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“The scientist does not study nature because it is useful,
he studies it because he delights in it,

and he delights in it because it is beautiful.
If nature were not beautiful, it would not be worth knowing

and if nature were not worth knowing,
life would not be worth living".

(Henri Poincare)





ABSTRACT
In this thesis, methods for the study of open quantum systems are developed and different
aspects of Markovian and non-Markovian dynamics are analyzed. The first part of the
thesis is devoted to the theoretical foundations of open quantum systems and a brief review
of quantum correlations, emphasizing geometric quantum correlations. In the second part
of the thesis, we present our main results. More specifically, we firstly provide analytical
expressions for classical and total trace-norm (Schatten 1-norm) geometric correlations in
the case of two-qubit X states. As an application, we consider the open-system dynamical
behavior of such correlations under phase and generalized amplitude damping evolutions.
Then, we show that geometric classical correlations can characterize the emergence of the
pointer basis of an apparatus subject to decoherence in either Markovian or non-Markovian
regimes. Secondly, we provide a characterization of memory effects in non-Markovian
system-bath interactions from a quantum information perspective. In particular, we
establish sufficient conditions for which generalized measures of multipartite quantum,
classical, and total correlations can be used to quantify the degree of non-Markovianity of
a local quantum decohering process. We illustrate our results by considering the dynamical
behavior of the trace-distance correlations in multi-qubit systems under local dephasing
and generalized amplitude damping. Finally, we investigate quantum coherence, discussing
its connections with quantum correlations measurements and proposing it as a quantifier
of non-Markovianity. As an example, the coherence of a qubit under non-Markovian
amplitude damping is analytically discussed.

Keywords: Decoherence, open systems, quantum statistical methods, quantum informa-
tion, entanglement and quantum nonlocality, mechanical instruments and equipment.





RESUMO
Nesta tese, são desenvolvidos métodos para o estudo de sistemas quânticos abertos e
diferentes aspetos da dinâmica Markoviana e não-Markoviana são analisados. A primeira
parte da tese é dedicada aos fundamentos teóricos dos sistemas quânticos abertos e uma
breve revisão das correlações quânticas, focando nas correlações quânticas geométricas. Na
segunda parte da tese apresentamos nossos principais resultados. Em primeiro lugar, forne-
cemos expressões analíticas para a correlação geométrica clássica via norma-1 de Schatten
no caso de estados X de dois qubit. Como aplicação, consideramos o comportamento
dinâmico de um sistema aberto, de tais correlações sob a atuação de ruídos de atenuação
de fase e atenuação de amplitude generalizada. Depois, mostramos que as correlações
clássicas geométricas podem caracterizar o surgimento da base do ponteiro de um aparelho
sujeito à decoerência nos regimes Markoviano ou não-Markoviano. Em segundo lugar,
fornecemos uma caracterização de efeitos de memória em interações não-Markovianas
do sistema com o banho desde uma perspetiva da informação quântica. Em particular,
estabelecemos suficientes condições para as quais medidas multipartidas generalizadas
de correlações quânticas, clássicas e totais podem ser usadas para quantificar o grau de
não-Markovianidade de um processo local de decoerência quântica. Ilustramos os nossos
resultados considerando o comportamento dinâmico das correlações traço-distância em
sistemas multiqubit sob ruídos de atenuação de fase e atenuação de amplitude generalizada.
Por último, investigamos a coerência quântica discutindo suas conexões com as medidas
de correlações quânticas e propondo-a como um quantificador da não-Markovianidade.
Como um exemplo, discutimos a coerência de um qubit sob o canal não-Markoviano de
atenuação de amplitude.

Palavras-chave: Decoerência, sistemas abertos, métodos de estatística quântica, infor-
mação quântica, emaranhamento e não-localidade quântica, instrumentos e equipamentos
mecânicos.





RESUMEN
En esta tesis, se desarrollan métodos para el estudio de sistemas cuánticos abiertos
y se analizan diferentes aspectos de la dinámica Markoviana y no Markoviana. En la
primera parte de la tesis se presenta una revisión de los fundamentos teóricos de los
sistemas cuánticos abiertos y una breve reseña de las correlaciones cuánticas, enfatizando
en las correlaciones cuánticas geométricas. En la segunda parte de la tesis presentamos
nuestros principales resultados. En primer lugar proporcionamos expresiones analíticas
para correlaciones geométricas clásicas y totales a través de la norma 1 de Schatten para
el caso de estados X de dos qubits. Como aplicación, consideramos el comportamiento
dinámico del sistema abierto de tales correlaciones para el ruido de disipación de la
amplitud y el canal de defasamiento. Luego, mostramos que las correlaciones geométricas
clásicas pueden caracterizar el surgimiento de la base de puntero de un aparato sujeto a
decoherencia en regímenes Markovianos o no Markovianos. En segundo lugar, desde una
perspectiva de información cuántica proporcionamos una caracterización de los efectos
de memoria en interacciones no Markovianas entre el sistema y el baño. En particular,
establecemos condiciones suficientes para las cuales se pueden usar medidas generalizadas
de correlaciones cuánticas, clásicas y totales multipartitas para cuantificar el grado de
no Markovianidad para un canal de desfasamiento local. Ilustramos nuestros resultados
considerando el comportamiento dinámico de las correlaciones traza-distancia en sistemas
multi-qubit bajo un ruido de desfasamiento local y un ruido de disipación de la amplitud
generalizado. Finalmente, investigamos la coherencia cuántica, discutiendo sus conexiones
con las medidas de correlaciones cuánticas y proponiéndola como un cuantificador de no
Markovianianidad. Como un ejemplo, se discute analíticamente la coherencia de un qubit
para el caso de un canal no Markoviano de disipación de la amplitud.

Palabras clave: Decoherencia, sistemas abiertos, métodos de estadística cuántica, in-
formación cuántica, entrelazamiento y no-localidad cuántica, instrumentos mecánicos y
equipos.
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1 INTRODUCTION

Recent developments about the problem of decoherence in quantum mechanics have
heightened the need for the consistent description of open quantum systems (NIELSEN;
CHUANG, 2000; BREUER; PETRUCCIONE, 2002; RIVAS; HUELGA, 2012). The theory
of open quantum systems is fundamental to describe a wide range of applications of
quantum physics, since perfect isolation of quantum systems is not possible and since a
complete microscopic description or control of the environmental degrees of freedom is
not feasible or only partially so (BREUER; PETRUCCIONE, 2002). One of the greatest
challenges faced by many experiments is the inevitable interaction of the quantum system
with its surroundings, this interaction generates system-environment correlations which
induce loss of quantum coherence and dissipation (BREUER et al., 2016). Realistic
quantum mechanical systems are thus open systems governed by a non-unitary time
development which describes all features of irreversible dynamics such as the dissipation
of energy, the relaxation to a thermal equilibrium or a stationary nonequilibrium state
and the decay of quantum coherences and correlations (ALICKI; LENDI, 1987; BREUER;
PETRUCCIONE, 2002; LINDBLAD, 1976).

The main goal of the theory of open quantum systems is to avoid having to integrate
the full system, comprising both the open quantum system itself and its environment,
by describing the dynamics of the open system in its reduced Hilbert space (RIVAS;
HUELGA, 2012; BREUER; PETRUCCIONE, 2002; NIELSEN; CHUANG, 2000). Namely,
the open systems are treated with the usual laws of dynamics, by regarding them as
subsystems of larger systems which are closed (i.e. which obey the usual laws of dynamics
with a well-defined Hamiltonian). The structure of the system-environment initial state
is fundamental to determine the evolution for the reduced density matrix of the open
quantum system, defined by tracing out the environment degrees of freedom from the
full system density matrix. Under certain conditions, there is a well-established treatment
of the dynamics of open quantum systems in which the open system’s time evolution is
represented by a dynamical semigroup (BREUER; PETRUCCIONE, 2002; LINDBLAD,
1976; GORINI et al., 1978; INGARDEN; KOSSAKOWSKI, 1975; KOSSAKOWSKI, 1972).
The importance of the dynamical semigroup concept is that it generalizes the evolution
operator to open systems. The notion of the quantum dynamical semigroup is defined using
the concept of a completely positive map. Moreover, the Lindblad formalism (LINDBLAD,
1976; GORINI et al., 1978; KOSSAKOWSKI, 1972) replaces description in terms of the
Hamiltonian operator of the system, for a completely positive dynamical semigroup with
bounded generators. This formalism leads to a Markovian quantum master equation,
which is obtained if one assumes a weak coupling system-environment interaction and a
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memoryless environment. Hence, the environment recovers instantly from the interaction,
leading to a continuous flow of information from the system to the environment (VEGA;
ALONSO, 2017).

However, recent developments in the field of new materials have led to observe and
control quantum systems at different times, length scales and energy ranges (BREUER
et al., 2016; VEGA; ALONSO, 2017). In many of these scenarios, a large separation
between system and environment time scales can no longer be assumed, leading to non-
Markovian behavior and eventually a back-flow of information from the environment
into the system. Indeed, the Markovian behavior is always an idealization in the de-
scription of the quantum dynamics, with non-Markovianity being non-negligible in a
number of different scenarios, such as biological (ISHIZAKI; FLEMING, 2009; REBEN-
TROST; CHAKRABORTY; ASPURU-GUZIK, 2009; LIANG, 2010; CHEN et al., 2015)
or condensed matter systems (WOLF et al., 2008; APOLLARO et al., 2011; HAIKKA;
JOHNSON; MANISCALCO, 2013). A considerable amount of literature has been published
on rigorously define non-Markovian dynamics in the quantum case, different approaches
have been followed and several methods have been proposed (see, e. g., (RIVAS; HUELGA;
PLENIO, 2014; POLLOCK et al., 2015; POLLOCK et al., 2018; BREUER et al., 2016;
VEGA; ALONSO, 2017)). From an applied point of view, non-Markovian dynamics
may be a resource for quantum tasks through an increase in the capacities of quantum
channels (BYLICKA; CHRUŚCIŃSKI; MANISCALCO, 2014). Moreover, it also exhibits
applications in fault-tolerant quantum computation (AHARONOV; KITAEV; PRESKILL,
2006). Basically, two main questions need to be discussed in this context (RIVAS; HUELGA;
PLENIO, 2014):

• What is a quantum Markovian process and hence what are non-Markovian processes?
(characterization problem).

• If a given process deviates from Markovianity, by how much does it deviate? (quan-
tification problem).

In this thesis we examine both questions. Precisely, concerning the characterization
problem, we adopt the so-called divisibility property of dynamical maps as a definition of
quantum Markovian processes. Some techniques which allow for a systematic description
of non-Markovian dynamics of open systems are showed in terms of Kakajima-Zwanzig
projection operator method (NAKAJIMA, 1958; ZWANZIG, 1960; MORI, 1965). It is our
prospect show a general framework for the study of open systems in terms of mathematical
tools which will allow us to address the characterization of the non-Markovianity for
the scope of this thesis. On the other hand, concerning the quantification problem,
researches have recently shown an increased interest in defining the border between
the regions of Markovian and non-Markovian quantum dynamics. The concept of non-
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Markovian degree was proposed in (CHRUŚCIŃSKI; MANISCALCO, 2014) where is
established a formal analogy between the entanglement theory and quantum evolutions.
Other approaches are based on fidelity (RAJAGOPAL; DEVI; RENDELL, 2010), channel
capacity (BYLICKA; CHRUŚCIŃSKI; MANISCALCO, 2014), geometry of the set of
accessible states (LORENZO; PLASTINA; PATERNOSTRO, 2013) and distinguishability
between quantum states (BREUER; LAINE; PIILO, 2009). For the purpose of this thesis,
we focus on two of the most widely studied and significant measures of the degree of
non-Markovianity. The first was proposed by Rivas, Huelga and Plenio (RHP measure)
(RIVAS; HUELGA; PLENIO, 2010), where the structural properties of quantum channels
are proposed to define non-Markovianity, here measuring violations of the completely
positivity of the map. The second was proposed Breuer, Laine and Piilo (BLP measure)
(BREUER et al., 2016; BREUER; LAINE; PIILO, 2009). In this approach the non-
Markovianity based on the study of the dynamical behavior of the distinguishability of
states and the quantum memory concept. This viewpoint directly addresses the issue of
the experimental detection of quantum non-Markovian process, which can be obtained by
suitable quantum tomographic measurements (BREUER et al., 2016; FANCHINI et al.,
2014).

In recent years, there has been an increasing interest in investigating the dynamics
of quantum correlations and quantum coherence in Markovian and non-Markovian open
quantum systems by comparing the evolution of different types of correlations in specific
models, typically two-qubits coupled to two local baths or one common bath (HU et al.,
2017). Quantum correlations and quantum coherence are two fundamental concepts in
quantum theory (NIELSEN; CHUANG, 2000; HU et al., 2017). While quantum correlations
characterize the quantum features of a system with at least two parties, quantum coherence
is defined already for a single system. Also, from a practical point of view, quantum
correlations and quantum coherence play an important role as physical resources for
various quantum information and computation tasks (MODI et al., 2012; STRELTSOV;
ADESSO; PLENIO, 2017).

Since the early days of quantum information theory, entanglement has been viewed
as the main feature that gives quantum computers an advantage over their classical
counterparts (MODI et al., 2012; HORODECKI et al., 2009). The view that entanglement
is crucial is also supported by foundational considerations, for it is known that Bell’s
inequalities require genuine entanglement to exceed the classically-determined limit for
correlations (MODI et al., 2012). Schrödinger captured all this in (SCHRÖDINGER, 1935),
saying entanglement is “not just one of many traits, but the characteristic trait of quantum
physics”. In parallel, a significant current discussion in quantum correlations is the concept
of quantum discord. Since it was reportered in 2001, the study of quantum discord has
attracted a lot of interest. Quantum discord was formulated by Henderson and Vedral
(HENDERSON; VEDRAL, 2001) as well as by Ollivier and Zurek (OLLIVIER; ZUREK,



26 Chapter 1. INTRODUCTION

2001), the authors concluded that entanglement does not account for all non-classical
correlations and that even separable states usually contain correlations that are not entirely
classical. Along this line, a series of discord-like correlation measures were proposed, and
studied from different aspects (DATTA, 2010; ADESSO et al., 2014; CIANCIARUSO et
al., 2015; MODI et al., 2012).

At the present time, there are many ways of understanding the fact that classical
correlations and entanglement do not exhaust all possible correlations in quantum systems
(MODI et al., 2011; CéLERI; MAZIERO; SERRA, 2011; SARANDY; OLIVEIRA; AMICO,
2012). It is important to point out that quantum correlations appear as key signatures, with
operational roles e.g. in quantum metrology (MODI et al., 2011; GIROLAMI; TUFARELLI;
ADESSO, 2013; GIROLAMI et al., 2014), entanglement activation (STRELTSOV; KAM-
PERMANN; BRUß, 2011; PIANI et al., 2011), and information encoding and distribution
(GU et al., 2012; STRELTSOV; ZUREK, 2013). The proposed discord-like quantum corre-
lation measures can be defined through a number of distinct formulations, which are based
on the relative entropy (MODI et al., 2010), Hilbert-Schmidt norm (DAKIĆ; VEDRAL;
BRUKNER, 2010; BELLOMO et al., 2012), trace-norm (PAULA; OLIVEIRA; SARANDY,
2013; NAKANO; PIANI; ADESSO, 2013), or Bures norm (SPEHNER; ORSZAG, 2013;
BROMLEY et al., 2014). All of these distinct versions of geometric quantum correlations
can be generally described by a unified framework in terms of a distance (or pseudo
distance) function (MODI et al., 2011; BRODUTCH; MODI, 2012; PAULA et al., 2014).

This thesis will examine quantum, classical, and total correlations by the trace
norm, which corresponds to the Schatten 1-norm. Initial published studies were limited
for the simple case of mixed two-qubit systems in Bell-diagonal states, were analytical
expressions have been found for quantum, classical, and total correlations (PAULA et
al., 2013b; AARONSON et al., 2013; PAULA et al., 2014). For the more general case
of two-qubit X states, only the quantum contribution for the geometric correlation had
been analytically derived (CICCARELLO; TUFARELLI; GIOVANNETTI, 2014). One of
specific objectives of this thesis was to close this gap, providing closed analytical expressions
for the classical and total correlations of arbitrary two-qubit X states. Remarkably, they
are shown to be as simple to be computed as in the case of Bell-diagonal states. These
results were published in (OBANDO; PAULA; SARANDY, 2015).

Correlations are closely related to the characterization of Markovian evolutions in
open quantum systems. Rigorously, non-Markovianity can be defined through the devia-
tion of a dynamical evolution map from a divisible completely positive trace-preserving
map (BREUER; LAINE; PIILO, 2009). This behavior is manifested both in entangle-
ment (RIVAS; HUELGA; PLENIO, 2010) and in other correlation sources (LUO; FU;
SONG, 2012; HAIKKA; JOHNSON; MANISCALCO, 2013; FANCHINI et al., 2014; HU et
al., 2012; DHAR; BERA; ADESSO, 2015), providing an approach that takes advantage of
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quantum information tools in the open-systems realm. More specifically, non-Markovianity
can be interpreted in this context as a flow of information back to the system due to its
interaction with the environment, which may imply into a non-monotonic behavior of
correlations as a function of time.

In this thesis we use the general framework in terms of a distance function with
the aim of characterizing non-Markovianity through multipartite measures of quantum,
classical, and total correlations. Our approach for non-Markovianity includes all these
measures as particular cases and characterizes the non-Markovian behavior by taking into
account the RHP mesure (RIVAS; HUELGA; PLENIO, 2010) and BLP mesure (BREUER
et al., 2016; BREUER; LAINE; PIILO, 2009). Specifically, the objective of this study
published in (PAULA; OBANDO; SARANDY, 2016) was to provide a rigorous description
of the hypotheses over local dynamical maps under which quantum, classical, and total
correlations can be used as measures of non-Markovianity.

Concerning quantum coherence, it has long been a topic of great interest in a
wide range in fields of quantum information science and quantum technologies, such as
quantum thermodynamics (GOUR et al., 2015; LOSTAGLIO; JENNINGS; RUDOLPH,
2015; LOSTAGLIO et al., 2015), reference frames (BARTLETT; RUDOLPH; SPEKKENS,
2007), quantum biology (LAMBERT et al., 2013), quantum transport (BRANDES, 2010;
KIM; CHOI, 2005) and nanoscale physics (KARLSTRÖM et al., 2011; ENGEL et al.,
2007). Inspired on the recent developments about the quantitative characterization of
quantum coherence and its fundamental character (BAUMGRATZ; CRAMER; PLENIO,
2014; STRELTSOV; ADESSO; PLENIO, 2017; HU et al., 2017), one of the aims of this
thesis is the study of quantum coherence and the investigation of the quantum coherence
as a witness of non-Markovianity of an incoherent open system dynamics through the
non-monotonic behavior of quantum coherence measures.

This thesis is organized as follows: Chapter two reviews the theory of open quantum
systems in a Markovian limit. Section 2.1 gives a brief overview of the postulates of quantum
mechanics. Section 2.3 establishes the context of the dynamics of open systems. Section 2.4
introduces the concept of quantum Markov process through quantum dynamical semigroup.
This is crucial in order to understand why the divisibility property provides a good definition
of quantum Markovianity. Section 2.5 reviews the formalism of Markovian master equations
and explains why these quantum processes can be considered as memoryless. Section 2.6
shows some examples of noise in quantum systems.

Chapter three is devoted to study of non-Markovian open systems. This chapter
is basically divided in two parts: the first part (section 3.1 and section 3.2) gives a
mathematical framework for non-Markovian dynamics by projection operator techniques.
Section 3.2 describe the non-Markovian setting used in the applications section of this
thesis. The second part, section 3.3 is related to the BPL measure.
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The fourth Chapter reviews the theory of quantum correlations. Section 4.2 is
devoted to study of the quantum discord. Section 4.2 is related with the Geometric
quantum correlation measures. Section 4.4 discuss in a general framework the criteria for
a proper measure of correlation.

Chapter five present our original results about quantum correlations for X states.
Section 5.1 describes the characterization of X states. Section 5.2 shows one of our main
results of this thesis, the analytical expression for geometrical classical and total correlations
for two-qubits X states. The analytical expressions for the classical correlation of X states
can be applied as a powerful resource to characterize the open-system dynamics in rather
general environments. Therefore, in section 5.3 we illustrate the application in a process
known like emergence of the pointer basis (ZUREK, 2003). This is exploited in a general
scenario of X states, for either Markovian and non-Markovian evolutions.

Chapter six is concerned with ours results about the characterization of the memory
effects in non-Markovian systems. Section 6.1 reviews briefly the characterization of non-
Markovianity. Section 6.2 present our main results about the characterization of non-
Markovianity in a general framework by multipartite measures of quantum, classical and
total correlations. Section 6.3 illustrate some applications considering the dynamics of the
trace-distance correlations in qubit systems under either local dephasing or generalized
amplitude damping.

Chapter seven shows our results about quantum coherence. Section 7.1 reviews
the quantum coherence measurement, emphasize in the quantum coherence for one-qubit
and basis independent definitions. Section 7.2 discusses the connections of quantum
coherence with quantum correlations measurements. Section 7.5 discuss the quantifying
non-Markovinity by quantum coherence.

Finally, Chapter eight is devoted to conclusions of our thesis and to outline some
problems which remain open and possible future research.
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2 OPEN QUANTUM SYSTEMS

The aim of this chapter is to review some of the most relevant concepts of the theory
of open quantum systems which will be employed throughout the entire thesis. Roughly
speaking, the perfect isolation of a particular quantum system from its surrounding is
impossible (BREUER; PETRUCCIONE, 2002). In reality, quantum systems are influenced
by its surroundings. In this sense, the theory of open quantum systems is useful for
describing quantum systems where the influence of the environment cannot be neglected.
Unlike the case of closed systems, system-environment interactions cannot be represented
in terms of a unitary time evolution. The system state is properly described by the density
matrix formalism (see section 2.1). In the simplest case of the dynamics of an open system,
the density matrix evolution is given by a quantum memoryless Markov master equation
whose unitary part contains the dynamics which are given by the system Hamiltonian and
the effect of the environment on the system is described by the non-unitary dissipator.

This chapter is organized as follows. Section 2.1 describes the postulates of quantum
mechanics. Section 2.2 introduce briefly the quantum qubit concept. Section 2.3 presents
a brief discussion about quantum open systems. Section 2.4 introduces the concepts of
a quantum dynamical semigroup and some basic facts of quantum memoryless Marko-
vian open systems. Section 2.5 presents the theory of quantum master equations in the
Markovian regime. Finally, section 2.6 presents a discussion about quantum noise.

2.1 Postulates of quantum mechanics

In order to discuss the dynamic of open quantum systems, in this section we shall
first briefly discuss the postulates of quantum mechanics that let describe the behavior of
quantum systems (BALLENTINE, 1998; NIELSEN; CHUANG, 2000; BLUM, 2012).

Postulate 1. Associated to any physical system is a Hilbert space H1 of some dimension
D known as the state space of the system. The system is completely described by its density
operator, which is a positive operator ρ with trace one, acting on the state space of the
system.

Thereby, we consider a mixture of independently prepared states |ψn〉 (n = 1, 2, ...)
with statistical weights Wn. The density operator describing the mixture is then defined

1 Complete and complex vector space with inner product.
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as (NIELSEN; CHUANG, 2000; BLUM, 2012):

ρ =
∑
n

Wn|ψn〉〈ψn|, (2.1)

where the sum extends over all states present in the mixture. The operator Eq. (2.1) can
be expressed in matrix form in the {|φn〉} representation2 by (BLUM, 2012):

ρ =
∑
nm′m

Wna
(n)
m′ a

(n)∗
m |φm′〉〈φm|, (2.2)

where |ψn〉 = ∑
m′ a

(n)
m′ |φm′〉. The terms density operator and density matrix have essentially

the same meaning and are used interchangeably. A density operator satisfies the following
properties (BLUM, 2012):

• ρ is Hermitian, that is, the density matrix satisfies the condition:

〈φi|ρ|φj〉 = 〈φj|ρ|φi〉∗. (2.3)

• Since, the probability of finding the system in the state |ψn〉 isWn and the probability
that |ψn〉 can be found in the state |φm〉 is |a(n)

m |2, the probability of finding the
system in the state |φm〉 is given by the diagonal element:

ρmm =
∑
n

Wn|a(n)
m |2. (2.4)

This relation gives a physical interpretation of the diagonal elements of ρ. They are
the total probabilities of measurement outcomes, taking into account the composition
of the given mixture.

• ρ is positive semidefinite, this is 〈φ|ρ|φ〉 ≥ 0 for any non-zero state |φ〉.

• The trace of ρ is one (trρ = 1) independent of the representation.

• The expectation value of any operator Q is given by:

〈Q〉 = tr(ρQ). (2.5)
2 The particular states |φn〉 are termed basis states and the state |ψ〉 =

∑
n an|φn〉 is said to be written

in the {|φn〉} representation. We always assume that the basis states are orthonormal:

〈φn|φm〉 = δnm,

and complete: ∑
n

|φn〉〈φn| = 1.
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This relation is an important result. Since the expectation value of any operator
can be obtained by use this equation, the density matrix contains all physically
significant information on the system.

• A quantum system whose state |φ〉 is known exactly is said to be in a pure state.
The density operator for a pure state is given by:

ρ = |ψ〉〈ψ|. (2.6)

Otherwise, ρ is in a mixed state; it is said to be a mixture of the different pure states
in the ensemble for ρ (NIELSEN; CHUANG, 2000). The sufficient and necessary
condition that a given density matrix describes a pure state (BLUM, 2012) is:

tr(ρ2) = (trρ)2 = 1, (2.7)

while a mixed state satisfies

tr(ρ2) < 1. (2.8)

Postulate 2. The evolution of density operator ρ is given by the von Neumann equation
(also known as the Liouville–von Neumann equation) (BLUM, 2012).

The evolution of quantum mechanical states is governed by Schrödinger’s equation:

i~
∂|ψ(t)〉
∂t

= H(t)|ψ(t)〉, (2.9)

where the Hamiltonian H depends explicitly on the time, ~ is the Planck’s constant, for
the remained of this thesis we will assume that the factor ~ is absorbed into H, setting
~ = 1. In this equation the solutions are not obtained by a simple way. Though, the
solution may be generalized by introducing the time evolution operator U(t):

|ψ(t)〉 = U(t)|ψ(0)〉, (2.10)

by substitution of this equation into the Schrödinger equation (2.9) we obtain:

i
∂U |ψ(0)〉

∂t
= H(t)U |ψ(0)〉, (2.11)

since this equation holds for any state |ψ(0)〉 this condition can be written as an operator
equation:

i
∂U(t)
∂t

= H(t)U(t). (2.12)
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In order to ensure that the system at time t = 0 is in the state |ψ(0)〉, it is necessary
to impose the initial condition U(0) = I, where I is the identity operator. Consequently
U(0)†U(0) = I. For these conditions follows that U †U must be the identity operator.
Remarkably, if H is time independent we obtain by formally integrating Eq. (2.11):

U(t) = e−iHt. (2.13)

This operator contains all information on the time evolution of any state |ψ(t)〉 and hence
also on the dynamics of the system. Let us now consider that at the time t = 0 a certain
mixture is represented by the density operator (BLUM, 2012):

ρ(0) =
∑
n

Wn|ψn(0)〉〈ψn(0)|. (2.14)

The states |ψn(0)〉 vary in time according to Eq. (2.13) and, therefore the density operator
becomes a function of time:

ρ(t) = U(t)ρ(0)U(t)†, (2.15)

differentiating this equation with respect to t and applying Eqs. (2.12), we obtain:

i
∂ρ(t)
∂t

= [H(t), ρ(t)], (2.16)

with the commutator:
[H(t), ρ(t)] = H(t)ρ(t)− ρ(t)H(t).

This differential equation is called the Liouville equation. The time evolution of a density
operator can be determined either from Eq. (2.15) or equivalently, from Eq. (2.16).

Postulate 3. Quantum measurements are described by a collection {Mm} of measurement
operators. If the state of the quantum system is ρ immediately before the measurement
then the probability that result m occurs is given by (BLUM, 2012; NIELSEN; CHUANG,
2000):

p(m) = tr(M †
mMmρ), (2.17)

and the state of the system after the measurement is:

MmρM
†
m

tr(M †
mMmρ)

. (2.18)

The measurement operator satisfy the completeness equation ∑M †
mMm = I.

Postulate 4. The state space of a composite physical system H is the tensor product of
the state space {Hi} of the component physical systems (BLUM, 2012). If we have systems
labeled from 1 to n and system i is prepared in the state ρi, the state of the total system is
ρ1 ⊗ ...⊗ ρn.
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The composite system HA ⊗HB is represented by the density operator ρAB. The
state of system A when considered alone is given by its reduce density operator ρA = trBρAB,
where the partial trace operator trB is defined by:

trB(R⊗ S) = (I⊗ tr)(R⊗ S) = Rtr(S), ∀R ∈ HA, ∀S ∈ HB. (2.19)

2.2 Quantum bits
Let us focus on the general density matrix for the case of a qubit. The unit of

quantum information is called the “quantum bit” or qubit in analogy with the classical
binary bit, which is the indivisible unit of classical information (NIELSEN; CHUANG,
2000; PRESKILL, 1998). The state of a qubit is a vector in a two-dimensional Hilbert space,
two possible states for a qubit are the states |0〉 and |1〉. These states form an orthonormal
basis {|0〉, |1〉}, also known as computational basis. Therefore, the most general normalized
state for a qubit is given by (NIELSEN; CHUANG, 2000; PRESKILL, 1998):

|ψ〉 = a|0〉+ b|1〉, (2.20)

where a, b are complex numbers with |a|2+|b|2 = 1. Physically speaking, a qubit corresponds
typically to the two levels of some microscopic system such as a polarized photon, a trapped
ion, a nuclear spin, etc (PRESKILL, 1998; NIELSEN; CHUANG, 2000; ORSZAG, 2007).
In this way, Eq. (2.20) can be interpreted as general spin state of an object with spin-1/2.
Then |0〉 and |1〉 are the spin up | ↑〉 and spin down | ↓〉 states along a particular axis such
as the z-axis 3. The state of a spin pointing in the (θ, φ) direction is given by:

|ψ(θ, φ)〉 =
 e−iφ/2 cos θ

2

e+iφ/2 sin θ
2

 . (2.21)

Considering the general density matrix for the case of a qubit. The most general self-adjoint
2 × 2 matrix has four real parameters, and can be expanded in the basis {I, σx, σy, σz},
where the corresponding Pauli matrices are given by:

σx =
 0 1

1 0

 , σy =
 0 −i
i 0

 , σz =
 1 0

0 −1

 , I =
 1 0

0 1

 . (2.22)

Consequently, it is possible to write ρ as follows (PRESKILL, 1998; NIELSEN; CHUANG,
2000; BLUM, 2012):
3 In the Pauli representation the state vectors are represented by two-dimensional column vectors:

| ↑〉 =
(

1
0

)
and | ↓〉 =

(
0
1

)
.
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ρ(~P ) = 1
2(I + ~P · ~σ),

≡ 1
2(I + Pxσx + Pyσy + Pzσz),

= 1
2

 1 + Pz Px − iPy
Px + iPy 1− Pz

 . (2.23)

The components of {Pi} define the Bloch vector. Which represents a vector that satisfies
|~P | ≤ 1, this is a necessary and sufficient condition for ρ to have non-negative eigenvalues.
The density matrix Eq. (2.23) describes statistical mixture, while a Bloch vector satisfying
|~P | = 1 represents a pure state. There exist a one-to-one correspondence between the
possible density matrices of a single qubit and the points on the unit 3-ball 0 ≤ |~P | ≤ 1,
known as the Bloch sphere. For the case of a single qubit Eq. (2.21), we obtain the pure
state:

ρ(θ, φ) = |φ(θ, φ)〉〈(θ, φ)|,

= 1
2(I + n̂ · ~σ), (2.24)

where n̂ = (sin θ cosφ, sin θ sinφ, cos θ). From the property 1
2tr(σiσj) = δij, we obtain:

〈n̂ · ~σ〉~P = tr(n̂ · ρ(~P )) = n̂ · ~P . (2.25)

Hence the vector ~P in Eq. (2.23) parametrizes the polarization of the spin. It is possible
to determine the complete density matrix ρ(~P ) by measuring 〈n̂ · ~σ〉 along each of three
linearly independent axes.

2.3 Dynamics of open systems
Closed quantum systems are ideal quantum systems which are perfectly isolated

from the environment. These states follow a unitary dynamics given by Eq. (2.16). Con-
versely, an open system is a quantum system S which is coupled to another quantum system
E called the environment, where the open system dynamics is non-unitary. The combined
total system S + E generally is assumed closed. The interaction with the surroundings
and the internal dynamics cause the change of the state of the subsystem S (BREUER;
PETRUCCIONE, 2002). The Hilbert space of the total system S + E is given by the
tensor product space

HSE = HS ⊗HE, (2.26)

where HS and HE denote the spaces of the S and E, respectively. The states of the
total system ρSE are physical states that preserve the unit trace and are positive. The
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corresponding states of subsystem S and E are obtained by partial trace over HS and HE,
this is, ρS = trEρSE and ρE = trSρSE. The total Hamiltonian of the closed total system
S + E has the general form 4

H(t) = HS ⊗ IE + IS ⊗HE +HI(t), (2.27)

where HS is the Hamiltonian of the open system S, HE is the Hamiltonian of the
environment, and HI is the Hamiltonian describing the interaction between the system
and the environment. A schematic representation is illustrated in Fig. 1.

Figure 1 – An open quantum system described by the Hilbert space HS and the Hamilto-
nian HS, which is coupled to an environment with Hilbert space HE and the
Hamiltonian HE through an interaction Hamiltonian HI .

In the context of the open system theory, the term environment is used for the
system coupled to the open system S. The term reservoir refers to an environment with an
infinite number of degrees of freedom such that the frequencies of the reservoir modes form
a continuum and the term bath or heat bath is used for a reservoir which is in thermal
equilibrium state (BREUER; PETRUCCIONE, 2002). The observables referring to S are
all of the form A ⊗ IE, where A is an operator acting on the Hilbert space HS and IE
denotes the identity in the Hilbert space HE. The expectation values of all observables
acting on the open system’s Hilbert space are

〈A〉 = trS{AρS}. (2.28)

The time evolution operator of the total system is given by (BREUER; PETRUCCIONE,
2002):

U(t) = exp[−iHt], (2.29)
4 Here is assumed time independent Hamiltonians. Nevertheless, all concepts discussed here are also

valid for time-dependent Hamiltonians.
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and the dynamic is obtained from:

ρSE(t) = U(t)ρSE(0)U †(t). (2.30)

Thus, the reduced density operator ρS at any time t ≥ 0 is obtained from the density
matrix ρ(t) by mean of

ρS(t) = trE{U(t)ρSE(0)U †(t)}. (2.31)

2.4 Quantum Markov process: Quantum dynamical semigroups
The most important property of a classical, homogeneous Markov process is the

semigroup property which is usually formulated in terms of the differential Chapman-
Kolmogorov equation (see Appendix A) involving a time-independent generator. The
extension of this property to quantum mechanics leads to the concepts of a quantum
dynamical semigroup and a quantum Markov process (BREUER; PETRUCCIONE, 2002).
In this section, we show this concept.

An important concept in the theory of open quantum systems is that of a dynamical
map (BREUER; PETRUCCIONE, 2002). Let us suppose that at the time t = 0 the state
of the total system S + E is given by an uncorrelated product state

ρSE(0) = ρS(0)⊗ ρE, (2.32)

where ρS(0) is the initial state of the reduced system S and ρE represents a fixed state of
the environment. The expression for the reduced open system state at any time t ≥ 0 may
be written in the form:

ρS(t) = trE{U(t, 0)[ρS(0)⊗ ρE]U †(t, 0)}. (2.33)

This equation defines a linear map (see Fig. 2.):

Φ(t) : S(HS)→ S(HS), (2.34)

on the open system’s state space S(HS) which maps any initial open system state ρS(0)
to the corresponding open system state ρS(t) at time t:

ρS(0)→ ρS(t) = Φ(t)ρS(0). (2.35)

Here Φ(t) is called a quantum dynamical map and can be characterized completely in
terms of operators pertaining to the open system of the Hilbert space HS . The dynamical
map Φ(t) maps physical states to physical states, i.e, it preserves the hermiticity and
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ρ(0) = ρS(0)⊗ ρE ρ(t) = U(t, 0)[ρS(0)⊗ ρE]U(t, 0)†

ρS(0) ρS(t)

trE

unitary evolution

dynamical map Φt

trE

Figure 2 – Schematic construction of dynamical map.

the trace of operators, and it maps positive operators to positive operators (BREUER;
PETRUCCIONE, 2002).

Let us assume that |ej〉 is an orthonormal basis for the state space of the environ-
ment, and let ρE = |e0〉〈e0| be the initial state of the environment5. Thus, Eq. (2.33) can
be rewritten as (NIELSEN; CHUANG, 2000)

ρS(t) =
∑
j

〈ej|U(t, 0)[ρS(0)⊗ |e0〉〈e0|]U †(t, 0)|ej〉, (2.36)

ρS(t) =
∑
j

Kj(t)ρS(0)K†j (t),

where Kj(t) ≡ 〈ej|U(t, 0)|e0〉 is an operator on the state space of the principal system. Eq.
(2.36) is known as the operator sum representation of Φ(t). The operators {Kj} are known
as Kraus operators (KRAUS, 1983). A linear map Φ(t) that admits a Kraus representation
satisfies the next set of axiomatic properties (NIELSEN; CHUANG, 2000; KRAUS, 1983):

• First, tr[Φ(t)ρ] = 1, for all ρ. The Kraus operators satisfy the completeness relation,
this important constraint arises from the requirement that the trace of Φ(t)ρ(0) be
equal to one:

1 = tr(Φ(t)ρ(0)) = tr(
∑
j

KjρK
†
j ), (2.37)

= tr(
∑
j

K†jKjρ).

Since this relationship is true for all ρ, we must have

∑
j

K†jKj = I, (2.38)

for all t. Therefore, the map is a trace-preserving map, since Φ(t) provides a complete
description of the quantum process.

5 There is no loss of generality in assuming that the environment starts in a pure state.
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• Second, Φ(t) is a convex linear map on the set of density matrices, that is, for
probabilities {pi},

Φ(t)(
∑
i

piρi) =
∑
i

piΦ(t)ρi. (2.39)

• Third, Φ(t) is a completely positive (CP) map. That is, if Φ(t) maps density operators
of system Q1 to density operators of system Q2, then Φ(t)A must be positive for any
positive operator A. Furthermore, if we introduce an extra system R of arbitrary
dimensionality, it must be true that (I ⊗ Φ(t))(A) is a positive for any positive
operator A on the combined system RQ1, where I denotes the identity map on
system R. Complete positivity is a stronger condition than positivity (BREUER et
al., 2016). Positivity of a map Φ guarantees that physical states ρS are mapped to
physical states ΦρS, this means that probabilities stay positive under the action of
the map. The stronger property of CP of Φ ensures not only that all physical states
of S are mapped to physical states of S, but also that all physical states of S +R

are mapped to physical states of R + S 6.

Thus, we conclude that a dynamical map Φ(t) represents a convex-linear, completely
positive and trace-preserving (CPTP) quantum operation. If now the parameter t varies
over some time interval from 0 to T , we get a one-parameter family of the dynamical maps
(BREUER et al., 2016),

Φ = {Φ(t)|0 ≤ t ≤ T,Φ(0) = I}, (2.40)

where I denotes the unit map, and ρE(0) is still keep fixed. This family describes the time
evolution of the open system over the time interval [0, T ].

The memory effects in the reduced system dynamics can be neglected if the
characteristic time scales over which the reservoir correlation functions decay are much
smaller than the characteristic time scales of the systematic system evolution. This
Markovian behaviour can be formalized with the help of the semigroup7 property (BREUER;
PETRUCCIONE, 2002):

Φ(t1)Φ(t2) = Φ(t1 + t2), t1, t2 ≥ 0. (2.41)

2.5 The Markovian quantum master equation
In this section we describe the theory of quantum master equations, which is a

powerful tool complementary to the quantum operators formalism. This approach describes
6 Here we assume the situation where ρS describes the state of some subsystem S of a large system

S +R
7 The term semigroup serves to indicate that the family {Φ(t)|0 ≤ t ≤ T} is, in general, not a full group

since the parameter t is restricted to non-negative values.
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the quantum noise in continuous time using differential equations. The quantum dynamical
semigroup defined in Eq. (2.41) can be presented in exponential form (LINDBLAD, 1976):

Φ(t) = exp(Lt), t ≥ 0, (2.42)

with a generator L in Lindblad form. For two arbitrary times, t1 and t2, we define the
two-parameter family of dynamical maps as:

Φ(t2, t1) := Φ(t2 − t1) = exp[L(t2 − t1)]. (2.43)

Considering an intermediate time τ , with t1 ≤ τ ≤ t2, and using the semigroup property
given by Eq. (2.41), we obtain:

Φ(t2, t1) = Φ(t2 − τ + τ − t1) = Φ(t2, τ)Φ(τ, t1). (2.44)

Thus, the map Φ(t2, t1) is CP-divisible, i.e., divisible in terms of CP maps for an arbitrary
time τ , as consequence here of the semigroup property (BREUER et al., 2016; BREUER;
PETRUCCIONE, 2002; BENATTI; CHRUŚCIŃSKI; FILIPPOV, 2017).

The representation Eq. (2.42) leads to the first-order differential equation for the
reduced density matrix of the open system,

d

dt
ρS(t) = LρS(t), (2.45)

which is known as the Markovian quantum master equation (BREUER; PETRUCCIONE,
2002). The generator L of the semigroup represents a super-operator8. In order to get
the general form for the generator L, it will be necessary to consider a finite-dimensional
Hilbert space HS (dimHS = N). In general terms the spectral decomposition of the density
ρE of the environment is given by (BREUER; PETRUCCIONE, 2002):

ρE =
∑
α

λα|φα〉〈φα|, (2.46)

where |φα〉 forms an orthonormal basis in HE and the λα are non-negative real number
with ∑α λα = 1. Then, using the definition (2.33) we get:

Φ(t)ρS =
∑
α,β

Wα,β(t)ρS(0)W †
α,β(t), (2.47)

where the operators Wα,β belong to HS and are given by:

Wα,β(t) =
√
λβ〈φα|U(t, 0)|φβ〉. (2.48)

We continue in this fashion choosing a complete basis of orthogonal operators Fi, with
i = 1, 2, ...., N2, that satisfying trS{F †i Fj} = δij. It is convenient to choose traceless
8 A super-operator is a linear operator acting on a vector space of linear operators.
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basis operators (namely trSFi = 0 for i = 1, 2, ..., N2 − 1), except one which is given by
FN2 = (1/N)1/2IS. Applying the completeness relation to each of the operators Wα,β(t),
we obtain (BREUER; PETRUCCIONE, 2002) 9:

Wα,β =
N2∑
i=1

Fi(Fi,Wα,β). (2.50)

Therefore the action of the dynamic map Φ(t) can be written as:

Φ(t)ρS =
N2∑
i,j=1

cij(t)FiρSF †j , (2.51)

where
cij(t) ≡

∑
αβ

(Fi,Wαβ)(Fi,Wαβ)∗. (2.52)

Using Eqs. (2.51), the generator L defined in Eq. (2.42) is given by:

N2−1∑
i=1
LρS = lim

ε→0

1
ε
{Φ(ε)ρS − ρS}

= lim
ε→0
{ 1
N

cN2N2(ε)−N
ε

ρS + 1√
N

N2−1∑
i=1

(ciN2(ε)
ε

FiρS + cN2i(ε)
ε

ρSF
†
i )

+
N2−1∑
i,j=1

cij(ε)
ε

FiρSF
†
j }. (2.53)

The coefficients aij can be defined by:

aN2N2 = lim
ε→0

cN2N2(ε)−N
ε

, (2.54)

aiN2 = lim
ε→0

ciN2(ε)
ε

, i = 1, ..., N2 − 1, (2.55)

aij = lim
ε→0

cij(ε)
ε

, i, j = 1, ..., N2 − 1. (2.56)

Accordingly, we can write the generator in the form (BREUER; PETRUCCIONE, 2002):

LρS = −i[H, ρS] + {G, ρS}+
N2−1∑
ij=1

aijFiρSF
†
j . (2.57)

9 The scalar product of the operators A and B is given by:

(A,B) ≡ tr{A†B}. (2.49)
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where the following quantities have been used:

F = 1√
N

N2−1∑
i=1

aiN2Fi, (2.58)

and
G = 1

2N aN2N2IS + 1
2(F † + F ), (2.59)

as well as the Hermitian operator

H = 1
2i(F

† − F ). (2.60)

The semigroup is trace-preserving for all density matrices ρS. Then,

G = −1
2

N2−1∑
ij=1

aijF
†
j Fi. (2.61)

It follows that:

LρS = −i[H, ρS] +
N2−1∑
ij=1

aij(F †j ρSFi −
1
2{F

†
j Fi, ρS}). (2.62)

As the coefficient matrix a = (aij) is positive it can be diagonalized through an appropriate
unitary transformation u,

uau† =


γ1 0 ... 0
0 γ2 ... 0
0 0 . . . 0
0 0 ...γN2−1

 ,

where the eigenvalues γi are non-negative. Thus, defining the set of operators Ak by:

Fi =
N2−1∑
k=1

ukiAk, (2.63)

the following diagonal form of the generator is obtained (BREUER; PETRUCCIONE,
2002):

LρS = −i [HS, ρS] +
∑
k

γk

(
AkρSA

†
k −

1
2A
†
kAkρS −

1
2ρSA

†
kAk

)
. (2.64)

This is the most general form for the generator of a quantum dynamical semigroup. The
first term represents the unitary dynamics generated by the Hamiltonian HS. The operators
Ak are called Lindblad operators and the corresponding density matrix equation (2.45) is
called the Lindblad equation. The non-negative quantities γk have the dimension of an
inverse time where Ak are taken to be dimensionless. The generator is invariant under the
following transformations:
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1. Unitary transformations of the set of Lindblad operators,

√
γiAi →

√
γ′iA

′
i =

∑
i

uij
√
γjAj, (2.65)

where uij is a unitary matrix.

2. Inhomogeneous transformations

Ai → A′i = Ai + ai, (2.66)

H → H ′ = H + 1
2i
∑
j

γj
(
a∗jAj − ajA

†
j

)
+ b.

where the ai are complex numbers and b is real.

Because of the second invariance property it is always possible to choose traceless
Lindblad operators.

A time-dependent generalization of Eq. (2.64) can be written in the form (BREUER
et al., 2016; BREUER; PETRUCCIONE, 2002):

d

dt
ρ(t) = K (t)ρ(t), (2.67)

where K (t) is a time-dependent generator. This generator preserves the Hermiticity and
the trace of the density matrix, and can be written as:

K (t)ρS = −i [HS(t), ρS]

+
∑
k

γk(t)
(
Ak(t)ρSA†k(t)−

1
2A
†
k(t)Ak(t)ρS −

1
2ρSA

†
k(t)Ak(t)

)
, (2.68)

where the Hamiltonian H(t), the Lindblad operators Ak(t) and the relaxation rates γk(t)
depend on time. The generator Eq. (2.68) is in the Lindblad form for each fixed t ≥ 0, if and
only if all rates are positive, γk(t) ≥ 0 (BREUER et al., 2016; BREUER; PETRUCCIONE,
2002). Thus, processes with γk(t) ≥ 0 are defined as time-dependent Markovian even
though the dynamical map Φ(t2, t1) does not represent a semigroup, in general (BREUER
et al., 2016). A two-parameter family of CPTP maps Φ(t2, t1) can be defined by:

Φ(t2, t1) = T← exp[
∫ t2

t1
dt′K (t′)] (2.69)

where T← is the chronological time-ordering operator. Time dependent generators no longer
lead to a dynamical semigroup. Then, CP-divisibility is not ensured for the dynamical
map Φ(t2, t1) in Eq. (2.69). It is achieved, e.g., if γk(t) ≥ 0 for all t, since this implies that
the generator has the Lindblad form at any fixed time t. However, in general, Eq. (2.69)
may violate CP-divisibility.



2.6. Quantum noise 43

To summarize: it is important to highlight that the Markovian dynamics is described
for dynamical maps satisfying the semigroup condition Eq. (2.41) or, more generally, the
CP-divisibility requirement. This may be violated in general for time-local master equations
with time-dependent generators. We observe that, recently, other approaches for non-
Markovianity in the quantum realm have appeared, such as (POLLOCK et al., 2018).
These definitions go beyond the scope of this thesis.

2.6 Quantum noise
In the following subsections we show some examples of open quantum system

evolution that can be described in terms of the Kraus representation. They are important
in understanding the practical effects of noise in quantum systems.

Depolarizing channel

The depolarizing channel is an important type of quantum noise. It is possible to
describe this channel saying that, with probability 1− p the qubit is left untouched, while
with probability p an “error” occurs. Using the orthonormal basis {|0〉, |1〉} for the qubit,
the error can be of any one of three types (PRESKILL, 1998):

• Bit-flip (BF) error: |0〉 → |1〉 & |1〉 → |0〉 or |ψ〉 → σx|ψ〉 with σx =
0 1

1 0

.

• Phase-flip (PF) error: |0〉 → |0〉 & |1〉 → −|1〉 or |ψ〉 → σz|ψ〉 with σz =
1 0

0 −1

.
• Bit-phase-flip (BPF): |0〉 → +i|1〉 & |1〉 → −i|0〉 or |ψ〉 → σy|ψ〉 with σy =0 −i

i 0

 .
If an error occurs, then ψ evolves to an ensemble of the three states σx|ψ〉, σy|ψ〉, σz|ψ〉, all
occurring with equal likelihood. The depolarizing channel can be represented by a unitary
operator acting on HSE = HS ⊗HE where HE is a four dimensional environment. The
unitary operator USE acts according to

USE|ψ〉S|0〉E →
√

1− p|ψ〉S|0〉E +
√
p

3[σx|ψ〉S|1〉E + σy|ψ〉S|2〉E + σz|ψ〉S|3〉E].

The environment evolves to one of four mutually orthogonal states that “keep a record”
of what transpired (PRESKILL, 1998); We would know the error if we measured the
environment in the basis {|k〉, k = 0, 1, 2, 3} (and we would be able to intervene and reverse
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the error). The Kraus representation is given by the evaluation of the trace partial over
the environment in the {|k〉E}. Then,

Kk = 〈k|USE|0〉,

K0 =
√

1− pI, K1 =
√
p

3σx, K2 =
√
p

3σy, K3

√
p

3σz. (2.70)

A general initial density matrix ρS of the qubit evolves according to the equation (NIELSEN;
CHUANG, 2000):

ρ→ Φρ =
∑
a

KaρK
†
a = (1− p)ρ+ p

3(σxρσx + σyρσy + σzρσz). (2.71)

The effect of the depolarizing channel can be seen in the Bloch representation, where the
density matrix for a single qubit is given by Eq.(2.23). If we suppose rotation in ~n = ~z,
then ρ = 1

2(I + Pzσz), we have

ρ′ = 1
2[I + (1− 4

3p)Pzσz], (2.72)

or P ′z = (1− 4
3p)Pz. From the rotational symmetry, we see that P ′z = (1− 4

3p) irrespective
of the direction in which P points (PRESKILL, 1998). Clearly, the depolarizing process
reduces the spin polarization by the factor (1− 4

3p), in this case the Bloch sphere contracts
uniformly under the action of the channel, the effect of the depolarizing channel is illustrated
in Figure 3a).

Amplitude damping

An important application of quantum operations is the description of energy
dissipation effects due to loss of energy from a quantum system, the amplitude damping
(AD) noise describes the general behavior of these kinds of processes (NIELSEN; CHUANG,
2000). For the characterization of the AD effect is considered the model of the decay of an
excited state of a two-level atom due to spontaneous emission of a photon (PRESKILL,
1998). In this case, the information about the initial state of the atom is obtained by
the detection of the emitted photon (observing the environment). The atomic ground
state is denoted by |0〉A and the exited state of interest by |1〉A. The environment is
the electromagnetic field, assumed initially to be in its vacuum state |0〉E. There is a
probability p that after a time the excited state has decayed to the ground state, and
a photon has been emitted, then the environment has made the transition from the no
photon state |0〉 to one photon state |1〉E. The unitary transformation that describes this
evolution is given by:
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|0〉A ⊗ |0〉E → |0〉A ⊗ |0〉E, (2.73)

|1〉A ⊗ |0〉E →
√

1− p|1〉A ⊗ |0〉E +√p|0〉A ⊗ |1〉E,

and the Kraus operators are obtained by the evaluation of the partial trace over the
environment in the basis {|0〉E, |1〉E}, which are:

K0 =
1 0

0
√

1− p

 , K1 =
0 √

p

0 0

 , (2.74)

where the operator K1 induces a “quantum jump”, the decay from |1〉A to |0〉A, and K0

describes how the states evolves if no jump occurs. The density matrix evolves as:

Φ(ρ) = K0ρK
†
0 +K1ρK

†
1 (2.75)

=
ρ00 + pρ11

√
1− pρ01√

1− pρ10 (1− p)ρ11

 .
Considering that the decay occurs with probability p = Γδt << 1 in a small-time interval
δt, where Γ is the spontaneous decay rate per unit time. The density operator after time
t = nδt is found applying the channel n times in succession. The ρ11 matrix element then
decays as ρ11 → (1− p)nρ11, the probability that the excited state persists for time t is
(1− Γδt)t/δt ≈ e−Γt. Hence, we have:

ρ(t) =
ρ00 + (1− e−Γt)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11

 . (2.76)

By the time that t → ∞, the atom is in its ground state with high probability ρ00 ≈ 1.
The effect of AD can be visualized in the Bloch representation by the Bloch vector
transformation (NIELSEN; CHUANG, 2000)

(rx, ry, rz)→ (rx
√

1− p, ry
√

1− p, p+ rz(1− p)), (2.77)

where every point in the unit ball goes towards the a fixed point at the north pole, where
|0〉 is located. This is shown in the Figure 3b).

In the case of AD noise is assumed that the environment start in the |0〉 state,
this can be seen as the effect of dissipation to an environment at zero temperature. For a
quantum process that evolves in a dissipative processes at finite temperature, the process
is called generalized amplitude damping (GAD), and it is defined by the follow Krauss
operators (NIELSEN; CHUANG, 2000):

K0 =
√
λ

1 0
0
√

1− p

 , K1 =
√
λ

0 √
p

0 0

 ,
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K2 =
√

1− λ
√1− p 0

0 1

 , K3 =
√

1− λ
 0 0
√
p 0

 , (2.78)

where GAD describes the “T1” relaxation process due to coupling of spins to their surround-
ing lattice, a large system which is in thermal equilibrium at a temperature often much
higher than the spin temperature (NIELSEN; CHUANG, 2000). The effect of GAD in the
Bloch representation can be seen through of the Bloch vector transformation (NIELSEN;
CHUANG, 2000):

(rx, ry, rz)→ (rx
√

1− p, ry
√

1− p, p(2γ − 1) + rz(1− p)). (2.79)

Certainly, AD and GAD differ only in the location of the fixed point of the flow, the
final state is along the z axis, at the point (2p− 1), which is a mixed state (NIELSEN;
CHUANG, 2000).

Phase Damping

Phase damping (PD) also called dephasing channel, is a noise process that is
uniquely in quantum mechanics, which describes the loss of quantum information without
loss of energy (NIELSEN; CHUANG, 2000). In this case, the environment “scatters” off
the qubit occasionally with probability p, being kicked into the state |1〉E if A is in the
state |0〉A and into the state |2〉E if A is in the state |1〉A. Unlike the depolarized channel,
this channel picks out a preferred basis for qubit A. This evolution is described by a
unitary transformation (PRESKILL, 1998)

|0〉A →
√

1− p|0〉A ⊗ |0〉E +√p|0〉A ⊗ |1〉E, (2.80)

|1〉A →
√

1− p|1〉A ⊗ |0〉E +√p|1〉A ⊗ |2〉E.

The Kraus operators are obtained through the evaluation of the partial trace over E in
the {|0〉E, |1〉E, |2〉E} basis, then:

K0 = (
√

1− p)I, K1 = √p
1 0

0 0

 , K2 = √p
0 0

0 1

 . (2.81)

One representation in two Kraus operators is possible, then:

K0 =
√
p

2 (I + σz), K1 =
√
p

2 (I− σz). (2.82)

The density matrix evolve as

ρ→ Φρ =
∑
a

KaρK
†
a = (1− 1

2p)ρ+ 1
2pσzρσz. (2.83)
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In this alternative description, nothing happen to a qubit with probability (1 − 1
2p) or

with probability 1
2p the qubit is flipped by the σz operation. For the dephasing acting

continuously in the time, we are going to suppose that the probability of scattering event
per unit time is Γ, so that p = Γδt� 1 for a brief time interval δt. The evolution over a
time t = nδt is governed by Φn. Thus, the off-diagonal terms in the density operator is
given by (1− p)n = (1− Γt/n)n → e−Γt. Therefore, for initial pure state α|0〉+ β|1〉. At
long times, this state reduce to:

ρ(t) =
 |α|2 e−Γtαβ∗

e−Γtα∗β |β|2

 t→∞−→ ρ(∞) =
|α|2 0

0 |β|2

 , (2.84)

so any phase coherence is lost and the state reduces to a classical, incoherent superposition
of populations. The process is called dephasing, because in this process phase coherence is
lost, but the energy/population is conserved. The effect of the dephasing channel on the
polarization of the qubit is:

ρ(~P ) = 1
2(I + ~P .~σ)→ ρ(~P ′), (2.85)

where P ′1,2 = (1 − p)P1,2, and P ′3 = P3. The Bloch sphere shrinks to a spheroid aligned
with the z axis. Under continuous dephasing, the sphere is uniformly contracted in the
x− y plane, degenerating to the z axis in the limit of large Γt. The effect of the dephasing
channel is showed in Figure 3c).

Figure 3 – Qubit under decoherence processes are illustrated with a corresponding shrink-
ing of the Bloch sphere (ligthpurple) for the cases of : a) The effect of the
depolarizing channel on the Bloch sphere, for p = 0.3. The entire sphere con-
tracts uniformly as a function of p. b) The effect of the AD channel on the
Bloch sphere, for p = 0.7. The entire sphere shrinks towards the |0〉 state, c)
The effect of the PD channel on the Bloch sphere, for p = 0.7. The states on
the z axis remain unchanged, while the xy plane is uniformly contracted by a
factor (1− p).
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3 NON-MARKOVIAN OPEN QUANTUM
SYSTEMS

In the previous chapter we discussed the laws that describe the dynamics of open
quantum systems derived from the unitary dynamics of the total system. In general, the
Markovian behavior is an idealization in the description of the quantum dynamics, where
the non-Markovian features has been neglected. The objective of this chapter is to describe
some techniques which allow a systematic description of the non-Markovian dynamics
of open systems. Conversely to its classical counterpart, there is no universal definition
of non-Markovianity in the quantum regime. The classical Markov process defined by
the Chapman-Kolmogorov condition (A.10) (see Appendix A) cannot be transferred
immediately to the quantum domain because the notion of conditional probability depends
on the measurement (BREUER et al., 2016). Therefore, the concept of a quantum
non-Markovian process requires a precise definition which cannot be based on classical
notions only. The quantitative measure should be at least unitary invariant, experimentally
realizable and has a physical interpretation.

In section 3.1, our aim is to provide an exact equation of motion for a non-Markovian
open system by projection operator techniques. In section 3.2 we restring our attention
to the correlated projection superoperator approaches that are relevant in the scope of
this thesis. In section 3.3, we analyze the non-Markovianity measure concept that is
independent from the tools to describe their dynamics. In this section we discuss the effect
of having initial system-environment correlations in the blackflow of information from
the environment into the system. Hence, we focus on one of the most widely studied and
significant quantifiers of the degree of non-Markovianity the BLP measure (BREUER;
LAINE; PIILO, 2009).

3.1 Nakajima-Zwanzig projection operator method

A general framework to derive exact equations of motion for an open system in a
precise mathematical way is provided by projection operator techniques, introduced by
Nakajima, Zwanzig and Mori (NAKAJIMA, 1958; ZWANZIG, 1960; MORI, 1965). The
main idea underlying the application of projection operator techniques to open quantum
systems is to regard the operation of tracing over the environment as a formal projection
ρ→ Pρ in the state space of the total system. A projection superoperator P is defined
to be a linear map A → PA where A is an operator acting on H. In order to map any
state to valid physical state, P needs to be at least positive and trace-preserving, this is
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ρ ∈ S(H)⇒ Pρ ∈ S(H).

A projection superoperator P is defined such that Pρ captures the relevant part of
the total density matrix ρ = ρtot in the interaction picture, which offers an approximate
description of the open quantum dynamics. Correspondingly, one defines a projection
ρ→ Qρ onto the irrelevant part Qρ, where Q+P = I, with I denoting the unit map. The
projection superoperators have the following properties:

P2 = P = P†, Q2 = Q = Q†, (3.1)

PQ = QP = 0, P +Q = I.

In the context of open quantum systems we also want ρS = trE{ρ} = trEPρ(t). In order
to derive a closed equation of motion for the relevant part Pρ, there are basically two
different possibilities (BREUER; PETRUCCIONE, 2002). With the methods presented in
the following two subsections, one can derive generators for dynamical maps that do not
have semigroup (2.41) or CP-divisibility (2.44) properties.

3.1.1 Nakajima-Zwanzig equation

The first, we will study the Nakajima-Zwanzig method (NAKAJIMA, 1958; ZWANZIG,
1960), which leads to an equation for Pρ that contains a time integration over the past
history of the system. Consider the general physical situation of an open system S coupled
to an environment E. The dynamics of the combined system E + S is defined by

H = H0 + αHI , (3.2)

where H0 generates the uncoupled time evolution of the system and environment. The
interaction is described by HI and α stands for a dimensionless expansion parameter. The
equation of motion for the density matrix in the interaction representation, is given by 1

∂

∂t
ρ(t) = −iα[HI(t), ρ(t)] ≡ αL(t)ρ(t), (3.3)

where the Liouville super-operator is denoted by L(t). The super-operator P is defined by:

ρ→ Pρ = trE{ρ} ⊗ ρE ≡ ρS ⊗ ρE, (3.4)

where ρE is some fixed state of the environment. Pρ gives the complete information
required to reconstruct the reduced density matrix ρS of the open system. The super
operators P and Q are maps in the state space of the combined system H = HS ⊗HE.
The density matrix ρE is a operator in HE, it may represent a quite arbitrary, but
1 Here the interaction picture representation of the interaction Hamiltonian is defined by HI(t) =

exp(iH0t)HI exp(−iH0t).
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known environmental state, called the reference state (BREUER; PETRUCCIONE, 2002).
Therefore, the equation for Pρ is given by:

d

dt
Pρ(t) =

∫ t

t0
dsK̃(t, s)Pρ(s) + αPL(t)G(t, t0)Qρ(t0) + αPLPρ(t). (3.5)

This integro-differential equation is called the Nakajima-Zwanzig equation, the detailed
derivation of this equation is given in Appendix B.1. Here L is the Liouvillian corresponding
to the von Neumann equation for the total density operator ρ(t) Eq. (3.3). The convolution
or memory kernel is defined by

K̃(t, s) = α2PL(t)G(t, s)QL(s), (3.6)

and
G(t, s) = T← exp(α

∫ t

0
ds′QL(s′)), (3.7)

where T← denotes the chronological time ordering2. Also this quantity satisfies the evolution
equation

dG
dt

= αQL(t)G(t, s), with G(s, s) = 1. (3.8)

The Nakajima-Zwanzig equation (3.5) is an exact equation for the relevant degrees of
freedom of the reduced system. The inhomogeneous term PL(t)G(t, t0)Qρ(t0) depends on
the initial condition at time t0, and this equation involves an integral over the past history of
the system in the time interval [t0, t]. Hence, this equation describes non-Markovian memory
effects of the reduced dynamics. Remarkably, the Markov limit can be recovered from the
Nakajima-Zwanzig equation by some simplifications and approximations. Appendix B.2
contains a brief discussion of this topic.

3.1.2 Time convolutionless projection-operator technique

A second possibility for solving the dynamical equation of Pρ(t) is the time convo-
lutionless (TCL) projection -operator technique, which departs from Eq. (3.5) to derive
an equation that is local in time and has the general form (BREUER; PETRUCCIONE,
2002; BREUER; GEMMER; MICHEL, 2006)

d

dt
Pρ(t) = κ(t)Pρ(t) + J (t)Qρ(t0), (3.9)

with the time-local generator, called the TCL generator,

κ(t) = αPL(t)[1− Σ(t)]−1, (3.10)
2 It orders any product of super operators such that the time arguments increase from right to left
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and the inhomogeneity

J (t) = αPL(t)[1− Σ(t)]−1G(t, t0)Q, (3.11)

where Σ(t) = α
∫ t

0 dsG(t, s)QLtot(s)PG(t, s). The backward propagator of the total system
is considered as

G(t, s) = T→e
−α
∫ t
s
ds′L(s′), (3.12)

with T→ as the antichronological time-ordering operator. Considering that Σ(t) may be
expanded into a geometric series:

[1− Σ(t)]−1 =
∞∑
n=1

Σ(t)n, (3.13)

and substituting this expression into the kernel Eq. (3.10), it is possible to obtain the
kernel equation as a perturbative expansion in α

κ(t) = α
∞∑
n=1
PL(t)Σ(t)nP =

∞∑
n=1

αnκn(t). (3.14)

This expansion can always be assumed, provided that the map is continuous and with
a zero initial condition Σ(t0) = 0. However, a practical use of such expansion requires
that it is truncated at relatively low orders, which may be accurate only at short times
and within the weak-coupling regime. After truncation, completely positivity is no longer
guaranteed (VEGA; ALONSO, 2017).

3.2 Correlated projection superoperator technique
There are two approaches to choose the projection operator: the standard approach

and the correlated projection superoperator technique. Here, we will restrict our attention
to the correlated projection superoperator method which lead to develop the non-Markovian
framework discussed in the applications sections 5.3 and 6.3. In the standard approach
(BREUER; PETRUCCIONE, 2002), the projection superoperator is taken to be Pρ =
ρS(t) ⊗ ρ0, where ρS(t) = trE{ρ(t)} represents the reduced density matrix of the open
system, trE denoting the trace over the environment and ρ0 is some fixed environmental
state. This superoperator is suitable for those problems in which system-environment
correlations are small both initially and during the evolution, so they can be treated as
small perturbations of the reduced density matrix.

On the other hand, the correlated projection superoperator technique (BREUER;
GEMMER; MICHEL, 2006; BREUER, 2007) considers the relevant part of the dynamics
as a correlated system-environment state. This second option is naturally adapted to those
situations in which system and environment states are non-negligibly correlated initially
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and/or during the dynamics. The relevant part of the dynamics is expressed in terms of a
positively correlated projection superoperators

P = IS ⊗ Λ, (3.15)

where Λ is a linear map that takes operators on HE to operators in HE. A projection
superoperator of this form leaves the system S unchanged and acts nontrivially only
on the variables of the environment E. Given that P is positive, the map Λ3 must be
NS-positive, where NS is the dimension of HS. The map Λ can be represented in terms
of environment Hermitian operators Ai and Bi, satisfying trB{AjBi} = δij (BREUER,
2007). These operators should fulfill certain properties so that Λ is a CPTP map. In this
representation

Pρ(t) =
∑
i

trE{Aiρ(t)} ⊗Bi. (3.16)

An example of a projection superoperator is obtained with the choice

Ai = Πi and Bi = Πiρ0Πi

Zi
,

where i = 1.....n(n being the total number of operators in the expansion), Zi = trE{Πiρ},
and Πi are the projection operators on HE such that ΠiΠj = δijΠi, and

∑
i Πi = IE. The

explicit form of the projection superoperator is given by

Pρ =
∑
i

trE{Πiρ} ⊗
Πiρ0Πi

Zi
, (3.17)

and the reduced density matrix is described as a sum of a set of unnormalized states ρi(t):

ρS(t) = trE{Pρ(t)} =
∑
i

ρi(t), (3.18)

where trSρS = 1. The states ρi(t) = tr{Πiρ(t)} belong to a subspace of the total space H
and reflect correlations between the system and the environment.

Considering an initial condition of the form ρ(0) = Pρ0 = ∑
i ρi(0)⊗Bi and using

the TCL technique, a system of equations for each ρi is obtained, each with the general
form

d

dt
ρi = κi(t)(ρ1, ...., ρn), (3.19)

where the time-dependent generators κi(t) can be approximated as a time-independent
one κi following a Markov approximation. Note that while in the standard approach
this is linked to Born approximation, implying zero system-environment correlations at
the second order in the system-environment coupling, this is not the case in the present
3 Λ is a projection Λ2 = Λ, must be CPTP map.
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derivation. After this approximation, a generalized Lindblad equation can be obtained
(BUDINI, 2006a; BREUER, 2007)

d

dt
ρi = −i[Hi, ρi] +

∑
jλ

(Rij
λ ρjR

ij†
λ −

1
2{R

ij†
λ Rij

λ , ρi}). (3.20)

Here Hi and Rij
λ are system Hermitian operators. The general structure of a master

equation (3.20) which governs the dynamics of the ρi, models strong non-Markovian effects,
while the physical conditions of normalization and positivity are preserving (BREUER,
2007).

Let us now consider the proposal of Budini (2006a) . In this framework it is
considered a projection of the form Eq. (3.17), with ρ0 being the stationary state of the
bath. The notation ΠR is used to refer to the projections to each subspace (hence i ≡ R).
The projectors ΠR = ∑

εR |εR〉〈εR| decompose the Hilbert space of the environment into
different subreservoirs, each spanned by the base of eigenvectors |εR〉. In other words, this
projector P takes into account that each bath-subspace associated to the projectors ΠR

induces a different system dynamics, each of which represented by the states ρR(t). Each
subspace can be seen as a subreservoir. Hence, this projection corresponds to splitting
the environment into a set of subreservoirs, such that the interaction Hamiltonian can be
written as a direct sum of Hamiltonians:

HI = ∑
R,R′ HIR,R′

with HIR,R′
= ΠRHIΠR′ .

This choice gives rise, in the long time limit, to the same general Eq. (3.20), which connects
each ρR to the other ρ′R (R′ 6= R) (VEGA; ALONSO, 2017). Note that when HIR,R′

= 0 for
(R′ 6= R), the interaction Hamiltonian can be written as a direct sum of sub-Hamiltonians
for each subspace

HI = HI1

⊕
HI2 ......HIR

⊕
HIR+1 ... (3.21)

and writing the evolution of the total density matrix ρ(t) in the interaction representation
and splitting the full dynamics in contributions Pρ(t) and Qρ(t), up to second order in
the interaction Hamiltonian we obtain (see Eq. (B.13) in Appendix B):

∂

∂t
Pρ(t) =

∫ t

t0
dsPL(t)L(s)Pρ(s), (3.22)

where L(t) is the total Lioville operator in a interaction representation. Here the initial
state is assumed uncorrelated, ρ(0) = ρS(0)⊗ ρE. From this equation and Eq. (3.21), each
state ρR(t) in a Schrödinguer representation, evolves as (BUDINI, 2006a; BUDINI, 2008):

dρR(t)
dt

= −i[HS, ρR(t)]−
∫ ∞

0
dstrER{[HIR , [HIR(−s), ρR(t)⊗ ρER ]]} (3.23)
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with ρER = ΠRρEΠR
PR

. This evolution without taking into account the transients of order of
the correlation time of the sub-bath, can be approximated by a Lindblad equation:

dρR(t)
dt

= LHρR(t) + γRLρR(t), (3.24)

where LS[•] = −i[HS, •] and the dissipative contribution is given by the Lindbland
superoperator

L[•] = 1
2
∑
α,β

aα,β([Vα, •V †β ] + [Vα•, V †β ]. (3.25)

Thus, each ρR(t) follows a Lindblad type of evolution induced by the coupling with the
corresponding subreservoir, and independently of other ρR′(R′ 6= R). The reduced density
operator of the system is obtained by (BUDINI, 2008):

ρS(t) = trE[Pρ(t)] =
∑
R

PRρR(t), (3.26)

where the statistical weights satisfy ∑R PR = 1 and are given by :

PR = trE[ρRE] =
∑
εR

〈εR|ρE|εR〉. (3.27)

It is worth noting that, the fact that ρR follows a Markovian evolution does not mean
that ρS will also do so. Indeed, the evolution of ρS has the form of a convoluted master
equation as long as the weights PR are different. The average of ρS over the set {γR, PR}
can be written as:

dρS(t)
dt

= LSρS(t) +
∫ t

0
dτL(t− τ)ρS(τ), (3.28)

with the superoperator L satisfying

〈GR(u)γRL〉[•] = 〈GR(u)〉L(u)[•] (3.29)

Here, GR(u) is the Markovian propagator of each state ρR(t), given by GR(u) ≡ [u −
(LS + γRL]−1. Eq. (3.28) may represent a variety of system decay behaviors and also
many structures of non-local Lindbland equations. The superoperator L(t) simplified in a
effective approximation is given by:

L(u) ' K̃(u− LS)L, (3.30)

which corresponds to the approximate solution of Eq. (3.29) discarding the dependence
introduced by L in the propagator GR(u), namely, LR → −I. It follows that in the effective
approximation Eq. (3.28) can be written as (BUDINI, 2005; BUDINI, 2008):

d

dt
ρS(t) ≈ LS(ρS) +

∫ t

0
dsK̃(t− τ)e(t−τ)LSLρS(τ). (3.31)

Here K̃(t− τ) is a superoperator that depends on the rates γR and the probabilities PR.
The formalism showed here will be used in the specific applications in the remaining
Chapters.
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3.3 Non-Markovianity measures: BLP measure
In general terms, a measure of non-Markovianity is a function which assigns a

number (nonnegative) to each dynamic, in such a way that the zero value is obtained
if and only if the dynamics is Markovian. In this section let us consider the measure of
non-Markovianity constructed by Breuer, Laine and Piilo (BREUER; LAINE; PIILO,
2009), which is based on the study of the dynamical behavior of the distinguishability of
states. The essential idea is that distinguishability between two states reduces continuously
in a Markovian process, whereas in non-Markovian dynamics one essential property is
the growth of this distinguishability. This measure of non-Markovianity is based in the
trace distance of two quantum states, which describes the probability of successfully
distinguishing these states.

A trace distance is a measure for the distance between two quantum states ρ1 and
ρ2 given by (NIELSEN; CHUANG, 2000):

D(ρ1, ρ2) = 1
2 ‖ ρ1 − ρ2 ‖, (3.32)

where the trace-norm of the trace class operator A is defined by ‖ A ‖= tr|A| and the
modulus of the operator is given by |A| =

√
A†A. The trace distance D represents a metric

on the space of density matrices, satisfying 0 ≤ D ≤ 1, where D = 0 if and only if ρ1 = ρ2,
and D = 1 if and only if ρ1 and ρ2 are orthogonal4. It is clearly a symmetric function
of the two states D(ρ1, ρ2) = D(ρ2, ρ1). Furthermore, the trace distance is preserved
under unitary transformations, D(Uρ1U

†, Uρ2U
†) = D(ρ1ρ2). The trace distance plays an

important role in quantum information theory (NIELSEN; CHUANG, 2000), this measure
is a useful tool that will be explored in the next chapters of this thesis.

The first property of the trace distance is related with the distinguishability. Suppose
that Alice prepares a quantum system in one of two states ρ1 and ρ2, each with probability
1
2 , and sends the system to Bob who performs a measurement to decide whether the system
was in the state ρ1 or ρ2. The probability that Bob can successfully identify the state of
the system is given by (NIELSEN; CHUANG, 2000):

P = 1
2 [1 +D(ρ1, ρ2)],

where the trace distance represents the bias in favor of the correct state discrimination by
Bob. Thus, the trace distance can be interpreted as a measure of the distinguishability
of two quantum states. For example, if Alice prepared two orthogonal states, we have
D = 1, in this case we obtain P = 1, which is well known that orthogonal states can be
distinguished with certainty by a single measurement.
4 Two density matrix are said to be orthogonal if their supports (the subspaces spanned by their

eigenstates with nonzero eigenvalue) are orthogonal.
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The second remarkable property of the trace distance is given by the fact of that
all CPTP maps Φ are contractible for this distance (BREUER et al., 2016; BREUER;
LAINE; PIILO, 2009; RUSKAI, 1994):

D(Φρ1,Φρ2) ≤ D(ρ1, ρ2). (3.33)

From this inequality we can conclude that a trace-preserving quantum operation can never
increase the distinguishability of any two quantum states. The equality in Eq. (3.33) holds
if Φ is a unitary transformation.

Let us now suppose that Alice prepares her states ρ1,2(0) as initial states of an
open quantum system S coupled to some environment E. Bob will then receive at time t
the system in one of the states ρ1,2(t) = Φ(t)ρ1,2(0), where Φ(t) denotes the corresponding
CPTP quantum dynamical map. Using the semi-group property Φ(τ + t) = Φ(τ)Φ(t), we
obtain from the Eq. (3.33) that for all t ≥ 0,

D(ρ1(t), ρ2(t)) ≤ D(ρ1(0), ρ2(0)). (3.34)

Thus, for all CPTP maps Φ(t) the trace distance is a monotonically decreasing function of
the time. This behavior can be interpreted like a loss of information from the open system
into the environment, this is a general feature of quantum Markov processes, implying that
under a Markovian evolution any two states generally become less and less distinguishable
as time increases. This interpretation leads to the following definition (BREUER et al.,
2016): A quantum process given by a family of quantum dynamical maps Φ(t) is said to
be Markovian if the trace distance D(ρ1(t), ρ2(t)) corresponding to all pair of initial states
ρ1(0) and ρ2(0) decreases monotonically for all times t ≥ 0. In a quantum Markovian
process the open system continuously loses information to the environment.

On the other hand, a quantum process is non-Markovian if there are a pair of
states ρ1(0) and ρ2(0) such that the trace distance D(ρ1, ρ2) is nonmonotonic, that is,
starts to increase for some time t > 0. A non-Markovian process is characterized by a flow
of information from the environment back into the open system, which clearly express the
presence of memory effects: information contained in the open system is temporarily stored
in the environment and comes back at a later time to influence the system (BREUER
et al., 2016; BREUER; LAINE; PIILO, 2009). According to this definition Markovianity
and non-Markovianity is a property of the dynamical maps Φ describing the open system
dynamics. Using this open quantum system scenario, we associated the dynamical non-
Markovianity to reservoir memory effects. The measure for the degree of memory effects is
defined by (BREUER; LAINE; PIILO, 2009):

N (Φ) = maxρ1,2(0)

∫
σ>0

dtσ(t, ρ1,2(0), (3.35)
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where
σ(t, ρ1,2(0)) = d

dt
D(ρ1(t), ρ2(t)), (3.36)

denotes the rate of change of the trace distance of the evolved pair of states. Hence, a
process is said to be non-Markovian if there exist a pair of initial states ρ1,2(0) and a
certain time t such that σ(t, ρ1,2(0)) > 0. In Eq. (3.35) the integral is extended to all
time intervals over which σ(t, ρ1,2(0)) > 0 and the maximum is taken over all pairs of
initial states of the open system’s state space S(HS). We have N (Φ) = 0 if and only if
the process is Markovian.

In this section we showed one of the quantifiers used in this thesis for measuring
the degree of non-Markovianity, i.e, the BLP measure. In order to define the other measure
used in this thesis, the RHP measure (RIVAS; HUELGA; PLENIO, 2010), we need to
introduce the concepts of the quantum correlations. Thus, in the next chapter after the
discussion about quantum correlations, the RHP measure will be formally defined and the
concepts of non-Markovianity showed in this Chapter will be expanded in the quantum
correlation context.
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4 QUANTUM CORRELATIONS

In the early days of quantum information, the entanglement was considered as
the qualitative feature of quantum theory that most strikingly distinguishes it from the
classical realm (PLENIO; VIRMANI, 2005). The development of Bell’s inequalities has
made this distinction quantitative, leading the non-local features of quantum theory to
become accessible to experimental verification. Bell’s inequalities may indeed be viewed
as an early attempt to quantify the quantum correlations (PLENIO; VIRMANI, 2005).
Werner in (1989) proved that there are entangled quantum states that generate outcomes
in perfect agreement with a local-realistic view. Zurek (2000), Henderson and Vedral (2001)
and Olliver and Surek (2001) concluded that the entanglement does not account for all non-
classical correlations and that even separable states usually contain correlations that are
not entirely classical. These correlations are called quantum discord. Our intention in this
chapter is to outline the concept of quantum correlation. Quantum systems can be correlated
in ways inaccessible to classical objects and the existence of non-classical correlations in
a system can be seen as a signature that subsystems are genuinely quantum (MODI et
al., 2012). In another way, quantum correlations are also responsible for decoherence and
dissipation of quantum systems (BREUER; PETRUCCIONE, 2002).

This chapter is organized as follows: In section 4.1 we briefly sketch the concept of
entanglement. In section 4.2 we review definitions of quantum correlation and some general
properties. In Section 4.3 we discuss the quantification of quantum correlation present
in any quantum state based in the geometric quantum discord (GQD). Some results are
given for Bell diagonal states. Finally, in section 4.4 we review the several criteria for
generalized measures of quantum correlations.

4.1 Entanglement
In the context of quantum information the classical correlations are defined via

local operations and classical communications (LOCC). Therefore, for a quantum system
that exhibits correlations that cannot be simulated classically, it is usual to attribute them
to quantum effects, and hence these correlations are called quantum correlations (PLENIO;
VIRMANI, 2005). If a mixed state is prepared by all the parties in a “classical” way, that
is, can trivially be created by LOCC, this state is said to be separable (HORODECKI
et al., 2009). Mathematically, a state represented by the density matrix ρ is said to be
separable, if it can be written in the form (PLENIO; VIRMANI, 2005):

ρABC... =
∑
i

piρ
i
A ⊗ ρiB ⊗ ρiC ⊗ . . . (4.1)
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where pi is a probability distribution. In practice, it is hard to decide if a given states is
separable or entangled basing on the definition itself (HORODECKI et al., 2009). Here, it
is not our purpose to discuss the separability problem. Entangled states can be defined
also like the ones that cannot be simulated by classical correlations (MASANES; LIANG;
DOHERTY, 2008). This interpretation defines entanglement in terms of the behavior of
the states rather than in terms of preparation of the states. Among the main properties
of entanglement, we have that LOCC cannot create entanglement from an unentangled
state and that the entanglement of states does not increase under LOCC transformations
(PLENIO; VIRMANI, 2005). From the previous propriety follows that entanglement does
not change under local unitary operations. The maximally entangled state exists at least
in two-party systems consisting of two fixed d-dimensional subsystems. These states are
given by (PLENIO; VIRMANI, 2005):

|φ+
d 〉 = 1√

d

d−1∑
i=1
|i〉|i〉. (4.2)

The Bell states are specific cases of bipartite maximally entangled states. For bipartite
systems in the Hilbert space H = H1 ⊗H2, the four Bell states defined as (HORODECKI
et al., 2009)

|ψ±〉 = 1√
2

(|0〉|1〉 ± |1〉|0〉), |φ±〉 = 1√
2

(|0〉|0〉 ± |1〉|1〉). (4.3)

Thus, if one measures only at one of the subsystems of these states one finds it with equal
probability in state |0〉 or the state |1〉. However, the result of the measurements for both
subsystems are perfectly correlated.

In the above discussion, the set of classical states is exactly the set of separable
quantum states and quantum correlations correspond exactly to entanglement. However,
this notion of classicality can be argued considering the nature of the operations allowed
in the framework of LOCC (MODI et al., 2012). The aim of the following section is to
show certain notions, according to which the classical states form a subset of the separable
states.

4.2 Quantum discord

Two systems are correlated if together they contain more information than taken
separately. If we measure the lack of information than taken separately. The lack of
information can be measured by the entropy. In classical information theory (COVER;
THOMAS, 2006) the entropy H(X), known as Shannon entropy, describes the ignorance
about a classical random variable X. If X takes the value x with probability px, the
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Shannon entropy is then given by:

H(X) = −
∑
x

px log px. (4.4)

Therefore, if we consider two classical random variables X and Y , for which the joint
probability distribution of getting outcome X = x and Y = y is px,y, the correlation
between X and Y is measured by the mutual information:

I(X : Y ) ≡ H(X) +H(Y )−H(X, Y ). (4.5)

For classical variables, Baye’s rule defines a conditional probability as pX|Y=y = pX,Y=y/pY=y.
Consequently, the classical mutual information can be written in an equivalent form:

J(X|Y ) = H(X)−H(X|Y ), (4.6)

where the conditional entropy H(X|Y ) = ∑
y pyH(X|Y = y) is the average of entropies

H(X|Y = y) = −∑y pX|Y=y log pX|Y=y. The classical correlation can therefore be inter-
preted as information gained about one subsystem as a result of a measurement on the
other. Fig. 4 depicts this relationship in a graphical manner.

Figure 4 – Conditional entropy. The Venn diagram shows the join entropy H(X, Y ),
marginal entropies H(X) and H(Y ) and conditional entropies H(X|Y ) and
H(Y |X) for a joint classical probability distribution for (correlated) random
variables X and Y .

These definitions of classical mutual information can be analyzed in the quantum
domain (ZUREK, 2003; OLLIVIER; ZUREK, 2001; HENDERSON; VEDRAL, 2001).
The quantum mutual information can be defined by replacing the classical probability
distributions by the appropriate density matrices ρA, ρB, ρAB and the Shannon entropy by
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von Neumann entropy 1 given by:

S(A) = S(ρA) = −tr(ρA log2 ρA), (4.7)

in the classical definition Eq. (4.5). In this order, we obtain:

IAB ≡ S(A) + S(B)− S(AB), (4.8)

where S(A) + S(B) represents the uncertainty of ρA and ρB treated separately2, and
S(AB) is the uncertainty about of combined system given by ρAB. The generalization of J
is not automatic as for I due the conditional entropy H(A|B). This quantity measures the
uncertainty about A after we measure B. Depending on the observable we choose to measure
B, the value of the conditional entropy would be different as well as negative. Conversely
to the classical case, in the quantum analogue there are many different measurements
that can be performed on a system and measurements generally disturb the quantum
state. Hence, assuming that measurements on subsystem B are defined by a set of local
projective measurements {ΠB

j } = {|jB〉〈jB|} where the label j distinguishes different
classical outcomes of this measurement, the state of A related to the measurement ΠB

j is

ρA|ΠBj =
(IA ⊗ ΠB

j )ρAB(IA ⊗ ΠB
j )

pj
, (4.9)

where pj = trAB((IA ⊗ΠB
j )ρAB(IA ⊗ΠB

j )) is the probability of obtaining the outcome j
and IA is the identity matrix of the subsystem A. The entropies H(ρA|ΠBj ), weighted by
probabilities pj, provide to the conditional entropy of A given the complete measurement
{ΠB

j } on B:

H(A|{ΠB
j }) =

∑
j

pjH(ρA|ΠBj ). (4.10)

This allows, in analogy with Eq. (4.6), the quantum generalization of the classical correlation
of the state ρAB (HENDERSON; VEDRAL, 2001):

J(A|B) ≡ H(A)−H(A|{ΠB
j }). (4.11)

This quantity represents the information gained about the system A as a result of the
measurement {ΠB

j }. To quantify the classical correlations of the state independently of a

1 The von Neumann entropy of a density matrix ρ is given by S(ρ) = −tr(ρ log2 ρ), which reduces to
−
∑
i λi log2 λi, where λi are the eigenvalues of ρ.

2 Here ρi = trj(ρAB)({i, j} ∈ {A,B}, i 6= j) are local density matrices of ρAB .
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measurement J(A|{ΠB
j }) is maximized over all measurements3,

J(A|B) ≡ max
{ΠBj }

J(A|{ΠB
j }). (4.12)

The quantum discord (OLLIVIER; ZUREK, 2001) of a state ρAB under a measurement
{ΠB

j } is defined as a difference between total correlations (which are identical in the
classic case), as given by the quantum mutual information in Eq. (4.5) and the classical
correlations Eq. (4.12):

D(B|A) ≡ I(A : B)− J(B|A) (4.13)

= min
{ΠBj }

∑
j

pjH(ρA|{ΠBj }) + S(B)− S(AB). (4.14)

The minimization here is equivalent to maximization in Eq. (4.12). It is possible to say
that Eq. (4.13) reveals the quantumness of the correlations between the partitions A
and B since this shows the departure between the quantum and the classical versions of
information theory. Remarkably, quantum discords captures the non-classical aspects of
correlations contained in certain states, which include entanglement. However, while an
entanglement measure vanish for separable states, quantum discord can be non-zero for
these states.

Let us briefly enumerate some properties of the quantum discord (MODI et al.,
2012):

1. It is not symmetric. In general D(B|A) 6= D(A|B) 4. This is expected because
conditional entropy is not symmetric.

2. Discord is nonnegative D ≥ 0, since IAB ≥ JA|B.

3. Discord is invariant under local unitary transformations, that is, it is the same for
the state ρAB and state (UA × UB)ρAB(UA × UB)†, for arbitrary unitaries UA and
UB on the subsystems A and B.

4. Discord D(B|A) vanish if and only if the state is classical-quantum.

5. For a bipartite pure state, quantum discord reduces to entanglement. As given by
the von Neumann entropy.

6. Discord is bounded from above by the von Neumann entropy of the measure subsys-
tem B i.e. D(ρAB) ≤ S(ρB) while J(A|B) ≤ min{S(ρA), S(ρB)}.

3 For the Henderson-Vedral classical correlation the maximum is taken over the complete set of positive
operator value measurements (POVM) {ΠB

j } on subsystem B.
4 Sometimes is used the notation D←(ρAB), where the superscript denotes that the measurement has

been performed in the subsystem B while D→ denotes quantum discord for the measurement in the
first subsystem A.
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4.2.1 Classical States

In this section, we are going to discuss some relevant aspects about the set of
classical states. States that have zero discord with respect to one or more parties, known
as classical states, are important for several reasons (MODI et al., 2012):

• Vanishing discord corresponds to a key notion of classicality, for which maximal
information about a subsystem can be obtained by some specific local measurement
without altering correlations with the rest of the system.

• Zero-discord states have application to the theory of decoherence where they describe
the classical correlations between the pointer states of some measurement apparatus
and the internal quantum states, which results from interaction with the environment.
(We will describe the pointer states in the section 5.3.2).

• Discord measures can be defined using the set of classical states, as is the case for
the relative entropy of discord and the geometric quantum discord.

The next theorem characterizes the zero-discord states (MODI et al., 2012; DATTA,
2010):

Theorem 1. A state ρAB satisfies D(A|B) = 0 if and only if there exists a complete set
of rank-one orthogonal projectors Πa on A, satisfying ∑a Πa = I and ΠaΠa′ = δaa′Πa, such
that:

ρAB =
∑
a

paΠA
a ⊗ ρBa . (4.15)

Which is a linear combination of the tensor products of the orthogonal projector ΠA
a in HA

and an arbitrary density operator ρBa in HB , with 0 ≤ pa ≤ 1 (∑a pa = 1).

The set of states classical with respect to A is denoted as CA. A physical interpre-
tation of Eq. (4.15) is that if we have any state in CA there exist a basis for A for which
the locally-accessible information is maximal and, from the perspective of an external
observer, this information can be obtained without disturbance to the combined system.
Remarkably, if in a given theory all separable states have null discord, then all pure states
are perfectly distinguishable. As a consequence it is possible to conclude that discord is
not only a signature of “quantumness”, rather is a signature of nonclassicality.

4.3 Geometric quantum correlation measures
Quantification of quantum correlation present in any quantum state is one of the

fundamental tasks related to the understanding and efficient utilization of the state for
diverse quantum information processing schemes. The concept of the quantum discord
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presented in the last section is based in the quantizing of certain concepts of classical
information theory. This definition involves optimization over sets of local measurements,
where the analytical computation is in general a difficult task.

In the last years have been proposed disord-like quantum correlation measures
that can be categorized roughly into two different families, this is, those based on entropy
theory (MODI et al., 2012) and those based on various distance measures of quantum
states (BENGTSSON; ZYCZKOWSKI, 2006). In our thesis, we focus in the geometric
quantum discord (GQD), which belong to the distance-based formulation of quantum
discord. The minimization involved in this definition can often be performed explicitly and
in this way it becomes a convenient tool for analysing quantum correlation associated with
the system. The main idea here is to consider a set of states that are devoid of quantum
correlations in some sense. Quantum correlation of a given state is then defined as the
minimal distance of the state from that set (BERA et al., 2017).

In this order, the category of geometric quantum discord of a state can be charac-
terized by its closest (pseudo) distance to the zero-discord state in set CA (see subsection
4.2.1). Likewise, it is possible to use the quantum-classical states and define the GQD
with respect to party B, or the classical-classical states and define the GQD with respect
to AB. Hence, a general form of the GQD can be written as:

DD(ρ) = min
ρc∈CA

D(ρ, ρc), (4.16)

where D(ρ, ρc) is the proper distance measure of states, e.g. it should not increase under
the action of CPTP map. As geometric distance between two quantum states can be
measured from different aspects, the GQDs can be defined accordingly, provided that they
satisfy the conditions for a proper measure of quantum correlation discussed in section 4.4.

4.3.1 Quantum discord through Hilbert-Schmidt norm

The initial measure of GQD was introduced by Dakić, Vedral and Brukner (DAKIĆ;
VEDRAL; BRUKNER, 2010). This measure quantifies the amount of quantum correlations
of a state in terms of its minimal distance from the set of classical states, where the
characterization of the distance between two states is given by the Hilbert-Schmidt (HS)
norm, and the GQD of ρ is defined as:

DG(ρ) = mim
ρc∈C

‖ ρ− ρc ‖2
2, (4.17)
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with ‖ X ‖2 being the HS norm which is defined as ‖ X ‖2=
√

tr(X†X). A definition
equivalent to the GQD is given by (LUO; FU, 2010) :

DG(ρ) = mim
ΠA
‖ ρ− ΠAρ ‖2

2, (4.18)

where ΠA = {ΠA
k } is the local von Neumann measurements on party A, and ΠA(ρ) =∑

k(ΠA
k ⊗ IB)ρ(ΠA

k ⊗ IB). This implies that the minimization in Eq. (4.18) can be taken
only over the subset of classical-quantum states {ΠA(ρ)}. The calculations for this measure
requires a simpler minimization procedure, with analitical solutions for general two-qubit
states. The HS norm of GQD also plays potential role in remote state preparation (DAKIĆ
et al., 2012). But this difinition of GQD cannot be regarded as a good measure for the
quantum correlation because it is noncontractive, this is, its value may be changed even
under trivial local reversible operations on the unmeasured party B, hence is not well
defined (PIANI, 2012).

4.3.2 Quantum discord through trace-norm

The measure of DG presented in the previous section fails as a rigorous quantifier of
correlation. Explicitly, assuming the map Γσ : X → X ⊗ σ, which represent a channel that
introduces a noisy ancillary state, Piani demonstrated in (PIANI, 2012) that DG(Γσb [ρ]) =
DG(ρ)tr[σ2]. This means that the geometric discord may increase under local operations on
the unmeasured subsystem b, because tr[σ2] ≤ 1 in general. As noted by Paula, de Oliveira,
and Sarandy 2013, the origin of this problem is the HS norm, which is not appropriate
choice for geometrically quantifying the quantumness of correlations. Therefore, instead
of using HS norm was considered the possibility of using the general Schatten p-norm to
measure quantum correlations (PAULA; OLIVEIRA; SARANDY, 2013). Let us consider
the geometric discord based on a more general norm, defined as (DEBARBA; MACIEL;
VIANNA, 2012):

Dp(ρ) = min
ρc∈C
‖ ρ− ρc ‖pp, (4.19)

where the Schatten p-norm for a matrix M is given by:

‖M ‖p= {tr[M †M ]p/2}1/p, (4.20)

which reduces to the HS norm if p = 2, and the trace-norm if p = 1. Here p is a positive
integer number. Using the multiplicative property of the Schatten p-norm under tensor
products, it is possible to observe that ‖ X ‖p→‖ Γσb [X] ‖p=‖ X ‖p‖ σ ‖p. Hence (PAULA;
OLIVEIRA; SARANDY, 2013):

Dp(Γσb [ρ]) = Dp(ρ) ‖ σ ‖pp . (4.21)
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Remarkably, ‖ σ ‖1= 1 if and only if p = 1, since ‖ σ ‖1= tr[ρ] = 1 for a general state σ.
Therefore, the geometric discord based on the 1-norm is the only possible Schatten p-norm
able to consistently quantify non-classsical correlations.

In this order, the trace-norm of discord (TND) or 1-norm geometric quantum
discord is defined as (PAULA; OLIVEIRA; SARANDY, 2013):

D1(ρ) = min
ρc∈C
‖ ρ− ρc ‖1, (4.22)

where ‖ X ‖1= tr[
√
X†X] is the 1-norm and for 2 × n dimensional state ρ (i.e. A is a

qubit), the optimal ρc can also be obtained from the subset ΠA(ρ), with ΠA = {ΠA
k } being

the set of local projective measurements, i.e., D1(ρ) = min
ΠA
‖ ρ − ΠA(ρ) ‖1 (NAKANO;

PIANI; ADESSO, 2013).

The calculation of D1(ρ) is a hard task, and there is no analytical solution for it in
general cases. In the following, we will describe class of states where this measure can be
calculated explicitly.

4.3.2.1 Geometric one-norm quantum correlations for two-qubit Bell diagonal states

We will focus here in the particular case of two-qubit Bell diagonal states, this
class of two-qubit states are diagonal in the Bell basis (DAKIĆ; VEDRAL; BRUKNER,
2010; DAKIĆ et al., 2012; LANG; CAVES, 2010). The Bell-diagonal states of two-qubits,
A and B, have density operators of the form5:

ρBell = 1
4[I⊗ I + ~c.(~σ ⊗ ~σ)] =

∑
ab

λab|βab〉〈βab|, (4.23)

with the corresponding density matrix of ρBell to be

ρBell = 1
4


1 + c3 0 0 c1 − c2

0 1− c3 c1 + c2 0
0 c1 + c2 1− c3 0

c1 − c2 0 0 1 + c3

 , (4.24)

where I is the identity matrix on the subsystem, ~c = (c1, c2, c3) is a three-dimensional
vector and ~σ = (σ1, σ2, σ3) is a vector formed by Pauli matrices. The eigenstates of ρBell

are the four Bell states (LANG; CAVES, 2010):

|βab〉 ≡ (|0, b〉+ (−1)a|1, 1⊕ b〉)/
√

2, (4.25)

5 Here we use a computational base {|00〉, |01〉, |10〉, |11〉}.
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with eigenvalues

λab = 1
4[1 + (−1)ac1 − (−1)a+bc2 + (−1)bc3], (4.26)

where a ∈ {0, 1}, b ∈ {0, 1}. Any two-qubits state satisfying 〈σAj 〉 = 0 = 〈σBj 〉, i.e, having
maximally mixed marginal density operators ρA = I/2 = ρB, can be brought to Bell-
diagonal form by using local unitary operations on the two-qubits to diagonalize the
correlation matrix 〈σAj ⊗ σBk 〉.

A Bell-diagonal state is specified by a 3-tuple (c1, c2, c3). The density operator
must be a positive operator, then 0 ≤ λab ≤ 1 and ∑i,j λi,j = 1. The resulting region of
Bell-diagonal states is the state tetrahedron T in Fig. 5, whose vertices situated on the
points (1, 1,−1), (−1,−1,−1), (1,−1, 1) and (−1, 1, 1) represent the Bell states.

Figure 5 – Two-qubit Bell-diagonal states described by parameters c1, c2, c3 can be de-
picted as a tetrahedron T . The octahedron O in tetrahedron, is the set of
separable Bell-diagonal states. The zero-discord states Eq. (4.15) are labeled
by the red lines (over the perpendicular axis c1, c2 and c3). Quantum discord
is a maximum (D = 1 and DG = 1/2) in the vertices of the tetrahedron
corresponding to the four Bell states. Among the set of separable states, those
which maximize discord are the centers of octahedron facets (±1,±1,±1)/3
(black dots). This figure is reproduced from (DAKIĆ; VEDRAL; BRUKNER,
2010).

Assuming that the minimal state preserves the Bell-diagonal form of the original
state and following the line of thought described in Appendix C, the 1-norm geomet-
ric quantum discord two-qubit Bell diagonal states is given by (PAULA; OLIVEIRA;
SARANDY, 2013):

DT (ρBell) = int{|c1|, |c2|, |c3|}, (4.27)
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with int{·} denoting the intermediate among the elements of the set {|c1|, |c2|, |c3|}.

In order to determine the geometric and total correlations for Bell-diagonal states, a
geometric point of view of the correlations through the trace distance was used in (PAULA
et al., 2014). Therefore, the geometric quantum, classical and total correlations can be
defined as follows (see Fig. 6):

DT =‖ ρ−MA(ρ) ‖1= tr|ρ−MA(ρ)|, (4.28)

CT =‖ MA(ρ)−MA(πρ) ‖1= tr|MA(ρ)−MA(πρ)|, (4.29)

TT =‖ ρ− πρ ‖1= tr|ρ− πρ|, (4.30)

where a state ρ is given by Eq. (4.23), πρ represent the product of the local marginals
of ρ (for two-qubits πρ = ρA ⊗ ρB) and MA(ρ) is the classical state that emerge from
a projective measurement on subsystem A that minimizes Eq. (4.28). In this case, the
classical stateMA(ρ) is defined as follows (PAULA et al., 2014):

MA(ρ) =
∑

k=−,+
(Πk ⊗ I)ρ(Πk ⊗ I), (4.31)

where
Π± = 1

2(I± ~n.~σ), (4.32)

are the projection operators, I is the identity matrix, ~σ = (σ1, σ2, σ3) is a vector formed
by Pauli matrices, and ~n = (n1, n2, n3) is a unitary vector that minimizes DT

6.

In Appendix D we recall the method described in (PAULA et al., 2014) to find the
unitary vector that minimizes DT . Hence, the geometric classical correlation CT and total
correlation TT as for the Bell diagonal states are given by:

CT (ρBell) = c+, (4.33)

TT (ρBell) = 1
2[c+ + max{c+, c0 + c−}], (4.34)

with c+, c− and c0 being the maximum, minimum, and intermediate values of {|c1|, |c2|, |c3|},
respectively.

6 Remarkably, the authors in (PAULA et al., 2014) defined the geometric correlations by fixing
ρc ∈ {MA(ρ)} and denoting Π± the corresponding optimal measurement operator for obtained DT (ρ)
( the minimization over {MA(ρ)} is equivalent to the minimization over C for qubit states, Eq. (4.22)).
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πρ ρ

MA(πρ) MA(ρ)

TT

CT

DT

Figure 6 – Geometric correlations in the state ρ, whereMA is the optimal measurement
operator for obtaining DT , πρ = ρA ⊗ ρB.

An important point to highlight here is that the generalization of the Bell-diagonal
states is given by the X states (YU; EBERLY, 2007). This set of states, includes maximally
entangled Bell states and separable and non separable Werner states (WERNER, 1989)
as special cases. The quantum contribution for the geometric correlation for X states
has been analytically derived (CICCARELLO; TUFARELLI; GIOVANNETTI, 2014).
Moreover, a closed analytical expressions for the geometric classical and geometric total
correlations are our contribution (OBANDO; PAULA; SARANDY, 2015). Therefore, in
the subsequent chapter we are going to show the description of some properties of X states
and how calculate the classical and total correlations for X states.

4.4 Quantum, classical and total correlation
There exist in the literature a variety of fundamental concepts to define the quantum

correlations measures. For example, the information gain from a measurement, the effects
of measurements on a system, the notion of classical states, and the lack of correlations in
product states. Hence, one of the principal question is if a measure which is associated
with a certain physical scenario is indeed a measure of correlation (BRODUTCH; MODI,
2012). This section provides an overview of the set of criteria for a proper measure of
correlations.

4.4.1 Criteria for classical correlations

Based on the criteria for entanglement measures, Henderson and Vedral (HENDER-
SON; VEDRAL, 2001) proposed the following set of criteria that a measure of classical
correlations must be satisfy:

1. Product states are uncorrelated.

2. Classical correlations are invariant under local-unitary operations.

3. Classical correlations are nonincreasing under local operations.
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4. Similarly that in the quantum case, the classical correlations for pure states are
given by the entropy of the reduced states. They show that their measure J(A|B)
satisfies these axioms.

4.4.2 General properties for correlations

Brodutch and Modi (BRODUTCH; MODI, 2012) present a more general method
for construing correlation measures (for bipartite and multipartite systems). This method
lead to a set of criteria for measures of correlations which can be divided into tree categories:
(1) necessary conditions, (2) reasonable properties, and (3) debatable criteria.

Therefore, the correlations are measured using a positive-real valued function and
a set local measurements.

Definition 1. The generalized-discord function K[ρ1, ρ2] is defined over all quan-
tum states ρ1 and ρ2 with properties K[ρ1, ρ2] ∈ R+ and K[ρ, ρ] = 0.

Definition 2. The set of measurements {M} is a set of general quantum-operations
that are trace-preserving.

Definition 3. M(ρ) is a classically correlated state. Frequently {M} is a full
set of POVM on one or more of the subsystems with or without communication. The
measurementMρ depend on the quantum state ρ.

In this way, using the generalized-discord function K is possible to define classical,
quantum and total correlations (BRODUTCH; MODI, 2012):

• The generalized quantum discord (quantum correlations) of a state ρ is defined as
the “distance”7 between the state ρ and the classical stateM(ρ):

Q(ρ) ≡ K[ρ,Mρ(ρ)], (4.35)

whereM(ρ) minimize the quantum correlations.

• Classical correlations of a state ρ are defined as the distance between the classical
statesM(ρ) and the reduced product state after the same measurementM(πρ):

C(ρ) ≡ K[M(ρ),M(πρ)], (4.36)

here M(ρ) maximize classical correlations and M(πρ) ≡ ⊗i[M(ρ)]i where the
marginals are given by πρ = ⊗iρi with ρi = triρ.

7 K may not be a proper distance.
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• The total correlations of a state ρ are defined as the distance between that state ρ
and the reduced product πρ.

T ≡ K[ρ, πρ] (4.37)

where πρ is the product of the marginals of ρ, πρ = ⊗iρi.

The five necessary conditions for any measure of correlations are then:

1) Product states have no correlations: T (π) = Q(π) = C(π) = 0

2) All correlations are invariant under local unitary operations.

3) All correlations are non-negative: C ≥ 0 and Q ≥ 0 and T ≥ 0.

4) T is non-increasing under local operations.

5) Classical states have no quantum correlations. Q(Mχ(ρ)) = 0 for all ρ andMχ.8

The next three criteria involving continuity, described as reasonable are

a) Continuity under small perturbations.

b) Strong continuity of measurement basis under small perturbations.

c) Weak continuity of the measurement basis under small perturbations.

Finally a set of criteria based on entanglement measures and information-theoretical
ideas are presented as debatable:

i) For pure bipartite states the correlations can be defined by the marginals.

ii) Correlations are additive T = C +Q or superadditive T < C +Q.

iii) Classical and/or quantum correlations are nonincreasing under local operations.

iv) Symmetry under the interchange of subsystems.

Of these criteria, the five identified as more fundamental define if the physical
quantity can or cannot be consider a proper measure of correlation. The correlations
measures presented in this thesis are all consistent whit these requirements. On the
other hand in the second set of criteria, strong continuity means that the measurement
which minimizes discord is changed continuously for small changes in the state, and weak
8 The measurement is the same for all ρ so {M} = Mχ, the subscript χ represents a fixes basis.
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continuity means that the measurement is not necessarily continuous but using the basis
which optimizes a nearby state result in a small error for calculating the correlations. The
measures based on measurements which do not affect the marginals (MID) are found to
fail all of the above continuously requirements. However, the measures of discord with
Mρ that minimize the quantum correlations such as discord and the geometric discord
are proved to be continuous. This include all measures that will be present in the next
chapters. Finally, the relevance for the set of criteria debatable is leave open for the authors
in (BRODUTCH; MODI, 2012), although most measures of correlations meet most of
these criteria.

4.5 Quantum correlations and non-Markovianity: RHP measure

In the previous Chapter, we showed the approach the BLP measure, which is based
in the idea that memory effects in dynamics of open quantum systems are linked to the
exchange of information between the open system and its environment. BLP defines non-
Markovian dynamics as an increase in the distinguishability of pairs of evolving quantum
states. In this section, our aim is to discuss an alternative measure of non-Markovianity
introduced by (RIVAS; HUELGA; PLENIO, 2010), this measure, known as RHP measure,
is based on the specific behavior of quantum correlations when a part of a composite
system is subject to a local interaction that can be modeled as a CPTP map.

In the approach of RHP, it is proposed a strategy to quantify the non-Markovian
character of quantum evolutions by a measure denoted by IE that quantifies the deviation
from Markovianity in the evolution of the system. Thus, the non-Markovianity can be
quantified using the specific behavior of quantum correlations when a part of a composite
system is subject to a local interaction that can be modeled through CPTP maps (RIVAS;
HUELGA; PLENIO, 2014). To establish the measure, it is initially considered a maximally
entangled state with an ancillary system which has to remain isolated from the decoherence
sources, as showed in Fig. 7. Considering the fact that entanglement does not increase under
local operations (PLENIO; VIRMANI, 2005), it is immediate from the CP-divisibility
(2.44) that the decay of the entanglement with an ancillary system will be monotonically
decreasing for Markovian evolutions. Nevertheless, the requirement of strict monotonicity
has no validity for a non-Markovian evolution, environmental correlations may lead to
bipartite entanglement increase at certain times, this behavior is illustrated by the red
curve in Fig. 7. From this, the quantifier of the degree of non-Markovianity of a quantum
evolution can be obtained from the amount of entanglement between system (S) and ancilla
(A) at different times within a selected interval [t0, tmax]. Considering the initial maximally
entangled system-ancilla state described by ρSA(0) = |Φ〉〈Φ| with |Φ〉 = 1√

d

∑d−1
n=0 |n〉|n〉.
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The variation ∆E of entanglement between the final and the initial state is

∆E = E [ρSA(t0)]− E [ρSA(tmax)], (4.38)

where E is some entanglement measure. Then, non-Markovianity is quantified by (RIVAS;
HUELGA; PLENIO, 2014):

I(E) =
∫ tmax

t0

∣∣∣∣∣dE(ρSA(t))
dt

∣∣∣∣∣ dt−∆E . (4.39)

It then follows that if the evolution of the system is Markovian the derivative of E(ρSA(t))
is always negative and I(E) = 0.

Figure 7 – Schematic illustration of the non-Markovianity measure proposed by Rivas
et al. (RIVAS; HUELGA; PLENIO, 2014). An arbitrary quantum system is
subject to the action of a local bath, depicted as a golden shadow. The system
is initially prepared in a maximally entangled state Φ with an ancilla. When
starts the evolution of the system-ancilla, the entanglement will be sensitive to
the environment coupling. The green line represents some typical decay of the
initial entanglement for a Markovian evolution while the red line corresponds
to a possible non-Markovian decay. Here, I(E) allows us to estimate the non-
Markovianity of the process despite. This figure is reproduced from (RIVAS;
HUELGA; PLENIO, 2014).

The RHP measure gives a connection between the entanglement and the non-
Markovianity though a meaning in terms of information flow is still lacking in this approach.
Entanglement-based measures consider the amount of deviation from divisibility of a given
dynamical map, where any measure of entanglement monotonically decreases for all
divisible processes (RIVAS; HUELGA; PLENIO, 2014). The entanglement-based measure
proposed by (FANCHINI et al., 2014) have a direct information based interpretation. For
this method it is considered the overall increase of ESA along the whole time evolution
and it includes an optimization measure. Therefore, this measure is given by (FANCHINI
et al., 2014):

N (Φ) ≡ max
ρSA(0)

∫
dESA
dt

>0

d

dt
ESA(t)dt, (4.40)
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where the maximization is taken over all possible pure initial states of the bipartite system
SA. Assuming that the amount of entanglement is quantified by the entanglement of
formation (EOF). The EOF denoted Ef is defined by (BENNETT et al., 1996):

Ef (ρAB) = min
{pi,|φi〉}

∑
i

piS(trB[|φi〉〈φi|]), (4.41)

where S(ρ) is the von Neumann entropy of ρ Eq.(4.7), and the minimum is taken over
all ensembles {pi, |φi〉} satisfying

∑
i pi|φi〉〈φi| = ρAB. Considering that the initial state

of the environment E is pure. Thus, the tripartite state SAE is pure, the Koashi-Winter
relation gives (KOASHI; WINTER, 2004):

Efρ(SA) = S(ρS)− J←SE, (4.42)

where J←SE denotes the maximum amount of classical information Eq. (4.6), that can be
extracted about the system by the observation of the environment E and is defined by

J←SE = max
{ΠEi }

[S(ρS)−
∑
i

piS(ρS|i)], (4.43)

where S(ρ) is the von Neumann entropy Eq.(4.7) and {ΠE
i } represents the general quantum

measures acting on the environment E. The term ρS|i is given by Eq.(4.9) and stand for
the remaining state of the subsystem S after obtaining the outcome i with probability pi
in the subsystem E. A time derivative of Eq. (4.42), yields

d

dt
ESA = − d

dt
J←SE, (4.44)

where ρS is time invariant, due to S does not directly interact with E. It is immediate
to see from the above equation that any temporary increase in ESA during the dynamics
of the open system, implies a temporary decrease in J←SE. Thus any deviation from the
monotonically increasing behavior of J←SE is an indication of non-Markovianity. This
connection presents the relation between entanglement-base measure and the flow of
information between the system and the environment in terms of an entropic measure of
information (FANCHINI et al., 2014).

We will present in Chapter 6, our contributions to the characterization non-
Markovianity of a quantum system. In this line of thought, we propose a general framework
to characterize non-Markovianity through multipartite measures of quantum, classical and
total correlations.
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5 TRACE-DISTANCE CORRELATIONS
FOR X STATES AND EMERGENCE OF
THE POINTER BASIS IN MARKOVIAN
AND NON-MARKOVIAN REGIMES

In this Chapter, we develop a method to evaluate both classical and total trace-
norm (Schatten 1-norm) geometric correlations for the complete set of X states. As
we mentioned in section 4.3, for the simple case of mixed two-qubit systems in Bell-
diagonal states, analytical expressions have been found for quantum, classical, and total
correlations. However, for the more general case of two-qubit X states described in section
5.1, only the quantum contribution for the geometric correlation has been analytically
derived (CICCARELLO; TUFARELLI; GIOVANNETTI, 2014).

Therefore, our aim is to close this gap, providing in section 5.2, closed analytical
expressions for the classical and total correlations of arbitrary two-qubit X states. The
analytical expressions for the classical correlation of X states can be applied as a powerful
resource to characterize the open-system dynamics in rather general environments. As
an application, in section 5.3 we consider the open-system dynamical behavior of such
correlations under PD and GAD evolutions. Finally, we show that geometric classical
correlations can characterize the emergence of the pointer basis of an apparatus subject to
decoherence in either Markovian or non-Markovian regimes.

5.1 X states
We are interested in the evolution of classical and total correlations under noise

of an important two-qubit system known as “ X states”. The density matrix of these
states only contains non-zero elements in an “X” formation, along the main diagonal and
anti-diagonal. Thus the density matrix shows the general form:

ρX =


ρ11 0 0 ρ∗41

0 ρ22 ρ∗32 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

 , (5.1)

where the computational basis {|00〉 , |01〉 , |10〉 , |11〉} is adopted. This visual appearance
resembling that the letter X has led them to be called “ X states” (YU; EBERLY, 2007).
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Eq. (5.1) describes a quantum state provided the unit trace and positivity conditions∑4
i=1 ρii = 1, ρ11ρ44 ≥ |ρ41|2 and ρ22ρ33 ≥ |ρ32|2 are fulfilled. The diagonal elements are

real, whereas the elements ρ41 and ρ32 are complex numbers in general. However, they can
be brought into real numbers via local unitary transformations, which preserve the trace
distance correlations (CICCARELLO; TUFARELLI; GIOVANNETTI, 2014).

We particularly note that these states generalize many important classes of mixed
quantum states such as the maximally entangled Bell states (NIELSEN; CHUANG, 2000),
partially entangled and quantum correlated states (like the well-known Werner mixed
state (WERNER, 1989)), lending further importance to their study. The X states were
first identified as a class of states of interest in the work of Yu and Eberly (YU; EBERLY,
2007), where some of their properties in connection with the phenomenon of sudden death
of entanglement were investigated. The properties of this states were studied for example
in (ALI; RAU; ALBER, 2010; MAN’KO; MARKOVICH, 2014). The X mixed states
arises naturally in a wide variety of physical situations (WANG et al., 2006; PRATT,
2004; BOSE et al., 2001) and frequently were encountered in condensed matter systems,
quantum dynamics, etc, (DILLENSCHNEIDER, 2008; LANG; CAVES, 2010; WERLANG
et al., 2010; CILIBERTI; ROSSIGNOLI; CANOSA, 2010). Remarkably, the mixed states
defined here not only are rather common but also have the property that they often retain
the X form under noisy evolution.

An equivalent and rather useful way of writing the states (5.1) is by decomposing
in terms of Pauli operators Eq. (2.22):

ρX = 1
4

(
I⊗ I +

3∑
i=1

ciσi ⊗ σi + c4I⊗ σ3 + c5σ3 ⊗ I
)
, (5.2)

the elements of the density matrix and the parameters ci can be related as follows:

c1 = tr(σ1 ⊗ σ1ρX) = 2(ρ32 + ρ41), (5.3)

c2 = tr(σ2 ⊗ σ2ρX) = 2(ρ32 − ρ41), (5.4)

c3 = tr(σ3 ⊗ σ3ρX) = 1− 2(ρ22 + ρ33), (5.5)

c4 = tr(I⊗ σ3ρX) = 2(ρ11 + ρ33)− 1, (5.6)

c5 = tr(σ3 ⊗ IρX) = 2(ρ11 + ρ22)− 1, (5.7)
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where I is the identity matrix and the parameters ci assuming values in the interval
−1 ≤ ci ≤ 1. Finally, we note that for the special case of two-qubit X states with
c4 = c5 = 0, the Bell diagonal states described in subsection 4.3.2.1 are recovered.

5.2 Geometric classical and total correlations: analytical expres-
sions
In this section we provide analytical expressions for geometrical classical and total

correlations for two-qubits X states. As mentioned beforehand in Chapter 4, particularly
section 4.4.2, the general approach of measures of quantum, classical, and total correlations
of an n-partite system in a state ρ are respectively defined by (MODI et al., 2011;
BRODUTCH; MODI, 2012; PAULA et al., 2014):

Q(ρ) = K [ρ,M−(ρ)] , (5.8)

C(ρ) = K [M+(ρ),M+(πρ)] , (5.9)

T (ρ) = K [ρ, πρ] , (5.10)

where K [ρ, τ ] denotes a real and positive function that vanishes for ρ = τ , M−(ρ) is a
classical state obtained through a non-selective measurement {M (i)

− } that minimizes Q,
M+(ρ) is a classical state obtained through a non-selective measurement {M (i)

+ } that
maximizes C, and the product of the local marginals of ρ are given by πρ = ρ1⊗ ...⊗ ρn =
tr1̄ρ⊗ ...⊗ trn̄ρ. In order to avoid ambiguities in the correlation measures for Q and C,
we take {M (i)

− } and {M
(i)
+ } as independent measurement sets (PAULA et al., 2014).

For our purpose we consider correlations based on the trace-norm (Schatten 1-
norm) and projective measurements operating over one qubit of a two-qubit system, i.e.,
K [ρ, τ ] = ‖ρ− τ‖1 = tr|ρ− τ | and M±(ρ) = Π(1)

± (ρ), such that

QG(ρ) = tr
∣∣∣ρ− Π(1)

− (ρ)
∣∣∣ , (5.11)

CG(ρ) = tr
∣∣∣Π(1)

+ (ρ)− Π(1)
+ (πρ)

∣∣∣ , (5.12)

TG(ρ) = tr |ρ− πρ| . (5.13)

QG is known like Schatten 1-norm geometric quantum discord and was introduced in
(PAULA; OLIVEIRA; SARANDY, 2013; NAKANO; PIANI; ADESSO, 2013). As we
already discussed in section 4.3, the counterpart to QG, CG is the Schatten 1-norm classical
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correlation. Concerning TG, it is a measure of total geometric correlation, which vanishes
if the system is described by a product state. The trace-norm satisfies reasonable criteria
expected for correlation measures, although these criteria are still source of debate (PAULA
et al., 2014; MAZIERO, 2015). Recalling that the analytic formula for Schatten 1-norm
quantum correlation for X states has been shown in (CICCARELLO; TUFARELLI;
GIOVANNETTI, 2014). It is given in terms of the parameters {ci} by:

QG(ρX) =
√

ac− bd
a− b+ c− d

, (5.14)

where a = max{c2
3, d+ c2

5}, b = min{c, c2
3}, c = max{c2

1, c
2
2}, and d = min{c2

1, c
2
2}. In order

to present our construction for the corresponding classical and total correlations, let us
first compute the marginal density operators:

ρ1 = tr1̄ρ = 1
2 (I + c5σ3) and ρ2 = tr2̄ρ = 1

2 (I + c4σ3) . (5.15)

Thus, the product state πρX = ρ1 ⊗ ρ2 reads

πρX = 1
4 (I⊗ I + c4I⊗ σ3 + c5σ3 ⊗ I + c4c5σ3 ⊗ σ3) . (5.16)

An interesting point is that the inner expression of classical correlation given by Eq. (5.12)
can be rewritten as:

Π(1)
+ (ρ)− Π(1)

+ (πρ) = Π(1)
+ (ρ− πρ). (5.17)

As can be seen from Eqs. (5.2) and (5.16), the difference of X states ρX −πρX is mathemat-
ically equivalent to a difference between Bell-diagonal states. This fact allow us to rewrite
the difference ρX − πρX in terms of effective Bell-diagonal states ρ̃B and πρ̃B as follows:

ρX − πρX = ρ̃B − πρ̃B , (5.18)

where

ρ̃B = 1
4

[
I⊗ I +

3∑
i=1

c̃iσi ⊗ σi
]

(5.19)

and
πρ̃B = 1

4 (I⊗ I) , (5.20)

with
(c̃1, c̃2, c̃3) = (c1, c2, c3 − c4c5) . (5.21)

We now apply the result obtained above for evaluating the analytical expressions of CG
and TG, using the Eq. (4.33) and Eq. (4.34) presented in section 4.3 for the Bell-diagonal
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states. As a consequence, the geometrical classical and total correlations for X states are
given by:

CG(ρX) = CG(ρ̃B) = c̃+, (5.22)

and
TG(ρX) = TG(ρ̃B) = 1

2 [c̃+ + max{c̃+, c̃0 + c̃−}] , (5.23)

where c̃− = min{|c̃1|, |c̃2|, |c̃3|}, c̃0 = int{|c̃1|, |c̃2|, |c̃3|}, and c̃+ = max{|c̃1|, |c̃2|, |c̃3|} repre-
sent the minimum, intermediate, and the maximum of the absolute values of the parameters
c̃i (i = 1, 2, 3), respectively.

5.3 Applications
In this section, we will illustrate the applicability of the geometric measure of

classical correlations by considering the decohering dynamics of the quantum systems. We
will take the system as a X state coupled independently with sources of Markovian and
non-Markovin noises. In particular, we centered our attention on PD and GAD noises.

5.3.1 Markovian dynamics

Having in mind the operator-sum representation formalism presented in section 2.4.
We consider qubits A and B prepared in a mixed state ρ. The Markovian evolution of ρ is
governed by a trace-preserving quantum operation, which can be written compactly as

ε(ρ) =
∑
i,j

(
KA
i ⊗KB

j

)
ρ
(
KA
i ⊗KB

j

)†
, (5.24)

where the Kraus operators {Ks
k} satisfy the trace-preserving condition reading∑kK

s†
k K

s
k =

I. In the following of this section, we will focus on the PD and GAD channels. We provide
in Table 1 the Kraus operators for these channels.

An interesting point is that both the PD and GAD decoherence processes preserve
the X form of the density operator. This can be expected for PD noise, which can only give
time dependence to the off-diagonal matrix elements. The interaction of the system and
GAD noise evolutions are different, and evolution under amplitude noise is more elaborate,
affecting all six non-zero elements. In these cases, we check the robust form invariance
during evolution.

In order to describe the dynamic evolution of correlations, we have to find out the
evolved parameters c̃i(t), as defined by Eq. (5.21), inserting the X state Eq. (5.2) into
Eq. (5.24). Remarkably, the parameters c̃i(t) turn out to be independent of λs. Since the
evolution is Markovian, we further take the decoherence probability ps = 1− exp(−t γs)
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Kraus operators

PD Ks
0 =

√
1− ps/2 I,Ks

1 =
√
ps/2σ3

GAD Ks
0 =
√
λs

(
1 0
0
√

1− ps

)
, Ks

2 =
√

1− λs
( √

1− ps 0
0 1

)

Ks
1 =
√
λs

(
0 √

ps
0 0

)
, Ks

3 =
√

1− λs
(

0 0√
ps 0

)

Table 1 – Kraus operators for PD and GAD, where ps and λs are the decoherence proba-
bilities for the qubit s.

for both PD and GAD channels. Therefore, evolution of the parameters of the X state
evolution is described in Table 2 in terms of the decoherence time:

τD = 1
γA + γB

. (5.25)

Channel c̃1(t) c̃2(t) c̃3(t)
PD c1exp[−t/τD] c2exp[−t/τD] (c3 − c4c5)
GAD c1exp[−t/2τD] c2exp[−t/2τD] (c3 − c4c5)exp[−t/τD]

Table 2 – Correlation parameters c̃i(t) (i = 1, 2, 3) for PD and GAD channels.

Then, we can directly obtain the dynamics of classical correlations CG(ρX(t)), as
given by Eq. (5.22). By looking at the correlation parameters c̃i(t) from Table 2 one sees
immediately that both |c1(t)| and |c2(t)| display the same decay rate, which means that
they do not cross as functions of time. Therefore, for both PD and GAD channels, only
the crossings allowed are for |c1(t)| = |c3(t)| and |c2(t)| = |c3(t)|, implying at most a single
nonanalyticity (sudden change) in the geometric classical correlation.

Indeed, a necessary and sufficient condition for sudden change in the case of PD
and GAD channels are c̃− = |c̃3| 6= 0 and c̃+ = |c̃3| 6= 0, respectively. Therefore, the
generalization of the initial state to an X state does not allow for further sudden changes in
the classical correlation. This sustains the result that double sudden changes is an exclusive
feature of quantum correlations, as discussed for Bell-diagonal states in Ref. (PAULA et
al., 2013a; MONTEALEGRE et al., 2013).

The results are shown in Fig. 8, where we plot CG as a function of the dimensionless
time τ = (γA + γB) t for a mixed X state under the GAD channel. In particular we note
that a single sudden transition occurs at τ ∗1 = 0.37, which can be determined from the
correlation parameters ci(t) in Table 2.
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Figure 8 – Classical correlation as a function of τ = (γA + γB)t for a two-qubit system
under the GAD channel. The initial state is in the X form, where the values for
ci are selected to show the behavior of the sudden transition, with c1 = 0.28,
c2 = 0.22, c3 = 0.40, c4 = 0.10, and c5 = 0.60. A sudden transition in CG occurs
at τ ∗1 = 0.37. In the inset, we show the correlation parameters |c̃1|, |c̃2|, and
|c̃3|.

5.3.2 Pointer basis for Markovian dynamics

Let us now apply the classical correlation CG for X states to investigate the
emergence of the pointer basis of a quantum apparatus A subject to decoherence in a
Markovian regime. In the measurement-like scenario the pointer basis can be understood
as a set of orthonormal states of the apparatus in which correlations with the system state
are eventually established (irrespective of the initial states of the apparatus).

The interaction between a quantum measurement apparatus A and the system of
interest S, causes the emergence the classical limit through the process of decoherence.
During the measurement the environment E interacts with the measuring apparatus A
collapsing it into a possible set of classical states known as the pointer basis (ZUREK,
2003; ZUREK, 1981; ZUREK, 1982; CORNELIO et al., 2012). Thus, the system-apparatus
state ρAS is decohered 1 into a new classical set of pointer basis with vanishing discord
1 Decoherence leads to environment-induced superselection which singles out the pointer basis and thus
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D(S|A) = 0 and which are not altered by decoherence. The pointer basis can be defined as
the basis that minimized the discord (to zero). The correlations between these states and
the system are preserved, despite the dissipative decoherence process. Hence, decoherence
selects the classical pointer states of A, inducing a transition from quantum to classical
states of the measurement apparatus.

Therefore, considering the quantum measurement apparatus A interacting with the
system of interest S, with corresponding Hilbert spaces HS and HA and bases {|si〉} and
{|Ai〉}. For the initial state |ψS〉 in S, the composite system S +A+ E evolves from the
initial state |ψS〉|A0〉|E0〉 to

∑
i ci|si〉|Ai〉|Ei〉, where |Ai〉 denotes the orthogonal states of

the apparatus, and |Ei(t)〉 stand for the states of the environment, which are inaccessible
to the observer. Hence, the reduced density matrix of the system and the apparatus is
given by (ZUREK, 1981; ZUREK, 2003; CORNELIO et al., 2012):

ρAS =
∑
i,j

cic
∗
j〈Ej(t)|Ei(t)〉|si〉〈sj|〈Aj|, (5.26)

where the coefficients 〈Ej(t)|Ei(t)〉 with i 6= j decay rapidly in time. Consequently, the
state of A+ S after decoherence time τE is described by

ρAS =
∑
i

|ci|2|si〉|Ai〉〈si|〈Ai|, (5.27)

where the states of the bases {|si〉} and {|Ai〉} are classically correlated. Through of
this correlation, an observed can obtain information about S via measurements on A.
Therefore, the environment selects a basis set of classical pointer states {|Ai〉} of the
apparatus and τE corresponds to the time for the pointer basis to emerge. The classical
correlations between these states and the system are preserved, despite the dissipative
decoherence process. Hence, decoherence selects the classical pointer states of A, inducing a
transition from quantum to classical states of the measurement apparatus. As a consequence,
the information about S turns out to be accessible to a classical observer through the
pointer basis associated with the apparatus. The emergence of the pointer basis occurs
for an instant of time τE at which the classical correlation between A and S becomes
constant (CORNELIO et al., 2012; MONTEALEGRE et al., 2013; PAULA et al., 2013a).
The classical correlation can be used to characterize the time τE when the pointer state
emerges, which exactly corresponds to the instant of time at which CG(t) shows a sudden
transition to a constant function.

For our work, we assume that the composite system AS starts as a X state and
the environment only affects the state of the apparatus A and we focus in an environment
E in the form of a PD or GAD channel. We begin by analyzing the case of GAD channel.
As we have seen in Fig. 8, the classical correlation for a initial X state under GAD channel

removes quantum excess of correlation responsible for the basis ambiguity.
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suffers a sudden change, but continues to decay asymptotically. Consequently, for the
GAD channel, there is no emergence of pointer basis at a finite time, since no decay of
CG to a constant function of time is possible 2. For case of PD channel, the evolution
of the classical correlation as function of the dimensionless parameter τ = (γA + γB) t is
shows in Fig. 9. In this case, the classical correlation decay monotonically until a time
τE, when a sudden transition occurs and remains constant. For our example in Fig. 9, the
emergence of the pointer basis through the behavior of CG occurs then at τ ∗1 = 0.92, i.e.,
τE = 0.92 τD.
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Figure 9 – Classical correlation as a function of τ = (γA + γB)t for a two-qubit system
under the PD channel. The initial state is in the X form, where c1 = 0.50,
c2 = 0.20, c3 = 0.10, c4 = 0.10, and c5 = 0.20, with these values chosen to
illustrate the emergence of the pointer basis. This occurs at τ ∗1 = 0.92, i.e.,
τE = 0.92 τD. In the inset, we detail the evolution of the correlation parameters
|c̃1|, |c̃2|, and |c̃3|.

Remarkably, we can analytically determine τE for X states. From Table 2, CG(t)

2 This behavior also can be observed from the decay monotonically of all correlations parameters c̃i, see
Table 2.
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gets constant after a sudden transition at finite time given by

τE = τD ln
[
c̃+

|c̃3|

]
. (5.28)

Comparing τE with the decoherence time scale τD, we can observe that the pointer basis
may emerge at a time smaller or larger than τD. This generalizes the result obtained in
section 4.3.2.1 for Bell-diagonal states (CORNELIO et al., 2012; MONTEALEGRE et al.,
2013; PAULA et al., 2013a) .

5.3.3 Non-Markovian dynamics

In the last application, we considered the classical correlations for X states in
a non-Markovian open quantum system under the PD channel. The non-Markovian
dynamics describes many physical situations, e.g, single flourescent systems hosted in
complex environments, biological systems, superconducting qubits, dephasing in atomic
and molecular physics, etc.(WOLF et al., 2008; APOLLARO et al., 2011; REBENTROST;
CHAKRABORTY; ASPURU-GUZIK, 2009; LIANG, 2010; CHEN et al., 2015; BUDINI,
2006c; WONG; GRUEBELE, 2001). Here, we discuss the class of non-Markovian master
equations showed in section 3.2. In this formalism proposed in (BUDINI, 2006b), the
system state is written as a sum of auxiliary matrices whose evolution involve Lindblad
contributions with local coupling between all them, resembling the structure of a classical
rate equation.

Figure 10 – Two-qubit system A and B interacting with a self-fluctuating environment.
We assume an environment with only two subspaces, R = 1, 2, which only
affects on the decay rates of the system.

In this scenario, we analyze the case of a two-qubit system in the X form interacting
with a dispersive reservoir whose action can be written in terms of a dispersive Lindbland
rate equation (see section 2.5). Therefore, in this non-Markovian framework, we assumed
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a complex reservoir with only two subspaces in Eq. (3.26), namely R = 1, 2. The density
matrix ρS(t) of the system can be written as

ρS(t) = P1ρ1(t) + P2ρ2, (5.29)

where each auxiliary (unnormalized) operator ρR defines the system dynamics given that
the reservoir is in the R-configurational bath state, whose statistical weights Eq. (3.27)
satisfy P1 + P2 = 1. It is important to stress that the set of states {ρR(t)} encodes both
the system dynamics and the fluctuations of the environment (BUDINI, 2006b; BREUER,
2007). For our work, we restrict our attention to self-fluctuating environment, this kind
of enviromental fluctuations represent situations in which the transitions between the
configurational states do not depend on the system state (BUDINI, 2006b; BUDINI,
2008). Thus, the fluctuations between the configurational states are governed by a classical
master equation (KAMPEN, 1992) (see Appendix A, Eq. (A.12)). Hence, we model the
environment as being characterized by a two-dimensional configurational space only affects
the decay rates of the system. A schematic diagram is presented in Fig. 10. The evolution
of the auxiliary states follows by itself a Markovian master equation, this is (BUDINI,
2006b; BUDINI, 2008; BUDINI, 2010):

dρ1(t)
dt

= −i[H1, ρ1(t)] + γA1 (LA[ρ1(t)]) + γB1 (LB[ρ1(t)])

− φ21ρ1(t) + φ12ρ2(t), (5.30)

dρ2(t)
dt

= −i[H2, ρ2(t)] + γA2 (LA[ρ2(t)]) + γB2 (LB[ρ2(t)])

− φ21ρ2(t) + φ12ρ1(t), (5.31)

where the structure of the superoperator L for the PD channel is given by

LA,B[•] = (σA,Bz • σA,Bz − •), (5.32)

where σz is the z Pauli matrix. The completely CP conditions (BUDINI, 2006b; BUDINI,
2010) imply:

γA,B1 ≥ 0, γA,B2 ≥ 0, (5.33)

φ12 ≥ 0, φ21 ≥ 0. (5.34)

The first line of Eqs. (5.30) and (5.31) defines the unitary and dissipative dynamics
for the two-qubit system, given that the bath is in the configurational state 1 or 2,
respectively. The constants {γA1,2, γB1,2} are the natural decay rates of the system associated
with each reservoir state (NIELSEN; CHUANG, 2000). On the other hand, the second
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line of Eqs. (5.30) and (5.31) describes transitions between the configurational states of
the environment (with rates φ12 and φ21) (BUDINI, 2010). For a matter of simplicity,
the decay rates associated with each subsystem will be chosen to be the same, namely,
γA1 = γB1 ≡ γ1 and γA2 = γB2 ≡ γ2. Moreover, we define the characteristic dimensionless
parameters

ε = γ1

γ1 + γ2
, ε ∈ [0, 1], (5.35)

η = φ12

φ12 + φ21
, η ∈ [0, 1], (5.36)

v = φ12 + φ21

γ1 + γ2
, v ∈ [0,∞). (5.37)

Similarly as we have done in the Markovian case, we can directly obtain the dynamics of
the classical correlations from Eqs. (5.3)-(5.7) and from the definition of CG in Eq. (5.22).
We remark that this non-Markovian PD process preserves the X state form.

Using the new parametrization showed above in terms of ε, η and v, we can analyze
the system in the limit of either fast or slow environmental fluctuations. The fast limit of
environmental fluctuations occurs when the reservoir fluctuations are much faster than
the average decay rates of the system, namely, {φR′R} � {γR}, which implies v � 1 from
Eq. (5.37). In this limit the system shows Markovian behavior. Conversely, when the bath
fluctuations are much slower than the average decay rate, namely, {φR′R} � {γR}, the
system is in the limit of slow environmental fluctuations. In this case we have v � 1. In
this regime non-Markovian effects become relevant.

Let us now investigate the emergence of the pointer basis for the case of the
non-Markovian PD channel, given by Eqs. (5.29)-(5.32). In this scenario, the classical
correlation can witness the emergence time τE through the sudden transitions in Fig. 11.
We also can observe the time of emergence of the pointer basis τE is greater for slower
environmental fluctuations. Moreover, we observe that for the non-Markovian regime
{φR′R} � {γR} the classical correlation displays a bi-exponential decay. Nevertheless,
for {φR′R} � {γR}. The classical correlation shows a single exponential decay, such as
expected for a Markovian behavior. In the next Chapter we will return with the discussion
about the characterization of non-Markovianity.

Finally, we focus our attention on the slow configurational transitions. From Fig.
12 is possible to see that τE strongly depends on ε, i.e., on the ratio of decay rates γ1 and
γ2. The shortest emergence time occurs for the central value ε = 0.5, where decay rates
obey γ1 = γ2. As we move away from ε = 0.5, the emergence of the pointer basis is delayed.
In particular, for the limit cases ε = 0 or ε = 1, the system shows a soft decay, with no
sudden transition at finite time.
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Figure 11 – Classical correlation as a function of τ = (γ1 + γ2)t for a two-qubit system
under the non-Markovian PD channel. The initial state is in the X form, with
c1 = 0.50, c2 = 0.20, c3 = 0.10, c4 = 0.10, and c5 = 0.20. We have also taken
ε = 0.92, η = 0.10 and probabilities P1 = P2 = 1

2 . The emergence times τE
are associated with τ ∗1 = 3.5, τ ∗2 = 4.3, and τ ∗3 = 7.1. The initial state has
been chosen to show the emergence of the pointer basis in the non-Markovian
regime.
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Figure 12 – Classical correlation as a function of τ = (γ1 + γ2)t for for a two-qubit system
under the non-Markovian PD channel in the limit of slow fluctuations, with
v = 0.001, η = 0.70 and probabilities P1 = P2 = 1

2 . The initial state is in the
X form, with c1 = 0.50, c2 = 0.20, c3 = 0.10, c4 = 0.10,and c5 = 0.20. The
emergence times τE are associated with τ ∗1 = 1.8 , τ ∗2 = 5.7, τ ∗3 = 7.1.
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6 NON-MARKOVIANITY THROUGH MUL-
TIPARTITE CORRELATION MEASURES

This chapter contains ours results about the characterization of memory effects in
non-Markovian systems. In our work we propose a general framework to characterize non-
Markovianity through multipartite measures of quantum, classical, and total correlations.
We develop our approach for non-Markovianity considering the BLP measure and the
program introduced by Rivas, Huelga, and Plenio (RIVAS; HUELGA; PLENIO, 2010),
where an ancilla is coupled to a system which interacts with an environment, a review
of this approach is showed in section 6.1. Our main result of this chapter is discussed
in section 6.2, where we establish sufficient conditions for which generalized measures of
multipartite quantum, classical, and total correlations can be used to quantify the degree of
non-Markovianity of a local quantum decohering process. In section 6.3 some applications
are indicated. We will illustrate our results by considering the dynamical behavior of the
trace-distance correlations in multi-qubit systems under local PD and GAD channels.

6.1 Characterizing non-Markovianity
Let us first suppose a quantum process governed by a time-local master equation

dρ

dt
= Lt ρ(t), (6.1)

where the time-dependent generator Lt is given by

Ltρ(t) = −i [H(t), ρ(t)] +
∑
i

γi(t)
(
Ai(t)ρ(t)A†i (t)

−1
2
{
A†i (t)Ai(t), ρ(t)

})
, (6.2)

with H(t) denoting the effective system Hamiltonian, Ai(t) the Lindblad operators, and
γi(t) the relaxation rates. According to section 2.5, the generator Lt assumes the Lindblad
form for each fixed t ≥ 0, if γi(t) ≥ 0. Hence, the dynamics of the density operator can be
written as

ρ(t) = Φt, τρ(τ),

where Φt, τ is a CPTP map, given by

Φt, τ = T← exp
(∫ t
τ dt

′Lt′
)
,
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with T← denoting the chronological time-ordering operator. The dynamical map Φt, τ then
satisfies the divisibility condition

Φt, τ = Φt, rΦr, τ (t ≥ r ≥ τ ≥ 0),

which characterizes the Markovianity of the quantum process. Conversely, for γi(t) < 0,
the corresponding dynamical map Φt, τ may not be CPTP for intermediate time intervals
and the divisibility property of the overall CPTP dynamics is violated, which characterizes
a non-Markovian behavior (BREUER; LAINE; PIILO, 2009; RIVAS; HUELGA; PLENIO,
2010).

If a function F = F (ρ) is monotonically nonincreasing under divisible maps acting
on ρ, i.e., F (Φt, τρ(τ)) ≤ F (ρ(τ)) when Φt, τ = Φt, rΦr, τ , then F (ρ) is monotonically
nonincreasing with increasing time, namely, dF (t)/dt ≤ 0. However, this is not always
true for a non-Markovian process, where the divisibility of the map is violated, being
dF (t)/dt > 0 a straightforward non-Markovianity witness (BREUER; LAINE; PIILO,
2009). Therefore, F (ρ) can be employed to point out the breakdown of Markovianity and
the degree of non-Markovianity can be defined by

NF (Φ) = maxρ(0)

∫
d
dt
F (t)>0

d

dt
F (t)dt, (6.3)

with the maximization performed over all sets of possible initial states, ρ (0), and the
integration extended over all time intervals for which dF (ρ)/dt > 0. Numerically, we can
write

NF (Φ) = maxρ(0)
∑
i

[{F (τi+1)− F (τi)}] , (6.4)

where {(τi, τi+1)} represents the set of all time intervals for which F (t+ ∆t) > F (t). The
maximization over ρ(0) is not a trivial task. Nevertheless, it is always possible to find out
lower bounds to NF (Φ) by optimizing over any class of initial states, which leads to a
qualitative assessment of the non-Markovianity of the map Φ (DHAR; BERA; ADESSO,
2015).

6.2 Non-Markovianity through Correlation measures
Let us first come back to the general approach of discord-like measures of quantum,

classical, and total correlations of a n-partite system in a state ρ, introduced in section
4.4, which we express by the following definitions:

Q(ρ) = K
[
ρ, M−ρ

]
, (6.5)

C(ρ) = K
[
M+ρ, M+πρ

]
, (6.6)

T (ρ) = K [ρ, πρ] , (6.7)
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where K [ρ, σ] denotes a real and positive function that vanishes for ρ = σ, the operator
πρ = tr1̄ρ⊗ tr2̄ρ...⊗ trn̄ρ represents the product of the local marginals of ρ, and M−ρ and
M+ρ are classical states obtained through measurement maps M− and M+ that minimize
Q and maximize C, respectively. Here, we treat a measurement maps as local n-partite
maps

M± = M±
1 ⊗M±

2 · · · ⊗M±
n , (6.8)

whereM±
i 6= I if the ith partition is measured orM±

i = I if the ith partition is unmeasured.
We will consider the measurements {M±

i 6= I} defined by the complete sets of local
orthogonal projectors, satisfying:

M±
i M

±
i ρ = M±

i ρ.

As discussed in section 4.4.2, the correlation measures in Eqs. (6.5)-(6.7) are expected to
obey the following set of fundamental criteria: (i) product states have no correlations, (ii)
all correlations are invariant under local unitary operations, (iii) all correlations are non-
negative, (iv) total correlations are nonincreasing under local quantum channels (CPTP
maps), (v) classical states have no quantum correlations, and (vi) quantum correlations
are nonincreasing under local quantum channels over unmeasured subsystems (PAULA
et al., 2014). In order to satisfy the requirements above, we restrict K to be positive and
unitary invariant. An important point to note here is that we requiere K to be contractible
under CPTP maps Φ, i.e., we have (PAULA et al., 2014):

K[Φρ,Φσ] ≤ K[ρ, σ], (6.9)

for all states ρ and σ.

Figure 13 – Illustration of the degree of non-Markovianity NF (Φ) via locally measured
states.

In the following we will consider multipartite correlated quantum systems, such
as illustrated by Fig. 13. Particularly, we will consider local dynamical maps Φ = Φ1 ⊗
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Φ2 · · ·⊗Φn. In this scenario, we can show that a non-monotonic behavior of the correlations
Q(ρ), C(ρ), and T (ρ) as a function of time may provide a direct measure of the degree
of non-Markovianity NF (Φ), with F = Q,C, or T . This result is established by our next
theorem.

Theorem 2. Consider a quantum evolution driven by a local dynamical map Φ = ⊗n
i=1 Φi.

Then, assuming that K is contractible under CPTP maps, it follows that:

1. NT (Φ) is a measure of non-Markovianity;

2. NQ(Φ) and NC(Φ) are measures of non-Markovianity for local measurements M± =⊗n
i=1M

±
i such that M±

i = I when Φi 6= I .

Proof. Our proof starts by observing that Φ = ⊗n
i=1 Φi. Then, by adopting t ≥ τ ≥ 0, we

can write

ρ(t) = Φt,τρ(τ) = ⊗
i Φi t,τ ρ(τ).

Moreover, for local CPTP maps, we have the relation

πΦt,τρ(τ) = Φt,τπρ(τ).

• Let us first examine NT (Φ). A generalized total correlation measure can be written
as

T (t) = K
[
ρ(t), πρ(t)

]
= K

[
Φt,τρ(τ), Φt,τπρ(τ)

]
.

Imposing that K is contractible under CPTP maps Eq. (6.9), we have

K
[
Φt,τρ(τ), Φt,τπρ(τ)

]
≤ K

[
ρ(τ), πρ(τ)

]
= T (τ).

Thus, we obtain T (t) ≤ T (τ).

• Let us now analyse NQ(Φ). A generalized quantum correlation measure can be
written as

Q(t) = K
[
ρ(t),M−

t ρ(t)
]
,

where we are considering M−
t = ⊗

iM
−
i t with M−

i = I when Φi 6= I (consequently,
M−Φ = ΦM−). As M−

τ does not necessarily minimize Q(t), we can write

Q(t) ≤ K [ρ(t),M−
τ ρ(t)] = K [Φt,τρ(τ),Φt,τM

−
τ ρ(τ)].
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The proof is completed by taking Φi t,τ as a CPTP map and imposing that K is
contractible under CPTP maps. Therefore,

K [Φt,τρ(τ),Φt,τM
−
τ ρ(τ)] ≤ K [ρ(τ),M−

τ ρ(τ)] = Q(τ).

Clearly Q(t) ≤ Q(τ).

• Finally, let us consider NC(Φ). A generalized classical correlation measure can be
written as

C(t) = K
[
M+

t ρ(t),M+
t πρ(t)

]
,

where we are considering M+
t = ⊗

iM
+
i t with M+

i = I when Φi 6= I (consequently,
M+Φ = ΦM+). Following the same of line thought above, we need to impose that
K is contractible under CPTP maps. Hence:

C(t) = K
[
Φt ,τM

+
t ρ(τ),Φt ,τM

+
t πρ(τ)

]
≤ K

[
M+

t ρ(τ),M+
t πρ(τ)

]
.

As M+
t does not necessarily maximize C(τ), then

K
[
M+

t ρ(τ),M+
t πρ(τ)

]
≤ K

[
M+

τ ρ(τ),M+
τ πρ(τ)

]
= C(τ).

Hence, C(t) ≤ C(τ). This completes the proof.

Our theorem provides a criterion for measuring non-Markovianity by quantum
correlations in a general approach. This theorem ensures NQ(Φ) and NC(Φ) as measures of
non-Markovianity. By assuming that the subsystems under decoherence are unmeasured,
i.e., M±

i = I when Φi 6= I. The measurements are then performed over ancillary states
that are effectively free of decoherence. One can see from Eq. (6.7) that this requirement
is unnecessary for NT (Φ), since it is a measurement-independent quantifier.

An effective isolation of an ancilla to probe non-Markovianity has been experi-
mentally achieved in several scenarios (see for example the references (XU et al., 2013;
BERNARDES et al., 2015)). In general terms, it can be approximately assumed when the
relaxation times of the ancillary subsystem are much larger than those of the principal
subsystem. In the same way, how we will show in Eq. (6.11) for a bipartite example in
section 6.3.1, it also happens when the multi-local dynamical map can be written as an
effective transformation where only part of the subsystems undergoes decoherence. In the
following section some applications are indicated.
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6.3 Applications
In the following we will illustrate some applications of our theorem by looking at

three types of non-Markovian dynamics: the PD channel, the GAD via Lindblad rate
equation and multi-qubit systems under local PD.

6.3.1 Two-qubit state under PD noise via a time-local master equation

Let us start by considering a local PD master equation. The Hamiltonian in Eq.
(6.2) for this case can be written as

H = −1
2 (σ1

z + σ2
z),

where σz is the standard z Pauli matrix and the Aj operators in Eq. (6.2) are given by
Aj = σjz with j = 1, 2. Solutions of this local PD master equation can be obtained via
several routes, and we find the operator sum representation convenient for our purpose.
Thus, we consider the quantum dynamical map of the form Φ = Φ1 ⊗ Φ2, where1:

Φjρj = 1 + fj(t)
2 ρj + 1− fj(t)

2 σjzρjσ
j
z, (6.10)

with fj(t) = exp
[
−2

∫ t
0 γj(τ)dτ

]
. For simplicity, the time-dependent decoherence rates

associated with each subsystem will be chosen to be the same, namely,

γ1(t) = γ2(t) such that f1(t) = f2(t).

One finds that the map Φj preserves the X form of the any initial X state given by Eq.
(5.2). That is

{c1(t), c2(t), c3(t), c4(t), c5(t)} = {c1fk(t), c2fk(t), c3, c4, c5}.

Moreover, we can write

Φ = Φ1 ⊗ Φ2 = Φeff ⊗ I = I⊗ Φeff , (6.11)

where Φeff is an effective PD channel with

f(t) = f1(t)f2(t) = exp
[
−2

∫ t
0 γ(τ)dτ

]
,

with γ(τ) = γ1(τ) + γ2(τ) = 2γ1(t), such that
1 Here the operator-sum representation for each qubit is given by Φρj =

∑2
i=1 K

j
i (t)ρKj†

i (t) with the

time-dependent Kraus operators: Kj
1(t) =

√
1+fj(t)

2 I and Kj
2(t) =

√
1−fj(t)

2 σz
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{c1(t), c2(t), c3(t), c4(t), c5(t)} = {c1f(t), c2f(t), c3, c4, c5}.

In this way, we can use our Theorem 1 to characterize the non-Markovianity of an effective
PD channel by quantum, classical or total correlations defined in Eqs. (5.14, 5.22, 5.23)
respectively. Note that γ(t) needs not be positive. If γ(t) ≥ 0 for all t ≥ 0, then the channel
is in a Markovian regime. Therefore, we have df(t)/dt ≤ 0, and as a consequence we have
that dQ(t)/dt ≤ 0, dC(t)/dt ≤ 0, and dT (t)/dt ≤ 0. It follows immediately that

NQ = NC = NT = 0.

In order to quantify the non-Markovianity of the dynamical map Φ = Φ1⊗Φ2, we will first
consider the classical correlation (by replacing C(t) for F (t) in Eq. (6.3) ). The condition
dC(t)/dt > 0 occurs if and only if

C(t) > |c3(0)− c4(0)c5(0)| and γ(t) < 0.

Therefore,

dC(t)
dt

= −2max{|c1(0)|, |c2(0)|}γ(t)f(t),

and the maximization in Eq. (6.3) is achieved when c3(0)−c4(0)c5(0) = 0 and max{|c1(0)|, |c2(0)|} =
1. Thus, we find

NC(Φ) = −2
∫
γ(t)<0

γ(t)f(t)dt, (6.12)

where we taking ρ(0) as a maximally entangled state. Remarkably, we obtain the same
estimation of non-Markovianity degree via total correlation T (t) or quantum correlation
Q(t).

It is interesting to highlight that for the particular case of Bell states, this is
|c1| = |c2| = |c3| = 1 and c4 = c5 = 0, the total correlation and quantum correlations are
given by

T (t) = max{1, f(t) + 1
2} and Q(t) = f(t).

As df(t)/dt = −2γ(t)f(t) and f(t) > 0, we conclude that dT (t)/dt > 0 or dQ(t)/dt > 0
is equivalent to γ(t) < 0. Under this condition, f(t) > 1 and dT (t)/dt = dQ(t)/dt =
−2γ(t)f(t), which leads to

NT (Φ) = NQ(Φ) = NC(Φ). (6.13)

The degree of non-Markovianity found here via trace-distance correlation measures is then
consistent with previous results for measures of non-Markovianity (BREUER; LAINE;
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PIILO, 2009; DHAR; BERA; ADESSO, 2015; VACCHINI et al., 2011; LUO; FU; SONG,
2012).

6.3.2 Two-qubit state under GAD via Lindblad rate equation

Let us now illustrate the signature of non-Markovianity for two-qubits under local
GAD, which will be described in the open-systems framework developed by Budini (BU-
DINI, 2006b) based on a Lindblad rate equation (see for more details the non-Markovianity
Chapter 3, section 3.2 ). In this scenario, we model the environment as being characterized
by a two-dimensional configurational space (Rmax = 2) which only affects the decay rates of
the system. The reduced density operator of the system Eq. (6.1) is obtained by (BUDINI,
2006b; BUDINI, 2005):

ρS(t) =
Rmax∑
R=1

PRρR(t), (6.14)

where the probability that the environment is in a given state at time t is given by Eq.
(3.27). Each state follows by itself a Lindblad rate equation

dρ1(t)
dt

= −i[H1, ρ1(t)] + γ̄A1 LAρ1(t) + γ̄B1 LBρ1(t)

− φ21ρ1(t) + φ12ρ2(t), (6.15)
dρ2(t)
dt

= −i[H2, ρ2(t)] + γ̄A2 LAρ2(t) + γ̄B2 LBρ2(t)

− φ21ρ2(t) + φ12ρ1(t), (6.16)

where the structure of the superoperator L for the GAD channel is given by

LA,B• = (σ
†A,BσA,B •

2 + •σ
†A,BσA,B

2 − σ†A,B • σA,B). (6.17)

In the above equations both ρ1(t) and ρ2(t) follow a Lindbland type of evolution equation of
the form (2.45) induced by the coupling with the corresponding subreservoir. Therefore, we
can observe that the first lines of Eqs. (6.15) and (6.16) define the unitary and dissipative
dynamics for the two-qubit system, given that the bath is in the configurational state
1 or 2, respectively. The constants {γ̄A1,2, γ̄B1,2} are the natural decay rates of the system
associated with each reservoir state. The positivity of the density matrix will be ensured
as long as these decoherence coefficients obey γ̄AB1,2 ≥ 0 (BUDINI, 2006b; BUDINI, 2010).

Moreover, the transitions between the configurational states ρ1 and ρ2 is described
by the second line of Eqs. (6.15) and (6.16), with rates of transitions φ12 and φ21.

For a matter of simplicity, the decay rates associated with each subsystem will be
chosen to be the same, namely, γ̄A1 = γ̄B1 ≡ γ̄1 and γ̄A2 = γ̄B2 ≡ γ̄2. Moreover, we define the
characteristic dimensionless parameters

ε = γ̄1

γ̄1 + γ̄2
, η = φ12

φ12 + φ21
v = φ12 + φ21

γ̄1 + γ̄2
, (6.18)
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where ε, η ∈ [0, 1] and v ∈ [0,∞). We will analyze the system in the limit of either fast
or slow environmental fluctuations. The fast limit of environmental fluctuations occurs
when the reservoir fluctuations are much faster than the average decay rates of the system,
namely, {φR′R} � {γ̄R} (v � 1), which implies that the system exhibits Markovian
behavior. On the other hand, when the bath fluctuations are much slower than the
average decay rate, namely, {φR′R} � {γ̄R} (v � 1), the system is in the limit of slow
environmental fluctuations. The signatures of non-Markovianity will be provided by the
total correlation, which has the advantages of avoiding both extremization procedures
and further requirements over the dynamical map. The non-Markovian behavior can then
be witnessed in Fig. 14, which shows the temporal evolution of the total correlation for
several values of v, where we have taken ε = 0.92, η = 0, 5, and an initial X state described
by c1 = 0.20, c2 = −0.20, c3 = 0.60, c4 = 0.50 and c5 = 0.70.

Figure 14 – Total Correlation as a function of τ = (γ̄A + γ̄B)t for a two-qubit system
under non-Markovian GAD channel. The initial state is in the X form, with
c1 = 0.20, c2 = −0.20, c3 = 0.60, c4 = 0.50, and c5 = 0.70. We have also
taken P1 = P2 = 1

2 , ε = 0.92 and η = 0.5. The non-monotonic behavior gets
pronounced as we decrease v from the Markovian regime (v � 1) towards the
non-Markovian regime.

For the fast limit, the decay of the total correlation is a monotonically decreasing
function, which corresponds to a Markovian evolution. Otherwise, when the system is
subject to a non-Markovian evolution (slow limit), the total correlation shows a non-
monotonic evolution, which gets more pronounced as we decrease v. The degree of non-
Markovianity NT (v) can be rigorously obtained from Eq. (6.4) by a maximization over all
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initial states. On the other hand, a lower bound for NT (v) can be directly obtained from
Fig. 14 through the height of the non-monotonic sector as a function of v.

6.3.3 Multipartite entangled state under local PD

Finally, we briefly discuss the multipartite total correlation as a non-Markovian
quantifier. Let us consider an n-partite system initially in the the Greenberger- Horne-
Zeilinger (GHZ) state (GREENBERGER; HORNE; ZEILINGER, 1989), i.e., a maximally
entangled state of the form

ρ = 1
2 (|0〉n 〈0|n + |0〉n 〈1|n + |1〉n 〈0|n + |1〉n 〈1|n) , (6.19)

where |k〉n = |k〉1 ⊗ |k〉2 ⊗ · · · ⊗ |k〉n (k = 0, 1). By applying a dynamical map Φ =
Φ1 ⊗ Φ2 ⊗ · · · ⊗ Φn over the GHZ state and choosing Φi as a local PD channel such as in
Eq. (6.10), we get

ρ(t) = 1
2 (|0〉n 〈0|n + f(t) |0〉n 〈1|n + f(t) |1〉n 〈0|n + |1〉n 〈1|n) , (6.20)

where f(t) = exp
[
−2

∫ t
0 γ(τ)dτ

]
with γ(t) = ∑n

i=1 γi(t) denoting the sum of the time-
dependent decoherence rates.

We will consider the multipartite total correlation as the non-Markovianity quanti-
fier and use the GHZ state to provide a lower bound for NT (Φ). For this purpose, we find
that the product of the local marginals of ρ(t) is given by πρ(t) = I/2n and the eingenvalues
of the operator ρ(t)− πρ(t) are

λi = −2−n (1 ≤ i ≤ 2n − 2) ,

λ2n−1 = 1
2
(
1− 21−n − f

)
,

λ2n = 1
2
(
1− 21−n + f

)
. (6.21)

Therefore, using the total correlation based on the trace-norm given by Eq. (5.13) we find

T (t) = ∑2n
i |λi| = 1− 21−n + max{1− 21−n, f(t)}.

Note that dT/dt = 0 for f(t) ≤ 1− 21−n, then the measure NT = 0. Furthermore, we find
that dT/dt = −2γ(t)f(t) for f(t) > 1− 21−n. It is straightforward to show that dT/dt > 0
for γ(t) < 0. Indeed f(t) > 1 (consequently, f(t) > 1 − 2n−1) when γ(t) < 0. Hence, a
generalization of our result in Eq. (6.12) is given by:

NT (Φ) =
∫
d
dt
T (t)>0

d

dt
T (t)dt = −2

∫
γ(t)<0

γ(t)f(t)dt. (6.22)
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7 QUANTUM COHERENCE

Quantum coherence is a fundamental feature of quantum mechanics and is an
important physical resource in quantum information (STRELTSOV; ADESSO; PLENIO,
2017; HU et al., 2017; BAUMGRATZ; CRAMER; PLENIO, 2014). It is closely related
to almost all the fascinating quantum phenomena from the superposition principle to
quantum correlations. The coherent superposition of states, in combination with the
quantization of observables, represents one of the most fundamental characteristics that
marks the departure of quantum mechanics from the classical realm (STRELTSOV;
ADESSO; PLENIO, 2017). Quantum optical methods provide an important set of tools
for the manipulation of coherence, and indeed, at its basis lies the formulation of the
quantum theory of coherence (GLAUBER, 1963; SUDARSHAN, 1963; STRELTSOV;
ADESSO; PLENIO, 2017). While quantum correlations characterize the quantum features
of a system with at least two parties, quantum coherence already for a single system
(BAUMGRATZ; CRAMER; PLENIO, 2014; STRELTSOV; ADESSO; PLENIO, 2017). As
we already mentioned in the introductory Chapter and the quantum correlations Chapter
4, studies over the past decade have provided important information on the geometric
characterization of quantum correlations in a bipartite system with the corresponding
measures being defined based on various (pseudo) distance measures of two-states (MODI
et al., 2011).

Inspired by the recent developments about the quantitative characterization of
coherence (BAUMGRATZ; CRAMER; PLENIO, 2014; STRELTSOV; ADESSO; PLENIO,
2017), our purpose in this Chapter is the study of quantum coherence for one-qubit systems.
This chapter is organized as follows: In section 7.1 we describe the formalism of quantum
coherece. In section 7.2, we analyze in detail the connections of quantum coherence with
quantum correlations measures. In section 7.3 we focus on the trace-norm coherence.
In section 7.4, we consider dynamics under decohering process. Finally, in section 7.5
we present our original results about the quantification of non-Markovinity by quantum
coherence, and give an example with analytic results.

7.1 Quantum coherence measures

Let us begin our discussion defining the characteristics of incoherent states and
the notion of incoherent operations. Coherence is naturally a basis dependent concept, for
this reason we first need an orthonormal reference basis 1 {|k〉}k=1,...d of the d-dimensional
1 The reference basis may be dictated by the physics of the problem under investigation or by a task for

which coherence is required (STRELTSOV; ADESSO; PLENIO, 2017).
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Hilbert space H. The density matrices that are diagonal in this specific basis are called
incoherent and form the set of incoherent states I ⊂ H. Therefore, all density operators
δ ∈ I are of the form (BAUMGRATZ; CRAMER; PLENIO, 2014):

δ =
d∑

k=1
ck|k〉〈k|. (7.1)

On the other hand, the set of incoherent physical operations is characterized by a set of
Krauss operators {Ki} satisfying

∑
iK
†
iKi = I and fulfilling KiIK†i ⊂ I for all i. There

are two classes of incoherent operations (BAUMGRATZ; CRAMER; PLENIO, 2014):

A) The incoherent completely positive and trace-preserving (ICPTP) operations, which
act as ΦICPTPρ = ∑

iKiρK
†
i , where the Kraus operators Ki are all of the same

dimension and satisfy KiIK†i /pi ⊂ I for arbitrary δ ∈ I, with pi = tr(KiρK
†
i ) being

the probability of obtaining the result i.

B) The incoherent operations with subselection based on the output measurement results
being permitted. They also require KiIK†i /pi ⊂ I to be satisfied for all δ ∈ I. But
now the dimension of Ki may be different, that is, different Ki may correspond to
different output spaces.

The d-dimensional maximally coherent state is defined by (BAUMGRATZ; CRAMER;
PLENIO, 2014):

|Ψd〉 = 1√
d

d∑
i=1
|i〉, (7.2)

for which any ρ in the same Hilbert space can be generated with certainty by merely
incoherent operations ΦICPTP on it. It is important to note that Eq. (7.2) is independent
of a specific measure for coherence and serves as a unit for defining coherence measures.

Let us now to define the conditions for a proper coherence measure (STRELTSOV;
ADESSO; PLENIO, 2017; BAUMGRATZ; CRAMER; PLENIO, 2014):

(C1) Nonnegativity, i.e.,C(ρ) ≥ 0, and C(δ) = 0 iff δ ∈ I.

(C2a) Monotonicity: C does increase under the action of ICPTP map, C(ρ) ≥ C(ΦICPTPρ),
for all ΦICPTP.

(C2b) Strong Monotonicity: C does not increase on average under selective incoher-
ent operations, C(ρ) ≥ ∑

i piC(σi) for all incoherent Kraus operators {Ki} with
probabilities pi = tr[KiρK

†
i ] and postmeasurement states σi = KiρK

†
i /pi. This con-

dition quantifies the intuition that coherence should not increase under incoherent
measurements even if one has access to the individual measurements outcomes.
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(C3) Nonincreasing under mixing of quantum states, i.e., ∑i piC(ρi) ≥ C(∑i piσi) for
any set of states {ρi} and any pi ≥ 0 with ∑i pi = 1.

Coherence measures that satisfy conditions (C2b) and (C3) imply condition (C2a).
This gives:

C(ΦICPTPρ) = C(
∑
i

piρi)
(C3)
≤

∑
i

piC(ρi))
(C2b)
≤ C(ρ). (7.3)

A quantity C which fulfills conditions (C1)-(C3) is called coherence monotone. Some
examples of a quantifier of coherence that satisfies the conditions (C1)-(C3) are the distill-
able coherence and coherence cost (YUAN et al., 2015; WINTER; YANG, 2016), relative
entropy of coherence (BAUMGRATZ; CRAMER; PLENIO, 2014), geometric coherence
(STRELTSOV et al., 2015), coherence monotones from entanglement (STRELTSOV et al.,
2015), robustness of coherence (NAPOLI et al., 2016), etc.

Analogously to the quantum correlation measures of entanglement and quantum
discord (see section 4.2), a general distance-based coherence quantifier is defined as
(BAUMGRATZ; CRAMER; PLENIO, 2014) :

CD(ρ) = min
δ∈I
D(ρ, δ), (7.4)

where D(ρ, δ) is the distance (or pseudo distance) between ρ and δ with δ ∈ I.

7.2 Connections with quantum correlations measurements
Since coherence is a basis-dependent concept, a unitary operation will in general

change the amount of coherence in a given state. However, for several situations, it is
convenient to remove the basis dependence by optimizing over local unitaries. Using the
general distance-based coherence given by Eq. (7.4), and considering that the nearest
incoherent state is given by δ = ρdiag, where ρdiag corresponds to the diagonal part of ρ in
a given basis, we can define the following distance-based coherence for N ≥ 2:

Cd(ρ) = min
δ∈I
D(ρ, ρdiag), (7.5)

where the norm D is invariant under local unitary operations.

Therefore, using the definition given by Eq. (7.5), the minimum amount of coherence
attainable by varying the reference basis is defined by (YAO et al., 2015):

Cmin(ρ) = min
U

Cd(UρU †), (7.6)

where C is a valid coherence measure and U = U1⊗U2⊗ ....⊗Un. Following the same line
of thought, we can also define a basis-free measure of coherence by the maximization over
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all local unitary transformations (YU; YANG; GUO, 2016; HU et al., 2017; STRELTSOV
et al., 2016):

Cmax(ρ) = max
U

Cd(UρU †). (7.7)

The next theorem tells us that Cmin(ρ) is equivalent to the quantum discord.

Theorem 3. Cmin(ρ) is a measure of quantum discord Q(ρ).

Proof. Let us consider a measure of coherence given by Eq. (7.5) where the nearest
incoherent state is given by δ = ρdiag, due that the norm D is invariant under unitary
operations, i.e., D(UρU †, UσU †) = D(ρ, σ) and ρdiag stands for the diagonal part of ρ in a
basis {|k〉}. We have:

Cmin(ρ) ≡ min
U
D(UρU †, (UρU †)diag),

= min
U
D(UU †ρU †U,U †(UρU †)diagU),

= min
U
D(ρ, U †(UρU †)diagU). (7.8)

Since ρdiag = Πk(ρ) = ∑
k |k〉〈k|ρ|k〉〈k|, it follows that:

U †(UρU †)diagU =
∑
k

U †|k〉〈k|UρU †|k〉〈k|U. (7.9)

Taking |l〉 ≡ U †|k〉, we can rewrite the above equation as:

U †(UρU †)diagU =
∑
l

|l〉〈l|ρ|l〉〈l| = Πl(ρ). (7.10)

Substituting Eq. (7.10) in Eq. (7.8), we deduce that:

Cmin(ρ) = D(ρ,Πmin(ρ)) = Q(ρ), (7.11)

where Πmin(ρ) is a projective measurement that minimizes C(ρ).

Thus, we conclude that Cmin represents a discord-type quantum correlation. A
similar result was found for the relative entropy of discord Qr(ρ), where the basis-free
quantum coherence is calculated by the relative entropy of coherence, i.e., Cfree(ρ) =
min
U
CD(UρU †) = Qr(ρ) (YAO et al., 2015).

In the following, we present in the theorem 4 our results about the relation between
the Cmax(ρ) and the measurement induced non-locality (MIN) . MIN was firstly proposed
by (LUO; FU, 2011), which can be considered as a quantum correlation from a geometric
perspective based on the local projective measurements from which one of the reduced
states is left invariant (GUO, 2013). Consider a bipartite quantum state ρ shared by two
parties a and b with respective system Hilbert spaces Ha and Hb. In order to capture the
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nonlocal effect of measurements on the state, it is required that the measurements do not
disturb the local state ρa = trbρ. Hence, one can define the MIN of ρ (with respect to part
A) as the maximal distance that a state to the set L of locally invariant quantum states,
this is (LUO; FU, 2011):

N (ρ) = max
%∈L
D(ρ, %) (7.12)

where the locally invariant of % means that % = ∑
k Πa

kρΠa
k and the maximum is taken

over all local projective measurement Πa = {Πa
k} which do no disturb ρa locally, that is,∑

k Πa
kρaΠa

k = ρa where Πa(ρ) = ∑
k(Πa

k ⊗ IB)ρ(Πa
k ⊗ IB).

Theorem 4. Cmax(ρ) is a measure of MIN (Measurement Induced Non-locality) if the
restriction Π(i)

max(ρi) = ρi is imposed.

Proof. The proof is straightforward if we follow the lines of reasoning of the proof of
theorem 3. For the restriction of the corresponding farthest incoherent state is δ = ρdiag,
Cmax can be written as:

Cmax(ρ) ≡ max
U
D(ρ, U †(UρU †)diagU). (7.13)

Using Eq. (7.9) and taking |l〉 ≡ U †|k〉, we obtain:

U †(UρU †)diagU =
∑
l

|l〉〈l|ρ|l〉〈l| = Πl(ρ). (7.14)

Substituting Eq. (7.14) in Eq. (7.13), we conclude that:

Cmax(ρ) = D(ρ,Πmax(ρ)) = N (ρ), (7.15)

where Πmax(ρ) is a projective measurement that maximizes N (ρ) under the restriction
Π(i)
max(ρi) = ρi for the reduce operator of the i-th part ρi.

7.3 Trace-norm coherence
Let us now to focus in one specific distance, the trace-norm (the Schatten-1 norm).

Thus, the coherence based in trace norm is defined by (BAUMGRATZ; CRAMER; PLENIO,
2014):

Ctr(ρ) = mim
δ∈I
‖ ρ− δ ‖1, (7.16)

where ‖ A ‖1= tr
√
A†A denotes the trace norm of the matrix A. This measure has been

proved to be a coherence monotone and fulfill the conditions (C1)-(C3), for the cases where
ρ is one-qubit (SHAO et al., 2015) or a X state (YU et al., 2016). Given two one-qubit
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states ρ = I+~r.~σ
2 and δ = I+~s.~σ

2 , the trace-norm between ρ and δ can be expressed as
(NIELSEN; CHUANG, 2000):

Dtr(ρ, δ) = ‖ρ− δ‖1 = |~r − ~s|. (7.17)

Therefore, coherence is given by (BAUMGRATZ; CRAMER; PLENIO, 2014; SHAO et
al., 2015):

Ctr(ρ) = min
δ∈I
D(ρ, δ) = min

δ∈I

√
(rx − sx)2 + (ry − sy)2 + (rz − sz)2. (7.18)

For the incoherent states, we may take sx = sy = 0, whence coherence can be simplified
as:

Ctr(ρ) = min
δ∈I

√
(rx)2 + (ry)2 + (rz − sz)2 = ‖ρ− ρdiag‖tr =

√
r2
x + r2

y. (7.19)

Remarkably, for the case of one-qubit the closest incoherent state is δ = ρdiag (BROMLEY;
CIANCIARUSO; ADESSO, 2015; CHEN; FEI, 2017) and Ctr(ρ) has the same expression
as Cl1(ρ) for the case of one-qubit, reading:

Cl1(ρ) = Ctr(ρ) =
∑
i,j,i6=j

|ρij| = 2|ρ12|. (7.20)

Notice that Cl1 is a widely used quantifier of coherence induced by the l1 matrix norm,
Dl1(ρ, δ) = ‖ρ− δ‖l1 = ∑

i,j |ρi,j − δi,j| (BAUMGRATZ; CRAMER; PLENIO, 2014). On
the other hand, for the case of the X states (see section 5.1), it has been demonstrated by
(RANA; PARASHAR; LEWENSTEIN, 2016) that if ρ is a X state the nearest diagonal
matrix to ρX in trace-norm is given by diag(ρX). Hence, Ctr(ρX) = Cl1(ρX). Therefore,
Ctr(ρX) satisfy the conditions for a properly coherence measure.

Finaly, since r is a basis independent parameter and

Ctr(ρ) = 2|ρ12| =
√
r2
x + r2

y =
√
r2 − r2

z , (7.21)

we obtain:
Cmin(ρ) = 0, (rz = r), (7.22)

Cmax(ρ) = r, (rz = 0), (7.23)

where Cmax corresponds to the purity (NIELSEN; CHUANG, 2000). This result is in
agreement with the results obtained by (SHI et al., 2017; STRELTSOV et al., 2016). Also,
for any distance-based coherence monotone the maximal coherence achievable via unitary
operations coincide with the corresponding distance-based purity monotone (STRELTSOV
et al., 2016). On the other hand, Cmin = 0 is an immediate result for one-qubit because is
always possible to choose a local basis such that ρ is diagonal.
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7.4 Quantum coherence under a decohering process

Incoherent Kraus operators showed in section 7.1 are of particular importance for
decoherence processes, as already defined in this section, an incoherent operation ICPTP
is a CPTP map, which always maps any incoherent state to another incoherent one (see
the definitions A) and B) in section 7.1). The channels showed in section 2.6, namely, PF,
BF, BPF, depolarizing, PD and AD damping channels are examples of such operations
in regular computational basis {|0〉, |1〉} (BROMLEY; CIANCIARUSO; ADESSO, 2015;
HU et al., 2017; STRELTSOV; ADESSO; PLENIO, 2017). In particular, it has been
shown that any bona fide distance-based measure of quantum coherence exhibits freezing
phenomena for an even number of qubits, initialized in a particular class of states with
maximally mixed marginals, and undergoing local independent and identical nondissipative
flip channels (BROMLEY; CIANCIARUSO; ADESSO, 2015). In this section, we focus on
two quantum channels, which are PD and AD. Their Kraus operators are presented in the
Table 3.

Kraus operators

PD Es
0 =

√
1− ps/2 I, Es

1 =
√
ps/2σ3

AD Es
0 =

(
1 0
0
√

1− ps

)
, Es

1 =
(

0 √
ps

0 0

)
.

Table 3 – Kraus operators for PD and AD, where ps is the decoherence probabilities for
the qubit s.

Quantum coherence for the PD channel

Let us start by illustrating the behavior of a PD channel for a quantum system
described by one-qubit. In this situation for a Markovian PD channel the decoherence
probability is p = 1 − exp[−tγ], where γ is the rate of decay of the qubit. We find the
evolution of the parameters ri(t) of one-qubit given by ρ = I+~r.~σ

2 under a PD channel given
by Table 3, where the time-depend correlation function ri(t) in terms of the initial value
ri(0) are given by:

rx(t) = rx(0)e−γt, (7.24)

ry(t) = ry(0)e−γt,

rz(t) = rz(0).
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We can straightly get the quantum coherence (in the computational basis) as a function
of time by using that:

Ctr(t) =
√
r2
x(t) + r2

y(t) = e−γtCtr(0), (7.25)

we find that in this case the coherence decay monotonically in the time and this channel do
not allow freezing or sudden changes for trace-norm coherence. Moreover, the maximum
of coherence is given by:

Cmax(t) = Cmax(0)e−γt (rz(t) = 0). (7.26)

Quantum coherence for the AD channel

Let us now by analyzing the behavior of an AD channel for a quantum system
described by one-qubit. We chose p = 1− exp[−tγ] for the Markovian regime, where γ is
the rate of decay of the qubit. Therefore the density matrix for the Kraus operator for AD
channel, given by Table 3 evolve as:

ρ =
ρ11(0) + ρ22(0)(1− e−γt) ρ12(0)e−γt/2

ρ21(0)e−γt/2 ρ22(0)e−γt

 , (7.27)

and the quantum coherence (in a computational basis) given by Eq. (7.20) is defined as
follows:

Ctr(t) = 2|ρ12| = Ctr(0)e−γt/2, (7.28)

we find that a similar behavior with the above case, the coherence decay monotonically
in the time, sudden changes or freezing for trace-norm coherence are impossible for this
channel for one-qubit. Additionally, the maximum of coherence is given by:

Cmax(t) = Cmax(0)e−γt. (7.29)

7.5 Measuring non-Markovianity through quantum coherence
In this section, we will discuss a method of quantifying non-Markovianity through

quantum coherence. Considering that most quantum information quantities are monotonic
under local CPTP maps, we find that existing measures of non-Markovianity are based
on the non-monotonic behavior of these quantities (BREUER; LAINE; PIILO, 2009;
BREUER et al., 2016; RIVAS; HUELGA; PLENIO, 2010; LUO; FU; SONG, 2012). As
we showed in section 6.1 one way to characterize the non-Markovianity is through NF (Φ)
in Eq. (6.3). Following the same line of thought, based on the monotonically decreasing
behavior of quantum coherence measures under ICPTP maps, given by the condition (2a),
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we have that for Markovian dynamics, it follows that dC(ρ(t))
dt

≤ 0, where C is a proper
quantum coherence measure. Thus, any violation of this monotonicity dC(ρ(t))

dt
> 0 at any

time t will provide an indication of non-Markovianity. From this non-monotonicity of
quantum coherence measures NC(Φ) is a quantifier of non-Markovianity and is given by
(CHANDA; BHATTACHARYA, 2016):

NC(Φ) = max
ρ(0)∈C

∫
dC(ρ(t))

dt
≥0

d

dt
C(ρ(t))dt, (7.30)

where the maximization is taken over all initial states ρ(0) that belong to the set of all
coherent states C . Hence, the measure NC represents one measure of the degree of non-
Markovianity for dynamical maps that preserve incoherence and lead to the interpretation
of the reservoir memory effect like a backflow of the maximum amount of quantum
“coherence” on the initial state, after the state has been subject to a noisy channel for a
certain time.

In order to quantitatively analyze of the quantifier of non-Markovianity NC(Φ), in
the following we are going to show one example. For this purpose, we use the operator-
sum approach Eq. (2.36) to describe the interactions of a one-qubit with non-Markovian
environments.

7.6 Example: Non-Markovian AD noise
The AD noise under non-Markovian effects is described by the following incoherent

Kraus operators2 (BELLOMO; FRANCO; COMPAGNO, 2007):

K0 = |0〉〈0|+√p|1〉〈1|, K1 =
√

1− p|0〉〈1|, (7.31)

where

p ≡ p(t) = exp(−Γt)
{

cos(dt2 ) + Γ
d

sin(dt2 )
}2
,

with d =
√

2γΓ− Γ2. Here γ is the system-reservoir coupling constant and Γ is the decay
rate of the qubit. The parameter Γ, defining the spectral width of the coupling, is related
to the reservoir correlation time through τr ≈ Γ−1. On the other hand, γ depends on the
qubit relaxation time by τs ≈ γ−1. In the weak coupling regime, i.e. for γ ≤ Γ/2, p(t) is
monotonically decreasing. In this regime, the time of relaxation τs is greater than the
reservoir correlation time τr. The behavior of p(t) is essentially a Markovian exponential
2 This Kraus operators fullfil the condition KnIK†n ∈ I. The proof is straightforward if we consider

the incoherent state δ =
∑
i δi|i〉〈i| we obtain K0δK

†
0 = δ0|0〉〈0| + δ1|1〉〈1| ∈ I and K1δK

†
1 =

δ1(1− p)|0〉〈0| ∈ I.
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decay controlled by γ. Whereas in the strong coupling regime γ > Γ/2, the reservoir
correlation time is greater than the relaxation time and non-Markovian effects become
relevant. Interestingly, the results for AD noise under Markovian regimen showed in Table
3 can be recovered if we take p(t) = 1−η, with η being the decoherence rate of AD channel
(NIELSEN; CHUANG, 2000).

Figure 15 – Quantum Coherence as a function of τ = γt for one-qubit system under the
AD noise below non-Markovian effects. The initial state is one-qubit. The
values for ci are c1 = 0.65, c2 = 0.55, c3 = 0.2.

To analyze the signature of non-Markovianity, we need to calculate the quantum
coherence given by Eq. (7.20). In Fig. 15, we show the evolution of the coherence of
one-qubit interacting with its non-Markovian surrounding given by the Eq. (7.31). The
signature of non-Markovianity will be provided by the coherence, which has the advantages
of avoiding the extremization procedures. The non-Markovian behavior can be witnessed
in Fig. 15 for a AD noise, which shows the temporal evolution of the quantum coherence
for several values of Γ, where we have strong regime of non-Markovian effect for Γ = 0.01γ
and weak regime of non-Markovian effect for Γ = 0.1γ, and Γ = 5γ for Markovian regime,
the initial state for one-qubit is described by c1 = −0.5, c2 = 1 and c3 = 1. The oscillatory
behavior present in the non-Markovian regimen can be seen as absorption and reemission
of the quantum energy from the environment. Thus this information backflow is evident
in the behavior of the quantum coherence showed in Fig. 15.
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Let us now calculate the analytic solution for the degree of non-Markovianity NC ,
for a AD noise. The function p(t) presented in Eq. (7.31), can be rewritten in terms of the
following parameters: w = d

2 , A cosφ = 1 and A sinφ = Γ
d
. With φ = tan−1(Γ

d
) (−π2 ≤ φ ≤

π
2 ) and A =

√
(Γ/d)2 + 1.Therefore, the function p(t) is given by:

p(t) = e−ΓtA2 cos2(wt− φ). (7.32)

Using the definition of coherence for one-qubit Eq. (7.20), we calculate the coherence for a
damping noise where the function p(t) is in the form Eq. (7.32). Hence, we get:

C(t) = 2√p|ρ12(0)| = 2|ρ12(0)|Ae−Γ/2t| cos(wt− φ)|, (7.33)

where the period of oscillation of | cos(wt− φ)| is given by T = 2π
d
. The behavior of the

coherence for this case is schematically illustrated in the Fig. 16.

Figure 16 – Quantum Coherence as a function of t for an one-qubit arbitrary system under
non Markovian noise.

To analyze the non-Markovianity, we need to calculate the measure NC . In this
way Eq. (7.30) can be written as:

NC = Max
ρ(0)

∑
i

[C(τi+1)− C(τi)] , (7.34)
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where {(τi, τi+1)} represent the set of all intervals of time where dC
dt
> 0. Thus for the

quantum coherence given by Eq. (7.33) we have:

{(τi, τi+1)} =

{(0, t0), (tm − T/2, tm)} 0 < t0 ≤ T/2,
{(tm − T/2, tm)} −T/2 ≤ t0 ≤ 0.

(7.35)

where tm = t0 +mT (m = 1, 2, 3..) and t0 = φ
ω

= 2
d

tan−1(Γ
d
). In this order the measure of

non-Markovianity based on quantum coherence is given by:

NC = N0 + Max
ρ(0)

∞∑
m=1

C(tm), (7.36)

with

N0 =


Max
ρ(0)

[c(t0)− c(0)] 0 < t0 ≤ T/2,

0 −T/2 ≤ t0 ≤ 0.
(7.37)

Taking the coherence for the AD noise Eq. (7.33) and using the previous equation, we
obtain:

NC = N0 + 2A
∞∑
m=1

e−Γ/2(t0+mT ), (7.38)

with

N0 =

2(Ae−Γt0/2 − 1) 0 < t0 ≤ T/2,
0 −T/2 ≤ t0 ≤ 0,

(7.39)

here the maximization over the initial states is satisfied if we choose ρ(0) = 1. Consequently,
the compact analytical expression for the quantifier NC is given by

Nc = N0 + 2A
e−Γt0/2(e−ΓT/2 − 1) , (7.40)

where we used the relation ∑∞m=1 e
−Γ/2(t0+mT ) = e−Γt0/2

eΓT/2−1 . In the particular case when t0 ≈ 0
(d� Γ), we get

NC =
2
√

(Γ/d)2 + 1
eπΓ/d − 1 = 2

π
(dΓ), (7.41)

which correspond to the non-Markovian degree for strong non-Markovian regime.
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8 CONCLUSIONS

In the first part of the thesis, a theoretical foundation for open quantum systems
was developed. In the simplest case of the dynamics of an open system, the density matrix
evolution is given by a quantum memoryless Markov master equation. Furthermore, the
time-dependent Markovian master equation has been defined by the dynamical maps that
fulfill the CP-divisibility condition. Then, we have presented a general framework to derive
exact equations of motion for a non-Markovian open system, given by the TCL operator
technique. In this thesis, two criteria have been considered for quantifying the degree
of non-Markovian open system. The BLP measure that quantifies the distinguishability
between quantum states and a different and non-equivalent criterion the RHP measure that
identifies the non-Markovianity of quantum dynamics with the violation of a divisibility
property of the family of dynamical maps. Both criteria are sufficient, but not necessary
conditions to evaluate the non-Markovian features of a quantum process. We have seen for
the analysis performed in this thesis that different quantities could be used for capturing
a different aspect related to non-Markovian dynamics. A further study could investigate
more general approaches for the characterization of non-Markovianity, for example, a
recent proposed in (POLLOCK et al., 2018) where a universal framework to characterise
arbitrary non-Markovian quantum processes is introduced. Note that this could represent
a useful tool for a quantitative evaluation of non-Markovianity for dynamics undetected by
non-Markovianity measures studied in this thesis. Finally, we have presented a brief revision
of quantum correlations. Inspired by the fundamental relevance of quantum correlations
into the quantum mechanics theory, we have described the different types of correlations
that have been employed during the whole thesis.

In the second part of the thesis our results were presented. The results and
applications that we have presented throughout the entire thesis have employed Wolfram
Mathematica codes. The first results are the analytical expressions found for the trace-
distance classical and total correlations for the case of two-qubit systems described by
X states. In addition, we have shown the applicability of such correlations to investigate
the dynamics of open quantum systems through the characterization of the pointer basis
of an apparatus suffering either Markovian or non-Markovian decoherence. Since the
non-Markovianity brings a flow of information from the environment back to the system
during its evolution, the pointer basis has been found to emerge in a delayed time in
comparison with the Markovian behavior. It is also remarkable to observe that, differently
from the case of Bell-diagonal states, sudden transitions of entropic correlations for X
states have been conjectured to display zero measure (PINTO; KARPAT; FANCHINI,
2013), which may compromise a precise characterization of the pointer basis. Our geometric
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approach avoids this obstacle, since actual sudden changes are shown to be typical for
general X states. This may have further implications in the characterization of quantum
phase transitions through geometric classical correlations.

Secondly, we have introduced a unified framework based on generalized quantum,
classical, and total correlation measures to characterize the non-Markovianity of local
dynamical maps over multipartite quantum systems. This approach establishes sufficient
conditions under which each class of correlation can be used to determine the degree of non-
Markovian behavior. We illustrated our results for different master equation methods and
for different sources of decoherence. We expect applications in experimental setups for which
correlations may be accessible to the observer. In addition, the vanishing of entanglement
for high-temperature regimes (WERLANG et al., 2010) or for distant neighbors within
a composite system (MAZIERO et al., 2012), may also motivate the use of generalized
correlations as a tool to characterize non-Markovianity. Further applications include the
assessment of other approaches beyond Markovianity (see, e.g., Ref. (SHABANI; LIDAR,
2005)) and of additional axioms over correlation functions (see, e.g., Refs. (CIANCIARUSO
et al., 2015; HU et al., 2012)). These topics are left for future research.

As a following topic, we have systematically studied the quantum coherence,
employing the general distance-based approach as a coherence quantifier. In the context
of the basis-free measure of coherence, we have presented the equivalence between of
minimum amount of coherence and quantum discord for a general distance-based approach.
Remarkably, we have defined a basis-free measure of coherence by the maximization of
overall local unitary transformations and we have found that this quantity is exactly
equivalent to the MIN. These correspondences enhance our understanding of the relation
between different types of quantum correlations.

Furthermore, as a particular case of one-qubit, we have used the trace-norm coher-
ence as a distance measure. We have found that the trace-norm coherence is equivalent to
the l1 matrix norm coherence, in agreement with the previous results found in (BROMLEY;
CIANCIARUSO; ADESSO, 2015; CHEN; FEI, 2017). Since the study was limited to
one-qubit for which the nearest diagonal state of ρ is given by its diagonal part, the identifi-
cation of the nearest diagonal state is an open question for systems with two or more qubits
(RANA; PARASHAR; LEWENSTEIN, 2016; BROMLEY; CIANCIARUSO; ADESSO,
2015; CHEN; FEI, 2017). In addition, we have analyzed the quantum coherence under
PD and AD noises, and observed that neither channels allow freezing or sudden changes
in trace-norm coherence. Nevertheless, more complex channels (CARUSO et al., 2014)
or other possible candidates besides the trace distance, such as relative entropy (MODI
et al., 2010; BAUMGRATZ; CRAMER; PLENIO, 2014), the Bures metric (SPEHNER;
ORSZAG, 2013), or the Hellinger distance (CHANG; LUO, 2013) may allow these kinds
of behaviors.
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Finally, we have shown that under the allowed incoherent operation criteria, the
monotonicity of the valid coherence measure may be affected by a partial backflow of the
previously lost information of the system to the environment. This is similar to the cases
of non-Markovian effects on the distinguishability between two different states and other
quantum information measures (FANCHINI et al., 2014; PAULA; OBANDO; SARANDY,
2016; LORENZO; PLASTINA; PATERNOSTRO, 2013; BREUER et al., 2016; BREUER;
LAINE; PIILO, 2009). Our numeric and analytical results for AD non-Markovian noise
have suggested that coherence by trace-norm captures the non-Markovianity features of
the system of one-qubit. Remarkably, from ours results an advantage of this method is that
it is quantitatively less complicated, implying a simpler process of optimization and the
relevant fact that one only needs one-qubit to characterize the non-Markovian dynamics. A
future study investigating the non-Markovian behavior by basis-free measures of coherence
would be interesting, where the process of optimization is avoided.
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APPENDIX A – CLASSICAL MARKOV
PROCESSES

The elements ω of the sample space Ω can be rather abstract objects. A random
variable X is defined to be a map (BREUER; PETRUCCIONE, 2002)

X : Ω 7→ R, (A.1)

which assigns to each elementary event ω ∈ Ω a real number X(ω). Given some ω the
value

x = X(ω), (A.2)

is called a realization of X. A stochastic process is defined as a random variable whose
statistical properties change in time. In mathematical terms, a stochastic process is a
family of random variables X(t) on a common probability space depending on a parameter
t ∈ T . Corresponding to this definition, for each fixed t the quantity X(t) is a map from
the sample space ω into R. A stochastic process can be regarded as a map

X : Ω× T → R, (A.3)

which associates with each ω ∈ Ω and with each t ∈ T a real number X(ω, t). Keeping ω
fixed, we call the mapping

t 7→ X(ω, t), t ∈ T, (A.4)

a realization, trajectory, or sample path of the stochastic process.

A Markov process is a stochastic process X(t) with a short memory, that is a
process which rapidly forgets its past history (BREUER; PETRUCCIONE, 2002). A
stochastic process X(t), t ≥ 0 taking values in a discrete set {xi}i∈N is characterized by a
hierarchy of joint probability distributions of order n,

Pn = Pn(xn, tn;xn−1, tn−1; ....;x1, t1),

for all n ∈ N and the successive set of times (tn ≥ tn−1 ≥ ... ≥ t1 ≥ 0), known as
Kolmogorov hierarchic. The distribution Pn yields the probability that the process takes
on the value x1 at time t1,the value x2 at time t2...and the value xn at time tn. A stochastic
process X(t) is said Markovian if satisfy (BREUER; PETRUCCIONE, 2002):

P (xn+1, tn+1|xn, tn; ...;x1, t1) = P (xn+1, tn+1|xn, tn), (A.5)
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where the conditional probability is defined by

P (xn+1, tn+1|xn, tn; ...;x1, t1) = P (xn+1, tn+1; ...;x1, t1)
P (xn, tn; ...;x1, t1) . (A.6)

The equation (A.5) is the classical Markov condition which means that the probability
for the stochastic process to take the value xn+1 at the time tn+1, under the condition
that it assumed values xi at the previous time ti, depend only on the last previous value
xn at time tn. In this sense the process is a memoryless process (BREUER et al., 2016).
A Markov process can be completely determined from the initial one-point distribution
P (x0, t0) and the conditional transition probability (BREUER; PETRUCCIONE, 2002)

T (x, t|y, s) ≡ P (x, t|y, s), (A.7)

through

Pn(xn, tn;xn−1, tn−1; ....;x1, t1) = Πn−1
i=1 T (xi+1, ti+1|xi, ti)P (x1, t1), (A.8)

and

P1(x1, t1) =
∑
x0

T (x1, t1|x0, t0)P1(x0, t0). (A.9)

For a Markov process the transition probability has to obey the Chapman-Kolmogorov
equation

T (x, t|y, s) =
∑
z

T (x, t|z, τ)T (z, τ |y, s), (A.10)

for t ≥ τ ≥ s. Thus, a classical Markov process is uniquely characterized by a probability
distribution for the initial states of the process and a conditional transition probability
satisfying the Chapman-Kolmogorov equation. From of the Chapman-Kolmogorov equation,
is possible obtain an equivalent differential equation (BREUER et al., 2016):

d

dt
T (x, t|y, x) =

∑
z

Wxz(t)T (z, t|y, s)−Wzx(t)T (x, t|y, s), (A.11)

where Wzx ≥ 0 represents the rate (probability per unit of time) for a transition to the
state z given that the state is x at time t. An equation of the same structure in terms of
the one-point probability distribution of the process:

d

dt
P1(x, t|y, x) =

∑
z

Wxz(t)P1(z, t)−Wzx(t)P1(x, t). (A.12)
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APPENDIX B – THE
NAKAJIMA-ZWANZIG EQUATION

B.1 Derivation of the Nakajima-Zwanzig equation

The aim of this Appendix is to derive the Nakajima-Zwanzig equation (3.5). The
evolution equations for the relevant and irrelevant part of the density matrix are obtained
applying the projection operators P and Q to Eq. (3.3) (BREUER; PETRUCCIONE,
2002). This yields 1:

∂

∂t
Pρ(t) = P ∂

∂t
ρ(t) = αPL(t)ρ(t), (B.1)

∂

∂t
Qρ(t) = Q ∂

∂t
ρ(t) = αQL(t)ρ(t). (B.2)

On inserting the identity I = P +Q between L(t) and the density matrix ρ, we obtain:

∂

∂t
Pρ(t) = αPL(t)Pρ(t) + αPL(t)Qρ(t), (B.3)

∂

∂t
Qρ(t) = αQL(t)Pρ(t) + αQL(t)Qρ(t). (B.4)

The solution of Eq. (B.4) for a given ρ(t0) at some initial time t0 can be written as
(BREUER; PETRUCCIONE, 2002):

Qρ(t) = G(t, t0)Qρ(t0) + α
∫ t

t0
dsG(t, s)QL(s)Pρ(s), (B.5)

where G(t, s) is given by:

G(t, s) = T← exp
(
α
∫ t

0
ds′QL(s′)

)
. (B.6)

Here the operator T← denotes the chronological time ordering. The above equation satisfies

∂

∂t
Gρ(t) = αQL(t)G(t, s), (B.7)

with the initial condition G(s, s) = I. Now, substituting Eq. (B.5) into Eq. (B.3), we get
the Nakajima-Zwanzig equation (BREUER; PETRUCCIONE, 2002):
1 Is important to note that in this demonstration the density matrix ρE used in Eq. (3.4) is independent

of time.
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d

dt
Pρ(t) = αPL(t)G(t, t0)Qρ(t0) + αPL(t)Pρ(t)

+ α2
∫ t

t0
dsPL(t)G(t, s)QL(s)Pρ(s). (B.8)

This can be simplified if it is assumed that the odd moments of the interaction Hamiltonian
with respect to ρE vanish:

trE{HI(t1)HI(t2)...HI(t2n+1)ρE} = 0, (B.9)

which leads to the relation

PL(t1)L(t2)...L(t2n+1)P = 0, (B.10)

for n = 0, 1, 2.... Consequently the second term of Eq. (B.8) vanish, it follows that
(BREUER; PETRUCCIONE, 2002):

d

dt
Pρ(t) = αPL(t)G(t, t0)Qρ(t0) + α2

∫ t

t0
dsPL(t)G(t, s)QL(s)Pρ(s). (B.11)

B.2 Markov limit for the Nakajima-Zwanzig equation
The Eq. (B.8) can be expanded around t in powers of the memory time, this is

in the width of the kernel K̃(t, s). Clearly, for K̃(t, s) ≈ δ(t, s) in the absence of memory
effects the Markovian description is obtained (BREUER; PETRUCCIONE, 2002).

For a factorizing initial condition ρ(t0) = ρS(t0)⊗ ρE, this is Pρ(t0) = ρ(t0), such
that Qρ(t0) = 0, the first term of Eq. (B.8) vanishes and assuming that, in general, any
string containing an odd number of L between factors of P vanishes, Eq.(B.10), the term
PLtot(t)P = 0. Therefore, the Nakajima-Zwanzing equation (B.8) reduces to (BREUER;
PETRUCCIONE, 2002):

∂

∂t
Pρ(t) =

∫ t

t0
dsK̃(t, s)Pρ(s). (B.12)

The memory kernel K̃(t, s) can be expanded in terms of the weak-coupling parameter
between system and environment. For example, up to second order in the coupling strength
α, we obtain:

K̃(t, s) = α2PL(t)QL(s)P +O(α3). (B.13)

Consequently, the equation of motion of second order for Pρ(t) is given by:

∂

∂t
Pρ(t) = α2

∫ t

t0
dsPL(s)Pρ(s), (B.14)
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where it is used the identity I = P +Q and the fact that PL(t)P = 0. Introducing the
explicit expressions for P and L(t), it follows that:

∂

∂t
ρS(t) = α2

∫ t

t0
dstrE[HI(t), [HI(s), ρS(s)⊗ ρE]]. (B.15)

This equation is known as the Born approximation of the master equation (BREUER;
PETRUCCIONE, 2002). Applying the Markov approximation in which the quantum
master equation is made local in the time by replacing the density matrix ρS(s) at the
retarded time s with that at the present time ρS(t). Moreover, the integration limit is
pushed to infinity to get the Born-Markov approximation of the master equation. Physically,
this implies that the bath correlation time τB is small compared to the relaxation time of
the system, i.e τB � τR. Finally, in the rotating wave approximation rapidly oscillating
terms proportional to exp[i(w′−w)t] for w′ 6= w are neglected, ensuring that the quantum
master equation is in the Lindblad form (BREUER; PETRUCCIONE, 2002).
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APPENDIX C – 1-NORM GEOMETRIC
QUANTUM DISCORD FOR
BELL-DIAGONAL STATES

In this Appendix we review the demonstration derived in (PAULA; OLIVEIRA;
SARANDY, 2013) for an explicit formula of DG for two-qubit Bell-diagonal states. The
1-norm geometric quantum discord is defined as:

D1(ρ) = min
ρc∈C
‖ ρ− ρc ‖1, (C.1)

where ‖ X ‖1= tr[
√
X†X] is the 1-norm, ρc is an arbitrary classical-quantum state given

by Eq. (4.15) and ρ represents the case of two-qubit Bell diagonal states, whose density
operator is given by:

ρBell = 1
4(I4 +

3∑
i=1

ciσi ⊗ σi), (C.2)

where I is the identity matrix, ~c = (c1, c2, c3) is a three-dimensional vector and ~σ =
(σ1, σ2, σ3) is a vector formed by Pauli matrices. Assuming that the minimization in Eq.
(C.1) is archived by a Bell-diagonal classical state ρBellc , which is described by:

ρBellc = 1
4[I⊗ I +~l.(σ ⊗ σ)], (C.3)

where ~l represents a vector over the perpendicular classical axes in the tetrahedron of
Bell- diagonal states (see Fig. 5). Therefore, ~l has the form ~l1 , ~l2 or ~l3 , with li ∈ R and
−1 ≤ li ≤ 1. Replacing Eq. (C.2) and Eq. (C.3) in Eq. (C.1) is obtained:

D1 = min[min
l1
f1(l1),min

l2
f2(l2),min

l3
f3(l3)], (C.4)

where
fi(li) =‖ 1

4(~c−~li).(~σ ⊗ ~σ) ‖1=
1∑
p=0

1∑
q=0
|τpq,i|, (C.5)

where the eigenvalues of the operator (~c−~li).(~σ⊗~σ)/4 are represented by τpq,i = [(−1)p(ci−
li) − (−1)p+qcj + (−1)qck]/4 (i 6= j 6= k). If we define di = li − ci and d± = ck ± cj, is
possible obtain:

fi(di) = (|di + d+|+ |di − d+|+ |di + d−|+ |di − d−)/4, (C.6)
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which reaches the minimum value when di = 0, then min
li
fi(li) = min

di
fi(li) = max[|cj|, |ck|].

Hence, using this result in Eq. (C.4), the 1-norm geometric discord is given by:

D1 = c0 = int[|c1|, |c2|, |c3|], (C.7)

with int{·} denoting the intermediate among the elements of the set {|c1|, |c2|, |c3|}.
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APPENDIX D – GEOMETRIC CLASSICAL
AND TOTAL CORRELATIONS FOR

BELL-DIAGONAL STATES

In this Appendix, we recall the main steps to derive the analytical expressions for
the geometric classical and total correlations through Schatten 1-norm, Eq. (4.33) and
Eq. (4.34) respectively, as demonstrated in (PAULA et al., 2014). As we have already
mentioned in subsection 4.3.2.1, the general form of the two-qubit Bell-diagonal is the
following:

ρBell = 1
4[I⊗ I + ~c.(~σ ⊗ ~σ)], (D.1)

where I is the identity matrix on the subsystem, ~c = (c1, c2, c3) is a three-dimensional
vector and ~σ = (σ1, σ2, σ3) is a vector formed by Pauli matrices. The eigenstates of ρBell are
the four Bell states Eq. (4.25) with eigenvalues given by Eq. (4.26). With the aim to obtain
the optimal classical-quantum state M(ρ), which will be required for the definition of GT

and TT . The initial step is considered an alternative derivation of DT to the approach
presented in the previous Appendix. Thus, the 1-norm geometric quantum discord is given
by:

DT = tr|ρ−M(ρ)|. (D.2)

The operator ρ−M(ρ) have four possible eigenvalues which are given by γ1 = γ+,
γ2 = −γ+, γ3 = γ−, and γ4 = −γ−, where:

γ± = 1
4

√
c2 − ~α.~u± 2

√
~β.~u, (D.3)

with c2 = c2
1 + c2

2 + c2
3, ~α = (c2

1, c
2
2, c

2
3), ~β = (c2

2c
2
3, c

2
1c

2
3, c

2
1c

2
2), and ~u = (n2

1, n
2
2, n

2
3). Thus, Eq.

(D.2) can be written as:

DT =
4∑
i=1
|γi| = 2[γ−(~u) + γ+(~u)], (D.4)

where ~u minimizes the function f(~u) = γ−(~u)+γ+(~u) under the conditions u1 +u2 +u3 = 1
and 0 ≤ ui ≤ 1. Applying the Lagrange multipliers method, is possible to find that
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~u = ε̂j(j = 1, 2, or 3), where ε̂j represents the unitary vector in a fixed cj direction. Using
this result in equation above, DT is now given by:

DG = max{|cj+1|, |cj+2|}, (D.5)

where the correlations cj+1 and cj+2 are defined by cj+k = cj+k(mod3). Specifically, c2+2 =
c3+1 = c1 and c3+2 = c2. Defining the maximum

c+ = max{|c1|, |c2|, |c3|}, (D.6)

the intermediate
c0 = int{|c1|, |c2|, |c3|}, (D.7)

and the minimum

c− = min{|c1|, |c2|, |c3|}, (D.8)

values within the set {|c1|, |c2|, |c3|}. Eq. (D.5) is minimized when j is such that |cj| = c+.
Hence, the 1-norm geometric quantum discord is given by:

DT = max{c−, c0} = c0 (D.9)

Considering the unitary vector ~n = ±ε̂j that minimizes DT in Eq. (4.32). The
classical-quantum states Eq. (4.31) are described by:

M(ρ) = 1
4(I⊗ I + cjσj ⊗ σj). (D.10)

Moreover, the reduced density operators of the Bell diagonal states Eq. (C.2) correspond
to the maximally mixed states, i.e., ρA = trBρ = I/2 and ρB = trAρ = I/2. Therefore, the
product of the local marginals is given by:

πρ = ρA ⊗ ρB = 1
4(I⊗ I). (D.11)

Consequently, M(πρ) = πρ. Then, the classical geometric correlation is given by:

CG = tr|M(ρ)−M(πρ)|, (D.12)

and the total geometric correlation is:

TG = tr|ρ− πρ| =
∑
i,j

|λij − 1/4|, (D.13)



141

where λij − 1/4 are the eigenvalues of operator ρ− πρ. Finally, in terms of c+, c0 and c−,
these expressions can be written as:

CG = c+, (D.14)

and
TG = 1

2[c+ + max{c+, c0 + c−}]. (D.15)
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