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Abstract
In this work we analyze the effective model obtained in ref. [58] via Monte Carlo techniques.
In that reference, the authors consider an ensemble of closed line-like objects that obey
an action that has length, curvature and contact interaction terms. After a number of
controlled approximations and putting the model on a lattice, they translated averages
of this confinement order parameter into the ratio between the partition function of a
frustrated XY -model and its unfrustrated counterpart. Here, we shall numerically analyze
different possibilities for the frustration distribution: one localized at the links that pierce
the Wilson loop minimal area and one that relies on the solid angle picture, that explores
the multivaluedness of this quantity as one goes around the Wilson loop. In particular, we
perform averages near the critical temperature as the continuum limit is reproduced when
the system is near that point. Two results of ref. [58] were reproduced numerically: the
area law near the critical temperature and the expected dependence of the string tension
on the representation of the gauge group. It is also found that the N-ality 1 representations
obey the constant ratio σNA (1)/ sin2 π

N
≈ 2.038 10−4 for a 113 lattice and evidence that an

area law arises from the solid angle picture.

Keywords: XY -model, numerical simulation, confinement(physics).
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Introduction

One of the most important and still unsolved [43] problems in contemporary Physics
is to sistematically understand the inner workings of the confinement of quarks and gluons
from Quantum Chromodynamics [60, 74], the proposed theory to model the internal
structure of hadrons. In the last decades, many theoretical efforts have been made in this
sense, ranging from analytical [13, 23, 50] to numerical ones [9, 20, 36], hence building a
certain image of how these interactions might look like. One hopes that in the next few
years, experiments like the GlueX collaboration 1 at the Jefferson Lab, give a nature’s
veredict about them.

An illustrative way to introduce this theme is to consider how a massive static quark-
antiquark pair interact. When these sources are close to each other, the chromoelectric
field lines are squeezed, in such a way that the energy stored in this field grows linearly
with the interquark separation, thus generating the so-called flux tube. This occurs in
contrast to the usual electromagnetism, in which the field would spread further into space.

This idea is indeed confirmed by lattice QCD [15, 70], a formalism onto which
the properties of this theory are analyzed in a discretized spacetime with Monte Carlo
techniques. In this context it is possible to obtain information about the low energy sector
of QCD, which is until now prohibitively difficult in the continuum. Further accounts on
the theme are discussed in Appendix A. In fig. 1 one may see a recent numerical result
from ref. [7].

Figure 1 – Chromoelectric field configuration of a massive quark-antiquark pair as a
function of the longitudinal and transversal with respect to the line that
separates the two particles. The right plot can be obtained from the left one by
removing the Coulomb potential contribution. Taken from ref. [7].

1 http://www.gluex.org/GlueX/Home.html

http://www.gluex.org/GlueX/Home.html
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One hence sees that, by removing the Coulomb contribution to the potential, there
is a region along the line between the pair at which the chromoelectric field is constant,
which is equivalent to the squeezing of field lines. However, as the charges are further
separated, and the effect of dynamical quarks are considered (they were not in ref. [7]) it
becomes energetically favorable that these dynamical particles appear from vacuum to
screen the original pair, breaking the string and yielding two colorless states.

One way to give a more physical picture to these structures is to consider an
ingenious analogy with the usual electromagnetism: dual superconductivity. This is based
on what would occur with a magnetic monopole-antimonopole pair if these are put in a
type II superconductor. These superconductors have the property that, with suficiently
large magnetic fields, it is possible to produce Abrikosov vortices [2]. These are filaments
where the magnetic field penetrates the material. Thus a flux tube is formed, something
that does not happen in a type I superconductor due to the London currents that appear
in its surface [6].

Figure 2 – Pictorial representation of a Abrikosov vortex and the hypothetical monopole
confinement in a type II superconductor. Taken from ref. [63].

Therefore, if monopoles existed, they were put in a type II superconductor, and had
the right magnetic charge, a magnetic monopole-antimonopole pair would produce a flux
tube between them. Thus a linearly growing potential would be generated, hence confining
the pair. In this QCD vacuum picture, originally proposed by Nambu [56], the role of the
magnetic field is made by the chromoelectric field, thus characterizing the duality.

However, the linearly growing potential is not the whole story. By taking into
account the quantum fluctuations in this string-like structure, a Coulomb-like term arises.
According to the pioneering work of ref. [51], one gets to the fact that the effective potential
between the sources is

V (r) = σr + γ

r
+O

( 1
r2

)
, γ = − π

24(d− 2) (1)

where d is the spacetime dimension; σ is the so-called string tension and r is the pair
separation. The term proportional to 1/r is called the Lüscher term. This result is also
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confirmed by lattice simulations [7, 9].

Complementing the dual superconductor picture, the mechanism that engenders
the regular superconductivity is the condensation of pairs of highly correlated electric
charge pairs (electrons forming Cooper pairs), hence one is lead to think, taking duality
into account, that some chromomagnetic degrees of freedom condense.

Indeed, in the context of compact QED 2 in (2 + 1)D confinement is yielded
by monopoles [39, 61]. As QCD has a more complicated, non-abelian gauge symmetry,
one might be lead to postulate that analogous degrees of freedom contribute to quark
confinement. Nevertheless, due to the rich structure brought by this non-abelianicity, it
would be reductionist to think that this analogy suffices.

In this way, a confinement picture involving what is called center vortex is put
forward in the 70’s. These configurations have an intricate definition, which depends on its
effect on the gauge-invariant observable known as the Wilson loop. The latter is defined
by

W = 1
N

trP exp
(
ig
∮
C
dxµAµ(x)

)
, (2)

where C is a closed path in four dimensions.

Briefly, the Wilson loop is a confinement order parameter, exhibiting thence different
behaviors according to the phase of the theory. When taking averages in field configurations,
the behavior of 〈W(C)〉 is [37]

〈W(C)〉 ∼

exp [−σA(S(C))], in the confined phase

exp [−κP(C)], in the deconfined phase
(3)

where A(S(C)) is the area of the minimal surface whose boundary is C and P(C) is the
perimeter of C. With this, one refers to the behavior of Wilson loop averages as having an
area law and perimeter law, respectively. This quantity will have a section to itself later.

Now, it will be defined what is meant by the center of a group G. This is the set
of elements that comute with all other group members, namely,

Z := {z ∈ G | zg = gz, ∀g ∈ G}. (4)

In the case of SU(N), its center consists of the N -th roots of unity,

Z(N) = ei
2π
N
k1 k = 0, ..., N − 1. (5)

Accordingly, a configuration Aµ, localized on a curve ` is called a center vortex if
the Wilson loop computed over C receives a contribution of a non-trivial center element
2 It consists of a discretized, but still gauge invariant, version of QED. The gauge invariance imposition

leads to a formalism where the fields belong conventionally to the interval [−π, π], whose compacity
names the formalism. In the confined phase, monopoles form a plasma, but, in the deconfined one,
they form a dilute gas of magnetic monopoles [39,61].
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when C is linked by `, thus,

W(C, `) = zL(C,`) with z ∈ Z(N) and (6)

L(W , `) = 1
4π

∮
C

∮
`
d~lC ·

(
d~l` ∧

~xC − ~x`
|~xC − ~x`|3

)
, (7)

the latter being the topological invariant called linking number 3.

A possible way to motivate this definition is to follow the lines of ref. [13], where
the quantum phenomenon of gluon mass generation is discussed using an SU(N) infrared-
effective gauge invariant massive lagrangian. In d = 3 Euclidean spacetime dimensions an
explicit center-vortex soliton solution to the equations of motion is

Ai(x; j) = 2πQjεiab∂a

∮
`
dyb[∆0(x− y)−∆m(x− y)]. (8)

Here, ∆m(x − y) is the mass m free propagator and the Q matrices are in Cartan
subalgebra [14]. Assuming further that the typical lengths of both C and ` are large
compaired to 1/m, one obtains from (2) that the behavior of the Wilson loop is

W(C) = exp
(2π
N
i
∮
C
dxa

∮
`
dyb εabc∂c∆0(x− y)

)
(9)

where the integral in the exponent is equivalent to the Gauss linking number up to a
constant factor, because ∆0(x − y) = 1/|x − y|. Although this idea was developed in
a specific dimension, this principle can be extended to higher dimensions [63]. In D

dimensions, center vortices are D − 2 hypersurfaces.

Outline of the Dissertation
The division of present work is so that, in the first chapter, a more concrete physical

discussion about the Wilson loop is made, and it is shown that it probes the potential
between static quarks [32]. Then, a few remarks are made about how one can get an area
law from Wilson Loop averages in the strong coupling limit. After that, it is discussed that
center symmetry is the one that is broken in the deconfined phase of a gauge theory [37].
Then, some lattice QCD results are presented to evidence that center vortices are indeed
relevant when considering confinement properties [63]. The maximal center gauge and
the center projection procedure, used to detect center vortices in lattice simulations, are
briefly discussed and some numerical results are shown.

In chapter 2, the confining force and center vortex properties are further analyzed.
First, the main results regarding the representation dependence of the string tension are
outlined [37]. Later, it is argued that center vortices can be accounted for in QCD vacuum
3 The fact that center vortices are localized in closed surfaces is originated from the fact that the field

configurations must obey the Bianchi identity εµνλρ∂νFλρ = 0, unless there are monopoles which
change the direction of the chromomagnetic flux.
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if one considers an effective action that has tension and stiffness terms [28], and that a
picture of confinement/deconfinement phases can be made in terms of the percolation
transition of such objects. Then, Vortices are found to interact by the analysis of their
correlations [25]. Closing the chapter, the branching property of these magnetic degrees of
freedom is described [27].

In chapter 3, we review the steps of ref. [58] to obtain a frustrated XY model from
an ensemble of closed line-like objects that have some of the properties outlined for center
vortices. That is done by using a path integral identities and polymer techniques.With
that they obtain a complex field theory with U(1) symmetry breaking.

Analyzing the soft modes of this theory and putting the model on a lattice, they
derive a frustrated XY -model. The frustration is localized in those links that pierce the
Wilson loop minimal area. Averages of this confinement order parameter are translated
into the ratio between the partition function of the frustrated model and its unfrustrated
counterpart. Afterwards, the continuum limit and its relation with the critical coupling
are discussed. Later, the Wilson loop behavior is obtained in the small and near-critical
coupling regimes. They also derive a representation dependence of the string tension. After
that, the solid angle picture is introduced and it is explained how its multivaluedness is
exploited to capture the essential features of the near-critical region of the XY model,
and how it “dilutes” the frustration.

In chapter 4 the Monte Carlo techniques used are outlined. Starting with the
traditional Metropolis algorithm, that enables one to perform thermal averages with
Bolzmann distribution. Then, a definition of equilibrium is presented in terms of a
relaxation time and the problem of critical slowing down is briefly discussed. Following
that, a method to obtain the critical coupling, the Fourth Order Cumulant Method, is
described succintly. Then the Overlap Method. used to estimate the partition function
ratios (henceforth interchangeably called “Wilson loop”) is shown. The main source to
this chapter is ref. [11].

The chapter 5 shows the numerical results obtained. One starts with a preliminary
analysis of the relaxation time and of the similarity between the frustrated and the
unfrustrated XY models near the critical temperature. Then one proceeds with the Wilson
loop computations in the “concentrated” frustration picture, also starting with a relaxation
time analysis. Then the area law and its temperature behavior are analyzed. Afterwards the
representation dependence of the string tension derived in chapter two is put to scrutiny.
Then, the solid angle picture simulations are outlined. Then some remarks are made about
the issues present in the simulations. After that, the concluding chapter adds a few more
remarks about the work and the main text ends.

There are three appendices to the present dissertation. Appendix A, based on
ref. [32], arises because of the importance of lattice QCD to the current knowledge about
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confinement and, in particular, about Center Vortices. There, the most famous lattice
action, the Wilson one, is described. Then, the Euclidean correlators, that are of utmost
importance to lattice QCD studies are described. After that, the invariant integral measure
in SU(3) is defined in a not-so-mathematically rigorous manner, followed by some examples.

Appendix B gives a brief account about the two main (pseudo)random number
generators used in the present work. Namely, the Linear Congruential Generator, a well
distributed, but short period generator, and the Mersenne Twister that has been widely
used because of its ultra-astronomical period and its good “pseudo-randomness”. But
that comes by the cost of a cumbersome implementation, and a even more intricate
motivation [53]. The main sources to this Appendix are refs. [45, 46].

Finally, in Appendix C, the precise meaning of the solid angle subtended by a
square is outlined, following closely the lines of ref. [52]. First, the observer-centered solid
angle is obtained, then the general case is derived by using reflexion properties and the
problem is divided in four classes of points, depending on the localization of such point
relative to the square.
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1 Wilson loops, center vortices and confine-
ment

In this chapter, the physical content of the Wilson loop and of center vortices are
put under scrutiny. For the former, some arguments regarding its physical interpretation
as a probe to the massive quark potential will be shown, as well as the appearance of an
area law in the strong coupling limit. On the other hand, the relation of center symmetry
breaking to the deconfinement phase transition and some lattice QCD results show the
importance of the latter. Afterwards, a contemporary picture of pure gauge QCD vacuum
is shown.

1.1 The Wilson loop and its physical interpretation

As it was previously stated, there is an order parameter that probes the confinement
status of QCD. However, gauge invariance prohibits the existence of something akin to
a magnetization, i.e. a simple sum of the degrees of freedom, given that averages of
non-gauge-invariant local quantities are necessarily zero [24].

A solution to this problem is the introduction of the Wilson loop [70] defined
in (2) in the introduction for the continuum. This is gauge invariant because group
holonomies (the Wilson loop before taking the trace) in a line C from x to y transform as
G(x, y) 7→ G′(x, y) = Ω(x)G(x, y)Ω†(y), by the continuum gauge transformations (A.6).
So, if x and y coincide and one takes the trace, the resulting quantity is gauge invariant.

One way to grasp the physical significance of this quantity and to see how it probes
confinement is to refer to again to the Lattice QCD formalism, outlined in Appendix A.
In this context, it becomes

W(C) = trP
∏
x,µ∈C

Uµ(x). (1.1)

where Uµ(x) denotes a link variable from site x to x + µ̂. To assist interpretation, it is
necessary to take a standard form to the spacetime curve C. It is built by four parts, two
of them are called Wilson lines, S(m,n, 0) and S(m,n, nt), and the other two are called
the temporal transporters T (n, nt) e T (m, nt).

The Wilson line S(m,n, nt) goes from m to n at fixed time nt along some curve.
Then the first temporal transporter takes from time nt to 0, at a fixed space point n. Now
the second Wilson line goes from n back to m with a fixed time 0. Finally the second
transporter T (m, nt) brings to the initial spacetime point (m, nt) in a fixed space point



28 Chapter 1. Wilson loops, center vortices and confinement

m. In short,

(m, nt) 7−→ (n, nt) 7−→ (n, 0) 7−→ (m, 0) 7−→ (m, nt). (1.2)

Hence, the Wilson loop is the trace of the product of the link variables that join
the abovementioned points, which is similar to (1.1) but the arbitrarity is found only in
the Wilson lines, namely,

W(C) = tr[S(m,n, nt)T †(n, nt)S†(m,n, 0)T (m, nt)], (1.3)

sometimes, as in the next paragraphs, one may choose the Wilson lines to be straight,
such that C is planar.

Another prescription before the physical interpretation itself is discussed, is to
take the temporal gauge A0(x) = 0 1. In such case, the temporal transporters are trivial,
U0(x) = 1. Thence

〈W(C)〉 = 〈tr[S(m,n, nt)S†(m,n, 0)]〉. (1.4)

One then sees that the Wilson loop average reduces to the correlation function between
S(m,n, nt) and S†(m,n, 0). Then,

lim
t→∞
〈W(C)〉 = lim

t→∞
〈Sab(m,n, nt)S†ba(m,n, 0)〉 =

∑
q

〈0|Sab(m,n)|q〉〈q|S†ba(m,n)|0〉e−Eqt .

(1.5)
where it was used the result (A.34) for correlators in very large Euclidean time t. Another
important and highly non-trivial result is that S(m,n) is the quark propagator in the large
mass limit [32]. Thus the sum in (1.5) is over the states that describe quark-antiquark
pairs, both very massive and located in m and n. In such a way, the lowest energy terms
which are dominant in large euclidean times give us information about the energy of
this pair, this energy can then be identified with the interquark potential V (r). On that
account,

〈W(C)〉 ∼ e−ntaV (r). (1.6)

There are still other ways to look at the Wilson loop. Namely, it is a probe to
vacuum fluctuations, when it is placed in a space-only plane [37], one might also observe
from (2) that the Wilson loop reduces to the Aharonov-Bohm phase when one considers
the usual electromagnetism. In such context, it is possible to introduce center vortices
as singular gauge transformations from the Aµ = 0 configuration [36]. In ref. [69] the
author gives a differential geometry approach to the Wilson loop as being the operator
1 It is important to emphasize that the Wilson loop is a gauge invariant, thus the gauge fixing serves

merely as computational tool.
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that implements the change in the color vector as one travels in closed loops in a manifold
that has the gauge field Aµ as its connection.

This quantity will also of utmost importance in the present work, as it will become
clear in chapter 3, where the effective model will be presented. This is highly motivated
by the definition of center vortices in eq. (6).

1.2 The Strong Coupling Limit and the Area Law
One way to show the existence of the linear term in the interquark potential,

as antecipated in (1), and the Area-law is to take the strong coupling limit g → ∞ ou
β = 6/g2 → 0. In such context, making use of the Wilson action (A.22), originally proposed
in ref. [70], the average of Wilson loop,

〈W(C)〉 = 1
Z

∫
[DU ] exp

[
−β3

∑
�

Re tr(1−Uµν)
]
tr
[∏
n∈C

Uµ(n)
]
, (1.7)

can be expanded in β. For the purposes of the present text, (1.7) will be truncated in the
first non vanishing term. In this equation, Uµ(n) denotes a link variable, Uµν a plaquette
and [DU ] the group-invariant measure. Thus, ignoring a constant term in the exponential
above,

〈W(C)〉 = 1
Z̃

∫
[DU ] exp

[
β

6
∑
µν

tr(Uµν +U†µν)
]
tr
[∏
n∈C

U(n)
]

= 1
Z̃

∫
[DU ] tr

[∏
n∈C

U(n)
] ∞∑
j,k=0

(
β

6

)k 1
j!k!

(∑
µν

trUµν

)j (∑
µν

trU†µν
)k
.

(1.8)

Where it was also used that Re tr (Uµν) = 1/2 tr (Uµν +U†µν). The exponential and the
sum of traces were both expanded. As for the partition function Z̃, the first nonzero term
is, using the fact that the group measure is normalized,

Z̃ =
∫

[DU ] 1 +O(β2) ≈ 1. (1.9)

For the numerator, it is necessary to refer to the results shown in appendix A.
From (A.56), one sees that the first term in the expansion (1.8),

∫
[DU ]tr [∏n∈C U(n)],

vanishes. Hence from (A.58), one may see that the nonzero term with the smallest number
of products of link variables must contain paired U(n) and U †(n). At this point it is
important to stress that taking the hermitian conjugate of a plaquette amounts to change
its orientation, as one can see from (A.21). From (A.58) it follows that∫

dU tr[V U ] tr[U †W ] = 1
3tr[VW ] (1.10)

thus it is possible to deduce that, when integrating over a link variable that is common to
two adjacent plaquettes, what is left over is a trace over the loop obtained by joining the
plaquettes. This procedure is pictorially summarized in fig. 3.
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1
3

Figure 3 – The group integrals from appendix A.3 imply that the integral of products of
traces over adjacent plaquettes reduces to the trace over the loop formed by
the union of these plaquettes. Adapted from ref. [32].

For the sake of simplicity, let us take the Wilson loop to be a rectangle with nt
links in temporal direction and nr links in a particular space direction. Along these lines,
one can conclude that the lowest order contribution in β will come from a term such that
the plaquettes “fit in” to form the Wilson loop, but with the orientation reversed (the
internal links vanish with the group integral). This can be seen in fig. 4.

Figure 4 – Pictorial representation of the first non-vanishing term contributing to the
strong coupling expansion. In blue, the plaquettes, in black the Wilson loop.
Adapted from ref. [37].

In this case nrnt plaquettes are needed, and as only those terms with U†µν in (1.8)
contribute, the Wilson loop average reduces to

〈W(C)〉 ≈
∫

[DU ] 1
(nrnt)!

(
β

6

)nrnt
tr
[∏
n∈C

U(n)
](∑

µν

trU†µν
)nrnt

+O(β) (1.11)

and then, expanding the sum over plaquettes and leaving only those that “fit in” the
inverse-oriented Wilson loop (there are (nrnt)! such terms),

〈W(C)〉 ≈
(
β

6

)nrnt ∫
[DU ] tr

[∏
n∈C

U(n)
] ∏
µν⊂S(W)

trU†µν , (1.12)
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where S(W) is the minimal surface whose boundary is C. Hence,

〈W(C)〉 ≈ tr[1]
(
β

6

)nrnt (1
3

)nrnt
= 3 exp

(
nrnt ln

(
β

18

))
. (1.13)

Now, it is worth noting that A(S(W)) = nrnta
2, thus characterizing the Area Law.

Furthermore, comparing (1.13) with (1.6),

e−ntaV (r) = 3 exp
(
r

a
nt ln

(
β

18

))
⇒ V (r) = σr, (1.14)

with
σ = − 1

a2 ln
(
β

18

)
(1.15)

Where in (1.14) it was used that r = nra. As expected, this is not the final word, it is
possible to calculate the expansion further and find higher order corrections to the string
tension σ [16], but these are not in the scope of the present work. In any case, terms such
as (A.59) start to contribute as well.

1.3 The Center Symmetry
As it was already mentioned, the term confinement can be viewed as a way to

describe a phase of a gauge theory. In statistical physics models, phases are in general
characterized by the existence of some order parameter and the breaking of some symmetry,
as it happens in a Ising magnet below Curie temperature, where the spin sign inversion
symmetry of the interaction is spontaneously broken by a finite magnetization. To specify
the symmetry in the present case, first one might consider again the lattice Wilson action
for lattice QCD

SC [U ] = 2
g2

∑
n,µ<ν

Re tr (1−Uµν) , (1.16)

that has the following symmetry

U0(x, t0) 7→ CU0(x, t0) ∀x, t0 fixed and C ∈ Z(N), (1.17)

because the temporal plaquettes, the only one that would possibly be affected, are invariant,
namely,

U′µ0 = Uµ(n)CU0(n+µ̂)U−µ(n+µ̂+0̂)U−0(n+0̂)C† = Uµ(n)U0(n+µ̂)U †µ(n+0̂)U †0(n) = Uµ0.

(1.18)

The symmetry (1.17) is broken either spontaneously at high temperatures [37],
or explictly by the addition of matter. In both cases, the static quark potential is not
asymptotically linear. The first case is probed with a Polyakov loop, a Wilson loop
that winds around the periodical euclidean time. Its physical interpretation is that it is
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proportional to e−βFq , where β is the inverse temperature and Fq is the free energy of a
isolated quark.

Thus, an infinite quark free energy, i.e. confinement, is a necessary and sufficient
condition to have a vanishing Polyakov loop average. This quantity is not invariant under
(1.17), so that a vanishing value of its average indicates that the underlying symmetry is
unbroken. Hence one identifies the unbroken center symmetry phase with the confined
phase and the broken one with the deconfined phase. In this sense, the Polyakov loop is an
order parameter for confinement at finite temperatures. Numerical evidence that support
these claims can be found in refs. [31, 33].

In the case with dynamical matter fields, the Center Symmetry is broken by the
matter-gauge coupling, depending on the group representation used. To see this, a few
remarks about representation theory are needed. As it can be seen in (5), the center of
SU(N) is a discrete group, thus there is a finite number of representations to it. To Z(N),
there are exactly N of them. Thus, each SU(N) representations can be separated in subsets
that are labeled by a center element, the name of this label is the so-called N-ality 2. If a
representation ρ has N-ality 0 ≤ k ≤ N − 1, then ρ(zM) = zkρ(M).

Thus if a matter term, for instance φ†Uµφ+ c.c., for a scalar field φ, is added to
the pure gauge lattice lagrangian, and the N-ality of this representation is non-zero, then
the Center Symmetry is broken. Otherwise, as in the case of gluons, which are in adjoint
representation, which has zero N-ality, it is not.

If the matter fields are to screen the static quarks, produce colorless states and
break the string, these must be in a representation such that the tensor product between
the two representations produces a color singlet. This information is contained in the
N-ality: k = 0 fields can not alter the N-ality of the source, so gluons can not screen
sources that have k 6= 0, whereas fundamental quarks, that have k = 1 can always do do
so. Then, the matter fields which are expected to break the string also break the Center
Symmetry.

1.4 The Maximal Center Gauge, Center Projection and the contri-
bution of Center Vortices to the confining force

Due to their effect in a gauge invariant quantity (6), the center vortex content must
also be gauge invariant. Nonetheless, the only gauge where there seems to be a well defined
continuum limit to vortex properties is the Maximal Center Gauge [63]. The procedure
that defines the fixing of this gauge involves bringing all link variables as close as possible

2 More information about the N-ality will be given in section 2.1
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to center elements. This is done by first maximizing the functional

M[U ] =
∑
x,µ
|trUµ(x)|2. (1.19)

In the case where the Uµ ∈ SU(2), as the link variables can be parametrized as Uµ =
α01+ iα · σ, where σi are the Pauli matrices and α2

0 + α2 = 1. As tr σi = 0, maximizing
each term of (1.19) is equivalent to maximizing α2

0.

Afterwards the center projection is done, in this procedure, each link variable is
substituted by the closest corresponding center element. The only non-trivial configurations
that remain are Center Vortices (in purple in fig. 5). Thus taking a configuration such
that there are surfaces with non-trivial link variables, the only non-trivial contribution
to Wilson loop averages come if the loop and the former surfaces link each other. The
boundary of these surfaces is where one localizes center vortices [63].

Figure 5 – Non-trivial link configuration after center projection (in purple) and the center
vortex configuration associated with it. In black, a Wilson loop that links with
the vortex, giving a non-trivial contribution. Taken from ref. [63].

Lattice computations like in ref. [47] give evidence that center vortices are indeed
the configurations responsible for the confinement phenomenon in QCD vacuum. The
way one may imply this is to contemplate the effect of withdrawing the vortex contri-
bution to the interquark potential. This is done by multiplying each link variable by its
(hermitian-conjugated) center-projected “component”. Specifically, Uµ(x) 7→ Uµ(x)C†µ(x).
This prescription implements the contribuition of a opposite-oriented vortex above the
previous one, anihilating its contribution to Wilson loop averages. In fig. 6 one may see a
result of this procedure for two gauge groups.

So, in the complete theory, at small distances the potential is mostly the Coulomb
one, and at bigger distances, pratically linear. With center-projected lattices, the potential
rises linearly. In the case of SU(2), the line slope is almost completely recovered by center
projection, a property that is called center dominance. With vortex removal, the potential
saturates in a constant and confinement properties are thus lost.
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Figure 6 – To the left (right): interquark potential versus their separation in a SU(2)(SU(3))
Yang-Mills theory, the full potential is in black, the center-projected potential
is in green (purple) and the center-excluded potential is in red (light blue).
Taken from ref. [47].

One also perceives that for SU(3) the linear part slope is not at all completely
recovered. This indicates that other configurations might contribute to the full potential.
Thus, the aforementioned monopoles may play this role. If this is to be true, a joint picture
of confinement is needed. In fact, one may see evidence [4] that in fact monopoles become
“glued” to center vortices worldlines, as pictorially represented in fig. 7. More recently [59],
there have been efforts to define gauges in the continuum that detect such topological
defects in gauge field configurations.

Although this picture will not be used in the effective model to be discussed, it is
an important contemporary vision of pure gauge QCD vacuum, and it might even motivate
future developments of the effective models.

Figure 7 – Monopole-antimonopole flux colimation in center vortices’ worldlines. Taken
from ref. [4].
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2 Further properties of the confining force
and of Center Vortices

Besides the properties mentioned in the previous chapter, there are many other
aspects of the confining force that can be deduced from LQCD simulations and/or
holography studies. The results presented in this chapter form the basis for the effective
model that will be developed in the next chapter. Moreover, the ones in section 2.1 will
be used as a consistency check for the effective model, as not all the properties described
here will be taken into account there.

2.1 Representation dependence of the String Tension
One important point to adress is how the string tension behaves as one changes the

representation of the gauge group. Results in this direction state that σR ∝ σF , where R
denotes a arbitrary representation of the gauge group and F its fundamental representation.
The first kind of these studies [5] reveal that, at weak couplings and D = 2, where analytic
Wilson loop calculations are more feasible, the inclination of the interquark potential at
intermediate distances obeys

σR = CR
CF

σF (2.1)

where Cr is the quadratic Casimir of the representation r = R,F , that is defined by

∑
a

R(Ta)R(Ta) = CR1, (2.2)

where R(Ta) is the a-th Lie algebra generator in representation R [41]. Thus eq. (2.1) is
called Casimir scaling. For SU(2), Cr = j(j + 1), which correspond to the eigenvalues of
total angular momentum squared in units of ~2.

It is possible to argue that the above mentioned D = 2 calculation somehow reflects
the D = 4 case through a dimensional reduction [5], the idea that somehow the calculations
in the former dimension yield calculations the latter. That holds true for the leading term
of strong coupling expansion, and might also surprisingly work for weak couplings [35, 57].
There is indeed compeling lattice QCD evidence that this is true from ref. [8], whose main
result is displayed in fig. 8 for SU(3) in D = 4.

For larger separations, it is energetically favorable for gluons to screen the static
charges and form two separated bound states formed by one static quark and the gluons.
This is somewhat similar to the mechanism discussed in the previous chapter, now not only
this mechanism is enabled by gluons instead of dynamical quarks (as only the effects of
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Figure 8 – Lattice QCD evidence for Casimir Scaling for SU(3). Each continuous line
for higher representations is obtained from the fit of the fundamental one by
multiplying the quadratic Casimir factor. Taken from ref. [8].

the former are considered), but also the string might not break. This is because gluons are
in the adjoint representation, and they might form states that are not colorless depending
on the representation of the static source.

One might also ask how this residual string tension (called k-string) depends on
the representations of the gauge group. In this context, two main results arise, the first
one is called Casimir Law and it reads [20,21]

σR = σN(kR) = kR(N − kR)
N − 1 σF (2.3)

which stems from the fact that the factor that multiplies σF can be shown to be quadratic
Casimir of the anti-symmetric representation with N-ality kR normalized by the Casimir
of the fundamental representation. Another possibility for the representation dependence
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stems from supersymmetry studies [23,42] suggest that

σR = σN(kR) =
sin

(
πk
N

)
sin

(
π
N

) σF (2.4)

which is called a Sine Law.

In both of the previous equations kR is the N-ality of representation R, that is also
the number of squares in a Young Tableau of the representation mod N . For instance, when
and r = F , kF = 1 mod N = 1; if r = A (adjoint representation), kA = N mod N = 0.
This quantity remains unaltered when one takes tensor products of some representation
by the adjoint, so gluons in the latter representaion can not break strings with a nonzero
N-ality, as stated earlier. It is also worth noticing that for N >> 1, both string tension
dependences yield σ(kR) ≈ kσF , hence it is increasingly difficult to distinguish between
the two laws.

It can be readily seen that σA = 0, thus implying in another string breaking
mechanism when one has gluons and static quarks in the adjoint representation. The final
state after the “k-string breaking” is called a gluelump. Numerical evidence to this string
breaking can be found in ref. [19].

Figure 9 – Lattice QCD evidence for k-string breaking with gluons. Taken from ref. [19]
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2.2 Tension, Stiffness and Percolation of Center Vortices
Inspired by the Center Dominance property, one is naturally lead to think, formally,

that one can grasp all the confinement information in Yang-Mills vacuum if one takes
averages of observables such as the Wilson loop, with a effective model where all the
SU(N)/Z(N) degrees of freedom are integrated out. With this in mind, and endowed with
a continuum analogue of the maximal center gauge, the authors of ref. [28] performed
a gradient expansion of the Yang-Mills action and arrived at a effective model in D

dimensions, which reads

S =
∫
∂Σ
d2σ
√
g (ε+ c KA

aiK
A
bjg

abgij) (2.5)

g = det gab, gab = ∂ax
µ∂bx

µ. (2.6)

where gab and KA
ij denote respectively metric and the extrinsic curvature of the center

vortex hyper-surface ∂Σ. The equation above can be related to the leading and sub-leading
Nambu-Goto action in D dimensions.

In further studies, a lattice version of (2.5) is analyzed for SU(2) [29, 30] and
SU(3) [27, 62], and D = 4, where vortices are 2-surfaces. In the latter case the center
consists of the set Z(3) = {1, e±i 2π

3 }, and the elementary variables to this discussion are
the plaquettes Uµν , but as far as the center projection procedure is concerned, these can
be completely determined by the triality kµν ∈ {0,±1}, so that Uµν = ei

2π
3 kµν . Hence

non-zero kµν means that the plaquette in question belongs to the the center vortex world
surface. Then,

S = ε
∑
x

∑
µ,ν
µ<ν

|kµν(x)|+ c
∑
x,µ

 ∑
ν<λ

ν 6=µ,λ6=µ

|kµν(x)kµλ(x)|+ |kµν(x)kµλ(x− λ̂)|

+|kµν(x− ν̂)kµλ(x)|+ |kµν(x− ν̂)kµλ(x− λ̂)|
)
.

(2.7)

One can see that a ε penalty arises whenever the non-zero kµν are located at a surface
area, and that a c penalty arises whenever plaquettes which share the same link, but are
in different planes have non-zero kµν .

Taking Wilson loop averages, which is defined by counting how many vortices
pierce its minimal area, one can perform a survey in the coupling constant space and find
that there is a confined (nonzero string tension) and a deconfined (zero string tension)
phase as seen in fig. 10.

They extracted the physical meaning from the coupling constants ε and c by
requiring that they reproduce the ratio Tc/

√
σ0 ≈ 0.63 , where Tc is the critical temperature

for the deconfinement transition and σ0 is the string tension at zero temperature 1. This
1 Zero temperature simulations are those in which all four euclidean coordinates have equal and big
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Figure 10 – (Left) Zero temperature string tension σ0a
2 dependence on the coupling

constants (ε, c). (Right) A density plot version of the σ0a
2 dependnce on the

coupling contants. The white line represents that points such that Tc/
√
σ0 ≈

0.63. Taken from ref. [27].

ratio was originally obtained in full SU(3) lattice simulations in ref. [12]. This property
was shown to be satisfied at a approximately constant physics line in the (ε, c) space that
is contained in the confining region.

Afterwards, choosing the point (ε, c) = (0, 0.21) in this line, thus fixing all physical
parameters, the string tension dependence on the temperature is predicted. It was found
that a spatial string tension persists even at temperatures above the deconfinement
transition, whereas the usual string tension, that has both time and spatial extension,
drops to zero. Furthermore, they found that the deconfining phase transition is weakly of
first order, that agrees with results found previously in ref. [3].

The authors also concluded that percolation and confinement properties are in-
timately related for both SU(2) and SU(3) cases. They first considered space slices of
the lattice, where one of the space coordinates is fixed. In these slices, the vortices forms
closed loops. Looking at histograms for the number of vortex clusters for the various
lengths as they changed the temperature of the system, they found that below Tc, most of
the vortices have the maximal lattice length, whereas above it, small, disconected ones
prevailed. The data can be seen in fig. 11. Considering time slices, however, the picture
changes. And in this case vortices percolate in both phases.

To gain intuition on percolation one can analyze a random vortex model [26,30]
(in SU(2), for the following). Postulating that vortices do not percolate implies that there
is a maximum characteristic length lv,max possible. Because vortices are closed, if one of

extensions, a lattice of 164 is an example. For finite temperatures, one of the extensions is different and
it is identified with the Euclidean time, and the bigger the time extension, the smaller the temperature,
a lattice of 163 × 2 is an example of high temperature simulation.
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Figure 11 – Vortex cluster extension histograms. The top line was obtained at couplings
(ε, c) = (0, 0.21). The bottom line shows histograms for coupling constants
slightly out of the physical line. Taken from ref. [27].

them pierces a surface at a given point, another piercing point will be found at most lv,max
away, if the Wilson loop is sufficiently large.

Distributing these pairs randomly, one can analyze Wilson loop averages in a lattice
with Euclidean time length (inverse temperature) Lt = L and one of the space extentions
being Lx = L, so that this loop is in xt plane. If the probability that the contribution
from one such pair to be -1 is pc, the probability that this contribution is actually realized
is (pc) · A/(L2) where A = Plv,max is the area of a ribbon centered on the Wilson loop
trajectory, L2 = LxLt is the total xt-plane area, and P is the perimeter of the Wilson loop.

Putting Np pairs in the xt-plane, the probability that Nc of them will contribute is

PNp(Nc) =
Np

Nc

(pcPlv,max
L2

)Nc (
1− pclv,max

L2

)Np−Nc
(2.8)

so that the expectation value of the Wilson loop is

〈W(C)〉 =
Np∑
Nc=1

(−1)NcPNp(Nc) =
Np∑
Nc=1

Np

Nc

(−pcPlv,max
L2

)Nc (
1− pcPlv,max

L2

)Np−Nc

=
(

1− 2plv,max
L2

)Np
(2.9)

If one takes the limit Np →∞ with the number piercings per unit of area points
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ρ = 2Np/(L2) being fixed, 〈W(C)〉 = e−pcPlv,maxρ. Thus this gives a perimeter law for that
quantity, which means deconfinement.

In the other hand, if vortices percolate, there is no such pair correlation and each
piercing point is distributed independently. Again, if there are Np points to be distributed
in the xt plane, the probability that Nc of them pierce the Wilson loop is

PNp(Nc) =
Np

Nc

( A
L2

)Nc (
1− A

L2

)Np−Nc
, (2.10)

where A is the minimal area of the Wilson loop. Thus expectation value of such quantity
is

〈W(C)〉 =
Np∑
Nc=1

(−1)NcPNp(Nc) =
Np∑
Nc=1

Np

Nc

(− A
L2

)Nc (
1− A

L2

)Np−Nc

=
(

1− 2A
L2

)Np
.

(2.11)

If the limit Np →∞ is taken with a density ρ = Np/L
2 fixed, 〈W(C)〉 = e−2Aρ, thus giving

an area law with σ = 2ρ, and hence implying confinement. The resulting intuition is that
percolation is a necessary condition for confinement, and a pictorial representation of the
behavior of center vortices in both phases are seen in fig. 12.

Figure 12 – (Left) Vortex worldline percolation in confined phase in YM theory. (Right)
Small and sparse vortices still remain in deconfined phase. Taken from ref. [26].

Finally, the persistance of a spatial string tension that was observed can be explained
in terms of percolation. First, it can be seen that a spatial Wilson loop can be inserted both
in time slices and spatial slices. In the former, however, percolation does not happen after
deconfinement transition, and vortices are of limited length. Vortex percolation persistance
in the latter picture can thus be seen as a result of vortices winding the periodic Euclidean
time, which at higher temperatures, has smaller lengths, hence enabling even limited
length vortices, that dominate the deconfined phase, to percolate.
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2.3 Interaction between Center Vortices
As usual with heuristic formulations, the ideal random vortex idea presented in

the last section is not quite correct when considering a more profound scrutiny. In ref. [48]
it is indeed shown, for SU(2), that ρ, the planar vortex density, is a physical quantity
because it shows the correct scaling towards continuum. However, the value of the string
tension σ = 2ρ obtained is 17 % off in comparison with the most accepted value of
σacc = (440 MeV)2 [55]. This is evidence that vortex correlation is indeed important.

In ref. [25] the authors analyze the normalized vortex correlation

cij = 〈sisj〉
〈si〉〈sj〉

(2.12)

where, si is a variable that returns 1 if the plaquette i belongs to a vortex and is 0 elsewhere.
It is important to stress that 〈si〉 = ρa2. Due to rotational invariance, cij = c(r) where r is
the distance between plaquettes. Then, the plaquettes under scrutiny are put in the same
plane, l lattice spacings from each other, so that r = la. This quantity is also shown to
have the correct renormalization group scaling, meaning that this is a physical quantity as
well. This can be interpreted as evidence that vortex interaction is a physical phenomenon.

What was observed is the decay of the correlation with a characteristic length
of rMch = 0.6 fm. This is defined as the region where the correlator is 1 within error
bars. Hence rMch can be thought of as a upper limit for vortex interaction. A lower bound
can be extracted from the data by fitting an exponential to it. The value thus found is
rmcm = 0.2 fm. It should nevertheless be noted that interaction is not the only aspect that
the correlation is sensitive to, it can also detect effects stemming from curvature of a single
vortex, for instance.
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2.4 Branching of Center Vortices
From the evidence available in ref. [27] one is reminded that center vortices have a

branching property. This stems from the fact that, for N ≥ 3, it is possible to have vortices
with different N-alities k appearing in QCD’s vacuum, and, one can have k = 2 vortices
that bifurcate in two k = 1 vortices as it can be seen in fig. 13.

Figure 13 – The branching of a k = 2 link into two k = 1 links in a D = 3 slice. Adapted
from ref. [27].

The physical effect associated with this property that motivates the analysis is the
change in the order of the deconfinement phase transition from second order in SU(2)
to weakly first order in SU(3). What the authors did to put branching under scrutiny
was to count the number of vortex surfaces meeting at each link, ν, at spacetime slices:
(i) ν = 0 indicates that the link does not belong to any vortex; (ii) ν = 1 is forbidden
because vortices are closed; (iii) ν = 2 denotes vortices that do not branch or self intersect
on the refered link; (iv) ν = 4, 6 mean self-intersections that are already accounted for in
the SU(2) case and (v) ν = 3, 5 represent the new effect brought by SU(3).

Then it follows an analysis for zero temperature and high temperature (i.e. confined
and deconfined phases) at the aforementioned physical point (ε, c) = (0, 0.21), whose
results show that:

• For zero temperature most of the vortices are in case (iii) above, hence non branching
vortices. Nevertheless cases (iv) and (v) occur significantly often, indicating vortices
form a quite fibrous structure;

• For the high temperature case, for time slices the qualitative feratures do not change,
even though the probability for the occurence of cases (iv) and (v) grows, this is in
consonance with the previous result that vortices percolate even at the deconfined
phase at time slices;

• For space slices, the picture changes drastically, cases (i) and (iii) are privileged
in detriment of cases (iv) and (v). The fibrous scenario in the confined phase is
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substituted by small, unbraching vortices that usually do not touch each other and
do not percolate;

• The number of links that belong to vortices drops from 85 % in the confined phase
to about 50 % in the deconfined one, thus evidencing that it is not the vortex density
that enables deconfinement transition, but percolation instead.
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3 The effective model of Center Vortices
and the three-dimensional frustrated XY
model

Considering some of the properties discussed during the preceding chapter, the
authors of ref. [58] developed a effective model that involves a ensemble of closed one-
dimensional objects in 2+1 Euclidean dimensions. Its purpose is to reproduce the main
features of a center projected Yang-Mills theory.

3.1 The Center Vortex effective model
The ensemble of these objects is distributed according to the action

Sn[xµ] = Sn0 + Snint (3.1)

Sn0 =
n∑
j=1

∫ Lj

0
dsj

[
µ+ 1

2κ
(
u̇(j)
µ

)2
]

Snint = 1
2ζ
∑
j,q

∫ Lj

0

∫ Lq

0
dsjdsq δ(x(j)(sj)− x(q)(sq)), (3.2)

where n is the vortex number. The first term in Sn0 accounts for the fact that there is
a cost µj = µ for the worldline length of the k-th vortex. If µ > 0, then it favors small
vortices, else, if it is negative, it favors percolating vortices; the second term stems from
the action cost 1/2κ due to vortex curvature, there u(j)

µ (s) = dx(j)
µ /ds. Finally, Snint takes

into account a contact interaction between the vortices.

Remembering that the contribution of Center Vortices to Wilson loop averages is a
phase that depends on the linking number between the vortex worldline, ` (the j index
will be dropped for the moment), and the Wilson loop itself, C, they rewrite the exponent
of eq. (6), specifically,

2π k
N
L(`, C) = k

2N

∮ ∮
εµνλ dyµ dxν

yλ(τ)− xλ(s)
|y(τ)− x(s)|3 . (3.3)

in which xµ(s) (yµ(τ)) parametrizes ` (C), in a way that s and τ is the worldline ` (the
loop Wilson loop C) arc length, thus implying that the tangent vector is always normalized,
uµ(s) ∈ S2. Using Stokes’ Theorem in the dyµ integral,

2π k
N
L(`, C) =

∮
C
dyµ A

`
µ(y) =

∫
S(W)

B`
µ(y) dSµ (3.4)

with

B`
µ(y) = εµνλ∂νA

`
λ(y) = k

2N

∮
`
ds uµ(s)δ(y − x(s)), (3.5)

dSµ = εµνλ
∂yν
∂σ1

∂yλ
∂σ2

dσ1dσ2. (3.6)
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and S(W) is a surface whose boundary is C. Then, switching the integral over S(W) in
(3.4) with the one over ` in (3.5) and defines

JCµ (x) = k

2N

∫
S(W)

dSµδ
(3)(y(σ1, σ2)− x), (3.7)

that is located in S(W), with y(σ1, σ2) being one of its parametrizations, thus

W(C) = ei2π
k
N
L(`,C) = ei

∮
`
dxµJCµ = ei

∮
C dxµJ

`
µ . (3.8)

where the last equality is valid due to the fact that the linking number does not change if
one permutes ` and C. (3.7) implements the idea that the linking number with a curve
can also be seen as the intersection number with a surface whose boundary is that curve.
Moreover from the last equality of (3.8), one is lead to the fact that A`µ and J `µ must be
equivalent. Then the Wilson loop average becomes

〈W(C)〉 = 1
Z[0]

∑
n

∫
[Dl]n ei

∑n

j=1

∮
`
dxµJCµ e−Sn[xµ] = Z[Jµ]

Z[0] . (3.9)

3.2 Obtaining the frustrated 3D XY model
After some highly non-trivial steps the authors of [58] obtain the following complex

field theory

Z[Jµ] ≈
∫

[DV ][DV̄ ] exp
[
−
∫
d3x

1
3κDµV DµV + µV̄ V + 1

2ζ (V̄ V )2
]
, (3.10)

with Dµ = ∂µ − iJµ. the V -field significance in terms of the original ensemble is that

〈ρ(x1)...ρ(xm)〉 = 〈V̄ V (x1)...V̄ V (xm)〉 (3.11)

〈Bµ(x1)...Bµ(xm)〉 = 〈Kµ(x1)...Kµ(xm)〉, with (3.12)

Kµ = π

3Nκ(V ∂µV̄ − V̄ ∂µV ) (3.13)

Thus correlation functions involving V̄ V are related to the vortex scalar density and Bµ

correlation functions are related to the conserved current of that model by the symmetry
V 7→ eiαV , V̄ 7→ e−iαV̄ .

Subsequently, one may analyze what happens to the center vortex picture when
the sign of µ varies. If µ > 0, the usual perturbative methods can be employed. On the
other hand, if µ < 0, the effective theory has a spontaneous U(1) symmetry breaking
and perturbative methods are no longer valid. In fact, the latter µ < 0 case is the correct
one because evidence seen in section 2.2 state that the vortex worldline percolates in the
Yang-Mills vacuum. For an alternative discussion, relative to ensemble of proliferating
objects, see ref. [38].
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So, to correctly consider quantum fluctuations over the V̄ V = −µζ ≡ v0 vacuum,
which according to (3.11), means a constant average scalar vortex density of 〈ρ(x)〉 = v0,
one ought to consider1 V = v0 e

iθ(x).

Afterwards the lattice formulation for the θ field is obtained with the prescription

(∂µ − iJµ)V (x) 7→ 1
a

(
eiθ(x+µ̂) − Uµ(x)eiθ(x)

)
(3.14)

Uµ(x) = e
i
∫
L(n;µ) J

C
µdsµ (3.15)

Where the lattice {x} has M sites and spacing a. Then using (3.7) one gets to

SXY [θ(x)] = β
∑
x,µ

cos(∆µθ(x)− αµ(x)) (3.16)

ZXY [α(x)] =
∫
Dθ e−SXY [θ(x)]. (3.17)

which is a frustrated XY model and β = 2a
3κµζ, ∆µθ(x) = θ(x + µ̂)− θ(x). The frustration

in question is localized in the surface whose boundary is the Wilson loop, now the minimal
surface Sm(C) is chosen such that,

αµ(x) =


2π
N
k If the line segment in lattice point x towards x + µ̂

pierces Sm(C)

0 otherwise

. (3.18)

In this context Wilson loop averages become

〈W(C)〉 = ZXY [αµ(x)]
ZXY [0] . (3.19)

where ZXY [αµ(x)] is the partition function obtained from the action (3.16). One can see a
pictorial representation of the frustration in fig. 14.

The unfrustrated XY model arises when one studies superfluid 4He [44] and
when one analyses magnetic systems with Hamiltonians that have planar interaction.
It is known that this model suffers a second order phase transition at critical coupling
βc ≈ 0.454 ≈ 1/2.203 and was extensively studied in ref. [34], where its critical exponents
are also obtained.

Another feature that characterizes this phase transition is the fact that the corre-
lation length diverges at the critical point [34]. Thus, any other physical scale becomes
negligible and hence the continuum properties of the model are recovered. A more com-
plete argument to this will be given in the next section. As the frustration appears only
near the minimal Wilson surface, it is expected that this does not change the critical
1 They ignore density fluctuations around v0 because vortex interactions are considered to be sufficiently

weak hence these fluctuations are strongly limited by the potential, nonetheless the Goldstein θ
oscilations are not at all.
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Figure 14 – (Left) A frustrated XY model configuration with 1/β = T = 2.5, the red
square represents the Wilson loop. (Right) Zoom in close to the loop, in green
those links which are frustrated.

behavior drastically. So, the 〈W(C)〉 averages are to be taken near the critical point of the
unfrustrated XY -model.

Before going any further, it is relevant to integrate over the θ’s in (3.17). To this
end one refers first to the Fourier decomposition

eβ cos θ =
∑
f∈Z

If (β)eifθ, (3.20)

where If(β) is the modified Bessel function of the first kind. This transform is to be
performed to each θ of the action, thus leading to

ZXY [αµ(x)] = I0(β)3M ∑
{fµ(x)}

∏
x,µ

Ifµ(x)(β)
I0(β) e−ifµ(x)αµ(x), (3.21)

which introduces the constraint

∆(−µ)fµ(x) = 0, (3.22)

known as the non-backtracking condition, or the lattice equivalent of a divergenceless
vector field. Interpreting fµ as currents, the fµ(x− µ) being currents that enter point x,
whereas fµ(x) leave the same point, the above equation states that all lattice sites have
no liquid incoming or outgoing currents. Thus characteristic configurations of fµ are those
that either are closed or percolating [44]. This is then how the effective XY -model encodes
one of the basic original ensemble properties.
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3.3 The Continuum Limit and the Critical Coupling

It was claimed in the previous section that continuum properties arise if averages
of the lattice model are taken near the critical coupling of the lattice action. This is a
very subtle claim, and it stems from the spontaneous breaking of the continuous U(1)
symmetry in the lagrangian in (3.10), that engenders huge quantum fluctuations that
prohibit a perturbative analysis and a simple continuum limit.

To shed some light onto the subject, one may and consider some general arguments
[64]. One may extract the spectrum of a field theory by analyzing the large Euclidean time
behavior of correlation functions of the suitable operators, as discussed in the end of section
A.2. The low-lying states of this spectrum are associated with the biggest correlation
lengths of this theory.

If these states, say e.g., a mass gap m, are to be physical, then the lattice-unit
measure of this quantity, m̂ = ma, where a is the lattice spacing, must go to zero when
the continuum limit is taken. Therefore, the associated correlation function in lattice units
must diverge. This implies then that the continuum limit of the quantum field theory is
accomplished when the coupling of the lattice action (3.16) is critical. In the case of the
XY model, the behavior of the correlation length is ξ(β) ∼ |βc − β|−ν as one approaches
βc from values that are smaller than it, β → β−c , ν is about 0.67 [22,34]. That then is how
the criticality should be approached.

3.4 Obtaining the Wilson loop behavior from the Effective XY -
model

As discussed in the introduction, depending on the phase of the gauge theory,
averages of Wilson loops must give an area or a perimeter law. A question that remains
then is: how this property arises from the effective model obtained in section ?

The way chosen in ref. [58] to answer this is to first take an approximation whose
validity comes from the fact that, near the critical point, models within the same universality
class have practically the same behavior. Using the fact that the Villain model is within
the same universality class of the unfrustrated XY -model, and that its frustrated version
is to have the same critical behavior, one might take the Villain prescription 2 [44] to the

2 This prescription implements the approximation of the exponential of the cosine by infinite gaussian
functions centered in its maxima which is valid for sufficiently big β, and this is the case for the critical
temperature of the XY model.
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frustrated case,

eβ cosα 7→ RV (β)
∑
n∈Z

e−
βV

2 (α−2πn)2 where (3.23)

RV (β) =
√

2πβV I0(β), and βV satisfies (3.24)

− 1
2βV (β) = ln

(
I1(β)
I0(β)

)
, so that (3.25)

ZXY [αµ] ≈ ZV [αµ] = (RV (β))3M∏
x

∫ 2π

0

dθ(x)
2π

∑
{nµ(x)}

e−
βV

2 (∆µθ(x)−αµ(x)−2πnµ(x))2
. (3.26)

They then used a auxiliary field fµ to linearize the Gaussian term in (3.26) and
after it the Poisson summation formula,

∑
n∈Z

e2πinf =
∑
n∈Z

δ(f − n), (3.27)

so that the f ’s become restricted to integer values, thus if one further performs a lattice
integration by parts 3, and integrating in the θ’s and using both (3.24) and (3.25),

ZV = I0(β)3M ∑
{fµ(x)}

∏
x,µ

(
I1(β)
I0(β)

)f2
µ(x)

e−i
∑

x fµαµ(x), (3.28)

where the constraint ∆(−µ)fµ = 0 arises again. By comparing (3.21) and the equation
above, that the Villain approximation in this case can also amount to the prescription

Ifµ(x)(β)
I0(β) 7→

(
I1(β)
I0(β)

)f2
µ(x)

, (3.29)

that will be relevant in the next lines to motivate a approximation later.

3 ∑
x,µ fµ(x)∆µθ(x) = −

∑
x,µ θ(x)∆(−µ)fµ(x)
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3.4.1 Perimeter Law

Later, they define that the minimal surface is perpendicular to the 1̂ axis, so that
Sm(C) is placed between the links z and z + 1̂. A perimeter law can be obtained by
considering β to be small. In this regime, surprisingly the XY and the Villain model
still have a similar behavior [44], in such a way that the first contribution in this high
temperature expansion come from loops of length 4 in both cases.

Now, those plaquette loops that are not linked with the minimal surface are already
excluded and plaquettes that link with it twice have ∑{z} fµ = 0, where {z} denotes the
links that pierce Sm(C). From that, one deduces that the only plaquettes that contribute
are those that go through links on both sides of the surface, one piercing it and the other
not, thus implying that they are located only along the perimeter of C. If there are MP

links piercing Sm(C) near the perimeter,

ZV [αµ(x)] ≈ I0(β)3M
(
I1(β)
I0(β)

)4

[(6M − 2MP ) + 2MP cos 2π
N

] (3.30)

Where (6M−2MP ) is the number of links that do not pierce the surface near the perimeter.
This leads to

〈W(C)〉 ≈ 1− 2MP

3M sin2
(2π
N

)
, (3.31)

so that in the large N limit,

〈W(C)〉 ≈ e−κP , so that (3.32)

κ = 2
3a

1
M

sin2
(2π
N

)
(3.33)

where P = MPa is the perimeter of C.

3.4.2 Area Law

In the next steps, {0} denotes configurations where all fµ = 0 and {F0} any other
nontrivial configurations, thus {fµ(x)} = {0}⋃{F0}. Then, the authors defined

G{A}(αµ) =
∑
{A}

∏
x,µ

(
I1(β)
I0(β)

)f2
µ(x)

e−i
∑

x fµαµ(x), (3.34)

for any set {A} ⊆ {F0}. Thus from (3.19) and (3.28),

〈W(C)〉 ≈ 1 +G{F0}(αµ)
1 +G{0}(0) . (3.35)

Now, writting {F0} = {A0}
⋃{F1}

⋃{R0}, where the three sets on the right-hand side
denote respectively: the set of fµ’s such that none of the loops pierce Sm(C); the set where
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the Sm(C) is pierced once; and the remaining configurations, where there might be both
types of loops of the other two types, hence

G{F0} = G{A0} +G{F1} +G{R0}. (3.36)

One fact to be stressed now is that it is known from superfluid studies [44] that, near
the critical point, small loops with big fluxes fµ are almost irrelevant in comparison with
big loops with unitary flux. In other words, configurations {F0}′ such that fµ = ±1 or 0.
For these small fluxes the map (3.29) is exact.

Afterwards, the authors perform the following stream of steps:

• they argue that loops that meet at a single loop give an irrelevant contribution, each
term on eq. (3.36) is substituted by their primed counterparts;

• f 2
µ(x) 7→ |fµ(x)| for fµ = ±1 or 0;

• the main contribution to configurations in {R0}′ is argued to come from {A0}′×{F1}′,
so that G{R0}′ ≈ G{A0}′G{B1}′ and 1 +G{F0} ≈ (1 +G{A0}′)(1 +G{F1}′);

• Then {F1} is partitioned as {F1} = {A1}′
⋃{F2}′

⋃{R1}′ where the latter sets
represent respectively the set of loops that pierce Sm(C) once; the set where individual
loops intersect Sm(C) at least twice; and the set formed by combinations with single
occupation;

• After that they write {A1}′ = {z1}×{z2}× ...×{zA/a2}. Each factor in this equation
represents a set of vortices that intersect Sm(C) at site zi and then

1 +G{A1}′(αµ) ≈
∏
{y}

(1 +G{z}′(αµ)) (3.37)

Remembering that for every vortex loop with one orientation there is another with an
opposite one, they are able to deduce that

G{y}′ = γ{z}′ cos
(2π
N
k
)

(3.38)

γ{z}′ =
∑
{z}′

e
− 1

2βV

∑
x,µ |fµ(x)|

. (3.39)

ignoring the contribution from G{F2}′ , they finally arrive at an area law,

〈W(C)〉 ≈ e−σA (3.40)

σ = −4ξ
β2
c

ln
1 + γ cos

(
2π
N
k
)

1 + γ

 = −4ξ
β2
c

ln
(

1− 2γ
1 + γ

sin2
(
kπ

N

))
(3.41)

where A = MAa
2, MA being the number of links that pierce Sm(C), and ξ = (µζ/3κ)2.
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One thing to be noted is that (3.40) can be cast into a form which amounts to the
random vortex model [37]. So,

〈W(C)〉 ≈
∏
{z}

(
1 + γ{z} cos 2π

N

1 + γ{z}

)
=
∏
{z}

(1− 2p{z} + p{z}e
i 2π
N + p{z}e

−i 2π
N ) (3.42)

where it is identified that
p{z} = 1

2
γ{z}

1 + γ{z}
(3.43)

which reduces to (2.11) for N = 2 if it is identified that p{z} ↔ 1
2A/L

2.

The result in eqs. (3.40) and (3.41) however, can not be the final word for N > 2,
because then effects like branching, which will be discussed in another section, will have a
significant contribution. One evidence to this statement is the fact that in the large N
limit the string tension ratios for N-ality k is predicted to be

σk
σ1
≈

sin2 kπ
N

sin2 π
N

(3.44)

which is not what is expected for Yang Mills, as it is not a Casimir nor a Sine-Law.

3.5 The Solid Angle Picture
Another way to notice that the main features of the partition function (3.17) can

be captured without having necessarily the frustration described by (3.18), is to take again
the high temperature expansion of the Boltzmann weight with a general αµ(x),

Z[αµ(x)] =
∫
Dθ exp

[
β
∑
x,µ

cos(∆µθ(x)− αµ(x))
]

(3.45)

=
∫
Dθ

∑
n

βn

n!

(∑
x,µ

cos(∆µθ(x)− αµ(x))
)n

. (3.46)

if one is to perform further θ integrals above the following identities are important∫ 2π

0
dθi cos(θi − θj) = 0 (3.47)∫ 2π

0
dθi cos(θi − θj) cos(θj − θk) = π cos(θi − θk) (3.48)∫ 2π

0
dθidθj

∫ 2π

0
cos(θi − θj) cos(θi − θj) = 2π2. (3.49)

The first of these implies that if a cosine of one the θ’s is left ‘alone’ in the integrals the
whole term where it appears does not contribute. Combining this with (3.48) one may see
that the there are terms that contribute to the partition function whose θi’s are associated
with closed curves, with higher order β (lower temperature) terms implying in bigger loops.
This gives us a way to interpret center vortices in the effective XY model level.
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The terms where eq. (3.49) is required are associated with loops with higher fluxes,
but it was argued previously that they should not give a significant contribution to the
partition function. Hence, (3.17) can be written as

Z[αµ] ≈
∑
n?
πn

? βn
?

n?! cos
(∑
�

αµ(x)
)
. (3.50)

Where n? are the values of n for which is possible to have closed loops and � implements
that fact that the sum must be so that x, µ form closed loops.

Hence, the only information to which the partition function is sensitive is the
circulation of the frustration, which gives us the option to ‘dilute’ the frustration, i.e.
instead of having a frustration localized in those links that pierce Sm(C) we could put a
frustration that has smaller local frustrations, but with the same sum as a result.

Thus all that is needed is a frustration function αµ(x) such that

∑
�

αµ(x) = 2π
N
kw (3.51)

When the loop � winds around the Wilson loop w times, which is the result when the
frustration (3.18) is considered. With this picture in mind, we can formulate a Solid Angle
Picture for the frustrated 3D-XY effective model. It is called this way because of the
observation that ∮

`
dxµ ∂µχC = 4πw (3.52)

where χC is solid angle subtended by the Wilson loop C when one is at a point of the curve
`. This last curve is such that it winds around C w times.

This result reflects the ‘multi-valuedness’ of the solid angle when one travels through
a closed path ` that links C. To make sense out of this, it is worth looking at how χ

behaves as one travels through `. To this end take fig. 15. There one sees a the loop from
a plane perpendicular to it. ` is taken to be parallel to this observation plane.

As one travels from point (a) towards point (b), the solid angle varies continuously
from χ ∼ 0, because (a) is near the plane that contains C, to a value χ ≤ 2π, the equality
being valid if (b)∈ Sm(C) ∩ `. Going from (b) to (c), the solid angle grows above 2π. And
then as one gets closer (d), that is also near the plane that contains C, but under it,
χ . 4π.
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C

`

(b)

(c)

(a)

(d)

Figure 15 – Pictorial representation of the multivaluedness of the solid angle when one
winds around the Wilson loop.

Then, following eq. (3.52), one is able to substitute Jµ in eq. (3.15) by

JCµ (x) = k

2N ∂µχ, (3.53)

one is lead to the lattice frustration

αµ(x) =
∫
L(x;µ)

JCν dxν = k

2N [χ(x + µ)− χ(x)] = k

2N∆µχ(x). (3.54)

The main advantage of this picture is that one does not put a drastical area-related
information in the model, so an Wilson loop area law arising in this context has a much
more powerful significance. The ‘dilution’ implied in this picture is also advantageous in
a numerical sense, because the method used to obtain Wilson loop averages gives more
precise results if the two systems are not very different from each other (cf. section 4.4).
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4 Monte Carlo methods

Given the theoretical motivation of this work, it is now time to develop the
numerical methods used in the simulations to confirm them or not. It is standard to use
Monte Carlo methods because they are the most suitable tool when one wants to perform
multidimensional integrals, as in the evaluation of a partition function, for instance. This
is because the parameter space (in the present case, [0, 2π]L3 , where L3 is the number of
lattice sites) is better explored by random sampling than with a regular lattice, as the
latter breaks the rotational symmetry of that space, so that some directions contain many
points and others do not, whereas the former looks almost the same [45].

4.1 Importance Sampling and Metropolis Algorithm

Let C be a configuration of a system such as the unfrustrated XY -model, where
C = {θ(x),∀x ∈ Lattice}, and Q a quantity that one wants to take equilibrium thermal
averages 1 of,

〈Q〉 =
∫
DθQ[C]e−S[C]∫
Dθe−S[C] . (4.1)

What the present method proposes to do is to reinterpret (4.1) as simple average,

〈Q〉 ≈ 1
N

N∑
k=1
Q[Ck], (4.2)

over configurations Ck chosen according to the equilibrium distribution

peq[C] = e−S[C]∫
Dθe−S[C] . (4.3)

in such a way that a computer can perform the task.

To such end, one starts with a arbitrary configuration, and from it build a stochastic
process that takes the system to the equilibrium distribution (4.3). This process is built
so that any new configuration Cj+1 depends on its previous one, Cj, characterizing then a
so-called Markov chain.

To compute the averages (4.1) one then exploits a fundamental aspect of equilibrium
configurations which is the fact that the probability of going from one configuration Ceq1 to
another configuration Ceq2 , when taking Ceq1 7→ C

eq
2 must be equal to the probability of the

1 As in the present case the Euclidean action plays the role of the energy, the concepts of quantum and
thermal fluctuations are almost the same. This enables one to call S[C] interchangeably an action or
an energy.
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inverse process to happen, namely Ceq2 7→ C
eq
1 . This condition can be met if the so-called

detailed balance is satisfied [11], thus

peq(Ceq1 )T (Ceq1 |C
eq
2 ) = peq(Ceq2 )T (Ceq2 |C

eq
1 ) (4.4)

where T (Ceq1 |C
eq
2 ) is the transition probability from configuration Ceq1 to Ceq2 . A explicit

form to build a process that leads the system to (4.4) consists in a convenient choice of
T (Ck|Ck+1) to be applied in the k-th step in the Markov chain. A choice was proposed
in the seminal paper ref. [54]: the famous Metropolis algorithm. The procedure is the
following: let T (Ck|Ck+1) be decomposed as

T (Ck|Ck+1) = g(Ck|Ck+1)A(Ck|Ck+1) , (4.5)

where g(X|Y) is the probability of proposing configuration Y given that the system was
in X previously and A(X|Y) is the probability of accepting Y given that the system was
in X . Then one proceeds with the following:

(i) Consider a trial configuration, Ctry, chosen randomly according to the above men-
tioned distribution, g(Ck|Ctry). In the present context of an XY -model, this is
equivalent to change a bit the configuration of the θ angles. In general one changes
a single θ at a time.

(ii) If the configuration Ctry has action (energy) S[Ctry] smaller than that of Ck, then Ctry
is immediately accepted as a new configuration of the system, thus Ck+1 ← Ctry and
one returns to item (i);

(iii) Else, if the configuration has an value of action (energy) bigger than Ck, then the
trial configuration Ctry is accepted with a probability

q(Ctry, Ck) = g(Ck|Ctry)
g(Ctry|Ck)

p(Ctry)
p(Ck)

. (4.6)

In general one chooses g(Ctry|Ck) = g(Ck|Ctry), thus q(Ctry, Ck) = e−∆S, ∆S =
S[Ctry]− S[Ck]. Then one goes back to item (i). This process is repeated a suitably
number of times so that condition (4.4) is satisfactorily met.

In this fashion, the steps above imply that

T (Ck|Ck+1) ∝ A(Ck|Ck+1) = min{1, q(Ck+1, Ck)} , (4.7)

thus suppose that one performs Nm “measuments” of Q and discards the first Nd states
that are out of equilibrium (this will be more precisely defined latter), and using the
following Neq = Nm −Nd states, we might have an estimate of the equilibrium average
(4.1),

〈Q〉 ≈ 1
Neq

Neq∑
j=1
Q(CNd+j) . (4.8)
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In practice, to better results it is convenient to take multiple updates between each term
in the sum (4.8) instead of only one. In fig. 16 the Metropolis algorithm is summarized
pictorially.

Random perturbation in Ck

Compute change
∆S = S[Ctry]− S[Ck]

Transition probability q = e−∆S

q ≥ Rand ∈ [0, 1]

ACCEPT CHANGE
Ck+1 ← C

∆S ≤ 0

∆ > 0

Yes No

Figure 16 – Metropolis Algorithm’s Pictorial Summary. Adapted from ref. [40].
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4.2 The Equilibrium
Once the update algorithm is set, two questions of utmost importance remain: what

states are to be considered in the averages (4.8)? How many updates one may perform
between two ‘measurements’? Giving cautious answers to these questions is essential to
obtain good results.

In this fashion, suppose one has made Nm Monte Carlo-like observations of a
quantity Q, thus obtaining the time series {q1, q2, ..., qNm}. It is possible to consider that
each of these observations is associated with a random variable Qk, with the restriction
that each of these variables are obtained from distributions (that can be the equilibrium
one) which have the same average and the same dispersion, so that

〈Qk〉 = 〈Q〉 e σ2
Qk

= 〈(Qk − 〈Qk〉)2〉 = σ2
Q k = 1, ..., Nm. (4.9)

One then is interested in estimating 〈Q〉. A way to do this is to take

Q̄ = 1
Nm

Nm∑
k=1

Qk. (4.10)

Hence
σ̄2 = 1

N − 1

Nm∑
k=1

(Qk − Q̄)2 (4.11)

is an estimator of the error of Q̄, once the latter is itself a random variable, as this changes
if one reruns the algorithm with different random numbers. Then, variance of Q̄ is

σ2
Q̄ = 〈(Q̄− 〈Q̄〉)2〉 =

〈(
1
Nm

Nm∑
k=1

(Qk − 〈Q̄〉)
)2〉

= 1
Nm

(〈Q2〉 − 〈Q〉2) + 2
N2
m

∑
n>k

(〈QkQn〉 − 〈Q〉2).
(4.12)

For uncorrelated random variables, one has 〈QkQn〉 = 〈Qk〉〈Qn〉 = 〈Q〉2. Along these lines,

σQ̄ = σQ√
Nm

(4.13)

As follows, the error on the average (4.10) diminishes with the data number, which
is a well-known result. Notwithstanding, in a simulation based on a Markov Chain, where
each configuration depends on the anterior, there is a chance that there is correlation in
the random variables {Q1, Q2, ..., QNm}. This fact makes the auto-correlation function

φ(Qk, Qk+t) = 〈QkQk+t〉 − 〈Qk〉〈Qk+t〉 (4.14)

to be nonzero. If t = 0 (4.14) reduces to σ2
Qk

. So, to a separation t long enough, one expects
that φ vanishes. Hence one defines the relaxation function

ΦQ(t) = φ(Qk, Qk+t)
φ(Qk, Qk)

. (4.15)
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For a Markov chain in equilibrium, this function should only depend on the
separation t. Assuming that the evanescence of Φ occurs in timescale τQ much smaller
than the total observation time, it is possible to estimate it through 2

τQ = δt
∞∑
t=1
|ΦQ(t)| (4.16)

Where δt is the ‘time’ between two successive measurements. Then the dispersion (4.12)
becomes,

σ2
Q̄ = 1

Nm

(〈Q2〉 − 〈Q〉2) + 2
N2
m

Nm∑
k=1

Nm−t∑
t=1

(〈QkQk+t〉 − 〈Q〉2)

= 1
Nm

(〈Q2〉 − 〈Q〉2)
(

1 + 2
Nm∑
t=1

(
1− t

Nm

)
ΦQ(t)

)
.

(4.17)

As ΦQ(t) is only nonzero during a time τQ << Nm and Nm is a big number3,

σ2
Q̄ ≈

1
Nm

(〈Q2〉 − 〈Q〉2)
(

1 +
2τQ̄
δt

)
. (4.18)

In a broad sense, τQ̄ is significantly bigger than δt, if one further identifies that
τobs = Nmδt is the total observation ‘time’ of the quantity Q

σQ̄ ≈
√

2τQ̄
τobs

σQ. (4.19)

that is independent of δt, due to fact that if one redefines δt to increase the number of
measurements, the relaxation time will grow by the same proportion so that the estimate
is unaltered. Another thing to notice is that the ratio between σQ̄ in eq. (4.19) and the
one in (4.13) is

√
2τQ̄/δt, so that estimates of the error can be greatly enhanced as the

relaxation time increases if these transient states are considered.

Along these lines, a notion of equilibrium is to take reasonably big multiple of τ as
a interval to perform the averages, according to the precision needed and the resources
available. This may be 5τ , 10τ or even 104τ [32]. For those simulations onto which one
takes averages of many quantities {Qk}, one acknowledges the highest of correlation time
as being the one to define equilibrium. In general, to systems that suffer from second
order phase transitions, as the XY -model does [34], the quantity to be chosen is the order
parameter itself [11].

One issue with the present idea of equilibrium in terms of a relaxation time occurs
near phase transitions, where the so-called critical slowing down takes place. This consists
in the fact that time actually diverges in the thermodynamical limit. It occurs due to fact
that τ apart from depending on the update algorithm, it also depends on the parameters
of the system considered.
2 It is sometimes better to perform a fit to the autocorrelation as a function of Monte Carlo time, as the

equation below yields unrealsitic results.
3 In this work, one uses Nm ∼ 105
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It commonly happens that τ ∝ ξz [11], where z depends on the update scheme and
ξ is the correlation length of the system, and this quantity is known to have a singular
behavior near the critical temperature ξ ∝ |1− T/Tc|−ν . Taking finite lattice effects into
account, the singularity is smoothed out and τ ∝ Lz, with L being the cubic lattice length.
Thus the associated errors scale as σ ∝ Lη/τobs.

In case one wants to significantly increase the lattice size, one should also be aware
that it will be necessary to increase the observation time so that the errors do not increase
prohibitively. This problem is also seen in Lattice QCD simulations. Another procedure to
avoid the error enhancing seen in eq. (4.19) is to simply ignore the transient states and
only take averages at Monte Carlo times that are much bigger than the relaxation time of
the order parameter. In this case, the traditional average root mean square (4.13) is still a
good error estimator.

A possible solution to the problem of critical slowing down, for spin systems, just
like the XY -model, is to use the so-called cluster or Wolff algorithm [66,71,72]. In short, in
this procedure the Monte Carlo updates change chunks of the system under consideration
(the clusters) all at once. For instance, in the Ising model one starts with a random point
in space, which is the seed for the cluster, and then one searches in its first neighbours
sites with the same sign. Those that pass the test are included in the cluster and then
their first neighbours are analyzed. The procedure continues until no new points are added.
Then, all sites in the cluster are updated.

4.3 Binder fourth-order Cumulant Method
As it was already cited in section 4.2, the three dimensional XY model suffers

a second order phase transition at a certain critical coupling βc or temperature 1/βc. A
possible way to calculate this quantity is to perform what is called a finite scaling analysis
of certain quantities. One of such quantities is the so-called fourth-order cumulant

UL = 1− 1
3
〈s4〉L
〈s2〉2L

(4.20)

where 〈sn〉L is the average of the n-th power of the order parameter, in our case, the
magnetization

s = |M|, where (4.21)

M = 1
L3

∑
x

m(x) = 1
L3

∑
x

(cos θ(x), sin θ(x)) (4.22)

taken on a finite size cubic lattice of side L. This quantity has a peculiar behavior with
respect to temperature T and correlation length ξ [10, 11]:

(i) For T > TC and L >> ξ: UL → 0; UL ∝ L−d
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(ii) For T < TC and L >> ξ: UL = 2/3 (Ising)

(iii) L << ξ : UL barely varies with T and L; and it remains close to a universal value
U∗

The method consists of plotting UL as a function of temperature for many values
of L and then finding the common intersection point between these curves, the T-axis
value corresponding to the intersection is the critical temperature. This connects to item
(iii) above, because it is expected that ξ diverges at the critical point. Below, a result
obtained for the 3D-XY model without frustration

Figure 17 – Finite size scaling analysis for UL with L = 10 and L = 15.

The intersection to be considered is the rightmost one at T ≈ 2.13± 0.86, because
the other intersection does not represent a change on which function is bigger, and UL=10

(blue curve) is bigger than UL=15 (yellow curve) only in the neighborhood of such a point.
Thus this pseudo-intersection could be accounted for when one considers the error bars as
below.

The huge error bars can be explained if one analyzes the formula for UL: it depends
on the inverse of 〈s2〉2 which is very small at high temperatures. Thus the obtained critical
temperature is different from the most accepted value Tc ≈ 1/0.454 ≈ 2.203 by 3%.
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Figure 18 – Finite size scaling analysis for UL with L = 10 and L = 15 with error bars and
a bigger range of temperatures. The continuous line is the value 2/3 which is
expected for UL at temperatures below the critical one.

4.4 The Partition Function ratio Method
From the end of section 3.2 the average of a Wilson loop 〈W(C)〉, in the context of

the effective XY -model, becomes

〈W(C)〉 ≈ ZXY [αµ(x)]
ZXY [0] (4.23)

where ZXY [αµ(x)] (ZXY [0]) is the partition function for the (un)frustrated 3D XY -Model.

One aspect of Monte-Carlo Metropolis-based simulations that becomes relevant
now is that information about the exact value of the partition functions is lost, because
the transition probabilities involved depend only on the ratio of ensemble probabilities,
as one can see from (4.6), and, in general, it is difficult to obtain Z as its computations
involve a wide range of numerical scales. The simplest things one can do is to calculate
thermodynamical averages in equilibrium or to study the path towards equilibrium.

From thermodynamics, however, one knows the connection between the partition
function and an extensive thermodynamical quantity known as Helmholtz free energy [65],
the latter being proportional to the logaritmic measure of the former, thus

F = −kBT lnZ (4.24)

F = E − TS (4.25)

so, (4.23) reduces to
〈W(C)〉 ≈ e−β(FXY [αµ(x)]−FXY [0]) (4.26)

Nevertheless, there is still a conundrum to be solved, because, as defined in (4.25) Helmholtz
free energy depends on the energy, which can be rather easily measured on Monte Carlo
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simulations, but it also depends on the entropy, which is not. There is a relation between
energy and Helmholtz free energy, namely

E = −
(
∂F

∂β

)
�,�

(4.27)

then
ln〈W(C)〉 ≈

∫ β

0
dβ′(EXY [αµ(x)]− EXY [0]). (4.28)

but, as ref. [11] puts it, this is “a poor man’s method” numerically, because it adds an extra
difficulty: one must take an integral, which numerically means to sum over the integrand
on very close points on the U vs β plan. Thus, one needs a reference temperature, β → 0
is the most straightforward one as one expects that ZXY,f/ZXY,0 = 1 ⇒ ln〈W(C)〉 = 0.
But one might need to investigate temperatures up to T = 2.203 ⇒ β = 0.454 to see
the behavior near the critical point which raises both the computational cost to evaluate
〈W(C)〉 as well as systematic errors at high temperatures.

However, also in ref. [11] one finds that differences between Helmholtz free energies
in two different systems with the same degrees of freedom can be calculated taking averages
in only one of such systems, namely,

〈W(C)〉 ≈ e−β(FXY [αµ(x)]−FXY [0]) = 〈e−β(EXY [αµ(x)]−EXY [0])〉XY,0 = 〈e−(SXY [αµ(x)]−SXY [0])〉XY,0,
(4.29)

which is way simpler than performing integrals. In the last step, one reminded that the
action plays the role of β times energy in the present context, and, from this section on,
the discussions will follow the energy language.

An advantage of such method is that one can take averages on the simpler (un-
frustrated) model (as denoted in the following by the XY, 0 subscript) and still grasp
information about the more complicated (frustrated, denoted by XY, f) one. A demon-
stration to (4.29) is simple and it is as follows,

ZXY,f
ZXY,0

=
∫
Dθ(x) e−EXY,f [θ](1)∫
Dθ(x)e−EXY,0[θ] =

∫
Dθ(x) e−EXY,f [θ](eEXY,0[θ].e−EXY,0[θ])∫

Dθ(x)e−EXY,0[θ] (4.30)

=
∫
Dθ(x) e−(EXY,f [θ]−EXY,0[θ])e−EXY,0[θ]∫

Dθ(x)e−EXY,0[θ] = 〈e−β(EXY,f−EXY,0)〉XY,0. (4.31)

However, if the two systems under consideration have energies too different from one
another, the average (4.29) is prohibitively small, so this method can also impractical,
because it is exponentially supressed, this is called the overlap problem. This is not expected
to happen between the XY -model and its minimal surface frustrated version, near the
transition, as it is argued in ref. [58]. This might even be a problem, because in the high
temperature regime, both systems have almost equal energies, so that the signal-to-noise
ratio is very small.
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Another perspective to the overlap problem stems from an alternative demonstration
to (4.29). Namely, let A and B be two systems with two different Hamiltonians, HA and
HB, but with the same degrees of freedom; and pA(∆E) the probability that system A

has a energy difference of ∆E = HB −HA with respect to system B, then

pA(∆E) = 1
ZA

∫
Ω
dx e−βHA(x) δ(HB(x)−HA(x)−∆E). (4.32)

Analogously,

pB(∆E) = 1
ZB

∫
Ω
dx e−βHB(x) δ(HB(x)−HA(x)−∆E) (4.33)

Using the Dirac delta in (4.33) (HB = HA + ∆E)

pB(∆E) = 1
ZB

e−β∆E
∫

Ω
dx e−βHA(x) δ(HB(x)−HA(x)−∆E)

= ZA
ZB

pA(∆E)e−β∆E

= eβ(∆F−∆E)pA(∆E)

(4.34)

Integrating in ∆E ∈ R∫
R
pB(∆E) d∆E = 1 = eβ∆F

∫
R
e−β∆EpA(∆E) d∆E = eβ∆F 〈e−β∆E〉A (4.35)

ZB
ZA

= e−β∆F = 〈e−β∆E〉A Q.E.D. (4.36)

Substituting A by XY, 0 and B by XY, f one has (4.29). Hence, the overlap problem arises
when the probability distributions pA(∆E) and pB(∆E) do not overlap enough [11], in
this case, the method is not very useful.

If however two systems A,B under consideration are very different from each other,
one method proposed in ref. [18] can work. It simply consists to take the ratio of partition
functions and do a multiply-by-one trick, so that,

ZB
ZA

= Z1

ZA

Z2

Z1
. . .

ZB
ZNp

= 〈e−β(E1−EA)〉A〈e−β(E2−E1)〉1 . . . 〈e−β(EB−ENp )〉Np (4.37)

where, Z1 . . . ZNp , are partition functions of Np systems that are intermediate between
system A and B. For example, if A and B are spin models exposed to very different
values of magnetic field, these intermediate systems can be those which have intermediate
values of magnetic field. This method is also used in ref. [62], in the context of section
2.2. Another possible solution to the overlap problem is to take umbrella sampling, this
consists of a biased sampling that enhances the overlap between the above-cited probability
distributions pA(∆E) and pB(∆E) [11].
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5 Numerical Results

5.1 Remarks about the simulations
Before start showing the results some specific aspects of the present simulations

must be said. Firstly, some of the preliminary (sec. 5.2) and the broad temperature Wilson
loop simulations were made in Wofram’s Mathematica Software. All of the other ones were
made using the C language (gcc compiler), using gnuplot software to produce the fits to
the functions needed 1.

Regarding the Monte Carlo updates, they were made by choosing one point in the
lattice at random and then making θ 7→ θ + ε Rand, where Rand ∈ (−1, 1) is a random
number 2, and ε was found by trial and error to be ε = 0.15. As for the random number
generator, in the simulations performed on Wolfram’s Mathematica its native generator
was used. In C, both the Linear Congruential Method and the Mersenne Twister were
implemented. More details about these generators can be found in Appendix B. For almost
all the results in this work, the latter generator was used.

For the quantities of interest, each “measure” is performed at every LD updates, L
being the lattice site, D is the number of dimensions of the lattice, D = 3 for this work. In
other words, one Monte Carlo time is defined as the time needed to perform one update
per lattice site. The lattice has periodic boundary conditions in all directions.

As the interest in this work is to take averages near the criticality, the initial
configuration chosen is the one where each site has a random angle θ. This configuration
is sometimes called “hot start” because in a sense this randomness is expected in the high
temperature regime. A last remark to be made is that wherever the critical temperature is
mentioned, the most accepted value of Tc ≈ 2.203 should be understood.

1 According to the documentation (available in http://gnuplot.sourceforge.net/docs_4.2/node82.
html) it uses the Levenberg–Marquardt algorithm to solve the (non-)linear least square problem.

2 Sometimes Rand ∈ (0, 1) because it was seen to lead faster equilibrium at low temperatures.

http://gnuplot.sourceforge.net/docs_4.2/node82.html
http://gnuplot.sourceforge.net/docs_4.2/node82.html
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5.2 Preliminary Results

5.2.1 Relaxation time

In section 4.2 it was seen that the relaxation time is a quantity of great importance
when considering the errors in Monte Carlo simulations, hence, it is worth taking some time
analyzing it in the case of the unfrustrated model which is where most of the simulations in
this chapter were made. But first, in fig. 19 one can see the behavior of the magnetization
with the number of Monte Carlo iterations (or Monte Carlo time).

Figure 19 – Magnetization behavior with Monte Carlo time for L = 11.

Hence it can be seen that at low temperatures (T = 0.10 ≈ 0.045Tc), the magneti-
zation saturates quickly to a ∼ 1 value and it does not oscilate much around it. Rising
the temperature, but remaining in the broken symmetry phase (T = 1.20 ≈ 0.55Tc),
one can see that there is a value < 1 that the magnetization settles itself, but now it
oscilates more and it takes more time to reach this regime. Near the critical temperature
(T = 2.20 ≈ 0.998Tc), it is not clear that |M| settles at all in this time window, and this
quantity oscilates between a wide range of values, this pattern continues on to bigger times,
thus evidencing the critical slowing down behavior. Finally, to temperatures above the
critical one, the oscillations are less wild and the order parameter takes near zero values
at all times.

To have a more quantitative picture on equilibrium it can be seen in fig. 20 the
behavior of the autocorrelation function introduced in (4.15) with respect to the Monte
Carlo time. In the present case to calculate it,

φ|M|(t) =
Nm−t∑
t′=0
|M(t+ t′)||M(t′)| − 1

Nm − t

(
Nm−t∑
t′=0
|M(t+ t′)|

)(
Nm−t∑
t′=0
|M(t′)|

)
(5.1)
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is used. Here it is defined that δt = 1, so that t = Nmδt and Nm >> δt.

There it can be observed how the system behaves drastically different when it
is exposed to temperatures near the critical. For all other temperatures, up to some
fluctuations, the autocorrelation function decays from 1 (its value at zero time separation)
to zero in a characteristic separation time. And for T = 2.20 = 0.998Tc, it shows a oscilation
in the interval (−0.2, 0.3). Thus for these temperatures many other configurations are
needed to reach more reliable results. A plot with a bigger range of time separations can be
seen in fig. 21. For instance, regarding the results in the upcomming sections, the number
of configurations ranges between 1.5 105 and 3.0 105.

Figure 20 – The normalized autocorrelation function as a function of Monte Carlo time
for L = 11.
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Figure 21 – Autocorrelation function dependence on the time separation for L = 11 and
T = 2.20 ≈ 0.998Tc

Hence one may estimate the correlation time τ|M| for the magnetization |M| by
fitting the graphs above with exponentials, as the use of (4.16) yields unrealistic results.
The results are in table 1 together with the factor

√
2τ that corrects the traditional error

estimate if transient states are considered. In fig. 22 the fits for a couple of temperatures
can be seen.

T/Tc(T ) τ|M|
√

2τ|M|
0.045 (0.10) 134 ± 1 16.36 ± 0.06
0.55 (1.20) 438 ± 5 29.6 ± 0.2
0.998 (2.20) 1406 ± 5 53.02 ± 0.09
2.00 (4.40) 105 ± 4 14.47 ± 0.3

Table 1 – Relaxation times for various temperatures for a 113 lattice.

Thus, measures near the critical temperature have its errors greatly enhanced, the
region that is of interest to the present work. This enhancement is however not so drastic
for temperatures way above or way below the critical. This table can be used as a guide
to the number of configurations to be ignored. Typically, as the number of configuration is
in the order of 105, and the relaxation times are at most ∼ 103, the number of ignored
points is ∼ 104, usually taken to be 10 % of the configurations, so that a run with 1.5 105

measurements has its first 1.5 104 measurements ignored.
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Figure 22 – Fits used to obtain the relaxation time for the magnetization for T = 1.20 ≈
0.55Tc and T = 2.20 ≈ 0.998Tc at a 113 lattice.

5.2.2 The similarity between the frustrated and the unfrustrated XY models
near the critical temperature

It was claimed in section 3.4 that the XY model and its frustrated counterpart,
defined by (3.16), have a similar behavior near the critical temperature. That motivated
the Villain expansion and the results that followed. Indeed, for the unfrustrated case,
extensive tables in ref. [44] show that the Villain model can grasp really well the properties
of the XY -model, even in temperatures where it seemed not to apply at first glance.

This similarity was also seen to be very important to the overlap method of section
4.4. Otherwise, the overlap problem arises and the numerical method becomes a bit
more complex. To gain an extra confidence that these claims are true, some numerical
calculations can be performed. The first of which is to calculate the dependence of the
order parameter, the magnetization (4.21), on the temperature. This can be seen in fig.
(23), in the extreme case where the frustrated region is has the maximum L2 area.

Therefore, fig. 23 reveals that there is a big difference between the unfrustrated
and the frustrated one at low temperatures. The magnetization near T = 0 falls down
from 1.0 to approximately 0.6. This can be readily understood when one looks to the
typical configuration near T = 0, as in the left-hand side of fig. 25. There one can see
that, as energy tends to be approximately minimized, the “spins” near the frustrated
region are anti-aligned (throughout this section N = 2 and k = 1, so that αµ = π for links
that pierce the Wilson loop). In the other hand, the pairs of interacting spins whose link
does not pierce Sm(C), tend to align. The compromise between these two effects yields
configurations that “bend” as one gets closer to the frustrated region until the neighbooring
spins in each side are anti-aligned. This hence reduces the magnetization.

These features become less significant as one goes to higher temperatures, the
magnetization is near the same as one approaches the critical region. And from the left-
hand side of fig. 25, it can be seen that the spins are pointing in arbitrary directions, which
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Figure 23 – Comparison between the magnetization of the unfrustrated (green) and frus-
trated (blue) cases as temperature varies for L = 10.

Figure 24 – Comparison between the energy of the unfrustrated (green) and frustrated
(blue) cases as temperature varies for L = 10.

is also expected for the unfrustrated version. Hence, this is evidence that the assumption
that the geometrically localized frustration does not change the critical temperature is not
contradicted. One can see as well from fig. (23) that the simulations give more irregular
results in the frustrated case, the error bars are not small even in the low temperature
region as it is true for the unfrustrated one.

As for fig. 24, one can see that the energy surprisingly behaves almost the same in
both cases for all temperatures even though, for lower temperatures the frustrated model
has a slightly higher energy. It can as well be seen that this behavior for high temperatures
can be an difficulting factor for the simulations near the critical temperature. Energies
being near the same render the partition function ratio to be essentially 1, as one sees in
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Figure 25 – Typical configurations of the frustrated 3D XY model seen in a plane trans-
verse to the Wilson loop, which is highlighted in red, for L=10. To the left
T = 0.1 ≈ 0.045Tc, to the right, T = 2.0 ≈ 0.91Tc

(4.29). This issue is potentially enhanced because large fluctuations in energy appear in
this regime too, increasing errors.

5.3 Wilson Loop calculations in the 3D effective model
Summarizing chapter 3 and section 4.4, Wilson loop averages are translated, after

a number of controlled approximations, from a effective model of center vortices to

〈W(C)〉 ≈ ZXY [αµ(x)]
ZXY [0] = 〈e−β(EXY,f−EXY,0)〉XY,0, (5.2)

where XY, 0 indicates that the averages are to be taken by sampling the unfrustrated XY
model. The frustration, as fig. 14 indicates, lies between links that pierce the Wilson loop.
For all the simulations in this section, the Wilson loop is considered to be a square whose
side M is varied from Mmin to Mmax, so that C encloses M2 frustrated links.

In this section the numerical tests for the area law predicted in section 3.4.2 will be
discussed as well as the validity of (3.44) to the dependence of the area law coefficient with
the N-ality of the SU(N) representation. The typical Monte Carlo iteration behavior of
Cest = e−β(EXY,f−EXY,0) can be seen in fig. 26 as well as its autocorrelation function behavior.
These are taken in the case where the Wilson loop is a square of side M = Mmin = 2 and
for N = 2.

Hence, it can be seen that Wilson loop averages in general fluctuate less than
magnetization at higher temperatures. As for lower temperatures, it actually fluctuates
slightly more. Another difference can be seen in autocorrelation function plot. For all
temperatures seen, even the near critical one, it rapidly falls to near zero values, and
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Figure 26 – (Left) Wilson loop average as a function of Monte Carlo time. (Right) Wilson
loop autocorrelation function as a function of Monte Carlo time. Both graphs
were obtained for M = 2 and T = 0.10 ≈ 0.045Tc, 2.20 ≈ 0.998Tc and
4.50 ≈ 2.04Tc in a 113 lattice.

fluctuations around it are very similar. Thence the critical slowing down behavior is not
perceivable in the averages of this quantity, this gives evidence that the notion that the
order paremeter has the biggest relaxation time is correct. The relaxation times calculated
for the Wilson loop are: τW(T = 0.045Tc) = 19 ± 1, τW(T = 0.998Tc) = 27 ± 1 and
τW(T = 2.04Tc) = 24± 1. This time, (4.16) produces realistic results.

The procedure to obtain the forthcoming results can be summarized as:

(i) Compute e−β(EXY,f−EXY,0) for each Monte Carlo configuration (Nm ∼ 105) of the
unfrustrated XY model at fixed square size M = 2, and temperature T = 1/β;

(ii) If M < Mmax M 7→M ′ = M + 1, M ′ 7→M ′′ = M ′ + 1, etc;

(iii) If M = Mmax, T 7→ T + ∆T , if more than one temperature is involved;

(iv) Take a simple average of all of the configurations generated for the different M and
T , excluding the transient states.

Hence, as averages of e−β(EXY,f−EXY,0) for bigger values of M are taken consecutively after
M = Mmin, at the same temperature, one is also in a sense less susceptible to critical
slowing down issues.
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5.3.1 The Area Law

Using a 103 lattice, with a range of temperatures going from 0.1 to 10.1 with a
step of 1.0 unit of temperature, and L = 10, one obtains the general behavior for Wilson
loop averages seen in fig. Wilson loop averages as a function of temperature for various
sizes of frustrated region.

Figure 27 – Wilson loop averages as a function of temperature for various sizes of frustrated
area.

Thus one can see that the general behavior for any value of loop side is that, for
low temperatures, as the two systems behave so differently, the ratio between them is
expected to be not so near 1, as the energies are more different in this regime, according
to what was stated in the last section. Then, as temperature rises, the ratio goes to values
increasingly near 1, which can be seen as if thermal fluctuations are so big in this regime
and spins are so uncorrelated that even information about the frustration is lost.

Along these lines, one sees from (4.29) that the data values range between zero
and one in fig. 27 because the averages are taken in the unfrustrated model which, as
expected, has lower energy than its frustrated counterpart. This difference in energy grows
bigger as one increases the loop length M . This also explains why the Wilson loop values
for M = 10 (in dark purple) come from nearly zero at low temperatures and the data for
M = 2 (in dark blue) have its low temperature values closer to 1.

One can also see that it is increasingly hard to get information from the M -
dependent behavior of 〈W(C)〉 as the points are crammed together and the overlap
between error bars grows bigger in higher temperatures. This is also true for the region
near the critical temperature and one expects to more difficulties to distinguish an area
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law from a perimeter law.

With this in mind fits for an perimeter-law (ln〈W(C)〉 = −σPM + bP ), area law
(ln〈W(C)〉 = −σAM2 + bA), and polynomial (ln〈W(C)〉 = −σγMγ + b) fits were performed,
the results for low (T << Tc), near critical (T ≈ Tc) and high (T >> Tc) temperatures
can be seen in tables3 2,3 and 4. Plots for these fits can be seen in figs. 28 -33.

T/Tc (T ) σP bP Rms Error/d.o.f
0.045 (0.1) 0.070 ± 0.003 0.27 ± 0.03 0.03
0.14 (0.3) 0.023 ± 0.001 0.10 ± 0.01 0.009
0.23 (0.5) 0.0134 ± 0.0006 0.055 ± 0.005 0.005
0.998 (2.20) (1.11 ± 0.05) 10−3 (4.6 ± 0.4) 10−3 3.6 10−4

1.0032 (2.21) (1.04 ± 0.06) 10−3 (3.9 ± 0.5) 10−3 5.3 10−4

1.0077 (2.22) (1.07 ± 0.05) 10−3 (4.4 ± 0.5) 10−3 4.1 10−4

1.012 (2.23) (9.9 ± 0.6) 10−4 (3.8 ± 0.5) 10−3 5.2 10−4

1.017 (2.24) (1.02 ± 0.05) 10−3 (4.2 ± 0.5) 10−3 3.8 10−4

1.021 (2.25) (9.5 ± 0.5) 10−4 (3.6 ± 0.5) 10−3 4.6 10−4

1.026 (2.26) (9.8 ± 0.4) 10−4 (4.0 ± 0.4) 10−3 3.4 10−4

3.63 (8.0) (5.9 ± 0.3) 10−5 (2.4 ± 0.3) 10−4 2.3 10−5

4.08 (9.0) (4.6 ± 0.3) 10−5 (1.9 ± 0.2) 10−4 2.0 10−5

4.54 (10.0) (3.7 ± 0.2) 10−5 (1.5 ± 0.2) 10−4 1.4 10−5

Table 2 – Fit coefficients for a perimeter law for various temperatures for a L = 17 cubic
lattice.

T/Tc (T ) σA bA Rms Error/d.o.f
0.045 (0.1) (4.00244 ± 0.00002) 10−3 (-1 ± 3) 10−6 3.7 10−6

0.14 (0.3) (1.28729 ± 0.00008) 10−3 (6 ± 8) 10−6 1.1 10−5

0.23 (0.5) (7.4299 ± 0.0003) 10−4 (-4 ± 3) 10−6 4.6 10−6

0.998 (2.20) (6.19 ± 0.04) 10−5 (5 ± 4) 10−5 5.9 10−5

1.0032 (2.21) (6.15 ± 0.03) 10−5 (2 ± 3) 10−5 5.3 10−5

1.0077 (2.22) (5.96 ± 0.02) 10−5 (9 ± 20) 10−6 2.8 10−5

1.012 (2.23) (5.86 ± 0.04) 10−5 (3 ± 4) 10−5 6.7 10−5

1.017 (2.24) (5.68 ± 0.05) 10−5 (2 ± 5) 10−5 6.6 10−5

1.021 (2.25) (5.57 ± 0.02) 10−5 (6 ± 20) 10−6 3.0 10−5

1.026 (2.26) (5.46 ± 0.03) 10−5 (-2 ± 3) 10−5 4.3 10−5

3.63 (8.0) (3.28 ± 0.04) 10−6 (4 ± 4) 10−6 5.8 10−6

4.08 (9.0) (2.57 ± 0.03) 10−6 (3 ± 3) 10−6 4.2 10−6

4.54 (10.0) (2.04 ± 0.03) 10−6 (-1 ± 3) 10−6 3.7 10−6

Table 3 – Fit coefficients for a area law for various temperatures for a L = 17 cubic lattice.

3 In these tables, the square of “Rms Error/d.o.f” is the sum of squares of the deviations divided by the
number of the degrees of freedom of the plot, i.e. the number of points minus the number of fitting
parameters.
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T/Tc (T ) γ σγ bγ Rms Error/d.o.f
0.045 (0.1) 2.00000 ± 0.00006 (4.00276 ± 0.0006) 10−3 (4 ± 8) 10−6 4.0 10−6

0.14 (0.3) 2.00032 ± 0.0004 (1.286 ± 0.001) 10−3 (-1 ± 2) 10−5 1.1 10−5

0.23 (0.5) 1.9998 ± 0.0004 (7.434 ± 0.008) 10−3 (1 ± 10) 10−5 4.8 10−6

0.998 (2.20) 1.87 ± 0.03 (8.8 ± 0.8) 10−5 (2.6 ± 0.9) 10−4 3.3 10−5

1.0032 (2.21) 2.07 ± 0.03 (5.1 ± 0.5) 10−5 (1.2 ± 0.7) 10−5 4.4 10−5

1.0077 (2.22) 2.02 ± 0.02 (5.5 ± 0.4) 10−5 (-5 ± 6) 10−5 2.8 10−5

1.012 (2.23) 2.09 ± 0.04 (4.6 ± 0.5) 10−5 (1.4 ± 0.8) 10−4 5.6 10−5

1.017 (2.24) 1.98 ± 0.07 (6 ± 1) 10−5 (6 ± 168) 10−6 7.1 10−5

1.021 (2.25) 2.00 ± 0.03 (5.5 ± 0.4) 10−5 (8 ± 51) 10−5 3.2 10−5

1.026 (2.26) 1.93 ± 0.04 (6.5 ± 0.8) 10−5 (1.1 ± 0.9) 10−4 4.0 10−5

3.63 (8.0) 2.0 ± 0.1 (2.9 ± 0.9) 10−6 (-1 ± 10) 10−6 6.2 10−6

4.08 (9.0) 2.22 ± 0.06 (1.4 ± 0.2) 10−6 (-1.5 ± 0.5) 10−6 2.5 10−6

4.54 (10.0) 1.9 ± 0.1 (2.1 ± 0.7) 10−6 (5 ± 90) 10−6 4.0 10−6

Table 4 – Fit coefficients for a polynomial law for various temperatures for a L = 17 cubic
lattice.

Figure 28 – Perimeter (left) and area (right) fits for Wilson loop averages. L = 17 and
T = 0.10 ≈ 0.045Tc

Figure 29 – Polynomial fit for Wilson loop averages. L = 17 and T = 0.1 ≈ 0.045Tc
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Figure 30 – Polynomial fit for Wilson loop averages. L = 17 and T = 2.20 ≈ 0.998Tc

Figure 31 – Polynomial fit for Wilson loop averages. L = 17 and T = 2.20 ≈ 0.998Tc
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Figure 32 – Polynomial fit for Wilson loop averages. L = 17 and T = 10.0 ≈ 4.54Tc

Figure 33 – Polynomial fit for Wilson loop averages. L = 11 and T = 10.0 ≈ 4.54Tc
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It is then evident that, for low temperatures, the area law is the best fit for the
behavior of the Wilson loop. There is a 0.04 % disagreement between the data and γarea = 2
for the polynomial fit. This behavior persists in the near critical region, where one expects
to recover the properties of the continuum. This however with a lower degree of agreement
due to the huge fluctuations involved. Surprisingly, this area-behavior persists even at
higher temperatures, where a perimeter law was expected.

One can also see that σA, σP and σγ get smaller as the temperature increases. This
can be readily explained by the fact that the small energy difference seen in this regime
in fig. 24 is greatly enhanced by the 1/T factor. Plus, the values of bA and bγ, which
correspond to the best fits for the behavior, are almost all consistent with zero within the
error bars, that means that 〈W(C)〉 ≈ 1 e−σA.

From a frustrated XY model-level argument, an area law is expected because of
the simple fact that drastic information about the area is given when it is imposed that
the only links that have a frustrated interaction are those that pierce the minimal surface
whose boundary is the Wilson loop. This motivates the solid angle picture, which will be
approached later. In the following, tests will be performed for non-minimal areas.

5.3.2 Representation dependence

With numerical evidence that the area law is the correct behavior near the critical
temperature, we now turn our attention to the dependence of the area law coefficient
σA on the N-ality of the SU(N) representation. It was seen in the end of section 3.4.2
that, in the context of the effective 3D XY model, this dependence is expected to be a
sine-square law. To this end, now one performs fits of the form ln〈W(C)〉 = −σAM2 + bA

for the different k and N .

For each N = 6 − 10 fits of the form σNA (k)/σNA (1) = a sin2 (b2k
N

) for fitting
parameters a and b were performed in order to confirm or not eq. (3.44). These values
of N were chosen because they have more that two data points, which is the number of
fit parameters. The data is presented in Table 5, with the respective expected results,
axpc = (sin(π/N))−2, bxpc = ±π/2. The plot of the fit for N = 9, 10 are in fig. 34. In fig.
35, all the area-law coefficients from N = 2 to N = 10 are plotted together.

N a axpc b bxpc Rms error/d.o.f.
6 3.918 ± 0.001 4 1.5896 ± 0.0006 ± 1.570796327 0.0011
7 5.24 ± 0.02 5.31194111 1.580 ± 0.004 ±1.570796327 0.0045
8 6.667 ± 0.005 6.828427125 -1.590 ± 0.002 ±1.570796327 0.0090
9 8.48 ± 0.03 8.54863217 1.576 ± 0.004 ± 1.570796327 0.013
10 10.51 ± 0.04 10.47213596 1.581 ± 0.006 ± 1.570796327 0.033

Table 5 – Sine-square law fit coeficients for L=11 and T = 2.20 ≈ 0.998Tc.
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Figure 34 – Sine-square law fit for N = 9 (left) and N = 10 (right) for L=11 and
T = 2.20 ≈ 0.998Tc.

Figure 35 – Plot of all k-string tensions from N = 2 to N = 10

Thus it can be seen that there is a quite good agreement between eq. (3.44) and
the results obtained from the simulations near the critical temperature. The points fall
within the fit consistently with their error bars. The disagreement between the values of a
and b are at most of 2 % and 1% respectively both for N = 6. However, it is important
to notice that not all values of a and b agree with their expected value within the errors.
This can be seen as being a finite volume effect, and better results are expected for larger
lattices. It can also be seen that the fits get worse as N increases, as evidenced by the rms
errors, but this does not hamper much the analysis.

A sine-square fit (σNA (k) = a sin2 (b2k
N

)) was then done to all the σNA (k) from N = 2
to N = 10 and that resulted in a = (2.038 ± 0.002) 10−4, b = 1.586 ± 0.002, with an
rms error of 4.1 10−7. Hence, b disagrees with π/2 by just 0.96 %, and implying that
σNA (1)/ sin2 π

N
≈ 2.038 10−4. From, fig. 35, it can as well be seen that the fit has indeed a

good agreement with the data.
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5.4 The Non-Minimal Surface
In the paragraph just above eq. (3.18) the minimal surface Sm(C) chosen to be the

one where the frustration is localized, but, as it is known from Stokes’ theorem any other
surface whose boundary is the Wilson loop is equally good to compute the flux integral
(3.4) in the beginning of the discussion of the effective model.

So, to show that this property is still obeyed with XY -model-level arguments, we
will exploit the fact that the partition function (3.17) can be rewritten as 4

Z[αµ(x)] =
∫
Dθ exp β

∑
x,µ

cos(θ(x + µ̂)− θ(x)− αSm(C)
µ (x))

=
∫
Dθ̃ exp β

∑
x,µ

cos(θ̃(x + µ̂) + Θ(x + µ̂)− θ̃(x)−Θ(x)− αSm(C)
µ (x)).

(5.3)

where each θ variables were shifted by the following lattice Heaviside function

Θ(x) :=


2π
N

if x lies outside Sclo(C)

0 if x lies inside Sclo(C)
. (5.4)

Where Sclo is the closed surface formed by joining Sm(C) with any other surface
whose boundary is C. Let us call this non-minimal surface SNm(C). One example of such
surface can be seen in fig. 36. One can readily see that Θ(x + µ̂) − Θ(x) implements a
frustration in those links that pierce Sclo. This is so because the subtraction vanishes if
both x+ µ̂ and x lie inside or outside Sclo and it gives 2π/N if they lie in opposite sides of
Sclo.

Thus, the sum Θ(x+ µ̂)−Θ(x)− αSm(C)
µ (x) results in zero if one considers links

that pierce Sm(C) and then the frustration is now placed in those links that pierce SNm(C),

Z[αµ(x)] =
∫
Dθ exp βJ

∑
x,µ

cos(θ(x + µ̂)− θ(x)− αSNm(C)
µ (x)), (5.5)

and what we first wanted to demonstrate is confirmed. It can also be concluded by a
similar argument that, if one has a closed surface, the two partition functions are equal.
Then there can be no area law for the Wilson loop.

However, when the simulations on this case are run, the results do not support
this idea. A ratio between the area law coefficient obtained with minimal area frustration
simulations and the one obtained in closed surface area can be seen in fig. 37. This ratio
should be zero if there was no surface dependence, as a closed surface has no boundary.
However, the observed ratio is nearly 6 in all temperatures near the critical one.

4 In this section, we will show explicitly the surface where the frustration is located. Thus αµ(x) in the
action (3.16) is now α

Sm(C)
µ (x)
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Figure 36 – Pictorial representation of a non-minimal surface SNm(C). Here C is highlighted
in red.

Figure 37 – Area-law fit coefficient ratio between the case when the frustration is localize
in a closed surface and the one localized in the minimal surface near the
critical temperature.

As the unfrustrated system and the closed-surface-localized frustration are so
different from each other, one may think that these computations are not in the range of
validity of eq. (4.29). Thus, in an attempt to solve the inconsistencies presented above, one
may try to use the method described in the end of section 4.4, in eq. (4.37). It consists of
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dividing the computation of the ratio between partition functions in steps, so that in each
step the couple of systems are in a sense “more similar” to each other. In the present case,
the procedure adopted was to take these intermediate as being systems with an increasing
number of frustrated faces, so that the original ratio becomes

Zclo[αµ(x)]
Z[0] = Z1

Z[0]
Z2

Z1
. . .

Zclo[αµ(x)]
Z5

=

〈e−β(EXY,1−EXY,0)〉XY,0〈e−β(EXY,2−EXY,1)〉XY,1 . . . 〈e−β(Eclo−EXY,5)〉XY,5
(5.6)

where XY, 1 denotes that the system has only one frustrated face (just like the minimal
surface case) XY, 2 has two frustrated faces and so on, until one has six frustrated faces.
The result found for L = 15 and T = 2.20 however is 5.37 ± 0.03 times bigger than
the corresponding minimal surface, which still evidences a surface dependence. One sees
however that this value is near the value 5.61± 0.03 found by the “direct” approach.

5.5 The Solid Angle Picture
It was previously argued (cf. section 3.5) that the essential properties of the effective

model near the critical temperature can be captured by a frustration that has an equivalent
circulation around the Wilson loop. In this context, the solid angle picture arose. The
explicit formulation for the solid angle subtended by a square can be seen in Appendix C.
As in the case of the surface-concentrated frustration, the Wilson loop is thought to lie
between the lattice planes.

The solid angle defined in Appendix C (eqs. (C.13)-(C.16)) ranges between [0, 2π].
Simulation results with this “raw” definition can be seen in table 6. However, this definition
of the solid angle obeys ∑

�

αµ(x) = 0 (5.7)

instead of eq. (3.51) when � links the Wilson loop. Thus, if the solid angle is to be
implemented in a way that its multivaluedness appears, it should range [0, 4π], and the
solid angle measured below the loop should be 4π − χ instead of χ, for χ ∈ [0, 2π]. This,
however, if naively implemented, makes the finite differences between some links to be
huge, and that also does not enforce the multivaluedness of the solid angle as one winds
around the Wilson loop. Moreover, a growth area law for Wilson loop averages is this
yielded.

Namely, this big ∆µχ problem happens for links: (i) that pierce the plane that
contain the Wilson loop from outside of it; (ii) that are near the lower boundary of the
lattice. This happens due to the periodic boundary conditions5. That makes points under
5 The computations of χ also take into account the periodic boundary conditions. This does not have a

big effect in the simlations, because the biggest values of M are not so close to the size of the lattice.
Furthermore, the center of the square is always taken to be in the center of the lattice plane.
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the Wilson loop interact with points above it. These ‘singular’ links must be corrected,
and this is done directly in the energy computations. It was seen for links in group (i) that
∆µχ ∼ −4π, group (ii) has two subgroups: (ii− a) of points that pierce strictly on the
outside, for which ∆µχ ∼ 4π; and (ii− b) that pierce the loop right on its border, which
happens more drastically for odd values of the loop side, for these, ∆µχ ∼ 2π.

The correction is done through a conditional that diminishes the module of these
abnormal differences of solid angles. For instance, if ∆µχ ≤ −9.0, ∆µχ 7→ ∆µχ + 4π,
else, if ∆µχ ≥ 9.0, ∆µχ 7→ ∆µχ − 4π, else, if −9.0 ≤ ∆µχ ≤ −4.0, ∆µχ 7→ ∆µχ + 2π,
if 4.0 ≤ ∆µχ ≤ 9.0, ∆µχ 7→ ∆µχ − 2π. The cutoff values 4.0 and 9.0 were found by
inspection on what was the range of the ∆µχ values in the various cases. In the following,
results for polynomial fits for Wilson loop averages can be seen in table 7 below. Some of
the corresponding plots can be seen in figs. 38, 40 and 42.

T/Tc(T ) γ σγ bγ Rms Error/d.o.f.
0.998 (2.20) 1.2 ± 0.2 (1.2 ± 0.8) 10−4 (2 ± 3) 10−4 0.11
1.007 (2.22) 0.9 ± 0.2 (3 ± 2) 10−4 (7 ± 5) 10−4 0.069
1.017 (2.24) 0.8 ± 0.3 (4 ± 4) 10−4 (9 ± 7) 10−4 0.087
1.026 (2.26) 1.0 ± 0.3 (2 ± 2) 10−4 (6 ± 5) 10−4 0.082
1.035 (2.28) 0.9 ± 0.3 (3 ± 3) 10−4 (7 ± 7) 10−4 0.11
1.044 (2.30) 0.9 ± 0.3 (3 ± 3) 10−4 (6 ± 5) 10−4 0.084
1.053 (2.32) 0.9 ± 0.3 (2 ± 2) 10−4 (6 ± 6) 10−4 0.10

Table 6 – Polynomial fit parameters found for simulations with a “raw” definition of the
solid angle for a L=17 lattice.

T/Tc(T ) γ σγ bγ Rms Error/d.o.f.
0.045 (0.10) 1.7 ± 0.2 (3.7 ± 2.0) 10−3 (-0.03 ± 1) 10−2 7.3 10−3

0.14 (0.30) 1.7 ± 0.2 (1.2 ± 0.6) 10−3 (-0.05 ± 5) 10−3 2.4 10−3

0.23 (0.50) 1.7 ± 0.2 (7 ± 4) 10−4 (-0.09 ± 3) 10−4 1.4 10−3

0.998 (2.20) 1.7 ± 0.2 (5 ± 3) 10−5 (-0.4 ± 2) 10−4 1.1 10−4

1.0032 (2.21) 1.8 ± 0.2 (4 ± 3) 10−5 (-0.9 ± 2) 10−4 1.2 10−4

1.0077 (2.22) 1.7 ± 0.2 (5 ± 3) 10−5 (-0.2 ± 3) 10−4 1.5 10−4

1.012 (2.23) 1.8 ± 0.2 (4 ± 2)10−5 (-0.8 ± 2) 10−4 9.5 10−5

1.017 (2.24) 1.8 ± 0.2 (5 ± 3) 10−5 (-0.3 ± 2) 10−4 1.5 10−4

1.021 (2.25) 1.7 ± 0.2 (6 ± 3)10−5 (0.2 ± 3) 10−4 1.2 10−4

1.026 (2.26) 1.7 ± 0.2 (5 ± 3)10−5 (0.02 ± 2) 10−4 9.8 10−5

3.63 (8.00) 1.6 ± 0.2 (4 ± 3) 10−6 (0.9 ± 2) 10−5 7.7 10−6

4.08 (9.00) 1.8 ± 0.3 (2 ± 1) 10−6 (0.06 ± 1) 10−5 6.8 10−6

4.54 (10.00) 1.7 ± 0.2 (2 ± 2) 10−6 (0.2 ± 1) 10−5 4.9 10−6

Table 7 – Polynomial fit parameters found for simulations with singularity-removed defini-
tion of the solid angle for a L=17 lattice.
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T/Tc(T ) γ σγ bγ Rms Error/d.o.f.
0.045 (0.10) 1.77 ± 0.02 (3.2 ± 0.2) 10−3 (-4 ± 1) 10−3 4.6 10−4

0.14 (0.30) 1.77 ± 0.01 (1.06 ± 0.04) 10−3 (-1.4 ± 0.3) 10−3 1.2 10−4

0.23 (0.50) 1.77 ± 0.02 (5.9 ± 0.2) 10−4 (-9 ± 2) 10−4 7.2 10−5

0.998 (2.20) 1.67 ± 0.09 (7 ± 2) 10−5 (0.05 ± 1) 10−4 3.7 10−5

1.0032 (2.21) 1.79 ± 0.07 (4.7 ± 0.8) 10−5 (-1.1 ± 0.7) 10−4 2.6 10−5

1.0077 (2.22) 1.66 ± 0.05 (5.9 ± 0.7) 10−5 (3 ± 5) 10−4 1.6 10−5

1.012 (2.23) 1.77 ± 0.09 (5 ± 1) 10−5 (-7 ± 8) 10−5 3.2 10−5

1.017 (2.24) 1.92 ± 0.05 (3.1 ± 0.4) 10−5 (-1.5 ± 0.4) 10−4 1.8 10−5

1.021 (2.25) 1.72 ± 0.05 (5 ± 8) 10−5 (-1 ± 5) 10−5 2.0 10−5

1.026 (2.26) 1.75 ± 0.07 (5 ± 1) 10−5 (-7 ± 8) 10−4 2.8 10−5

3.63 (8.00) 1.78 ± 0.05 (2.7 ± 0.4) 10−6 (-0.2 ± 3) 10−6 1.15 10−6

4.08 (9.00) 2.1 ± 0.2 (1 ± 0.5) 10−6 (-7 ± 7) 10−6 3.5 10−6

4.54 (10.00) 1.75 ± 0.08 (1.7 ± 0.4) 10−6 (-3 ± 3) 10−6 1.1 10−6

Table 8 – Polynomial fit parameters found for simulations with singularity-removed defini-
tion of the solid angle for a L=17 lattice using only even values of M .

T/Tc(T ) γ σγ bγ Rms Error/d.o.f.
0.045 (0.10) 1.80 ± 0.01 (2.85 ± 0.08) 10−3 (-3.2 ± 0.8) 10−3 2.5 10−4

0.14 (0.30) 1.80 ± 0.01 (9.2 ± 0.3) 10−4 (-1.0 ± 0.3) 10−3 8.1 10−5

0.23 (0.50) 1.80 ± 0.01 (5.3 ± 0.2) 10−4 (-6 ± 2) 10−4 5.6 10−5

0.998 (2.20) 1.87 ± 0.09 (4 ± 1) 10−5 (-1 ± 1) 10−4 3.4 10−5

1.0032 (2.21) 1.92 ± 0.07 (3.1 ± 0.6) 10−5 (-1.7 ± 0.7) 10−4 2.4 10−5

1.0077 (2.22) 1.86 ± 0.03 (3.2 ± 0.3) 10−5 (-1.2 ± 0.3) 10−4 9.7 10−6

1.012 (2.23) 1.94 ± 0.06 (2.8 ± 0.5) 10−5 (-2.0 ± 0.6) 10−4 2.1 10−5

1.017 (2.24) 1.83 ± 0.05 (3.7 ± 0.5) 10−5 (-9 ± 5) 10−4 1.5 10−4

1.021 (2.25) 1.82 ± 0.03 (3.6 ± 0.4) 10−5 (-9 ± 4) 10−5 1.1 10−5

1.026 (2.26) 1.82 ± 0.05 (3.9 ± 0.6)10−5 (0.02 ± 2) 10−4 9.8 10−5

3.63 (8.00) 1.63 ± 0.08 (3.6 ± 0.8) 10−6 (9 ± 6) 10−6 1.6 10−6

4.08 (9.00) 1.8 ± 0.2 (2 ± 1) 10−6 (-0.2 ± 1) 10−5 3.6 10−6

4.54 (10.00) 1.6 ± 0.2 (3 ± 1) 10−6 (9 ± 9) 10−6 2.2 10−6

Table 9 – Polynomial fit parameters found for simulations with singularity-removed defini-
tion of the solid angle for a L=17 lattice using only odd values of M .
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Figure 38 – Polynomial fit for Wilson loop averages in the solid angle picture. L = 17 and
T = 0.10 ≈ 0.045Tc

Figure 39 – Polynomial fit for Wilson loop averages in the solid angle picture using only
even (above) and odd (below) values of M . L = 17 and T = 0.10 ≈ 0.045Tc
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Figure 40 – Polynomial fit for Wilson loop averages in the solid angle picture. L = 17 and
T = 2.21 ≈ 1.0032Tc

Figure 41 – Polynomial fit for Wilson loop averages in the solid angle picture using only
even (above) and odd (below) values of M . L = 17 and T = 2.21 ≈ 1.0032Tc
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Figure 42 – Polynomial fit for Wilson loop averages in the solid angle picture. L = 17 and
T = 10.0 ≈ 4.54Tc

Figure 43 – Polynomial fit for Wilson loop averages in the solid angle picture using only
even (above) and odd (below) values of M . L = 17 and T = 10.0 ≈ 4.54Tc
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The first conclusion that can be drawn from table 6 is that a perimeter law seems
to be the correct behavior for the zero circulation frustration. There it can also be seen
that the simulation results are hampered by errors, so that almost all of the σγ coefficients
are consistent with zero. The fits of the data produced also have big rms errors. This stems
from the fact that this implementation does not have the multivaluedness property, thus
the linking number averages in the ensemble are not well represented.

As for the case of the multivalued frustration, one can perceive similarities between
table 7 and tables 3 and 4. The first one of them is that an area-law appears to be the
correct behavior for Wilson loop averages for all temperatures. Another similarity is that
the bγ coefficients are all consistent with zero within the errors. In the present case, for
some temperatures, the errors are two orders of magnitude bigger that the value of bγ
itself. Another similarity comes from the fits: the error bars increase with temperature,
they almost bury the data for T = 10.0, as seen in figs. 42 and 43. It is also seen that
the γ values are practically constant. Moreover, one can see that the values found for σγ
in the present case are consistent to the ones found in the last section within the errors.
However, these are too big in the latter case to inequivocally state an equality.

These errors in the fits can be explained by the fact the ‘singularity’ removal
procedure works differently depending on M being even or odd. This is evidenced more
clearly in fig. 38, where the data points for odd M are always above the fit curve and the
ones for even M are always below it. Such effect is also present in figs. 40 and 42 more
subtly. This motivates one to perform fits for these two sets separately. The data is found
in tables 8 and 9 and some of the corresponding plots are in figs. 39, 41 and 43.

Thus one can perceive that fits that stem from even values of M have an almost
constant γ for all temperatures, except for the anomalous case of T = 9.00 ≈ 4.08Tc. In
general, the γ values are close to the ones in table 7, but with smaller error. The fit rms
error is found to decrease, the σγ are a bit altered, but most of the values of σγ remain
consistent with the surface-concentrated case and less bγ’s are consistent with zero.

In the case of odd values of M , the rms errors also diminish in comparison with the
data in table 7, so that the plots are as good as the ones in 8. However, the γ values are
much closer to an area-law, specially near the critical temperature, which is the region of
interest. For high temperatures it also happens that γ’s are smaller than the corresponding
values in tables 7 and 8. In this case, one also finds that most of the bγ values are not
consistent with zero.

In contrast to the non minimal surface-concentrated frustration, these results give
hope that the essential topological aspects of the ensemble of closed line-like objects are
being well captured by the Monte Carlo methods used. They are also very non-trivial,
because, also in contrast with the previous analysis, even though there is no drastic surface
area information contained in the solid angle frustration, an area law still appears.
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6 Final Remarks

Using a numerical approach, effective models of center vortices were analyzed.
There is number of evidence stemming from lattice QCD that these degrees of freedom
are responsible for the confinement property, which is probed by Wilson loop averages. In
general, if this quantity has an area law, confinement arises, if not, there is a perimeter
law. In four dimensions, these field configurations are concentrated in closed surfaces and
are defined by the fact that they give a center element of the gauge group if they link the
Wilson loop. Using the maximal center gauge and the center projection procedure, one
is able to deduce that these vortices give a significant contribution to the string tension,
even giving almost the full contribution in the case of SU(2).

This center dominance motivated further investigations by the Tübingen group,
which used a gradient expansion of Yang-Mills action to derive an effective action in which
terms that depend on the vortex area and curvature. Using this effective model, they
were able to produce a confined and a deconfined region in parameter space reproducing
the accepted value for zero temperature string tension. Plus, they built a confinement
transition picture in terms of the percolation of the center vortices, gaining intuition about
the properties of the random vortex model.

Some other numerical evidence state that there is a certain range in which vortices
are correlated, thus leading to interactions. There are also investigations that scrutinize
the dependence of the string tension on the representation of the gauge group. These
conclude that Casimir scaling is the right dependence at intermediate distances. Also in
this context, at larger separations, where it is energetically favorable for gluons to screen
the source to produce a gluelump state, there is still some debate on whether the correct
behavior for the asymptotic string tension is the Casimir or the Sine Law.

With these thoughts in mind, the authors of ref. [58] built an effective model of
center vortices in three dimensions considering an ensemble of line-like objects that obey
an action that has both length, curvature and contact interaction costs. In this context,
they translate Wilson loop averages into a ratio of partition functions. Afterwards, a
controlled set of highly nontrivial approximations were performed. That includes some
path integral identities to e.g. linearize the interaction term, and polymer techniques that
enable the derivation of a diffusion-like equation, which is latter solved. Hence they were
led to a complex field theory with U(1) gauge symmetry breaking.

Analyzing vacuum fluctuations in this model and making use of a lattice formulation,
they obtained that the partition function corresponds to an XY model with geometrically-
localized frustration. This frustration is chosen to lie between those links that pierce the
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minimal area of the Wilson loop Sm(C). The Wilson loop average is then obtained from
the ratio between this partition function and its unfrustrated counterpart.

The continuum limit of this model is expected to be obtained close to the critical
coupling of the unfrustratedXY -model, whose most accepted value is βc ≈ 0.454 ≈ 1/2.203.
A perimeter and an area law were then found for the high temperature and near-critical
regimes, respectively. This is done with the aid of the Villain approximation, which consists
to approximate eβ cos θ by a sum of infinite Gaussians centered in its maxima. Following
these steps, the authors were led to a sine square dependence on the representation.
However, this might change in future works, after the consideration of the important
property of center vortex branching.

In this dissertation, as an alternative to grasp information from the effective model
the solid angle picture was defined. It exploits the fact that the solid angle subtended by
the loop is multivalued when one winds around it and that, near the critical temperature,
the relevant information about the effective model is only enconded in the circulation of
the frustration.

Then, the Metropolis Algorithm was described as a way to produce a stochastic
process that leads the system to the equilibrium distribution, where one can take thermal
averages. In short, it makes local updates to the system, always accepting the ones that
lower the energy. in addition, configurations that raise the energy are accepted with a
probability that is given by the ratio of the equilibrium distribution.

In the path to equilibrium, however, the system passes through intermediate, or
transient states. If these are taken in consideration, the error gets greatly enhanced by a
factor proportional to the squared root of the relaxation time. This problem is particularly
severe when one has second order phase transitions, where the latter quantity is found to
diverge in the continuum limit for the order parameter. This characterizes the so-called
critical slowing down. Hence, when taking averages, these transient states should be
discarded. A solution to this problem is expected to be given by the Wolff algorithm,
which performs non-local updates to the system.

Then a method to obtain the critical temperature was described. It relies in
the behavior of the fourth-order cumulant, that remains practically constant when the
correlation length of the system diverges. Following these lines, a value of 2.13± 0.86 was
obtained for the critical temperature, which is within the most accepted value by 3%.

Next, we discussed the method used to calculate the partition function ratios. It
makes use of the fact that the Helmholtz free energy is a logarithmic measure of the
partition function. Then, if the two systems have the same degrees of freedom, the partition
function ratio can be measured as the average between Boltzmann weights taken in one
of the systems. In the present context, the latter system is the unfrustrated one. This is
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only valid when both systems are “similar”, thus avoiding the overlap problem, where
the averages are exponentially suppressed. To mitigate this, one may take the averages in
steps, so that the partition function ratio becomes the product of intermediate systems’
partition function ratios, the intermediate systems being chosen so that they interpolate
between the two original systems.

Following this numerical procedures, the correlation time was analyzed. In particular,
we found that the highest ones, as expected, those near the critical temperature, are in the
order of ∼ 103 for a L = 11 lattice. The frustrated and unfrustrated models indeed behave
similarly in this region. This is in contrast to low temperature regime, where the two
systems behave differently in terms of magnetization, although they are not that different
in terms of energy.

The obtained Wilson loop has a much smaller correlation time than the magnetiza-
tion, which is expected as the latter is the order parameter. The computation showed that
it is incresingly difficult to grasp information from the partition function ratios as the
temperature rises. This happens due to the fact that the Wilson loop values with growing
loop size at a constant temperature get squeezed together in values ∼ 1 in that case. Then,
as foreseen, the area law is shown to be the correct behavior of the Wilson loop averages
with the size of the loop. But this area law seems to persist even at temperatures where a
perimeter law should appear.

Then, the representation dependence of the area law coefficient was analyzed, and
the result of eq. (3.44) was confirmed with maximum 2% discrepancy in comparison with
the sine-square law fit parameters. Moreover, for the N-ality 1 representations we obtained
a constant ratio σNA (1)/ sin2 π

N
≈ 2.038 10−4, for L = 11.

Next, it is argued in a XY -model-level that Wilson loop averages should not depend
on the surface on which the frustration is placed, which is in consonance with the effective
model, that has only linking number information. Nevertheless, the numerical results found
reflect a surface-dependence behavior, which persists even when one uses the intermediate
step method described in the end of section 4.4. A possible solution to this issue might be
to use a numerical method that takes topology into account.

The results concerning the solid angle picture give evidence that an area law can
also arise in this context. This comes after a cautious implementation, which is made so
that the multivaluedness of the solid angle is preserved without the appearance of big
solid angle differences that produce a growth area law. This is done by diminishing the
module of |∆µχ| for points that either pierce the Wilson loop outside of it, in its borders
(for odd values of M) or that are near the boundary of the lattice.

Nevertheless, this “singularity” removal procedure works differently for odd and
even values of M . If taken together, the fits are consistent with an area law within the
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errors near the critical temperature. Furthermore the σγ values agree with the ones in the
concentrated frustration picture within the error bars but these are so big in the solid
angle analysis that calling it a equality is misleading. This can be explained by the fact
that the points associated with odd (even) values of M are always above (below) the
fitting curve. This implies that two behaviors compete. For even M values, the polynomial
fit parameter γ is almost constant with temperature within the errors, with values that are
almost the same as the ones with both types of values. As for odd M values, it is seen that
the area law is more evident. This is even more noticeable near the critical temperature.

These results enhance our confidence in the partition function ratio method as a
tool to probe the topological aspects of the frustrated XY -model and thus of the center
vortex effective model. This is because an area law appears in a case where the frustration
is diluted in space and not concentrated in a privileged surface. Furthermore, a perimeter
law arises if one performs simulations with a circulationless frustration.

To improve the results in future works, the Wolff algorithm should be used, because
it solves the critical slowing down problem. A more thorough analysis of the non-minimal
surface is also needed, maybe with the use of another sampling method, one that takes
topology into account so that the surface independence arises. The representation depen-
dence of the string tension in the context of the surface-concentrated frustration should
be complemented to see what is the behavior of the ratio σNA (1)/ sin2 π

N
for other lattice

sizes. Moreover, this representation dependence should also be analyzed in the solid angle
picture. Finally, the methods developed in this dissertation might also be used in the
effective model that arises when the branching property of center vortices is taken into
account.

,
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APPENDIX A – Lattice QCD

A.1 The Wilson Action
As many of the results presented in the introduction depend on the Lattice QCD

formalism, it is worth making a brief incursion in the subject. Firstly one is reminded that
the continuum QCD action is

S[ψ, ψ̄, A] = SF [ψ, ψ̄, A] + SC [A] with (A.1)

SF [ψ, ψ̄, A] =
Ns∑
s=1

∫
d4x ψ̄(s)(x)(i /D +m(s))ψ(s)(x). (A.2)

SC [A] = 1
2g2

∫
d4x tr[Fµν(x)Fµν(x)] 1 (A.3)

where the ψ(s)(x) is the s flavor fermion field; /D = γµDµ
2 = γµ(∂µ + iAµ); Aµ is the

gauge field; Fµν = −i[Dµ, Dν ] = ∂µAν − ∂νAµ + i[Aµ, Aν ]; and the γµ’s obey the Euclidean
anticomutators

{γµ, γν} = 2δµν1. (A.4)

Explicitly, the euclidean Weyl representation of the γ’s is

γ0 =
0 1

1 0

 , γi =
 0 −iσi
iσi 0

 . (A.5)

The action (A.1) is invariant under the gauge transformation

ψ(x) 7→ ψ′(x) = Ω(x)ψ(x) , ψ̄(x) 7→ ψ̄′(x) = ψ̄(x)Ω†(x),

A(x) 7→ A′(x) = Ω(x)Aµ(x)Ω†(x) + i(∂µΩ(x))Ω†(x).
(A.6)

One way to motivate the Wilson action, the pioneer and most celebrated in this
context, follows almost the same principles of the continuum: it is imposed that the naive
discretization of free fermion action becomes invariant under local gauge transformations,
namely

S0
F = a4∑

x

ψ̄(x)
 3∑
µ=0

γµ
ψ(x+ µ̂)− ψ(x− µ̄)

2a +mψ(x)
 . (A.7)

where ψ(x) is now the lattice fermion field ; and a is the lattice spacing.
1 The extra factor is a convenient form to introduce the coupling constant. To recover a form which is

more QED relatable one might take the prescription (1/g)Aµ 7→ Aµ
2 Euclidean signature is implied
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One way to introduce the gauge fields, even in the continuum is to ask that (A.7)
is invariant by the gauge transformations

ψ(x) 7→ ψ′(x) =Ω(x)ψ(x) , ψ̄(x) 7→ ψ̄′(x) = ψ̄(x)Ω†(x), (A.8)

where the Ω(x) ∈ SU(N), in general. From that it is already possible to see that the
ψ̄(x)ψ(x + µ̂) term, that appears because of the discretization of the derivative, is not
invariant. Thus, what one may fix it is, instead of introducing a covariant derivative as in
the continuum, is to introduce a operator Uµ(x) such that

ψ̄(x)Uµ(x)ψ(x+ µ̂) 7→ ψ̄(x)Ω†(x)U ′µ(x)Ω(x+ µ̂)ψ(x+ µ̂) (A.9)

These are the so-called link variables. Hence one asks that Uµ(x) transforms as

U ′µ(x) 7→ U ′µ(x) = Ω(x)U ′µ(x)Ω†(x+ µ̂) (A.10)

Besides that, one also imposes that Uµ(x) ∈ SU(3). Notice that the matrices obey

U−µ(x) = U †µ(x− µ̂) (A.11)

U−µ(x) 7→ U ′−µ(x) = Ω(x)U ′−µ(x)Ω†(x− µ̂). (A.12)

then the naïve discretization of the fermonic action is

SF = a4∑
n

ψ̄(x)
 3∑
µ=1

γµ
Uµ(x)ψ(x+ µ̂)− U−µ(x)ψ(x− µ̂)

2a +mψ(x)
 . (A.13)

Even with this connection, (A.13) is not the final word for the description of
fermions in Lattice Gauge Theory, as this suffers with the presence of the infamous
doublers in the lattice propagators. However we will not approach this in the present text,
and the reader is referred to ref. [32].

The continuum quantity related to U ′µ(x) is the gauge transporter

G(x, y) = P exp
(
i
∫
Cxy

Aµdsµ

)
(A.14)

where P denotes the path-ordering prescription that puts to the left the operators associated
which appear latter when one follows the trajectory Cxy [60]. It transforms as

G(x, y) 7→ G′(x, y) = Ω(x)G(x, y)Ω†(y) (A.15)

Following these lines, the continuum action can be recovered by taking a first-order
expansion of (A.13) on the lattice spacing. In fact, writting

Uµ(x) = eiaAµ(x) +O(a2) = 1+ iaAµ(x) +O(a2) (A.16)

U−µ(x) = e−iaAµ(x−µ̂) +O(a2) = 1− iaAµ(x− µ̂) +O(a2), (A.17)
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Uµ(x)ψ(x+ µ̂)− U−µ(x)ψ(x− µ̂)
2a 7→ ψ(x+ µ̂)− ψ(x− µ̂)

2a

+ iAµ(x)ψ(x+ µ̂) + iAµ(x− µ̂)ψ(x− µ̂)
2

= ∂µψ(x) + iAµ(x) +O(a)

(A.18)

Now, to construct the pure-gauge part of the action, one must exclusively use
the link variables to define a gauge invariant quantity that reduces to (A.3) in the naïve
continuum limit. Hence, let C a path joining the points n0 and n1, defining

P [U ] ≡
∏

(x,µ)∈C
Uµ(x) , (A.19)

it is readily seen from (A.10) that only the Ω associated with the extreme points do not
cancel. Thus a way to build a gauge invariant quantity is to take C in (A.19) as a closed
loop, hereafter denoted by F , and to take the trace of the resulting operator, namely,

L[U ] ≡ tr
 ∏

(x,µ)∈F
Uµ(x)

 . (A.20)

A particular form of (A.20) is when F is the elementary square formed by the points
{n, n+ µ, n+ µ+ ν, n+ ν}, the plaquette. In this case,

Uµν ≡ Uµ(x)Uν(x+µ)U−µ(x+µ+ν)U−ν(x+ν) = Uµ(x)Uν(x+µ)U †µ(x+ν)U †ν(x) . (A.21)

With (A.21) in mind it is possible to infer that

SC [U ] = 2
g2

∑
n,µ<ν

Re tr (1−Uµν(x)) . (A.22)

As a matter of fact, taking the naïve limit a→ 0 again,

Uµν(x) ≈ eiaAµ(x)eiaAν(x+µ)e−iaAµ(x+ν)e−iaAν(x) (A.23)

Using Haussdorf-Baker-Campbell equation,

eAeB = eA+B+ 1
2 [A,B]+..., (A.24)

and that Aν(x+ µ) ≈ Aν(x) + a ∂νAµ(x),

Uµν ≈ exp
[
ia2 (∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)])

]
= eia

2Fµν(x) (A.25)

and expanding in a in lowest order 3

SC [U ] ≈ a4

2g2

∑
n,µ<ν

tr[F 2
µν(x)] (A.26)

3 which is O(a4), given that O(a2) terms cancel each other when one takes the real part of the trace.
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and as a4∑ 7→ ∫
d4x the classical pure gauge action is recovered.

It must be emphasized that this is absolutely not the only possible discretization
of QCD action, even without fermions. Throughout the years, many other possible actions
have emerged. A common motivation to these developments is the reduction of finite lattice
artifacts so that the continuum properties of observables can be calculated with bigger
lattice spacings. One example of such actions is the 1-loop-improved action, which follows
a general program to arbitrary lattice field theories, which were proposed in refs. [67, 68].

A.2 Euclidean Correlators
The objective in this section is to show a result that is very important to the

interpretation of Lattice Field Theory computations. This is done exploiting the relation
between periodic Euclidean time and thermal averages [17]. Thus, consider the correlation
function between two operators in euclidean time

〈Ô2(t0)Ô1(0)〉t = 1
Zt

tr
[
e−(t−t0)ĤÔ2e

−t0ĤÔ1
]
. (A.27)

One thing to be noted in the equation above: this is an average of a product of operators,
one of them evolving in euclidean Heisenberg picture and with an thermal factor e−Ht

whose “inverse temperature” t will be taken to be infinite. Furthermore,

Zt = tr[e−Ht] , (A.28)

Performing the averages in the eigenvectors of the Hamiltonian,

H|n〉 = En|n〉 , n = 0, 1, 2... (A.29)

Ei < Ej se i < j , (A.30)

Zt =
∑
n

〈n|e−Ĥt|n〉 =
∑
n

e−Ent , and (A.31)

〈Ô2(t0)Ô1(0)〉t = 1
Zt

∑
m,n

e−Em(t−τ0)〈m|Ô2|n〉e−Ent0〈n|Ô1|m〉 . (A.32)

Multiplying (A.32) both in the numerator and the denominator by eE0t,

〈Ô2(t0)Ô1(0)〉t =
∑
m,n e

−δEm(t−τ0)〈m|Ô2|n〉e−δEnt0〈n|Ô1|m〉
1 +∑

n>0 e−δEnt

δEi = Ei − E0 .

(A.33)

Now one may take t → ∞. From (A.30), it is readily seen that only the m = 0 term
survives. Defining the reference of energy such that E0 = 0,

lim
t→∞
〈Ô2(t0)Ô1(0)〉t =

∑
n

〈0|Ô2|n〉〈n|Ô1|0〉e−Ent0 . (A.34)
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Let us now consider, for instance, that Ô2 = ψ̂p and Ô1 = ψ̂†p are respectively the
anihilation and creation operator for a proton. Hence,

lim
t→∞
〈ψ̂p(t0)ψ̂†p(0)〉t =

∑
n

|〈0|ψ̂†p|n〉|2e−Ent0 , (A.35)

where the “surviving” states |n〉 are those that have the quantum numbers of one proton.
For a sufficiently big t0 the first term of (A.35) dominates. It is thus possible to extract the
lowest energy state of one proton by studying the assymptotic behavior of the correlation
function. It is also possible to obtain the information contained in |〈0|ψ̂†p|n〉|2

To complete the connexion, in lattice simulations one computes (A.27) by calculating
the functional integral

〈Ô2(t0)Ô1(0)〉t = 1
Zrede
E

∫
[DU ] e−SE [U ] O2[U(t0,x)]O1[U(0,x)] . (A.36)

using Monte Carlo techniques. To this end, it is necessary to define a group invariant
integration measure [DU ].

A.3 The Haar measure and examples of integrals in SU(3)
With a gauge invariant lattice action SC [U ] defined, if one is to make some sense

out of the quantum field theory with these degrees of freedom, it is also reasonable to ask
the same for the partition function,

ZC =
∫

[DU ] e−SC [U ] (A.37)

To this end one needs to define a integral measure that is invariant under the gauge group,
so

[DU ′] = [DU ]⇒
∏
n,µ

dU ′µ(x) =
∏
n,µ

dUµ(x). (A.38)

from which one deduces

dU ′µ(x) = dUµ(x)⇒ d(Ω(x)Uµ(x)Ω†(x+ µ̂)) = dUµ(x) . (A.39)

As it is possible to choose Ω(x) and Ω(x+ µ̂) ∈ SU(N) independently, the measure
to be defined must be invariant both by left and right multiplication by an element of
SU(N),

dU = d(UV ) = d(V U). (A.40)

Together with the normalization condition,∫
dU = 1 (A.41)

it constitutes one of the defining properties of the Haar measure.
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Similar conditions can be defined to any compact Lie group. To such sets, it is
convenient to write a generic element as

U(ω) = exp
(
i
M∑
k=1

ωkTk

)
. (A.42)

Where the ωk are real parameters belonging to a limited and closed set; the Tk are called the
generators of the Lie group, and for SU(N), these are N×N hermitian, null trace matrices.
They also obey tr[TjTk] = (1/2)δjk and the comutation relations [Ti, Tj] = ifijkTk. The
fijk are called the structure constants. It is possible then to show that linear combinations
of the generators form a Lie algebra. For SU(N), this is a N2− 1 dimensional vector space
denoted by su(N).

One way to explictly construct a Haar measure is to first realize that

Mk(ω) = i
∂U(ω)
∂ωk

U−1(ω) (A.43)

belongs to the associated Lie algebra for all ω. To this end, M must be hermitian and
have a null trace. The hermiticity follows from the fact that U(ω) is unitary,

U(ω)U †(ω) = 1⇒ ∂U(ω)
∂ωk

U †(ω) + U(ω)∂U
†(ω)
∂ωk

= 0, (A.44)

from which one deduces

M †
k(ω) = −iU(ω)∂U

†(ω)
∂ωk

= i
∂U(ω)
∂ωk

U †(ω) = M †
k(ω). (A.45)

As for the trace nullity, this follows from the fact that detU(ω) = 1

detU(ω) = 1⇒ 0 = ∂ detU(ω)
∂ωk

= ∂ detU(ω)
∂Uab

∂Uab(ω)
∂ωk

= detU(ω) U−1
ba (ω)∂Uab(ω)

∂ωk
= tr

(
U−1(ω)∂U(ω)

∂ωk

)
,

(A.46)

hence, Mk(ω) ∈ su(N).

One defines the group metric from Mk(ω) as being

ds2 ≡ g(ω)mndωmdωn

g(ω)mn ≡ tr[Mm(ω)M †
n(ω)] = tr

i∂U(ω)
∂ωm

U−1(ω)
(
i
∂U(ω)
∂ωn

U−1(ω)
)† = tr

[
∂U(ω)
∂ωm

∂U †(ω)
∂ωn

]
,

(A.47)
where in the last equality it is used that U †U = U−1(U−1)† = 1. Then the integral measure
is defined as

dU = ν
√
det[g(ω)]

∏
k

dωk . (A.48)
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where ν is a normalization constant that can be obtained from the normalization condition
(A.41). For instance for N = 2, where

U(θ) = ei(σ·n̂)θ = cos θ1+ i(σ · n̂) sin θ, (A.49)

σi i = 1, 2, 3 being the Pauli matrices, and n̂ · n̂ = 1,

dU = sin2 θ
dθ

π

d2n̂

4π . (A.50)

To check that (A.40) is obeyed by (A.48), let W (η) be the matrix obtained from
U(ω) by taking the product of a arbitrary member of the group,

W (η) = V U(ω) . (A.51)

Thence, the paremeters η = {η1, η2, ..., ηM} and ω = {ω1, ω2, ..., ωM} are related to each
other by some function, so that η = η(ω). From multi-variable calculus it is known that∏

k

dηk = det[J ]
∏
k

dωk

Jkl = ∂ηk
∂ωl

e (J−1)kl = ∂ωk
∂ηl

(A.52)

thus the metric (A.47) becomes

g̃(η)mn = tr
[
∂W (η)
∂ηm

∂W †(η)
∂ηn

]
= tr

[
∂W (ω)
∂ωi

∂W †(ω)
∂ωj

]
∂ωi
∂ηm

∂ωj
∂ηn

= tr
[
V
∂U(ω)
∂ωi

∂U †(ω)
∂ωj

V †
]

(J−1)im(J−1)jn = tr
[
∂U(ω)
∂ωi

∂U †(ω)
∂ωj

]
(J−1)im(J−1)jn .

(A.53)
From the penultimate to the last expression it was used the cyclic property of the trace as
well as V †V = 1. From that,

g̃(η) = (J−1)Tg(ω)J−1, (A.54)

which finally results in

dW (η) = ν
√
det[g(ω)] det[J−1]

∏
k

dηk = ν
√
det[g(ω)] det[J−1]det[J ]

∏
k

dωk

= ν
√
det[g(η)]

∏
k

dωk = dU(ω),
(A.55)

that is exactly what one wanted to demonstrate.
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A.4 Examples of integrals in SU(3)
In the previous section a integral measure that gives a more precise sense to “sum

over all group degrees of freedom”. Now it is worth giving some examples of such integrals
in SU(3) which are useful to strong coupling expansion average of the Wilson loop seen
in section 1.2. All the examples below refer to fundamental representation entries Uab,
namely, ∫

dU Uab = 0, (A.56)∫
dU UabUcd = 0, (A.57)∫

dU UabU
†
cd = 1

3δadδbc, (A.58)∫
dU UabUcdUef = 1

6εaceεbdf . (A.59)

One way to obtain such equations is to consider a corollary of the metric invariance (A.40),
besides the defining properties of SU(3). Such corollary is that∫

dUf(U) =
∫
dUf(UV ) =

∫
dUf(WU) (A.60)

for arbitrary U,W ∈ SU(3). Using this in the left side of (A.56), one gets∫
dU Uab = Vac

∫
dU Ucb, (A.61)

however as V is arbitrary, the integral itself must be zero. In particular, one can choose V
to be diagonal, and all its elements being different of 1, e.g. V = ei

2π
3 1. So

(1− ei 2π
3 )
∫
dU Uab = 0⇒

∫
dU Uab = 0. (A.62)

A similar argument can be made for (A.57).

Things are more subtle for eqs. (A.58) e (A.59), as there are some constraints
whose origin is in the definition of SU(3): unitary matrices whose determinant is 1. Hence,
taking b = c in (A.58) and summing in c,∫

dU UacU
†
cd =

∫
dU δad = δad. (A.63)

An analogous equation is obtained taking a = d and summing in a. The sum in the left
side of (A.63) goes from 1 to 3, and each term of this sum can be obtained from another
term by changing columns and rows. This change can be implemented up to a sign by a
multiplication by a matrix C ∈ SU(3), e.g. to change columns 1 and 2, one multiplies the
initial matrix by

M3 = −


0 1 0
1 0 0
0 0 1

 . (A.64)
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from the right, to change rows 1 and 2, one uses the above matrix multiplied from the
right, thus, ∫

dU Ua2U
†
2d =

∫
dU (UM)a1(MU †)1a (A.65)

So using (A.60) other matrices analogous toM3, each term results in the same value,
thus implying that

∫
dU UacU

†
cd = (1/3)δad (no sum in c implied). Something similar can

be shown in the case a = d. If b 6= c, (A.60) is used again as in the case of (A.56) show
that the integral vanishes regardless of either a = b or a 6= b.

As for (A.59), one is reminded of the fact that det(U) = εabcUa1Ub2Uc3 = 1, here
such symmetry arguments get very complicated so it is preferable to perform the integrals
in a more systematic and general way such as in ref. [16], where diagrams are used to
obtain them. In general, what the Haar measure does is to project out the contribution of
the integrand to the singlet (or trivial) representation of the group, as the only non-zero
results come when the integrand adds up to 1.
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APPENDIX B – Random numbers

One might define a Monte Carlo method as any numerical process that uses
random number to obtain its results [45]. These numbers might generated by nature, using
atmospherical data, electrical noise or even measuring the reflection of individual photons.
This type of generation is however not reproducible, sometimes too slow, and one might
not assure the promissed probability density is obeyed, and their use is more convenient
in cryptography.

Usually in Monte Carlo simulations what one uses is computer algorithms that
generate numerical sequences that appear to be indistinguishable from random sequences.
Thus they are called pseudorandom numbers. The main property to be imitated is the
unpredictability: if one is given n true random numbers, he must not be able to predict
the (n + 1)-th from any combination of the previous ones. As the implementations are
based on sequences of a limited set of integers, usually defined by the available computer
memory, they are periodical. The minimum number of iterations one performs so that the
sequence starts to repeat itself is called the period of the random number generator.

B.1 The Linear Congruential Method
One of the most simple methods to obtain such sequences is the linear congruential

method or LCG [49]. It consists of starting with the choice of a seed, the initial number of
the sequence, and then one performs iterations of the form

ri+1 = (ari + b) mod m. (B.1)

In table 10, one can see the iterations for some values of a and m
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a = 85 a = 899 a = 16807 a = 16807
m = 256 m = 32768 m = 4294967295 m = 2147483647
i ri i ri i ri i ri
1 27 1 27 1 27 1 27
2 247 2 24273 2 453789 2 453789
3 3 3 30707 3 3331864428 3 1184380782
... ... ... ... ... ... ... ...
63 243 8191 14595 65535 614062173 2147483644 1186718670
64 175 8192 13705 65536 4031499021 2147483645 1500057001
65 27 8193 27 65537 27 2147483646 27
period = 65 period = 8193 period = 65537 period = 2147483646

Table 10 – Some values obtained through the iteration of (B.1) that defines the LCG

Thus, within the options in this table, the generator a = 16807 and m =
2147483647 = 231 − 1 is the best option. It leads to a period of length τ = 231 − 1,
which is a large number, but becomes really tiny when one considers simulations with a
increasing number of lattice sites.

B.2 The Mersenne Twister

As the above mentioned method produces a periodicity that is small for Monte-
Carlo applications1, one needs another procedure to produce the integer sequences. One
of the standard recent methods [45, 46] to do so is to refer to the Mersenne Twisters
(MT), originally proposed in ref. [53] 2. The ‘Mersenne’ part of the name comes from
the fact that the periodicity of such method is a Mersenne prime, namely τ = 219937 − 1,
which is a number that is even difficult to compare with any astrophysical scale. Thence
it has become one of standard generators of pseudorandom numbers when cryptography
problems are not involved.

The procedure itself is very intricate, but it can be outlined in a simpler way [73]. As
with many other generators, even the LCG itself, MT can be described in terms of states.
The random numbers are then extracted from these states, by a ‘translation’ operation
g. The seed of the generator can either be the first state, as it is with the LCG, or it
can be used to generate the first state, in the case of MT. Then, one applies a certain
transformation T to this first state and then obtains the next one, and so on and so forth,
for the desired number of times.

In the case of the MT, each state is a 624-long list of 32-bit integers, whereas in
the previous LCG each state was a single 32-bit integer. The actual procedure starts with

1 In the simulations of the present work, this was reached for 183 lattices and 105 updates
2 The algorithm is actually available online as a C code in http://www.math.sci.hiroshima-u.ac.

jp/~m-mat/MT/MT2002/CODES/mt19937ar.c.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
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the recurrence equation [45,53]

xn = xn−q ⊕ xn−p+1

0 0
0 1m

T ⊕ xn−p
1w−m 0

0 0

T, . (B.2)

Here, each state xk is a w-bit integer which are to be thought as a row vector, 1p is the
p× p identity matrix,

T =


0
... 1w−1

0
a

 (B.3)

is the matrix that “twists” the states, and ⊕ is the modulo 2 sum. To obtain the random
numbers, one further multiplies xn by the tempering matrix,

zn = xng (B.4)

and zn is the n-th random number. g is built considering right R and left L shift matrices
and a third matrix D(y) = diag(y1, ..., yw), which is obtained from the w-bit number y,
remembering that

R =


0
... 1w−1

0
0 ... 0

 , L =


0
... 1w−1

0
0 ... 0

 , (B.5)

g is thus defined as

g = (RuD(d)⊕ 1)(LsD(b)⊕ 1)(LtD(c)⊕ 1)(Rl ⊕ 1). (B.6)

where d, b, u, s, t and l are carefully chosen integers. All parameters for the generator can
be seen in Table 11.
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Parameter #10 #2
w 32
p 624
q 227
m 31
a 2567483615 10011001000010001011000011011111
u 11
d 4294967295 11111111111111111111111111111111
s 7
b 2636928640 10011101001011000101011010000000
t 15
c 4022730752 11101111110001100000000000000000
l 18

Table 11 – Mersenne Twister parameters. In the second column, the numbers in base 10,
in the third, in base 2, but only for those which are used in this form in the
algorithm.

Nowadays there are many other options of generators and each one them might be
suitable for each use. A comprehensive list of them, with tests for randomness for some
algorithms can be found in ref. [46].



111

APPENDIX C – The Solid Angle subtended
by a square

Due to the cubic geometry of the lattice, it is convenient to calculate (3.54) when
C is a square. To this end one needs to know what is the solid angle subtended by a square
from a arbitrary point x is space . Hence, one refers to the definition

χ(x) =
∫
Sm(C)

dθdφ sin θ (C.1)

where (θ, φ) are the usual spherical coordinates. The following calculations follow the
reasoning in ref. [52] For the sake of simplicity let us take the reference case where the
projection of the point x = xc in the plane that contains C coincides with the center of
a rectangle. If this rectangle has sides a and b, and the distance from the point to its
projection is d, using the inverse spherical transformation θ = arctan(z/

√
x2 + y2) and

φ = arctan(y/x), and taking into account the symmetry of the problem,

χ(xc) = 4
[∫ arctan( ba)

0
dφ
∫ cos I+(θ;a)

1
d(cos θ) +

∫ π/2

arctan( ba)
dφ
∫ cos I−(θ;b)

1
d(cos θ)

]
, (C.2)

where cos I±(θ; z) =
 d√

d2 + z2

4 (1 + tan±2 φ)

 . (C.3)

The integral was separated in two terms that correspond respectively to the regions A1

and A1 in fig. 44.

xProjection Point

y

•

A1 A2

Figure 44 – Division of the solid angle subtended by a square when the projection point
coincides with the center of the square.
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After performing the cosine integral and substituting φ 7→ π/2− φ,

χ(xc) = 4
[
π

2 −
∫ arctan( ba)

0
J
(
a

2d

)
−
∫ arctan(ab )

0
J

(
b

2d

)]
(C.4)

J(φ; z) = cosφ√
cos2 φ+ z2 . (C.5)

Furthermore, after using the identity sin2 φ+ cos2 φ = 1 to perform the integral, one has

χ(xc) = 4
[
π

2 −K
(
b

a
; a2d

)
−K

(
a

b
; b2d

)]
(C.6)

K(y; z) = arcsin
[

sin (arctan y)√
1 + z2

]
. (C.7)

This equation can be manipulated into a more palatable form by using the identities [1].

sin(arctan y) =
√

y2

1 + y2 (C.8)

arcsin y + arcsin z = arcsin(y
√

1− z2 + z
√

1− y2) (C.9)

arccos y = π

2 − arcsin y. (C.10)

So that,

χ(xc) = χ(a, b, d) = arccos

√√√√ 1 + α2 + β2

(1 + α2)(1 + β2)

 , (C.11)

α = a

2d, β = b

2d. (C.12)

Now (C.11), is used as a reference to calculate the solid angle for a arbitrary point.
This is done by separating the points into four classes depending on where the point
projects into the plane that contains the square as seen in fig. 45. Then one reduces the
solid angle in each one of them as a sum of solid angles of centered points. The procedure
will be explicitly carried out for one of the classes, the other three follow similarly.
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Figure 45 – Classes of regions depending on where the projection points lies (see main
text). The square C itself is the one with the lightest shade of grey.

xProjection Point

y

•

B

A

a

a

Figure 46 – Illustration of the method to obtain the solid angle subtended by the square
where the reference point belongs to Class I. The original square, in black, is
mirrored threefold and its images are used to write the solid angle as a sum
of four terms. Adapted from ref. [52].
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It will be considered that the square has side a and that the point projects at the
origin of a xy-plane relative distances A and B from the closest square corner.

Class I
The projection point is “diagonally outside” the square. From fig. 46 above one

realizes that it is possible to obtain (four times) the desired square by summing contributions
from various centered rectangles, for which one has (C.11). They are obtained by reflecting
the square with respect to both coordinate axis and y = −x line.

The procedure is to take the large 2(A+ a)× 2(B + a) rectangle and (i) subtract
the horizontal 2(a+ A)× 2B strip, then subtract the vertical 2A× 2(a+B) strip. As we
have over-subtracted the intersection of the two previous strips, which is 2A× 2B, it is
summed back again. Mathematically,

χ(xI) = χI(a,A, b, B, d) = 1
4 [χ(2(a+ A), 2(a+B), d)− χ(2A, 2(a+B), d)

−χ(2(a+ A), 2B, d) + χ(2A, 2B, d)] .
(C.13)

Class II
Now the point lies “horizontally outside” the square. Now the big rectangle is

2(a−A)× 2(a+B), the vertical 2A× 2(a+B) strip is removed, and after it the horizontal
2(a− A)× 2B one is added. As this one overlaps with the central 2A× 2B plate it needs
to be removed. Thence,

χ(xII) = χII(a,A, b, B, d) = 1
4 [χ(2(a+ A), 2(b−B), d)− χ(2A, 2(b−B), d)

+χ(2(a+ A), 2B, d)− χ(2A, 2B, d)] .
(C.14)

Class III
In this class, the point lies “vertically outside” the square. This case is analogous to

Class II, one only needs to change (a+A) to (a−A) and (a−B) to (a+B). Consequently,

χ(xIII) = χIII(a,A, b, B, d) = 1
4 [χ(2(a− A), 2(b+B), d)− χ(2(a− A), 2B, d)

+χ(2A, 2(b+B), d)− χ(2A, 2B, d)] .
(C.15)

Class IV
Finally, for points inside the square, there are many overlaps. The big square is

now (a − A) × (a − B), and because both the horizontal 2A × 2(b − B), the vertical
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2(a− A)× 2B and the central 2A× 2B plate are overlaps, they must be added to each
other in order to get the total area desired. Hence,

χ(xIV ) = χIV (a,A, b, B, d) = 1
4 [χ(2(a− A), 2(b−B), d) + χ(2A, 2(b−B), d)

+χ(2(a− A), 2B, d) + χ(2A, 2B, d)] .
(C.16)

With these results in mind, one is able to compute the solid angle from a arbitrary
point of the lattice in space. In fig. 47 a 10× 10 (arbitrary units) square is place parallel
to the xz plane and the solid angle subtended by it is plotted for points in a plane parallel
to the square at a distance of 1 from it.

Figure 47 – Solid angle subtended by a 10× 10 square from points in a plane parallel to
the square at a distance of 1 from it

Another important plot that we are in position to show now is the spatial dependence
of the gradient of the solid angle. As one can see in fig. 48, it can be seen that this vector
field indeed swirls around the Wilson loop, thus giving a pictorial counterpart of property
(3.52).
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Figure 48 – The gradient of the solid angle subtended by a square. On the left-hand side
the 3D vector field configuration. In the right-hand side, the gradient is plotted
in a plane perpendicular to the loop C

One final and important remark to be done is that: as equation (C.11) depends
only on the distance of the observation point to the plane that contains the square, the
singularity discussed in section 5.5 does not appear. Furthermore, as the arco-cosine funtion
takes values in the interval [0, π/2], χ ∈ [0, 2π], what is actually done is to take χ 7→ 4π−χ
when the observation point is under the square.
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