k = x,y (4.27)

We consider a rectangular central region of width W and length L coupled to 6 terminals (see
Fig.4.7). The linear current density due to a current driven along the x direction is jx = Ix/W
while jy = 0. The electric field components are associated to the voltages as Ex =VL/L and
Ey =VH/W . Therefore, the resistivities ρxx = ρL and ρxy = ρH are:

ρL =
VL

I
W
L

= Rxx
W
L

ρH =
VH

I
= Rxy (4.28)

which shows that there is no system size dependence in the Hall resistance while the longi-
tudinal resistance depends on an aspect ratio of the system W/L, as its classical analog. In
this case, the system size should influence the height of the resistivity peaks ρxx. From the
inverse relation of (4.28), we obtain the conductivity tensor components:

σxy =
−ρxy

ρ2
xx +ρ2

xy
σxx =

ρxx

ρ2
xx +ρ2

xy
(4.29)

In the Hall regime, σxx → 0 while σxy → 1/ρxy. Both representations should be able to
display the main features of the quantum Hall effect and can be used in a complementary
manner. Due to the equivalence of dimensionality, resistance and resistivity, conductance
and conductivity can be found being used interchangeably in the literature.

Following the procedure described in this section on a tight-binding lattice with a per-
pendicular magnetic field, one can numerically obtain the conductivity tensor, a geometry-
independent variable, starting from the calculation of the scattering matrix coefficients.
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4.2.2 The nonuniform gauge trick for multiterminal setups

To properly account for the magnetic field effect on the semi-infinite terminals of a Hall bar
geometry (Fig.4.7) in the tight-binding approximation, one needs to consider a translational
invariant gauge that is x-independent in terminals 1 and 4 and y-independent in terminals
2,3,5,6. To this end, we resort to a smoothly changing vector potential that acquires
translational symmetries at the terminals region, as proposed in Refs.[114, 60]. It is worth
noting that alternative schemes have been proposed to handle the same problem [10, 115].
While Ref. [10] distorts the horizontal terminals to the vertical direction, building all the
semi-infinite terminals along the y direction, Ref.[115] proposes a rotation to the vector
potential in the region of the leads. The method that we discuss here was firstly proposed in
Ref. [114] and can be computationally cheaper than [10], in the sense that it requires less
extra sites to be implemented, and does not causes discontinuities to the magnetic field, as in
[115]. In both cases, the gauge scheme could cause spurious scattering processes that could
highly affect the extended localization of the transition states of the quantum Hall regime
and, therefore, it could deform the resistivity tensor profile in the transition region between
plateaus, a highly sensible curve (see discussion in the next section). Here, we demonstrate
that, as long as gauge invariance is preserved, spurious scattering events are successfully
avoided.

Starting from the general gauge (3.36) discussed in the previous chapter, one can choose
an x-independent and a y-independent gauge as, respectively:

Ax =−Byx̂ Ay = Bxŷ. (4.30)

A smooth transition between the both terms has to obey the gauge transformation condition:

A = Ax +∇ f (x,y) (4.31)

which is insensitive to the magnetic field B = ∇×A. As proposed in Ref. [114], it is
convenient that:

f (x,y) =W (x)v(x,y), v(x,y) = Bxy (4.32)

The function W (x) is a smooth step function that is 0 in leads 1 and 4 and 1 in the region
comprising the leads 2,3,5,6. We choose the function:

W (x) =
1
2

[
tanh

(
x− x1

dx

)
− tanh

(
x− x4

dx

)]
(4.33)
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where xi is the geometric center of terminal i along the x axis and dx is the smoothness of the
step. The explicit form of the vector potential can be written as:

A = B
d
dx

[(W (x)−1)x]yx̂+BW (x)xŷ (4.34)

which can be integrated in Eq. (3.37) with the appropriate techniques. Fig. 4.8 displays
the real part of tk,k = t0eiφk,k′ as a color map for a strong magnetic field (a short range scalar
disorder is also included, which gives the noisy aspect of the figure). One can see that the
periodicity of the phase is vertical in the central region and smoothly changes to an horizontal
periodicity in the lateral terminals.

Fig. 4.8 Color map of Re
[
tk,k′
]
/t0 in a disordered graphene Hall bar coupled do six semi-

infinite leads (shaded regions). The intensity of the color map goes from −1 (darker color)
to 1 (lighter color).

The only region of concern is where the vector potential changes from one gauge to the
other, that is when W ′(x) ̸= 0 (the nonuniform region in Fig.4.8). As long as dx is chosen
such that the vector potential varies smoothly when compared to the lattice spacing, namely,
dx ≫ a, descontinuities are avoided.

Note that the same result could not be achieved through the gauge scheme A = B(β −
1)yx̂+Bβxŷ for 0 < β < 1, known in the literature. Even if β changes smoothly, such
scheme would keep the magnetic field as constant, but the gauge invariance when β → β (x)
would be violated.

In Ref. [114], a more general approach is discussed for multiterminal setups whose
terminals are oriented to arbitrary directions.
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4.3 Results and discussions

We consider a disordered graphene sheet in a Hall bar geometry under a strong magnetic
field, as depicted in Fig. 4.7. The graphene sheet is described by the tight-binding model, as
shown in chapter 3. The disorder models are also accounted for as specified in the previous
chapter, using a sum of randomly distributed Gaussians in case of long-range disorder and
uncorrelated random onsite energies in case of short-range disorder. The horizontally coupled
leads, 1 and 4, have armchair edges and, to keep the continuity along the lattice, the vertical
leads, 2,3,5,6 have zigzag edges. The magnetic field is included using the scheme described
in the previous section and is also considered in the leads semi-infinite portion.

We calculate the system longitudinal and transverse resistances using the Landauer-
Büttiker formula, Eq. (2.9), considering the terminals α = 2,3,5,6 as voltage probes, that
is, I2 = I3 = I5 = I6 = 0 (see inset of Fig. 4.9b). In this setting, I1 = −I4 = I. Hence, we
aim to numerically obtain the resistances Rxx = R23,14 = R56,14 and Rxy = R26,14 = R35,14,
as discussed in the previous section. Due to the possibility to measure the longitudinal and
transverse resistance in two uncoupled ways, an average of the equivalent resistances can be
used to smooth the fluctuation effects caused by disorder.

We start our discussion by presenting our general findings based on single disorder
realization simulations of a graphene Hall bar containing ∼ 106 sites and the longest distance
in the system (from the left to the right arm) is ∼ 0.246µm. The onsite short-range disorder is
randomly chosen in the interval [−δW,δW ] where δW = 0.8t. Fig.4.9 displays the obtained
resistances as a function of the Fermi energy EF (upper Figure) and the magnetic flux φ in
units of the magnetic flux quantum φ0 = h/e. The results for Rxy and Rxx correspond to typical
quantum Hall resistance curves for graphene samples [108]. The quantized Hall plateaus are
located at Rxy =

h
2e2

1
2n+1 for integer values of n while a zero longitudinal resistance Rxx is

observed at the Rxy plateau region. In the plateau-plateau transition intervals, the longitudinal
resistance displays nonzero fluctuations due to the single-disorder realization that fluctuates
with the changing of the respective field. Experimentally, such fluctuations are averaged out
by temperature effects and the self-averaging of the electronic current in large samples.

It has been argued in the literature that the experimental results of Hall quantization
are robust and can be probed even in relatively dirty (strongly disordered) samples and
at high temperatures. This feature is also present in numerical simulations where subtle
discontinuities in the magnetic field or in the system edge are difficult to be detected by
resistances due to the robustness of the quantum Hall effect. Despite the fact that the Hall
plateaus are, to some extend, insentitive to small disorder scatterings, the transition regions
are highly sensitive, and could distort the quantum phase transition properties that we are
interested.



72Application II: Quantum phase transitions in the anomalous quantum Hall effect of graphene

0.2 0.4 0.6 0.8
EF /t

0.00

0.25

0.50

0.75

1.00

R
[h
/2
e2

]

(a)

0.000 0.005 0.010 0.015 0.020
φ/φ0

0.0

0.1

0.2

0.3

0.4

R
[h
/2
e2

]

(b)

Rxx

Rxy

1
2 3

4

56

Fig. 4.9 Graphene Hall bar longitudinal Rxx and transverse Rxy resistance for a single disorder
realization (106 atoms and T = 0) as a function of (a) EF/t for φ/φ0 = 0.007 and (b) φ/φ0
for EF/t = 0.5.

We calculate the local density of states (LDOS) and local current as auxiliary tools to
detect localizations due to the possible sources of scattering processes. Figures 4.10.a and
4.10.b display LDOS of the single short-range disorder realization for edge states along
the sample in the plateau region and an extended state in the transition region between
two plateaus (solid and dashed vertical lines of Fig. 4.9), respectively. The local current
corresponding to the edge states of Fig. 4.10a is displayed in Fig. 4.10c, where the vector
field associated to the current direction of propagation is shown as stream lines on top of
nonzero current intensities.

From the LDOS at the edge states, it can be verified that the magnetic length is a good
estimative to the localization length at the edge states (vertical red trace in Figure 4.10b).

It should be emphasized the advantages of the WFM method discussed in chapter 2 to
compute such set of QHE properties. The linear dependence of the cpu time the system
dimensions W , W ′ and L makes the WFM method convenient to large central areas, where
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Fig. 4.10 Local density of states at EF = 0.5t and a magnetic flux of (a) φ = 0.004φ0 (plateau
state) and (b) φ = 0.008φ0 (transition state). (c) Local current at EF = 0.5t and φ = 0.004φ0
(plateau state).

more complex scatterers with long range correlations can be addressed. For the results here,
the cpu time to calculate a single energy resistance point was about 60 seconds using one
core of an Intel®Xeon®X5650 processor, much smaller than what one could achieved with
other quantum transport methods, such as the RGF. Another important feature of the WFM
is the direction of propagation of the current, which can be naturally captured from the
velocities of the leads eigenmodes basis. As a consequence, negative resistances are directly
obtained when negative Fermi energy values, corresponding to a negative current, are applied.
Moreover, the QHE observed in graphene could be easily extended to other materials whose
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a localized basis description requires more orbitals per site. Such basis complexity could be
included with almost no cost by using the Kwant sparse solvers.

4.3.1 The case T = 0: Disorder-driven phase transitions

Let us now discuss the transport properties in a graphene Hall bar under strong magnetic
field φ = 0.007φ0 for disorder-averaged results. To obtain a suffiently smooth conductance,
we consider samples of ∼ 105 sites and calculate the average of the transmission matrix for
100 disorder realizations.

We consider the four types of disorder, short-range onsite, short-range chiral, long-range
onsite, long-range chiral, as discussed in the previous chapter. For practical reasons, we
summarize in this section the definition of the scalar and chiral disorder models as follows:

• Short-range scalar disorder: randomly chosen onsite energies εi from an uniform
distribution εi ∈ [−δW,δW ];

• Short-range chiral disorder: randomly chosen carbon atoms heights zi from an
uniform distribution zi ∈ [−zmax,zmax], respectively;

• Long-range scalar disorder: sum of randomly distributed Gaussians over the onsite
energies:

ε(ri) =
Mmax

∑
n=0

une−|ri−Rn|2/2ξ 2
; (4.35)

• Long-range chiral disorder: sum of randomly distributed Gaussians over the (carbon
lattice site atoms) heights:

z(ri) =
Nmax

∑
n=0

zne−|ri−Rn|2/2ζ 2
. (4.36)

In Fig. 4.11, the conductivities for the short-range disorder-averages are displayed. The
standard error of the mean is displayed as error bars. In both cases, onsite and chiral short-
range disorder, fluctuations are concentrated only in the transition regions between plateaus
and, despite the smoothness of the averaged curve σxx for the peaks of n ̸= 0, fluctuations are
strong around the LL n = 0 and even seem to not converge.

Despite the quantum Hall effect of graphene containing short-range disorder having been
numerically obtained[11, 10], comparisons with the literature for the different disorder types
has never been discussed. It has been argued [95, 111] that the anomalous nature of the
quantum Hall effect in graphene requires the K and K′ valley to be uncoupled, which is not the
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Fig. 4.11 Transverse σxy and longitudinal σxx conductivity around the Dirac point for short-
range disorder. Result is the average of 100 realizations and magnetic flux φ = 0.007φ0. (a)
Onsite disorder for δW = 0.2t. (b) Hopping disorder for zmax = 0.2a.

case for short-range disorder, as discussed in the previous section. IThe latter was predicted
[95] to cause the lifting of the degenerated valleys, which could be evidenced by extra
plateaus in the even multiples of 2e2/h. However, such splitting due to short-range onsite
disorder has never been observed and Fig.4.11a is also an evidence that, despite the valley
coupling to be taking place, the symmetry is preserved. It should be mentioned that, in the
previous chapter, simulations using similar disorder configurations on a graphene nanorribon
were capable to detect the WL-WAL transitions as an evidence of a valley-coupling switch
as a function of the disorder strength.

The transverse and longitudinal conductivities for the case of hopping disorder is shown
in Fig. 4.11b. Similar quantized plateaus at the predicted values 2e2

h (2n + 1) are also
demonstrated. However, there are two interesting features to be discussed. First, due to the
lattice deformations used in the model, only extensions between neighboring carbon atoms
are present, where a realistic model should account for squeezed deformations also. The
main effect of such one-sided deformation is a shift to the magnetic field B → B+δBstrain

where δBstrain is a pseudomagnetic field overall effect. It could shift the energy centers
En ∼

√
Bn an increase in the positions of the LL along the calculated Fermi energies.

Despite no clear degeneracy lifting has being observed, a subtle level splitting pattern
seems to be taking place in all plateaus transitions. In case of the n = 0 level, the fluctuations
are strong and such effect remains unclear. A similar result has been observed in Ref.[111],
where the existence of degeneracy breaking between valleys due to a short-range hopping
disorder has been demonstrated and a subtle splitting has been observed with numerical
calculations using the Kubo formalism. A zoom in the energy range at the transition region
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Fig. 4.12 Zoom at the plateau transition of level n =−1 where a subtle protuberance seems
to be forming around EF = 0.25t

(n=−1) indicates a possible level splitting, see Fig.4.12. This is not a clear evidence because,
in case of formation of an intermediate plateau, a change in the fluctuation should also be
observed, which is not the case. Such result requires a focused investigation.

Regarding the long-range disorder cases, results are pictured in Fig.4.13. In both cases,
the peaks width along the σxx curve are relatively smaller than their short-range counterparts.
This is mainly due to the robustness of the Hall localization of edge states which tend to be
formed right away the critical energy points. Note that the disorder strengths are relatively
small as compared to the short-range disorder. This is due to the possibility of the formations
nanobubbles which may confine LL inside a single Gaussian when the magnetic length
is of the order of the Gaussian effective radius. When the system has such nanobubbles,
fluctuations due to the spatial confinements were observed in the conductivity tensor at the
plateau regions and also in the LDOS (not shown in this thesis).

The quantization values are the same as in the case of the short-range disorder. Due to
the lack of coupling between the K and K′ valleys, the observed degeneracy do agree with
the general theory of the anomalous quantum Hall effect.

The case of long-range hopping disorder shows another interesting result. Differently
from all the other cases, there is no peak at the σxx around the LL n = 0 evidencing that
such level is insensitive to the present disorder. This is a case of complete localization of the
underlying LL, σxx = σxy = 0 at E = 0.

4.3.2 The case T ̸= 0: Temperature diagrams and universal power laws

In this section, we discuss the temperature effects on the conductivity tensor in graphene in the
quantum Hall regime. Since our calculations do not account for decoherence processes, i.e.



4.3 Results and discussions 77

−0.2 0.0 0.2 0.4
E/t

−2

0

2

4

σ
[2
e2
/h

]

σxx
σxy

(a)

−0.2 0.0 0.2 0.4
E/t

−2

0

2

4

σ
[2
e2
/h

]

σxx
σxy

(b)

Fig. 4.13 Same as Fig.4.11 for long-range disorder realizations. (a) Onsite disorder: umax =
0.016t, ξ = 4a. (b) Hopping disorder: zmax = a, ζ = 5a.

lφ → ∞, temperature smears the Fermi surface and effectively introduce an average over the
Fermi energy EF . Due to the numerical discreteness of the energy data, the temperature has a
lower bound Tmin given by the width of energy step δE which corresponds to kBTmin ≫ δE,
where kB is the Boltzmann constant. At the other limit, the maximum temperature has to be
smaller than the width of the Hall plateaux being analysed kBTmax ≪ ∆EN,N±1.

We follow the same order of discussion of the T = 0 case. First, we present the general
results for the short-range onsite disorder and we compare the different types of disorder. Fig.
4.14a presents the resistance as a function of the Fermi energy for different temperatures,
ranging from kBT = 10−3t to kBT = 10−2t, where t ≈ 2.7eV in graphene. One can see the
increasing of the smoothness of the curves along with the destruction of the plateaus to a
monotonic curve. The high temperature situation tends to the classical resistance behavior,
which is linearly dependent on the inverse of charge density ne as the temperature smears the
Hall plateaux.

The n = 0 LL always displays special features regarding temperature effects. First of
all, our simulations shows that it is robust against temperatures, as observed in Ref. [116].
Secondly, the temperature effect over the ρxx and ρxy components manifest individually
different despite being coupled by the unitarity of the conductance matrix. While the
longitudinal resistivity maximum point is increased by temperature close to the charge
neutrality point, the maximum at the other levels are decreased (see Fig. 4.14b). The Hall
resistivity also presents an very particular behavior at n = 0, it is almost independent on
the temperature at the transition region from −1h/2e2 to 1h/2e2. In the flow diagrams, Fig.
4.14b, we observe the flow of the resistivity components against temperature, the maximum
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Fig. 4.14 (a) Isothermal resistivity curves as a function of the Fermi energy for an onsite
short-range disordered graphene with disorder amplitude δW = 0.2t. Result is shown for the
average of 100 disorder realizations. Temperature range is from KBT = 0.001t to KBt = 0.01t,
and magnetic flux of φ = 0.007φ0. (b) The corresponding flow diagram (ρxx,ρxy). The solid
line is the coolest curve and the dotted line is the hottest one. The dashed ines are the
isonergetic curves (ρxx,EF (T ),ρxy,EF (T )) as function of the temperature and are guide to the
eye for the flow evolution.

temperature is denoted by solid line and the minimum one by the doted line, dashed lines are
isoenergetic curves.

A scaling dependence of temperature of the peaks width in both EF and B parameters
is displayed in Fig.4.15. As previously argued, there is a scaling parameter that has been
observed for other materials at the quantum Hall regime, given by the width of the σxx

peaks as function of the magnetic field at half maximum ∆B ∼ T κ and the unversal value of
κ = 0.42 has been verified[105]. We note a discrepancy with the exponent that we find in our
simulations κ = 0.33 as considerably smaller than the universal one. It has been discussed
in the literature that in presence of a spin-orbit coupling, the scaling parameter should be
diminished[102].

The phase diagram and the isothermal resistivity curves for the short-range hopping
disorder are displayed in Fig. 4.16.a. As opposed to the short-range onsite case, the resistivity
peak ρxx in the n = 0 level tends to decrease with temperature, similarly to the n ̸= 0 cases.
Also, we note that the respective flow diagram seems to be not well behaved. We also note
that there is an increase in the Hall resistivity around n = 0 to values greater than |h/2e2| and
causes the horizontal distortions to the diagrams. In the case of the hopping disorder, such
distortion is veri strong.
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Fig. 4.15 (a) Scaling parameters of transition state by varying B. (b) Scaling parameters of
several transition states by varying EF .
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Fig. 4.16 Same as Fig. 4.14 but for te short-range hopping disorder.
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Moreover, despite the difference in the peaks heights, there is no significant difference
when n ̸= 0 between the two short-range disorder cases.

The long-range onsite disorder is very similar to the short-range onsite disorder and is
not displayed. In the long-range hopping disorder case, the state n = 0 did not shown a peak
around n = 0 and the respective diagram is not displayed here.

4.4 Conclusions

In this chapter we presented a numerical study of the longitudinal and Hall resistivities of
in a disordered graphene Hall bar in the strong magnetic field/quantum Hall regime. We
analysed two kinds of disorder, scalar and chiral, in the short-range and in the long-range
limit. To this end, we revised the theory of the anomalous Hall effect in the clean and in the
disordered case [108, 79, 111, 95]. We also discussed how to calculate the resistivity and
conductivity tensor starting from the scattering matrix in the case of a Hall bar geometry.

We observed the conductivity tensor as a function of the Fermi energy and compared
the result for different disorder regimes. We observed that the long-range disorder effect are
much smaller than the long-range ones as a demonstration of the robustness of the quantum
Hall effect in the absence of backscattering (long-range case). We also observed the absence
of a peak in the charge neutrality point when only long-range hopping disorder is present.

In the nonzero temperature case, we discussed the ρxx ×ρxy diagrams for each disorder
kind and compared the temperature dependence of the resistivity arcs. We showed that
while both the short-range and the long-range onsite disorder the longitudinal resistivity
peak at n = 0 increase with temperature, the short-range hopping disorder decreases. For
the long-range hopping disorder case, we observed divergence with temperature in the n = 0
LL. For the n ̸= 0 case, the result is similar for all observed disorder types, displaying peaks
height decreasing with temperature.

The absence of level splittings and the consequent of extra plateaus in even integers of the
conductance quantum was not observed, even in the case of valley coupling, contradicting
the predictions of the literature [95]. In the case of short-hopping disorder, we find a subtle
protuberance indicating a possible plateau, which corroborates Ref.[111]. However, a deeper
investigation is required, as the plateau shape is not clear.



Part II

Time-dependent quantum transport





Chapter 5

Numerical methods of time-dependent
quantum transport

Experiments and theory on real-time quantum electron dynamics reveal fascinating new
properties that go unnoticed in the stationary physics. Several recent experiments considering
driven systems, such as quantum pump [117], dynamical generation of spin currents [118] and
single-shot electron injection [119], call for numerical methods to address time-dependent
quantum electron transport. When the electronic time of flight τF is shorter than the phase
relaxation time τφ , dynamical interference effects can emerge [44]. When the characteristic
times of the experiment are shorter than the Ehrenfest time, particle-like effects dominate the
dynamics and, under appropriate apparatus, can be observed.

Nowadays, the realization of such dynamics are made possible within great precision. As
a result, the confinement and manipulation of single electron sources has being explored for
solid state devices applications such as nanowires and quantum dots[119]. The possibility to
fully control individual electrons coherently enables the realization of several optical analogs
experiments such as interferometers[45], beam-splitters[120], collimating lenses[121], and so
on. When compared to photons, the advantage of performing “quantum optics” on electronic
pulses is the presence of the Coulomb coupling, which allows for exploring the manipulation
of information a step further, by coding inside the coupling of quantum states, the current
elementary building blocks of quantum information of two-qubits operations.

In this chapter, we introduce the time-dependent methods of the scattering problem under
the tight-binding approximation. Differently from the chapter 2, where our main motivation
has been to discuss the stationary methods due to the lack of a devoted literature, the time-
dependent methods used by T-Kwant package are documented along several references
[41, 38–40], including implementations tips and benchmarks. However, due to the complete
discussion of the stationary methods present in chapter 2, in this thesis we are able to present
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a time-dependent extension of the wave-function matching and compare the results with the
T-Kwant methods. We also present the main formalism behind the time-dependent scattering
problem.

In section 5.1, we discuss the wave-function matching in the time-domain and with a
time-dependent perturbation, from where we obtain the nonequilibrium Green’s function
equations, similarly to chapter 2. In section 5.2, we review the T-Kwant methods and
demonstrate that the time-dependent Schrödinger equation can be written as a differential
equation with a source term. We also discuss the inclusion of electron-electron interactions
in the time-dependent Hartree-Fock approximation. This chapter constitutes a basis for
the discussions of the following chapter, where we provide an application developed with
T-Kwant.

5.1 Theoretical background

Here, we present a discussion to the stationary wave function matching equations after the
inclusion of a time-perturbation. Moreover, we demonstrate a set of useful equations for the
discussions presented in the following chapter.

Let us define a time-independent mesoscopic region coupled to semi-infinte multiple
terminals, which are described in chapter 2. Here, the stationary Hamiltonian is denoted by
H0. We consider a time-dependent perturbation using the Heisenberg picture:

H(t) = H0 +W (t), W (t ≤ 0) = 0 (5.1)

Introducing the projection operators, Q and P represent the central and the asymptotic region,
respectively (see Fig.2.1), we can consider an arbitrary time perturbation as the diagonal
operator:

W (t) =WQQ(t)+WPP(t) (5.2)

To preserve translational symmetry in the leads, we consider WPP(t) as an homogeneous
time-perturbation. By applying a proper unitary rotation U(t) = IQQ+UP(t), where UP(t) =
e−

i
h̄
∫ t
−∞ dt ′WPP(t ′), we obtain:

H(t) = HQQ(t)+HPP +H ′
QP(t)+H ′†

QP(t), (5.3)

where HQQ(t) = HQQ +WQQ(t), H ′
QP(t) = HQPUP(t) and H ′†

QP(t) = U†
P(t)HPQ are the

interface Hamiltonians that carry a time-dependence getting rid of any perturbation in the
asymptotic region.
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One should note that the time-dependent Schrödinger equation:

H(t) |ψ(t)⟩= ih̄
∂

∂ t
|ψ(t)⟩ (5.4)

gives us the time-evolution operator, written in the interaction picture, as:

⟨ f |UI(t, t0) |i⟩= δi, j −
i
h̄ ∑

m

∫ t

t0
dt ′e−i(E f−Em)t ′/h̄Wf m(t ′)⟨m|UI(t ′, t0) |i⟩ (5.5)

where |ψ(t)⟩=UI(t, t0) |ψ(t0)⟩. The left hand side of Eq. (5.5) gives us the scattering matrix
element in time space for the scattering between the asymptotic states i → f , namely [122]:

S f i ≡ lim
t→∞

⟨ f |U(t,−∞) |i⟩ (5.6)

The right hand side of Eq. (5.5) also gives us an interesting information. The term Wf m(t ′)
allows for energy transitions. Due to possible energy gains and lost during transitions over
the states and to the openness of the system system, the inelastic scattering matrix in energy
space representation becomes Smm′(E,E ′) with a two-fold continuous dependence in energy,
namely, E and E ′.

5.1.1 The wave function matching in time-domain

In this section, we describe how the scattering matrix formalism, derived in chapter 2,
is generalized to the time-domain. For this purpose, we include the time perturbation to
the Hamiltonian and present the corresponding wave function matching equations in the
tight-binding approximation. At the end, one is presented to a complete analysis of the
consequences of a time-perturbation to the scattering theory from the wave function matching
perspective. An interesting result of such analysis is the demonstration of the nonequilibrium
Green’s funcions (NEGF) in the time-domain under a simple scheme, similarly to what
is done for the NEGF formalism demonstrated for the stationary case in Chapter 2. We
also show that the wave function at the scattering region has a similar dynamics to the
Retarded Green’s function equation of motion, being an alternative to a NEGF approach for
time-dependent problems.

We start by describing a mesoscopic cavity S coupled to an effective lead T that contains
an arbitrary number of terminals (see Fig. 2.2).
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The time-dependent Schrödinger equation in the tight-binding representation of the
system reads: 

HS(t) V †
T S(t)

VT S(t) HT V †
T

VT HT
. . .

. . . . . .




ψS(t)
ψ0(t)
ψ1(t)

...

= ih̄
∂

∂ t


ψS(t)
ψ0(t)
ψ1(t)

...

 , (5.7)

where HS(t), HST (t) and HT (t) carry the time-perturbation present in the system, lead-system
interface and leads region, respectively. Let us now find a solution to the set of equations
(5.7). Far from the scattering region, we assume an asymtotic solution as limn→∞ ψn → φn.
Therefore, we obtain the lead dynamical equation:

VT φn−1(t)+(HT − ih̄∂t)φn(t)+V †
T φn+1(t) = 0 (5.8)

Because HL is time-independent and the eigenproblem is translational invariant, the solution
can b expressed by a stationary Block funcion:

φnE(t) = χEλ
n
Ee−iEt/h̄ (5.9)

where χE is the lead unit-cell eigenfunction which is now dependent of the energy E as
a variable parameter. The functions φnE(t) of Eq. (5.9 are substituted into Eq. 5.8 and
the problem is then rearranged as a Generalized Eigenproblem (GEP) whose solution is
described in chapter 2. One resorts on a set eigenvectors χ

±
qE and eigenvalues λ

±
qE which are

classified as outgoing (+) and incoming modes (−) according to the sign of arg(λ±
E ) and

following the propagation criteria |λ±
E |= 1 1. Evanescent modes |λE | ̸= 1 are not considered

here, however such generalization is achievable.
As a boundary condition, we consider a single incoming mode q at energy E, which is

related to the q-th column of the scattering matrix Spq of a scattering process to the outgoing
mode p. However, differently from the stationary problem, inelastic scattering processes are
now allowed and require a more general form of scattering matrix Spq(E ′,E), accounting for
the possible transitions to an outgoing mode p at energy E ′, as previously discussed. The
wave-function ψnqE(t) of the n-th unit-cell due to an incoming mode q of energy E at time t

1The association between the eigenvalues λ
±
qE and the crystal momentum k(E) allow us to write the lead

eigenmodes as the usual form of propagating waves:

φ
±
nE(t) = χ

±
E ei[±k(E)na−Et/h̄] (5.10)
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reads:

ψnqE(t) = χ
−
qE(λ

−
qE)

ne−iEt/h̄ +
Np

∑
p=1

∫ dE ′

2π
χ
+
pE ′(λ

+
pE ′)

nSpq(E ′,E)e−iE ′t/h̄. (5.11)

Let us derive the equation of motion for the scattering function ψSqE(t). We write the wave
function of the n− th slice in a general form, namely:

ψnqE(t) = ψ
−
nqE(t)+ψ

+
nqE(t). (5.12)

We also define the wave function in the energy domain as the Fourier-transformation:

ψ
±
nqE(E

′) =
∫

dteiE ′t
ψ

±
nqE(t), (5.13)

where the subscript E denotes the energy of the incoming mode and E ′ denotes the energy
parameter in the energy domain. Moreover, it is convenient to define the translation operator
F±(E ′) in the energy domain as:

ψ
±
n+1qE(t) =

∫ dE ′

2π
F±(E ′)ψ±

nqE(E
′)e−iE ′t , (5.14)

where
F±(E ′) = ∑

p
λ
±
pE ′χ

±
pE ′

(
χ̃
±
pE ′

)†
. (5.15)

Due to the convolution theorem, Eq. (5.14) represents a convolution in the time-domain:

ψ
±
n+1qE(t) =

∫
dt ′F±(t − t ′)ψ±

nqE(t
′). (5.16)

This set of definitions, Eq. 5.12 to Eq.5.16, are used below.
Close to the scattering region, we write the first two lines of the Schödinger equation as:

(HS(t)− ih̄∂t)ψSqE(t)+V †
T S(t)ψ0qE(t) = 0, (5.17)

VT S(t)ψSq(t)+(HT − ih̄∂t)ψ0qE(t)+V †
T (t)ψ1qE(t) = 0, (5.18)

By applying sucessive Fourier-transformations to equation (5.18) and rearranging the terms
freely in the energy domain, in analogy to the stationary case, we obtain:

VT S(t)ψSq(t)+
∫ dE ′

2π

[
(HT −E ′+V †

T F+(E ′))ψ0qE(E ′)+Γ(E ′)ψ−
0qE(E

′)
]

e−iEth̄ = 0,
(5.19)
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where we have used the equation:

ψ1qE(E ′) = F−(E ′)ψ−
0qE(E

′)+F+(E ′)ψ+
0qE(E

′) (5.20)

and defined the function Γ(E ′) =V †
T (F−(E

′)−F+(E ′)). By comparing Eq. (5.19) with the
stationary solution, we identify the surface retarded Green’s function:

GT (E) = (E ′−HT −V †
T F+(E ′))−1 (5.21)

where we identify the free retarded Green’s function GT (E ′)VT = F+(E ′) from the recursive
property of the retarded Green’s functions [38, 48]. As G(E) describes a steady state, it is
possible to write Green’s functions in time-domain as G(t − t ′), since there is a translational
invariance of steady states in time. Thus, the retarted and advanced Green’s functions
transform as:

GR(A)
T (t − t ′) =

∫ dE
π

e−iE(t−t ′)GR(A)
T (E). (5.22)

The complete Fourier-transform of Eq. (5.19) leads us to the following equation in energy
domain:

ψ0qE(E ′) =
∫ dε

2π
GT (E ′)V †

SL(E
′− ε)ψSqE(ε)−GT (E ′)Γ(E ′)ψ−

0qE(E
′). (5.23)

Substituting Eq. (5.23) into (5.17) and transforming back to the time domain, we finally
obtain:

(HS(t)−ih̄∂t)ψSqE(t)+
∫

dt ′Σ(t−t ′)ψSqE(t ′)+
∫

dt ′dt ′′VST (t)GT (t−t ′)Γ(t ′−t ′′)ψ−
0qE(t

′′)= 0
(5.24)

where Σ(t − t ′) =VST (t)GT (t − t ′)V †
ST (t

′) is the embedding self-energy in the time-domain.
The last term is the source Q−

qE(t), which gains a time-dependence from the coupling VST (t).
If VST (t) and HS(t) have their time perturbation removed, we recover the set of NEGF
equations given in Chapter 2.

Eq. (5.24) has a similarity to the retarted Green’s function equation of motion, namely:[
ih̄

∂

∂ t
−HS(t)

]
G(t, t ′) = δ (t − t ′)+

∫
duΣ(t,u)G(u, t ′) (5.25)

where the δ component can be interpreted as a source term emitted at t ′ < t [8]. A more
detailed discussion about the scattering wave-function equation of motion is presented in
Ref. [38] (see also Ref. [123] for a review).
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From the orthogonality of the lead eigenmodes, we can calculate the scattering matrix as:

Spq(E ′,E) =
∫

dt ′
[
χ̃
+
pE ′

]†
ψ

+
0qE(t

′)eiE ′t ′/h̄. (5.26)

Substituting this result into (5.24), we can obtain the Fisher-Lee relation generalized to the
time-domain[38].

In the next section, we write the time-dependent Schrödinger equation of the scattering
wave function in the real-space basis in the way it is present in T-Kwant and that are used
to obtain the local operators that are the main tools used to examine the scattering time-
dependent problems in this thesis.

5.2 The time-dependent scattering methods

In th previous section, we discussed the NEGF equations and the scattering formalism in
the time domain. However, the numerical implementation of both methods, the NEGF and
the scattering wave-function matching method, would demand a prohibitively expensive
computational cost for sufficiently large systems. The T-Kwant package2, build over the
Kwant suit, has proposed an alternative scheme that has the advantage of being (i) faster
than previous schemes[39, 40] and (ii) utilizing the Kwant state-of-the-art methods in the
backend calculations. In the following sections, we briefly review such scheme and discuss
the operators that are used in the application present in the following chapter.

5.2.1 The Schrödinger equation with a source

In this section, we write the dynamical Schrödinger equation in a convenient way that allows
us to describe time-dependent perturbations on open systems in a simplified form. At the
end, one obtains the Schrödinger equation with a source and a sink term[39].

We consider the wave function Ansatz of a linear time-dependent correction term to the
stationary wave function solution:

ψqE(t) = e−iEt/h̄ [
ψ

st
qE + ψ̄qE(t)

]
, ψ̄qE(t ≤ 0) = 0. (5.27)

The function ψst
qE is the stationary scattering wave function due to an incoming mode q at

energy E. It is given by the solution of the unperturbed Hamiltonian H0ψst
qE = Eψst

qE and
is defined in both scattering and leads region and obtained using, for instance, the methods

2Kwant extensions website: https://kwant-project.org/extensions (accessed November 30th, 2018).

https://kwant-project.org/extensions
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described in chapter 2. Substituting ψst
qE into the Schrödinger equation (5.4), one writes:

ih̄
∂

∂ t
ψ̄qE(t) = [H(t)−E]ψ̄qE(t)+QqE(t), (5.28)

where QqE(t) is a source term of the form:

QqE(t) = [H(t)−H0]ψ
st
qE (5.29)

It should be noted that the difference H(t)−H0 results in a term that is only nonzero where
the perturbation takes place. As a result, Eq. (5.28) is an equation only for the time-dependent
correction term ψ̄qE(t) with inital conditions ψqE(t ≤ 0) = 0 and is defined in a finite region.

At this point, the Schrödinger equation is defined over a finite region in space and
has a time-perturbation that can be located in the central region and in the center-leads
interface. However, H(t) still describes an open-system where translational invariant leads
are effectively coupled via self-energies. When a perturbation is included in such system,
it is expected that, at long times, it propagates in an outward direction conflicting with the
leads that are modeled under stationary boundary conditions. The form that T-Kwant solve
this problem [39] is by artificially including a complex self-energy iΣ, namely:

ih̄
∂

∂ t
ψ̄qE(t) = [H(t)−E − iΣ]ψ̄qE(t)+QqE(t) (5.30)

where Σ is a scalar potential that is nonzero only in the leads region3. In order to minimize
reflections, the absorbing potential Σ increases adabatically within a finite width towards the
leads direction. Ref.[39] presents an analytical study of the spurious reflections for particular
choices of Σ.

Finally, Eq. (5.30) can be solved using standard numerical techniques for differential
equations, such as the Runge-Kutta methods[40]. After obtaining ψ̄qE(t), the complete
solution ψqE(t) can be calculated by following Eq. (5.27).

3In practice, additional leads units cells are included to the central region where the absorbing potential Σ is
placed. This is justified by the fact that Σ(n) breaks translational invariance, thus, contributing to the scattering.
Therefore, it should be taken into account as an extention to the scattering region.
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Fig. 5.1 Schematics of the absorbing potential intensity (red) for a system containing a central
ring-shaped region 0̄ coupled to three leads 1̄, 2̄, 3̄. Inset: a typical curve Σ(n), where n is the
lead unit-cell. Adapted figure from Ref. [39].

5.2.2 The time-dependent local operators

If we try to directly solve the scattering eigenproblem in the time domain by using the
strategy of the stationary eigenproblem described in Chapter 2, i.e. by partially projecting
the eigenvectors over an energy-dependent eigenmode basis, we are faced with the problem
of having to construct a four-dimensional scattering matrix Spq(E ′,E) with two continuous
dependences in E and E ′, which is computationally inpractical. The way to proceed is
to solve the Schrödinger differential equation with a source and a sink, Eq. (5.30), in a
space-time basis and calculate the system scattering wave function ψqE(t) for a certain initial
conditions E and q. Once we have the wave function at hand, the related observables can be
readly otained.

For instance, in the application of the following chapter, we are interested in the charge
density nα(i, t) relatedand local current Iα(i, j, t):

nα(i, t) = ∑
q∈α

∫ dE
2π

fα(E)|ψqE(i, t)|2 (5.31)

Iα(i, j, t) =−2Im ∑
q∈α

∫ dE
2π

fα(E)ψ∗
qE(i, t)Hi j(t)ψqE( j, t) (5.32)

which are defined inside the scattering region (central region 0̄ of Fig.5.1). The function
ψqE(i, t) is the amplitude of the scattering wave function at the site i and Hi j(t) is the hopping
matrix between sites i and j. fα(E) is the Fermi distribution of the lead α , in equilibrium
with the electronic reservoir with chemical potential µα and temperature T , that contains
the mode q at energy E. The thermal average integration covers the whole conduction band,
but in practice is cut by fα at the Fermi energy EF . Generally, the lower energy modes
cause slow perturbations that do not contribute to the physics and can be handled by a low
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energy filtering “device”. However, such device has to be developed specifically for the
time-dependent problem being addressed. If correctly accounted, the energy integration
range can be reduced to an effective window, which increases the speed of the method and
allows for complex simulations. A particular filter is presented in the next chapter.

In one-dimension, the local current and charge density are related by a simple continuity
equation ∂J

∂x = ∂ρ

∂ t . In tight-binding approximation, it can be written as4:

±nα(i, t) =
∫ t

0
dt ′Iα(i, i±1, t ′) (5.33)

where the sign ± is determined by the current direction. The above equation is useful to
determine the total amount of charge Q = en passing through a cross-section in a certain
time-interval [44].

There is an interesting and direct interpretation of the continuity equation, when the charge
density varies in time and the current density has a compression or expansion component.
When a finite perturbation is applied to a finite cavity, the perturbation relaxes to the stationary
regime as t → ∞. In a multiterminal setup, we can define:

Nα = ∑
i∈Sα

nα(i, t → ∞) (5.34)

as the total number of particles that pass through Sα , a cross-sectioning point (1D), line (2D)
or area (3D) defined next to the α−lead. As a result, we obtain:

Λ

∑
α=1

Nα = 0. (5.35)

It means that every charges that enters the system through a certain lead has to leave the
system though any lead after a long time, demonstrating charge conservation. One can also
observe that:

Nα = ∑
β

∫ dE
2π

fβ (E)Nβ (E) (5.36)

where Nβ (E) is the number of particles at energy E. Equation (5.36) is a generalization of
the Landauer formula Eq. (4.20) in multiterminal setups to the time domain, as observed in
Ref. [38]5.

4It should be mentioned that the current as defined in (5.32) carries a the stationary component. In practice,
such contribution to the integral diverges and has to be subtracted manually.

5In case of a voltage pulse, the number Nβ (E) at the RHS of Eq. (5.36 can also be related to the voltage
intensity n = e

h ∈V (t)dt, as the RHS of the Landauer-Büttiker formula. e is the elementary charge.
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5.2.3 Electron-electron interaction self-consistent algorithm

So far, we have discussed the one-body dynamical Schödinger equation. In this section, we
present the main elements of the underlying theory to address electronic interactions in the
time-dependent quantum transport using the scattering methods. The methods discussed here
are part of the T-Kwant package, under the “manybody” suit and are detailed in the Refs.
[47, 124]. To this end, we use the second-quantized basis of fermionic operators of particle
creation ĉ†

iσ and annihilation ĉ jσ ′ where:{
ĉiσ , ĉ

†
jσ ′

}
= δi jδσσ ′,

{
ĉiσ , ĉ jσ ′

}
=
{

ĉ†
iσ , ĉ

†
jσ ′

}
= 0 (5.37)

where the spin structure σ =↑,↓ is explicitly considered.
In the above notation, we describe the time-dependent interacting Hamiltonian as:

Ĥ(t) = Ĥ0 +W (t)+ Ĥint . (5.38)

The stationary Hamiltonian and the time-dependent perturbation become, respectively:

Ĥ0 = ∑
⟨i, j⟩,σ

γi jĉ
†
iσ ĉ jσ , (5.39)

Ŵ (t) = ∑
⟨i∈S, j∈L⟩,σ

Wi j(t)ĉ
†
iσ ĉ jσ (5.40)

where γi j for i ̸= j denotes the nearest-neighbor hopping integrals6 and Ŵ (t) describes a
time-dependent perturbation at the system-lead interface. The interacting Hamiltonian is
considered in the Hubbard form and reads:

Ĥint = ∑
i

Ui

(
ĉ†

i↑ĉi↑−n0

)(
ĉ†

i↓ĉi↓−n0

)
(5.41)

where n0 is the equilibrium occupation. The interacting term Ĥint is stationary and can, in
principle, show a local dependence Ui →U(ri).

The many-body problem defined above can be slved within a mean-field approach[48].
We use the Hartree-Fock approximation. In this case, Ĥint transforms into a scalar potential
that is a function of the mean of time-dependent fields, namely:

ĤHF(t) = ∑
i

Uiĉ
†
i ĉi

[
⟨ĉ†

i (t)ĉi(t)⟩−n0

]
(5.42)

6The notation for the hopping parameter in this section and in the following ones is γ and not t as previously
done. This is due to the conflict with the time variable, named as t.
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where the average of the number operator ⟨ĉ†
i (t)ĉi(t)⟩, written in the Heisenberg picture, is

obtained from Eq. (5.31). The problem becomes effectively diagonal in spin σ . We, therefor,
ignore the spin degree of freedom.

In the Hartree-Fock (HF) approximation, the particle moves freely under the influence of
an external effective potential that depends on the charge density n(i, t) = ⟨ĉ†

i (t)ĉi(t)⟩. The
onsite energy Ui is the energetic cost for doubly occupying the orbital i with electrons with
opposite spins.

The calculation of n(i, t) and the solution of the time-dependent Schrödinger equation
with a scalar potential of the form (5.42) constitutes a set of self-consistent equations solved
numerically using an adaptive scheme available in the T-KWANT package[39].



Chapter 6

Application: Proposal for a
plasmon-plasmon collider to study
Coulomb interactions

Coulomb interaction gives origin to striking features in the electronic dynamics in one-
dimension[125–127]. It has been known that electrons confined to quasi-one-dimensional
wires propagating with momentum conservation can behave as bosons[128]. In other words,
the system degrees of freedom, basically consisting of collective excitation modes, can
propagate with bosonic velocity, which is much faster than the fermionic velocity. In
addition, the lack of coupling between the Coulomb field and the spin density causes spin-
charge separation and fractional values of the elementary electronic charge, proportional to
the bosonic velocity, are observed[126]. The bosonization process of a collection of fermions
in 1D is known as a Luttinger liquid[129] and can only be detected through transient non-
adiabatic effects after inducing local perturbations to 1D wires, such as voltage pulses.

In recent years, single-electron devices have been developed to improve the current
understanding of the collective electronic excitations from different perspectives[124]. In
particular, interferometers have been used to test quantum statistics of single particles, by
sending two particles to a beam splitter and looking at arrival outputs. By changing the delay
τ between the particles, the wave function interference can be measured and the particle
nature is detected[120].

In this chapter, we propose a collider between two electronic states confined in quasi
one-dimensional wires and generated by voltage pulses as a probe to study the Coulomb
interaction. The model consists in sending two such states to a perpendicular collision
guided by two crossing nanowires whose center is under an effective Coulomb mean field.
By applying the pulses at the two inputs of the cross of wires and looking at the total
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amount of charge released at the two outputs, we investigate the time-evolution of the pulses.
Through local operators, such as current and local density, we compare the local quantities
variations due to a relative time-delay τ between the pulses. We observe that the delay,
which breaks the system symmetry, causes a current deviation that is maximal away from
the synchronized collision, causing a dip around the center τ = 0. An investigation in under
progress to compare such results with previous studies of quantum interference in electron
collision[130, 131].

6.1 Theoretical Background

In this section, we present a brief review of the Luttinger liquid theory of interating fermions
in one dimenion. We present the general theory for uniform 1D chains and describe how the
same result can be obtained in the case of a pulse propagation in an interacting wire, showing
that the phenomenon can actually take place in the proposed model. Moreover, we describe
the mesoscopic device were the collider can be realized.

6.1.1 The Luttinger liquid model for interacting fermions in 1D

Here, we present the physics of the Luttinger liquid starting from a model of 1D confined
interacting fermions. We show that, under a few physics assumptions, one can derive
collective excitations that behave as bosons.

Let us consider the Hamiltonian of electrons in a translational invariant 1D lattice within
the nearest neighbor tight-binding approximation with a Hubbard interaction term[128]:

H =−γ ∑
n,σ

(
ψ

†
n,σ ψn+1,σ +h.c.

)
+ ε ∑

n,σ
ψ

†
nσ ψnσ +U ∑

n
ρn↑ρn↓ (6.1)

where ρnσ = ψ
†
nσ ψnσ is the occupation number operator of electrons with spin σ at the site n.

We note that the noninteracting Hamiltonian U = 0, which is diagonal in spin, commutes with
the translation operator. Therefore, the free wave function can be written as ψn = ψ0eikna

with corresponding eigenenergy:

E(k) = ε −2γ coska. (6.2)

At the Fermi surface of one-dimensional systems, the momentum is k = ±kF . We are
interested in the problem in the vicinity of the Fermi level, where the dispersion relation can
be linearized E(k) ≈ h̄vFk. By considering ε → 2γ coskFa, the wave function around the
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Fermi level can be written as the left and right moving components[110]:

ψnσ = eeikF na
ψ

+
nσ + ee−ikF na

ψ
−
nσ (6.3)

It is worth noting that the separation in direction components also separates the occupation
number operator:

ρnσ = ρ
+
nσ +ρ

−
nσ . (6.4)

We assumes that ψnσ varies slowly over lengths comparable with the lattice parameter a.
Therefore, the discrete derivative can be taken back from discretization, namely:

ψ
±
n+1σ

= ψ
±
nσ +a∂xψ

±
nσ +O(a2). (6.5)

By substituting Eq. (6.5) into (6.1) and keeping only the linear terms in a, the free Hamilto-
nian becomes:

H0 ≈−2atγ ∑
nσ

{[
ψ

+
nσ

]† i∂xψ
+
nσ +

[
ψ

−
nσ

]† i∂xψ
−
nσ

}
. (6.6)

Taking the continuum limit a → 0, the sum becomes an integral in space, namely, a∑n →∫ L/2
−L/2 dx. After a Fourier transformation, which gives i∂x → k, the free Hamiltonian in

momentum space is:

H0 =−h̄vF ∑
σ

∫
kdk

{[
ψ

+
σ (k)

]†
ψ

+
σ (k)+

[
ψ

−
σ (k)

]†
ψ

−
σ (k)

}
. (6.7)

where vF = 1
h̄

∂E(k)
k

∣∣∣
kF

= 2aγ h̄ is the Fermi velocity. Eq. (6.7) describes a basis of left and

right propagating modes of dispersion relation E±(k) = ±h̄vFk. However, in such basis,
negative energy states are allowed and the description of right and left propagating modes
is obscured. To circumvent this problem, the fermionic particle-hole operators are defined
[129]:

ψ
+
σ (k) = bkσ , ψ

−
σ (k) = c†

kσ
k ≥ 0

ψ
+
σ (k) = c†

kσ
, ψ

−
σ (k) = bkσ k < 0. (6.8)

Substituting the operators (6.8) into the free Hamiltonian H0, we obtain:

H0 = h̄vF ∑
σ

∫
|k|dk

{
b†

kσ
bkσ + c†

kσ
ckσ

}
(6.9)
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Correspondingly, the Hubbard interacting Hamiltonian in momentum space is:

Hint =U ∑
σ ,s=±

∫
dk
{

ρ
s
σ (k)ρ

s
σ̄ (−k)+ρ

s
σ (k)ρ

−s
σ̄
(−k)

}
(6.10)

where σ̄ =−σ and:
ρ
±
σ (k) =

∫
dq
[
ψ

±
σ (k)

]†
ψ

±
σ (k) (6.11)

is the density operator in momentum space, whose commutation relation reads1:[
ρ

s
σ (k),ρ

s′
σ ′(k′)

]
=−δσ ,σ ′δs,s′δ (k− k′) (6.12)

Eq. (6.12) is a bosonic commutation relation.
The free Hamiltonian in the density operator basis becomes:

H0 =
vF

L ∑
sσ

∫
dkρσs(k)ρσs(−k) (6.13)

Eqs. (6.13) and (6.10) constitute the complete description of the bosonization process of the
Luttinger liquid. The diagonalization of the above Hamiltonian give us the bosonic velocity
as the eigenvalues E(k) = h̄vρk, where:

vρ = vF

√
1+

aU
2π h̄vF

. (6.14)

This suggests that these collective excitation given by ρs
σ (k) have a velocity corresponding

to the Fermi velocity vF renormalized by a correction term proportional to the interaction
intensity U .

We note that the velocity vρ could also be obtained from the model of a voltage pulse
propagating in a 1D wire using the collisionless Boltzmann approach[76] where the relation
between the Boltzmann distribution function and the charge density is given by:

ρ(r, t) = ∑
k

f (r,k, t). (6.15)

In such model, the external forces of the Boltzmann equation are the Coulomb repulsion and
the electric force due to the pulse potential V (t).

1There is an omitted procedure here that is standard to remove divergence in momentum space caused by
negative energy states. It is also responsible for defining a vacuum state in Dirac-like systems. See Ref. [132]
for a detailed discussion.
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The formalism introduced in this section can be extended to fermionic spin interactions,
which lead to a renormalized spin velocity vs[110]. As a result, one can demonstrate that
the spin velocity differs from the charge density velocity vs ̸= vp. This striking result has
been achieved using time-dependent charge pulses in two-dimensional electron gas (2DEG)
devices[125].

The 2DEG, formed at the interface of semiconductor heterostructures such as GaAs/AlGaAs,
has been one of the most used systems to realize single-electron dynamics in solid states
[119].

Fig. 6.1 describes a typical realization of a 2DEG. It shows the formation of a 2DEG
at the junction of AlGaAs containing a wide gap, between the conduction and valence
band, and a GaAs of a narrow gap. The junction between the two materials with such a
difference of energy gaps causes a bend in both bands and, consequently a potential dip at
the interface[8]. The resulting triangular well parallel to the junction interface (Fig. 6.1b)
gives rise to quantized modes (Fig. 6.1c). Typically, EF allows for a single occupied band
corresponding to the ground state of the interface confining potential.

+
+
+i-GaAsn-GaAs

i-GaAsn-GaAs

2D
EG Ec

EF

EV

(a)

EF

(b) (c)

Fig. 6.1 (a) 2DEG formed a the interface of GaAs and GaAs. Metallic gates are represented
by the blocks connected to the GaAs. (b) The contact between the two semiconductors
generates an attractive potential at the right of the interface and a repulsive one at the left
for a current of electrons, which causes confinement perpendicularly to the interface.(c) For
a Fermi energy EF close to the minimum of the attractive potential, only the ground state
along this direction is allowed, characterizing the 2DEG system.

By introducing metallic gates to the system, one can further engineer the confining
potential in the two-dimensional plane. Hence, one can make the electrons move along
arbitrary geometries, such as 1D wires, quantum dots, cavities, etc. At the end, one obtains
an experimental realization of a quasi one dimensional charge.
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6.2 Motivations

This section is devoted to show the recent findings in Luttinger liquid realization through
voltage pulses in 2DEG devices. A theoretical model was provided and demonstrated the
plasmon velocity in numerical simulations[76]. Recently, an experimental reproduction of
the liquid in a quasi one-dimensional wire was obtained [124], paving the way to several
applications (see Ref. [119] and references therein). Therefore, a plasmon collider, consisting
of two crossing quasi 1D wires, could be the step further to the understanding of the Coulomb
interactions in such devices.

6.2.1 Theoretical evidence of plasmons in 1D wires

Despite the Luttinger liquid theory has been well-established [128], the experimental real-
ization remained challenging for a while. The recent progress in transient nanoelectronic
circuits has motivated the emergence of new models as proposals to the observation of liquid
renormalized velocity.

An interesting theoretical model is discussed in Ref. [76], which consists in a quasi
one-dimensional infinite wire in tight-binding approximation. Using an early stage version of
the T-Kwant extension, the authors has been able to simulate a time-dependent voltage pulse
of Gaussian shape propagating through the wire and to detect the pulse trajectory using local
operators. By including electron-electron interaction in the central region of the wire, using
the time-dependent Hartree-Fock approximation, the local operators were able to detect the
increase in the velocity as predicted by the Luttinger liquid theory, Eq. (6.14) (see Fig. 6.2).
The transient characteristic of the system was also observed through a decrease in the local
current intensity.
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Fig. 6.2 Left panel: Charge density of the Gaussian shaped voltage pulse propagating through
a 1D wire of length L = 25000 sites without (dashed line) and with (solid line) interaction.
Figure from Ref. [47]. The slope of the line allows one to measure the propagating velocity
v = di

dt . Right panel: the points are calculated propagating velocity as a function of the
interaction intensity U of the simulations. The solid line is Eq. (6.14). Three different Fermi
energies were considered and are represented by different symbols. Figure from Ref. [76].

6.2.2 Experimental evidence of plasmons in quasi-1D wires

In Ref. [124], a time-of-flight experiment using single-electron pulses was able to capture
the plasmon velocity in quasi one-dimensional wire. By depositing metallic gates on top of a
GaAs/AlGaAs heterostructure, a micrometer-scale wire could be tailored in a 2DEG device.
Then, by applying a ultra-short voltage pulse to one of the contacts, several QPCs positioned
along the wire could be able to measure the arrival time of the pulse at different places (see
Fig. 6.3).

Fig. 6.3 Device used in Ref. [124] to detect the plasmon velocity in a quasi one wire. A
voltage pulse is emitted from the left contact (box with a cross) and propagates to the right
one. Different QPCs are used as fast switches to detect the passage of the pulse, except the
QPC0 which works as a channel filtering (see details in the text). Figure from Ref. [124].

The measurements of the arrival time at different positions allows one to calculate the
pulse velocity. By changing the voltage on a side gate VSG, the confinement is also changed
and the arrival time of the pulse is shifted proportionally. Fig. 6.4 displays the pulse velocity
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as a function of the side-gate potential obtained in Ref. [124]. It shows a comparison of the
velocity measurements (symbols) with a parameter-free self-consistent numerical calculation
(solid line) for a multi-channel Luttinger liquid [133]. The multi-channel theory was used
in this case due to the experimental limitations, a pure one-dimensional wire could not be
achieved. Nevertheless, a mode filtering QPC0 was used to select the charge population of
the energy channels of the wire, which allowed for a comparison of the result for different
numbers of open channels (see detailed discussion in Ref. [124]).

Fig. 6.4 Velocity of the voltage pulse as a function of a confinement potential VSG in the wire.
The symbols are experimental measurements of the velocity and the colors represent different
number of open channels after the filtering QPC0. The blue data correspond to the case
where the filtering is turned off. The green and the red data are results for the two and one
open channel, respectively. The curves are numerical results obtained from a multi-channel
Luttinger liquid theory [133]. A dashed line represents the noninteracting case. Figure from
Ref. [124].

6.3 The model

Here, we describe the model used to numerically calculate the perpendicular collision
between two interacting voltage-pulses.

The system consist of two conducting quasi-one-dimensional wires of length L and width
W in a cross geometry, see Fig. 6.5.

The Hamiltonian can be written in three parts:

Ĥ(t) = Ĥ0 + Ĥp(t)+ Ĥint(t), (6.16)
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Fig. 6.5 Sketch of the collider model: a crossing geometry of two quasi-one-dimensional
wires. The numbered tags indicate the notation adopted in the text. Local currents are
calculated at the dashed lines 1,2,3,4 and the local density is calculated in the area 0 limited
by the lines. The heat-map indicates the voltage intensity VG of the QPC filtering. The
parameters xv and σv are position and width of the slope-shaped QPCs. Voltage pulses V (t)
are injected in the entries 1 and 2 and collected in the outputs 3 and 4. (b) Currents in at
terminals n = 1,2,3,4 indicating the direction of pulse propagation. Charge conservation is
verified when ∑n

∫ t
0 dt ′in(t ′) = Q0(t). Color-map of Fig. (b): intensity the interacting field

Ui.

where Ĥ0 = ∑⟨i, j⟩σ γi jĉ
†
iσ ĉ jσ is the Hamiltonian of the unperturbed system in tight-binding

approximation and γ is the nearest neighbor hopping parameter.
The time-dependent perturbation Ĥp(t) = ∑⟨i, j⟩Wp(t)ĉ

†
i ĉ j corresponds to two homoge-

neous voltage biases. Each one is a pulse of Gaussian shape in time Wp(t)= eVpe−4log2(t−t0)2/σv

of initial time t0, width σv and amplitude Vp. The perturbations Wp(t) and are applied at the
system-lead interfaces 1 and 2 sufficiently far from the central region.

The interacting term Ĥint(t)∑i U(ri)ĉ
†
i ĉi

(
⟨ĉ†

i ĉi⟩−n0

)
comprehends to a self-consistent

Hartree potential of local dependence U(ri) (see section 5.2.3). The time-dependent Schrödinger
equation is solved numerically using the Tkwant package, discussed in the previous chapter,
from where the time-evolved wave-function Ψα,E(i, t) due to a pulse injection in channel α

at energy E is calculated.
We are interested in the observable quantities that can be expressed in terms of time-

evolved wave-function. As described in section 5.2.2, the charge density and local current
observables, respectively nα(i, t) and Iα(i, j, t), demand a numerical integration in energy.
Moreover, the collider demands the pulses to be at a sufficiently fast velocity to propagate
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almost straightforwardly to the opposite output wires. To this end, we included QPCs
with a slope shape to work as a mode filtering for the undesired energy intervals of the
pulses, similarly to the one used in the experiment of Ref. [124]. Numerically, the QPC
filtering is also an efficient way to remove the excitations around the bottom of the band that
are extremely slowly and eventually get stuck in the scattering region, causing numerical
divergences. Experimentally, such situation does not impose a considerable problem, as the
contacts are at a sufficiently high Fermi energy and the contribution from the modes that get
stuck are negligible [38]. As a result, the integration is performed only for the fastest modes,
which increases the speed of the method.

6.4 Results and Discussions

The results can be separated in three main stages. Firstly, we perform a set of DC calculations
using the Kwant package and justify the choices of the QPC filtering parameters. Secondly,
calculations using the T-Kwant without interaction allow us to discuss the charge conservation
in the system. Finally, we perform time-dependent collision within the interacting system
using the T-Kwant package and present our main findings.

6.4.1 Building the collider: focusing of electron current in DC

We analyzed the DC characteristics of the system, by calculating the scattering matrix
elements Smn using the tools available in the Kwant package and discussed in chapter 2. The
conductance from wire a to wireb is calculated using the Landauer formula:

Gαβ =
2e2

h ∑
n∈α,m∈β

|Snm|2. (6.17)

The calculated conductances from wire α = 1 in a 4-terminal setup containing 10 sites in
the transversal direction are displayed in Fig. 6.6 as a function of the QPC filtering voltage
and for the Fermi energy EF = 1γ . For this energy, there 6 conducting channels, which gives
the maximum conductance of 12e2/h observed in the figure. As the potential increases, we
observe that both the conductance from wire 1 to wires 2 and 4 vanish. The only nonzero
conductances are respectively G11, which is proportional to the reflection probability, and
G13. A filtering at VG = 1.8γ is enough to obtain a transmission probability that is mainly
G13. In the time-resolved case, such result works as a guide to the time-dependent flow, as at
long times, the system has to converge to a stationary configuration[44].
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Fig. 6.6 Conductances from wire 1 to 2 (G12), 3 (G13) and 4 (G14) and reflection (G11) as a
function of the QPC gate voltage VG at the Fermi energy EF = 2.0γ . The vertical dashed line
indicates the chosen voltage value VG = 1.8γ used in the time dependent simulations.

The stationary local current for the ground state in wire 1 at Fermi energy 2γ and VG =

1.8γ is displayed in Fig. 6.7). The local current profile also exhibits almost straightforward
propagation. A calculation of the local current at cross-sectioning lines close to the wires
ending give us the percentage of about 96% of the current localized in the wire 3. We also
observe that the presence of the QPC causes subtle oscillations in the transverse direction in
the current and such perturbation should also be expected in the time-resolved case.
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Fig. 6.7 Local current vector field due to a mode injection in lead 1 channel 1 at energy
EF = 2.0γ .
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6.4.2 Verification of charge conservation

Let us now examine the time-dependent simulations of the pulse propagation without interac-
tion. Such analysis is useful to verify for charge conservation.

We consider that the local currents Iα(i, i+1, t) are calculated from a cross sectioning
line of sites in the wire α (see Fig. 6.5b). In the central region denoted by α = 0, which
is the region encompassed by the cross sectioning lines of α , only the local charge density
n0(t) is calculated. From the local operators, we calculate the accumulated charge per time:

Q(b)
α (t) = ∑

i∈α

∫ t ′

0
dt ′I(b)α (i, i+1, t ′) (6.18)

Q(b)
0 (t) = ∑

i∈0
n(b)0 (i, t) (6.19)

where α = 1,2,3,4 stands for the wire and b = 1,2,12 is a label that represents a pulse
injected in wire 1, 2 or in both 1 and 2, respectively.

We observe the trajectory of the voltage pulses injected into the system in all the cases b=
1,2,12. For a Fermi velocity of vF = 2aγ the pulse takes the time ∆t = (2L+W )/2aγ +20/γ

to cross the system completely. In units of the pulse width τp, the simulation time is
let running until the maximum time of tmax = 25τp is reached, which is enough for any
accumulated charge to be released from the system. Therefore, we verified that (figure not
shown):

4

∑
α=0

Q(b)
α (t) = 0,

4

∑
α=1

Q(b)
α (t → ∞) = 0 (6.20)

which is the expected result from charge conservation. While the left result is a consequence
of the numerical precision of the Runge-Kutta integration, the right result is equivalent to Eq.
5.35, where Nα = Qα(t → ∞). Using the quantities Q(b)

α (t → ∞), from now on just Q(b)
α (∞),

we calculate the current deviations due to the presence of interaction.

6.4.3 The interacting collision between delayed pulses

Let us now discuss the results of the collision of the voltage pulses. Fig. 6.4.3 displays
snapshots of the simulation that are obtained with Q(b)

0 (t) calculated from the charge density
operator. It shows a synchronized collision between the voltage pulses without (upper panels)
and with (lower panels) interaction Time is displayed in units of the pulse duration τp. We
note that, despite the effect is visualy subtle, a change in the density dsitribution along the
time evolution can be observed.
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Fig. 6.8 Snapshots of the synchronized collision between the voltage pulses in the non-
interacting (upper) and interacting case (lower) at different simulation times (from left to
right).

To quantify the effect in detail, we examine the accumulated charges at long times
Q(b)

α (∞) that release the system through the wires α = 3,4 after the pulses propagation in
a interacting system. The interaction intensity U(ri) increases smoothly and reaches the
maximal value at the central region of the cross (see Fig. 6.5b). It is modeled by a sum of
smooth step-shaped functions:

U(x,y) =
U
4

[
tanh

(
x− xL

dx

)
− tanh

(
x− xR

dx

)][
tanh

(
y− yB

dy

)
+ tanh

(
y− yT

dy

)]
(6.21)

where xL,xR,yB,yT are the effective limits of the interacting region and dx = dy = d defines
the smoothness of the step.

We add a delay between the pulses V1(t − τd) =V2(t) of width τp injected in wires 1 and
2. Figure 6.9 shows the values of Q(b)

α (∞) through the wires 3 and 4 for different interaction
intensities U as a function of the delay τd . Without interaction (U = 0), the charge in both
wires are independent of the delay. As the interaction increases, one observes that (i) the
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Fig. 6.9 Accumulated charge at long times (equivalent to the charges at t → ∞) that passsed
through the wires 3 (dashed) and 4 (solid) as a function of the delay time and for different
interaction intensities.

charge flux is being deviated to the wire 4 and out the wire 3 as the delay is increased; (ii)
the charge is decreasing proportionally to the interaction intensity.

About the charge deviation, we note that it is maximal at the time delay τd = τp, that is
to say, when the first pulse has already passed over. After the maximum value is reached, the
difference between the charges in the wires 3 and 4 starts to decrease until, at some point,
the pulses become too far from each other to interact. This is an evidence that Coulomb
interaction has been successfully probed in this model for a plasmon-plasmon collider.
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Fig. 6.10 Deviated charge according to Eq. (6.22) that passed through the wires 3 and 4.

In order to observe the detailed effects of Coulomb interaction in the deviated charge,
we look at the accumulated charges in a different way: we observed the ratio between the
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charges at the outputs by the inputs in the case b = 12 and subtract the respective ratio of the
sum of the charges for the cases b = 1,2, namely:

¯∆Qa =
Q12

a

Q12
1 +Q12

2
− Q1

a +Q2
a

Q1
1 +Q1

2 +Q2
1 +Q2

2
. (6.22)

which should result in a more symmetric data. This quantity is also supposed to converge to
zero at long delay times.

In Figure 6.10, we see that ¯∆Qa converges slowly to zero as t → ∞. We also observe that
the charge at wire 3 for positive values of delay equals the charge at wire 4 for the negative
values as a result of the system symmetry.

We also note that there is a small positive amount of charge during the synchronous
collision, which means that Q12

a (0) > Q1
a(0)+Q2

a(0), i.e., the interacting charges during
the collision are increased in relation to the noninteracting ones. Also, the most effective
collision-response has been observed after the first pulse has already passed over, which
could be an evidence electron statistics[119].

6.5 Conclusions

In this chapter, we presented a proposal for a plasmon-plasmon collider in quasi one dimen-
sional wires. To this end, we have reviewed the Luttinger liquid theory in one dimension. We
have also discussed the Luttinger liquid realization in voltage pulses propagating in quasi 1D
wires on top of a 2DEG and discussed experimental findings.

Our proposed model for a collider is based on a 4−terminals setup and consists in sending
two voltage pulses to a perpendicular collision guided by two crossing nanowires containing
a few transversal sites. The first stage of this study is based of stationary results of current
direction for particles propagating on a discrete square lattice. The second stage consist
in checks for charge conservation. Finally, the center of the cross is then subjected to an
effective Coulomb mean field modeled by a smooth step function that is nonzero at the
center. We demonstrated that, by inducing voltage pulses with a relative time-delay τ , local
operators allow us to quantify the total amount of charge deviated as a function of interaction
intensity. We observed that the current deviation due to interactions is maximal away from
the synchronized collision, causing a dip around the center τ = 0.





Chapter 7

Final remarks

In this thesis, we study, implement, and use numerical methods to investigate the electronic
quantum properties for a variety of systems. In particular, we use the Kwant package based
on the wave function matching (WFM) method. We demonstrated its efficiency on the
calculations of the scattering matrix and scattering wave function on constructing a sparse
linear system which is an optimized situation for the sparse solvers.

We have reviewed the underlying theory of the (WFM) method applied to a tight-binding
(finite element) Hamiltonian used to model the transport properties of mesoscopic systems.
Our analysis revealed that such implementation of the WFM method is computationally far
superior than previously expected [21]: (i) Kwant is practically insensitive to the coordination
number of the lattice model and it (ii) has a linear scaling with the number of sites in the
leads, representing a huge advantage over RGF. We numerically verify our predictions in
a number of settings, by benchmarking the CPU time, memory usage and precision of the
WFM versus the RGF method.

As a first application of the WFM method in Kwant, we discussed the problem of weak
localization corrections in the magneto-conductance of a graphene nanoribbon, coupled to
metallic leads. We consider two kinds of disorder, onsite and hopping integral disorder. The
former has been shown to cause the crossover between the weak-localization and the weak
anti-localization regime as a function of the correlation length of the disorder. The latter
causes a suppression to the weak localization correction, as a evidence of the pseudomagnetic
field effect generated by the strain.

Additionally, we discussed the effects of the application of an external in-plane magnetic
field on the ripples of the model to probe effects of graphene deformations in the weak
localization curve. We also study in-plane relaxation mechanisms in graphene considering
the interaction with a substrate. The in-plane relaxation accounts for realistic deformations
in graphene surfaces. We expect that the inclusion of in-plane deformations makes rippled
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graphene samples to be affected by perpendicular magnetic field and also account for more
precise pseudomagnetic field contributions. In some situations, the pseudomagnetic field
could be overestimated in the absence of in-plane relaxations in highly sloped regions of the
surface. This could be a drawback to the modeling of highly sensible quantities extracted
from strained surfaces such as the weak localization. Finally, we study the dependence of the
tail of the weak localization profile with the extent of a magnetic field that smoothly decays
into the leads region as. This study is under progress.

Next, we numerically calculate the longitudinal and transverse resistances of disordered
graphene sheet in the quantum Hall regime. By considering a realistic-sized graphene sample
patterned in the Hall bar geometry, corresponding to a multi-terminal setting, we perform
conductance matrix calculations, which is a difficult task for other numerical approaches.
We considered two kinds of disorder, scalar and chiral, in the short-range and in the long-
range limit, and discussed the corresponding effect in the resistivity and conductivity tensor.
We observed that the long-range disorder effect is much smaller than the short-range ones,
specially regarding the n = 0 LL in graphene. We also observed the complete localization
σxx = σxy = 0 of the n = 0 level when only long-range hopping disorder is present, which is
a different picture for the other types of disordered considered here. Such results contradicts
theoretical predictions in the literature [95], where a transition to the standard QH regime
was not observed. A subtle protuberance, which could be a sign of level-splitting is observed,
but the effect is too small to be conclusive and an investigation is required.

By performing thermal averages in the conductance matrix, we observed the temperature
dependence of the ρxx ×ρxy diagrams for each type of disorder. We showed that while both
the short-range and the long-range onsite disorder the longitudinal resistivity peak at n = 0
increase with temperature, the short-range hopping disorder decreases. In the long-range
disorder case, we observed a divergence with temperature in the n = 0 LL. For the n ̸= 0
case, the temperature dependence is equivalent for all observed disorder types.

In the second part of this thesis, we studied time-dependent methods of the scattering
problem under the tight-binding approximation and develop an application. The methods are
implemented in the T-Kwant package, the time-dependent extension of the Kwant package.
We discussed an extension of the wave function matching formalism to the time-domain upon
a time-dependent perturbation. Next, we reviewed the T-Kwant methods discussed in the
literature and presented the main formalism behind the time-dependent interacting scattering
problem using the time-dependent Hartree-Fock approximation, which is also available in
the package.

The last chapter is devoted to a final application in this thesis, a proposal for a plasmon-
plasmon collider in quasi one dimensional wires. We reviewed the Luttinger liquid theory in
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one dimension and discussed the liquid realization in voltage pulses propagating in quasi 1D
wires on top of a 2DEG. Te proposed model for a collider is based on a 4−terminals setup
and consists in sending two voltage pulses to a perpendicular collision guided by two crossing
nanowires of small width. The center of the cross is subjected to an effective Coulomb mean
field. We demonstrated that, by inducing voltage pulses with a relative time-delay τ between
the pulses at two perpendicular inputs of the cross, through local operators, we quantified the
total amount of charge deviated through Coulomb interactions. We observed that the current
deviation due to interactions is maximal away from the synchronized collision, causing a dip
around the center τ = 0. Such scheme could be realized experimentally in 2DEG and the
result could be compared to experiments of quantum interference of electronic collision.





References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. Dubonos,
I. Grigorieva, A. Firsov, Electric Field Effect in Atomically Thin Carbon Films,
Science 306 (2004) 666.

[2] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, Phosphorene:
an unexplored 2d semiconductor with a high hole mobility, ACS Nano 8 (4) (2014)
4033–4041.

[3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics
and optoelectronics of two-dimensional transition metal dichalcogenides, Nature
Nanotechnology 7 (11) (2012) 699.

[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The
electronic properties of graphene, Rev. Mod. Phys. 81 (March) (2009) 109.

[5] A. K. Geim, I. V. Grigorieva, Van der waals heterostructures, Nature 499 (7459) (2013)
419.

[6] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz,
S. S. Hong, J. Huang, A. F. Ismach, et al., Progress, challenges, and opportunities in
two-dimensional materials beyond graphene, ACS nano 7 (4) (2013) 2898–2926.

[7] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chemical
reviews 113 (5) (2013) 3766–3798.

[8] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press,
Cambridge, 1995.

[9] N. Ashcroft, N. Mermin, Solid State Physics, Saunders College, Philadelphia, 1976.

[10] L. Lima, A. Dusko, C. Lewenkopf, Efficient method for computing the electronic
transport properties of a multiterminal system, Phys. Rev. B 97 (16) (2018) 165405.

[11] K. Kazymyrenko, X. Waintal, Knitting algorithm for calculating Green functions in
quantum systems, Phys. Rev. B 77 (11) (2008) 115119.

[12] C. H. Lewenkopf, E. R. Mucciolo, The recursive Green’s function method for graphene,
J. Comput. Electron. 12 (2013) 203.

[13] P. A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, P. J. Kelly, Conductance
calculations for quantum wires and interfaces: Mode matching and Green’s functions,
Phys. Rev. B 72 (3) (2005) 1–13.



116 References

[14] D. S. Fisher, P. A. Lee, Relation between conductivity and transmission matrix, Phys.
Rev. B 23 (12) (1981) 6851–6854.

[15] A. Hernández, V. M. Apel, F. A. Pinheiro, C. H. Lewenkopf, Quantum electronic
transport: Linear and nonlinear conductance from the Keldysh approach, Physica A
385 (1) (2007) 148–160.

[16] S. Sadasivam, M. K. Y. Chan, P. Darancet, Theory of thermal relaxation of electrons
in semiconductors, Phys. Rev. Lett. 119 (2017) 136602.

[17] A. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, S. Sanvito,
Towards molecular spintronics, Nat. Mater. 4 (4) (2005) 335.

[18] A. Kuzmin, M. Luisier, O. Schenk, Fast methods for computing selected elements
of the Green’s function in massively parallel nanoelectronic device simulations, in:
European Conference on Parallel Processing, Springer, 2013, pp. 533–544.

[19] J. Eckel, F. Heidrich-Meisner, S. Jakobs, M. Thorwart, M. Pletyukhov, R. Egger,
Comparative study of theoretical methods for non-equilibrium quantum transport,
New J. Phys. 12 (4) (2010) 043042.

[20] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional
method for nonequilibrium electron transport, Phys. Rev. B 65 (2002) 165401.

[21] C. W. Groth, M. Wimmer, A. R. Akhmerov, X. Waintal, Kwant: a software package
for quantum transport, New J. Phys. 16 (6) (2014) 63065.

[22] Z. Fan, A. Uppstu, T. Siro, A. Harju, Efficient linear-scaling quantum transport
calculations on graphics processing units and applications on electron transport in
graphene, Comput. Phys. Commun. 185 (1) (2014) 28–39.

[23] S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, Nextnano:
general purpose 3-d simulations, IEEE Trans. Electron. 54 (9) (2007) 2137–2142.

[24] A. Smogunov, A. Dal Corso, E. Tosatti, Ballistic conductance of magnetic Co and Ni
nanowires with ultrasoft pseudopotentials, Phys. Rev. B 70 (2004) 045417.

[25] R. Korol, M. Kilgour, D. Segal, Probezt: Simulation of transport coefficients of
molecular electronic junctions under environmental effects using büttiker’s probes,
Comput. Phys. Commun. 224 (2018) 396–404.

[26] D. Jacob, J. J. Palacios, Critical comparison of electrode models in density functional
theory based quantum transport calculations, J. Chem. Phys. 134 (4) (2011) 044118.

[27] S. Li, W. Wu, E. Darve, A fast algorithm for sparse matrix computations related to
inversion, Comput. Phys. Commun. 242 (2013) 915–945.

[28] F. Triozon, S. Roche, Efficient linear scaling method for computing the landauer-
büttiker conductance, Eur. Phys. J. B 46 (3) (2005) 427–431.

[29] T. Ozaki, K. Nishio, H. Kino, Efficient implementation of the nonequilibrium Green
function method for electronic transport calculations, Phys. Rev. B 81 (2010) 035116.



References 117

[30] S. Bruzzone, G. Iannaccone, N. Marzari, G. Fiori, An open-source multiscale frame-
work for the simulation of nanoscale devices, IEEE Trans. Electron. 61 (1) (2014)
48–53.

[31] M.-H. Liu, K. Richter, Efficient quantum transport simulation for bulk graphene
heterojunctions, Phys. Rev. B 86 (2012) 115455.

[32] N. Papior, N. Lorente, T. Frederiksen, A. García, M. Brandbyge, Improvements
on non-equilibrium and transport Green function techniques: The next-generation
transiesta, Comput. Phys. Commun. 212 (2017) 8–24.

[33] J. E. Fonseca, T. Kubis, M. Povolotskyi, B. Novakovic, A. Ajoy, G. Hegde,
H. Ilatikhameneh, Z. Jiang, P. Sengupta, Y. Tan, G. Klimeck, Efficient and real-
istic device modeling from atomic detail to the nanoscale, J. Comput. Electron. 12 (4)
(2013) 592–600.

[34] G. Kiršanskas, J. N. Pedersen, O. Karlström, M. Leijnse, A. Wacker, Qmeq 1.0: An
open-source python package for calculations of transport through quantum dot devices,
Comput. Phys. Commun. 221 (2017) 317–342.

[35] Z. Ren, R. Venugopal, S. Goasguen, S. Datta, M. S. Lundstrom, nanoMOS 2.5: A
two-dimensional simulator for quantum transport in double-gate MOSFETs, IEEE
Trans. Electron. 50 (9) (2003) 1914–1925.

[36] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl.
23 (1) (2001) 15–41.

[37] M. Wimmer, Quantum transport in nanostructures: From computational concepts to
spintronics in graphene and magnetic tunnel junctions, Ph.D. thesis, University of
Regensburg (2009).

[38] B. Gaury, J. Weston, M. Santin, M. Houzet, C. Groth, X. Waintal, Numerical simula-
tions of time-resolved quantum electronics, Phys. Rep. 534 (1) (2014) 1–37.

[39] J. Weston, X. Waintal, Linear-scaling source-sink algorithm for simulating time-
resolved quantum transport and superconductivity, Physical Review B 93 (13) (2016)
134506.

[40] J. Weston, X. Waintal, Towards realistic time-resolved simulations of quantum devices,
Journal of Computational Electronics 15 (4) (2016) 1148–1157.

[41] J. Weston, Numerical methods for time-resolved quantum nanoelectronics, Springer,
2017.

[42] O. Shevtsov, X. Waintal, Numerical toolkit for electronic quantum transport at finite
frequency, Physical Review B 87 (8) (2013) 085304.

[43] B. Rossignol, T. Kloss, P. Armagnat, X. Waintal, Toward flying qubit spectroscopy,
Physical Review B 98 (20) (2018) 205302.



118 References

[44] B. Gaury, X. Waintal, Dynamical control of interference using voltage pulses in the
quantum regime, Nature communications 5 (2014) 3844.

[45] T. Bautze, C. Süssmeier, S. Takada, C. Groth, T. Meunier, M. Yamamoto, S. Tarucha,
X. Waintal, C. Bäuerle, Theoretical, numerical, and experimental study of a flying
qubit electronic interferometer, Physical Review B 89 (12) (2014) 125432.

[46] B. Gaury, J. Weston, X. Waintal, The ac josephson effect without superconductivity,
Nature communications 6 (2015) 6524.

[47] T. Kloss, J. Weston, X. Waintal, Transient and sharvin resistances of luttinger liquids,
Physical Review B 97 (16) (2018) 165134.

[48] G. Stefanucci, R. Van Leeuwen, Nonequilibrium many-body theory of quantum
systems: a modern introduction, Cambridge University Press, 2013.

[49] T. Ando, Quantum point contacts in magnetic fields, Phys. Rev. B 44 (1991) 8017–
8027.

[50] P. A. Mello, N. Kumar, Quantum Transport in Mesoscopic Systems, Oxford University
Press, Oxford, 2004.

[51] J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties of
molecular electronic devices, Phys. Rev. B 63 (2001) 245407.

[52] S.-H. Ke, H. U. Baranger, W. Yang, Electron transport through molecules: Self-
consistent and non-self-consistent approaches, Phys. Rev. B 70 (2004) 085410.

[53] D. J. Thouless, S. Kirkpatrick, Conductivity of the disordered linear chain, J. Phys. C:
Solid State Phys. 14 (1981) 235–245.

[54] A. MacKinnon, The calculation of transport properties and density of states of disor-
dered solids, Z. Phys. B 385 (4) (1985) 385.

[55] M. Wimmer, K. Richter, Optimal block-tridiagonalization of matrices for coherent
charge transport, J. Comp. Phys. 228 (23) (2009) 8548 – 8565.

[56] S. Cauley, M. Luisier, V. Balakrishnan, G. Klimeck, C.-K. Koh, Distributed non-
equilibrium Green’s function algorithms for the simulation of nanoelectronic devices
with scattering, J. Appl. Phys. 110 (4) (2011) 043713.

[57] H. U. Baranger, A. D. Stone, D. P. DiVincenzo, Resistance fluctuations in multiprobe
microstructures: Length dependence and nonlocality, Phys. Rev. B 37 (11) (1988)
6521–6524.

[58] S. Rotter, J.-Z. Tang, L. Wirtz, J. Trost, J. Burgdörfer, Modular recursive green’s
function method for ballistic quantum transport, Phys. Rev. B 62 (2000) 1950–1960.

[59] F. Libisch, S. Rotter, J. Burgdörfer, Coherent transport through graphene nanoribbons
in the presence of edge disorder, New J. Phys. 14 (12) (2012) 123006.



References 119

[60] S. R. Power, M. R. Thomsen, A.-P. Jauho, T. G. Pedersen, Electron trajectories and
magnetotransport in nanopatterned graphene under commensurability conditions, Phys.
Rev. B 96 (2017) 075425.

[61] C. Mahaux, H. A. Weidenmüller, Shell-model approach to nuclear reactions, North-
Holland Pub. Co., Amsterdam, 1969.

[62] M. Di Ventra, Electrical Transport in Nanoscale Systems, Cambridge University Press,
Cambridge, 2008.

[63] G. H. Golub, C. F. V. Loan, Matrix Computations, 3rd Edition, JHU Press, Baltimore,
1996.

[64] I. Rungger, S. Sanvito, Algorithm for the construction of self-energies for electronic
transport calculations based on singularity elimination and singular value decomposi-
tion, Phys. Rev. B 78 (3) (2008) 035407.

[65] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Ham-
marling, J. Demmel, C. Bischof, D. Sorensen, Lapack: A portable linear algebra
library for high-performance computers, in: Proceedings of the 1990 ACM/IEEE
Conference on Supercomputing, Supercomputing ’90, IEEE Computer Society Press,
Los Alamitos, CA, USA, 1990, pp. 2–11.

[66] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide,
3rd Edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.

[67] M. Zwierzycki, P. A. Khomyakov, A. A. Starikov, K. Xia, M. Talanana, P. X. Xu, V. M.
Karpan, I. Marushchenko, I. Turek, G. E. Bauer, G. Brocks, P. J. Kelly, Calculating
scattering matrices by wave function matching, Phys. Status Solidi B 245 (4) (2008)
623–640.

[68] D. K. Ferry, S. M. Goodnick, Transport in Nanostructures, Cambridge University
Press, Cambridge, 1997.

[69] A. Calzolari, N. Marzari, I. Souza, M. Buongiorno Nardelli, Ab initio transport
properties of nanostructures from maximally localized wannier functions, Phys. Rev.
B 69 (2004) 035108.

[70] L. R. F. Lima, C. H. Lewenkopf, Disorder-assisted transmission due to charge puddles
in monolayer graphene: Transmission enhancement and local currents, Phys. Rev. B
93 (2016) 045404.

[71] N. J. G. Couto, D. Costanzo, S. Engels, D.-K. Ki, K. Watanabe, T. Taniguchi,
C. Stampfer, F. Guinea, A. F. Morpurgo, Random Strain Fluctuations as Dominant
Disorder Source for High-Quality On-Substrate Graphene Devices, Phys. Rev. X 4
(2014) 041019.

[72] R. Burgos, J. Warnes, L. R. Lima, C. Lewenkopf, Effects of a random gauge field
on the conductivity of graphene sheets with disordered ripples, Physical Review B
91 (11) (2015) 115403.



120 References

[73] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, B. Altshuler, Weak-
localization magnetoresistance and valley symmetry in graphene, Physical Review
Letters 97 (14) (2006) 146805.

[74] E. R. Mucciolo, C. H. Lewenkopf, Disorder and electronic transport in graphene,
Journal of Physics: Condensed Matter 22 (27) (2010) 273201.

[75] A. P. Hinz, S. Kettemann, E. R. Mucciolo, Quantum corrections to thermopower and
conductivity in graphene, Physical Review B 89 (7) (2014) 075411.

[76] J. Kłos, I. Zozoulenko, Effect of short-and long-range scattering on the conductivity
of graphene: Boltzmann approach vs tight-binding calculations, Physical Review B
82 (8) (2010) 081414.

[77] T. Ihn, Semiconductor Nanostructures: Quantum states and electronic transport,
Oxford University Press, 2010.

[78] H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an
introduction, Oxford university press, 2004.

[79] P. M. Ostrovsky, I. V. Gornyi, A. D. Mirlin, Electron transport in disordered graphene,
Phys. Rev. B 74 (23) (2006) 235443.

[80] B. Altshuler, A. Aronov, Zero bias anomaly in tunnel resistance and electron-electron
interaction, Solid State Communications 30 (3) (1979) 115–117.

[81] S. Hikami, A. I. Larkin, Y. Nagaoka, Spin-orbit interaction and magnetoresistance in
the two dimensional random system, Progress of Theoretical Physics 63 (2) (1980)
707–710.

[82] D. Huertas-Hernando, F. Guinea, A. Brataas, Spin relaxation times in disordered
graphene, The European Physical Journal Special Topics 148 (1) (2007) 177–181.

[83] A. Rycerz, J. Tworzydło, C. W. J. Beenakker, Anomalously large conductance fluc-
tuations in weakly disordered graphene, EPL (Europhysics Letters) 79 (5) (2007)
57003.

[84] M. B. Lundeberg, J. A. Folk, Rippled graphene in an in-plane magnetic field: effects
of a random vector potential, Physical review letters 105 (14) (2010) 146804.

[85] N. H. Shon, T. Ando, Quantum transport in two-dimensional graphite system, Journal
of the Physical Society of Japan 67 (7) (1998) 2421–2429.

[86] V. M. Pereira, A. C. Neto, N. Peres, Tight-binding approach to uniaxial strain in
graphene, Physical Review B 80 (4) (2009) 045401.

[87] F. Guinea, B. Horovitz, P. Le Doussal, Gauge field induced by ripples in graphene,
Physical Review B 77 (20) (2008) 205421.

[88] H. Suzuura, T. Ando, Phonons and electron-phonon scattering in carbon nanotubes,
Physical review B 65 (23) (2002) 235412.



References 121

[89] R. P. Feynman, R. B. Leighton, M. Sands, Lectures on physics, vol. iii (1965).

[90] D. Bahamon, Z. Qi, H. S. Park, V. M. Pereira, D. K. Campbell, Graphene kirigami as
a platform for stretchable and tunable quantum dot arrays, Physical Review B 93 (23)
(2016) 235408.

[91] H. Schomerus, Effective contact model for transport through weakly-doped graphene,
Physical Review B 76 (4) (2007) 045433.

[92] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum
hall effect and berry’s phase in graphene, nature 438 (7065) (2005) 201.

[93] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva,
S. Dubonos, A. Firsov, Two-dimensional gas of massless dirac fermions in graphene,
nature 438 (7065) (2005) 197.

[94] K. S. Novoselov, E. McCann, S. Morozov, V. I. Fal’ko, M. Katsnelson, U. Zeitler,
D. Jiang, F. Schedin, A. Geim, Unconventional quantum hall effect and berry’s phase
of 2π in bilayer graphene, Nature physics 2 (3) (2006) 177.

[95] P. Ostrovsky, I. Gornyi, A. Mirlin, Theory of anomalous quantum hall effects in
graphene, Physical Review B 77 (19) (2008) 195430.

[96] D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim, L. S. Levitov,
Dissipative quantum hall effect in graphene near the dirac point, Physical review
letters 98 (19) (2007) 196806.

[97] Z. Jiang, Y. Zhang, H. Stormer, P. Kim, Quantum hall states near the charge-neutral
dirac point in graphene, Physical Review Letters 99 (10) (2007) 106802.

[98] Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow,
J. Jaszczak, H. Stormer, P. Kim, Landau-level splitting in graphene in high magnetic
fields, Physical review letters 96 (13) (2006) 136806.

[99] R. E. Prange, S. M. Girvin, The quantum hall effect, graduate texts in contemporary
physics, Springer New York, 2nd ed. edn., doi 10 (1987) 978–1.

[100] T. Vojta, Quantum phase transitions in electronic systems, Annalen der Physik 9 (6)
(2000) 403–440.

[101] F. Evers, A. D. Mirlin, Anderson transitions, Reviews of Modern Physics 80 (4) (2008)
1355.

[102] A. Pruisken, Universal singularities in the integral quantum hall effect, Physical review
letters 61 (11) (1988) 1297.

[103] D. Thouless, Maximum metallic resistance in thin wires, Physical Review Letters
39 (18) (1977) 1167.

[104] B. Huckestein, Scaling theory of the integer quantum hall effect, Reviews of Modern
Physics 67 (2) (1995) 357.



122 References

[105] H. Wei, D. Tsui, M. Paalanen, A. Pruisken, Scaling of the integral quantum hall effect,
in: High magnetic fields in semiconductor Physics, Springer, 1987, pp. 11–15.

[106] K. Olsen, H. Limseth, C. Lütken, Universality of modular symmetries in two-
dimensional magnetotransport, Physical Review B 97 (4) (2018) 045113.

[107] J. D. Jackson, Classical electrodynamics, 3rd Edition, Wiley, New York, NY, 1999.

[108] M. O. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod.
Phys. 83 (December) (2011) 1193.

[109] R. Shankar, Principles of quantum mechanics, Springer Science & Business Media,
2012.

[110] P. Phillips, Advanced solid state physics, Cambridge University Press, 2012.

[111] M. Koshino, T. Ando, Splitting of the quantum hall transition in disordered graphenes,
Physical Review B 75 (3) (2007) 033412.

[112] T. Ando, Theory of electronic states and transport in carbon nanotubes, Journal of the
Physical Society of Japan 74 (3) (2005) 777–817.

[113] B. Jeckelmann, B. Jeanneret, The quantum hall effect as an electrical resistance
standard, Reports on Progress in Physics 64 (12) (2001) 1603.

[114] H. U. Baranger, A. D. Stone, Electrical linear-response theory in an arbitrary magnetic
field: A new Fermi-surface formation, Phys. Rev. B 40 (1989) 8169–8193.

[115] O. Shevtsov, P. Carmier, C. Petitjean, C. Groth, D. Carpentier, X. Waintal, Graphene-
based heterojunction between two topological insulators, Physical Review X 2 (3)
(2012) 031004.

[116] K. S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H. L. Stormer, U. Zeitler, J. Maan,
G. Boebinger, P. Kim, A. K. Geim, Room-temperature quantum hall effect in graphene,
Science 315 (5817) (2007) 1379–1379.

[117] A. Hernández, F. Pinheiro, C. Lewenkopf, E. Mucciolo, Adiabatic charge pumping
through quantum dots in the coulomb blockade regime, Physical Review B 80 (11)
(2009) 115311.

[118] K. Ando, Dynamical generation of spin currents, Semiconductor Science and Technol-
ogy 29 (4) (2014) 043002.

[119] C. Bäuerle, D. C. Glattli, T. Meunier, F. Portier, P. Roche, P. Roulleau, S. Takada,
X. Waintal, Coherent control of single electrons: a review of current progress, Reports
on Progress in Physics 81 (5) (2018) 056503.

[120] E. Bocquillon, V. Freulon, J.-M. Berroir, P. Degiovanni, B. Plaçais, A. Cavanna, Y. Jin,
G. Fève, Coherence and indistinguishability of single electrons emitted by independent
sources, Science (2013) 1232572.

[121] C. Beenakker, H. van Houten, Quantum transport in semiconductor nanostructures, in:
Solid State Physics, Vol. 44, Elsevier, 1991, pp. 1–228.



References 123

[122] H. Haug, A.-P. Jauho, Quantum kinetics in transport and optics of semiconductors,
Vol. 2, Springer, 2008.

[123] M. V. Moskalets, Scattering matrix approach to non-stationary quantum transport,
World Scientific, 2012.

[124] G. Roussely, E. Arrighi, G. Georgiou, S. Takada, M. Schalk, M. Urdampilleta, A. Lud-
wig, A. D. Wieck, P. Armagnat, T. Kloss, et al., Unveiling the bosonic nature of an
ultrashort few-electron pulse, Nature communications 9.

[125] O. Auslaender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B. Halperin, K. Baldwin,
L. Pfeiffer, K. West, Spin-charge separation and localization in one dimension, Science
308 (5718) (2005) 88–92.

[126] H. Steinberg, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, B. I. Halperin, K. Le Hur,
Charge fractionalization in quantum wires, Nature Physics 4 (2) (2008) 116.

[127] V. V. Deshpande, M. Bockrath, L. I. Glazman, A. Yacoby, Electron liquids and solids
in one dimension, Nature 464 (7286) (2010) 209.

[128] T. Giamarchi, Quantum physics in one dimension, volume 121 of international series
of monographs on physics (2003).

[129] J. Luttinger, Jm luttinger, phys. rev. 119, 1153 (1960)., Phys. Rev. 119 (1960) 1153.

[130] R. Liu, B. Odom, Y. Yamamoto, S. Tarucha, Quantum interference in electron collision,
Nature 391 (6664) (1998) 263.

[131] S. Ol’Khovskaya, J. Splettstoesser, M. Moskalets, M. Büttiker, Shot noise of a meso-
scopic two-particle collider, Physical Review Letters 101 (16) (2008) 166802.

[132] W. Greiner, Quantum electrodynamics of strong fields, in: Hadrons and Heavy Ions,
Springer, 1985, pp. 95–226.

[133] K. Matveev, L. Glazman, Coulomb blockade of tunneling into a quasi-one-dimensional
wire, Physical review letters 70 (7) (1993) 990.




