
Hybrid systems of Graphene and h-BN

Carlos Alberto León Chinchay

Thesis presented as a partial requirement to obtain the degree of PhD in
Physics

Supervisor: Dr. Andrea Latgé

Niterói – Rio de Janeiro
August 2017



ii

L579  León Chinchay, Carlos Alberto.
         Hybrid systems of Graphene and h-BN / Carlos Alberto León 
      Chinchay ; orientador: Andrea Brito Latgé. –- Niterói, 2017.
         93 p. : il.

         Tese (Doutorado) – Universidade Federal Fluminense, 
      Instituto de Física, Niterói, 2017.
         Bibliografia: p. 86-93.

  1.MEIO-METAL. 2.GRAFENO. 3.NITRETO DE BORO. 4.DEFORMAÇÃO. 
      5.POLARIZAÇÃO. I. Latgé, Andrea Brito, orientador. 
      II.Universidade Federal Fluminense. Instituto de Física, 
      Instituição responsável. III.Título.
                                                  
                                                        CDD 530.413



Agradecimentos

A mi familia por todo el apoyo incondicional, por su comprensión, y por su

invalorable aliento a seguir adelante. A Nelia, Julián, Michael y Ádila.

A mi orientadora Andrea Latgé, por su paciencia, su guia, su apoyo, y dedi-

cación al trabajo.

Al CNPq por el financiamento.



Abstract

This thesis is devoted to a theoretical study on isolated graphene nanoribbons,

isolated hexagonal boron nitrite systems, and other hybrid configurations mix-

ing both kinds of nanoribbon systems. First we analyze the main aspects of

the electronic properties of graphene and h-BN nanoribbons including the pos-

sibility of getting half metallicity under the presence of external electric fields.

Simple tight binding approximations were used as a starting point and real-

space normalization schemes are followed to derive Green’s functions, local

density of states, and also some transport properties such as the conductance.

We then construct a hybrid graphene-BN nanoribbon system, using a Hub-

bard model Hamiltonian within a mean field approximation. Due to different

electronegativities of the boron and nitrogen atoms, an electric field is induced

across the zigzag graphene strip, breaking the spin degeneracy of the electronic

band structure. Optimal tight-binding parameters are found from DFT cal-

culations carried on the Quantum Espresso code, based on density-functional

theory, plane waves and pseudopotentials. Edge potentials were proposed

as corrections for on-site energies, and to investigate how the BN-graphene

nanoribbon interfaces are perturbed. We also study the effects of impurities

along the graphene nanoribbon and at the interface regions. We found that

energy gap sizes may be properly engineered by controlling the spatial doping

process and, moreover, that binding energy impurity calculations may be used

to study impurity diffusion processes along the mixed nanoribbons. We show

that substitutional impurities may enhance half-metallic response. Different

impurity configurations and the corresponding energy stabilities were studied.

In a second study, we consider deformations in graphene nanoribbons that

may be considered as central elements in the novel field of straintronics. Var-

ious strain geometries have been proposed to produce specific properties, but

their experimental realization has been limited. Because strained folds can
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be engineered on graphene samples on appropriate substrates, we study their

effects on graphene transport properties and on the local density of states.

Conductance calculations reveal extra channels within the energy range cor-

responding to the first conductance plateau for the undeformed ribbon, in

addition to those due to edge states. Band structure calculations confirm

that these channels originate from higher energy states that localize along the

strained fold-like area. Furthermore, states with the same velocity show real

spatial valley polarization, i.e., a current injected along the deformed struc-

ture will be split into two currents: one along the center of the strained fold

constituted by states from one valley, and another running at its sides with

contributions from states of the other valley. In addition to exhibiting sublat-

tice symmetry breaking, these states are valley polarized, with quasiballistic

properties in smooth disorder potentials. These findings could be tested in

properly engineered experimental settings. We also investigate the effects of

Coulomb correlations on the half metallicity of graphene nanoribbons when

mechanical deformations like fold perturbations are taken into account.
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Resumo

Esta tese é dedicada ao estudo teórico de nanofitas de grafeno isoladas, nanofi-

tas de nitreto de boro isoladas e algumas outras configurações híbridas que

misturam ambos tipos de nanofitas. Inicialmente analisamos os aspectos gerais

e calculamos propriedades físicas das nanofitas de grafeno e das nanofitas de

BN hexagonal, incluindo a possibilidade de se obter um comportamento de

semimetalicidade na presença de campos elétricos externos aplicados na di-

reção transversal das fitas. Hamiltonianos simples na aproximação tight bind-

ing são usados como ponto de partida e esquemas de normalização no espaço

real são adotados para se derivar funções de Green, densidades de estados

eletrônicos locais e ainda algumas propriedades de transporte como a con-

dutância eletrônica. Construímos então um sistema híbrido formado por uma

nanofita de grafeno embebida em nanofitas de BN, e adotamos um Hamil-

toniano de Hubbard seguindo a aproximação de campo médio. Devido as

diferentes eletronegatividades dos átomos de boro e de nitrogênio, um campo

elétrico é induzido ao longo da fita zigzag de grafeno embebida, levantando

a degnerescência de spin da estrutura de bandas eletrônicas. Neste trabalho

procuramos um conjunto de parâmetros otimizados a partir de cálculos obtidos

usando o código “Quantum Espresso”, baseado na teoria do funcional da den-

sidade (DFT), usando ondas planas e pseudopotenciais. Potenciais de borda

e de interface são propostos como correções para as energias “on-site”, e para

investigar como as nanofitas de BN são perturbadas nas interfaces. Estudamos

ainda os efeitos de impurezas do tipo B e N ao longo da região sanduichada

da nanofita de grafeno e nas regiões das interfaces. Encontramos que gaps

de energia podem ser propriamente manipulados e “engenheirado” a partir do

controle do processo de dopagem espacial, e que cálculos de energia de ligação

de impurezas podem ser usados para estudar processos de difusão ao longo

das nanofitas mescladas. Mostramos ainda que impurezas substitucionais po-
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dem aumentar a resposta de semimetalicidade. Diferentes configurações de

impurezas e as respectivas estabilidades energéticas são estudadas.

Num segundo estudo consideramos deformações em nanofitas de grafeno, con-

sideradas elementos centrais no novo campo de interesse que é a “straintronics”.

Várias geometrias de strain tem sido propostas na literatura para produzir

propriedades específicas, mas suas realizações experimentais tem sido bas-

tante limitadas. Como deformações do tipo fold podem ser “engenheirados”

em amostras de grafeno sobre substratos apropriados ou mesmo suspensas

propomos estudar o efeito destas tensões nas propriedades de transporte e

nas densidades de estados local e total desses sistemas quasi-unidimensionais.

Cálculos de condutância revelam canais extras no intervalo de energia corre-

spondente ao primeiro plateau quando a fita não está deformada, além daque-

les devido aos bem conhecidos estados de borda. Cálculos de estrutura de

bandas confirmam que estes canais extras se originam de estados de energia

mais alta que se localizam ao longo da área deformada. Além disso, estados

com a mesma velocidade mostram polarização de vale no espaço real, i.e.,

uma corrente injetada ao longo da estrutura deformada será dividida em duas

correntes: uma ao longo do centro da perturbação (strained fold) constituída

dos estados de um vale, e outra por estados que correm nas laterais da fita

com contribuições dos estados de outro vale. Além de exibirem quebra de

simetria de rede, estes estados são vale-polarizados, com propriedades quasi

balísticas mesmo em potencias de fraca desordem. Estes resultados podem ser

testados em arranjos experimentais apropriados. Para finalizar, investigamos

os efeitos de correlações Coulombianas sobre a semimetalicidade das nanofitas

de grafeno quando deformações mecânicas como as do tipo fold são levadas

em conta.
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1
Introduction

In the last decades, 2-dimensional materials have attracted much attention from the

scientific community due to their novel properties with no analogy in current Si-based

devices, and have lead to a quest for a silicon substitution to continue electronic minia-

turization to the quantum level. 2D materials, such as graphene, promise new capabil-

ities compared to its silicon counterpart. The monolayer of carbon atoms arranged in

a honeycomb lattice presents a high electronic mobility at room temperature, turning

graphene into a candidate for transistor applications, integrated circuit, and electrome-

chanical devices. Suspended graphene exhibited the highest electronic mobility achieved

2.0× 105 cm2V−1s−1[19], which is 100 times larger than the electronic mobility of silicon,

1.35×103 cm2V−1s−1[20]. Graphene electronic mobility is the same for electrons and holes

due to graphene electron-hole symmetry and it is responsible for the fractional quantum

Hall effect[21]. For high quality graphene samples, low energy electrons obey a linear

dispersion relation without back-scattering [22], thus achieving its maximum velocity in

graphene in the ballistic regime (vFermi ∼ 1×106 ms−1) as relativistic Dirac fermions. This

analogy transforms graphene in a small laboratory for quantum electrodynamics.

Despite of its peculiar electronic properties, graphene is a null-gap material limiting its

practical applications. However, this characteristic may be modulated by means of exter-

nal fields, by introducing other graphene-like materials, or via alternative processes such

as the reduction to graphene nanoribbons, which can be made via different techniques[23].

Since its isolation in 2004, Geim and Novoselov have not just presented graphene as a

material with unusual electronic and mechanical properties[24], but have also provided

1
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the route to the study of other 2D materials [25, 26]. Hexagonal boron nitride sheets,

h-BN, molybdene disulphide, MoS2, and other isostructural graphene analogues promise

new electronic capabilities. The search for novel electric responses has led to the study

of one-dimensional systems, hybrid materials, and more realistic configurations such as

deformed graphitic-like systems. Other attempts to overcome the null gap limitation

of graphene include confining the 2D graphene layer into quasi 1D wires. The confine-

ment leads to a discretized band structure, and may result in scenarios with no band

crossing at the Fermi level. Also, the confinement may drive the opening of a bandgap,

allowing electronic engineering by combining the unique properties of graphene with the

inherent properties of quantum confinement. Experimentally, graphene nanoribbons can

be synthesized by chemical methods[27] and stacked graphene nanoribbons by the CVD

method[28].

Bottom-up methods allows the fabrication of precise graphene nanoribbons by re-

moving halogen atoms from precursor monomers and subsequent thermal procedures[29].

Alternatively, graphene nanoribbons may be generated via unzipping of carbon nanotubes

by mechanical sonification[30]. A non-chemical route by cutting multiwalled nanotubes

by metal nanoparticles was also proposed by Elias et. al.[31]. Following different ex-

perimental processes, the quasi 1D graphene nanoribbons emerge as a way to overcome

the zero-gap limitation of graphene sheets for its use as a semiconductor with very high

electronic mobility in future transistors.

Differently from their 2D counterparts, electronic confinement in nanoribbons provides

a frame for gap engineering, with interesting applications in spin-based devices, by mod-

ulating external electric or magnetic fields. Actually, electronic correlations and the ge-

ometry of zigzag graphene nanoribbons (ZGNRs) under the effects of an electric field give

rise to novel responses in which the system appears as a semiconductor for spin up elec-

trons, while behaves as a metallic material for spin down electrons. This half-metallicity

behavior promises applications in spintronics and quantum computation[32]. However,

the high value of the critical electric field applied to ZGNRs, around 0.1 V/Å according

to first principle calculations[33], has prompted to new research for other graphene-based

materials showing a similar response. A natural tentative was to look for hybrid materi-

als mixing the properties of its components. Specifically, the dielectric properties of an

hexagonal boron nitride sheet (h-BN) can be combined with carbon-based materials to

fabricate systems with optical bandgap different from the h-BN or graphene sheets[34].
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Figure 1.1: Schematic illustration of the growth of graphene/h-BN heterostructures by
combining with IBSD and CVD. The h-BN domains and continuous h-BN films were used
as the substrates for the growth of in-plane and stacked graphene/h-BN heterostructures,
respectively. Taken from Ref. [1].

Hybrid nanoribbons made up of h-BN and graphene can also display half-metallic prop-

erties without the need of applying an external electric field. Opposite from what could

be naively expected, some imperfection configurations may enhance electronic properties.

For example, Li et al[35] took into account line defects in boron nitride nanoribbons and

showed that some defect configurations may lead to a half-metallic behavior. Also, a

bandgap in zigzag graphene nanoribbons can be opened by doping processes with boron

and nitrogen chains[3].

From the experimental point of view, there are many works reporting synthesis of

hybrid graphene/h-BN systems. In-plane mixed graphene/h-BN systems have been syn-

thesized by combining ion beam sputtering deposition and chemical vapor deposition [1]

as illustrated schematically in Fig.1.1. The characterization of the resulting heterostruc-

tures are shown in Fig.1.2 with SEM images of the pre-grown h-BN domains on Cu foils

and of graphene grown on h-BN domains with different growth times[1].

Other strategies are also used to fabricate patterned planar graphene/h-BN hetero-

junctions: BN or graphene is grown on a substrate surface with whole coverage by chemical

vapour deposition (CVD), followed by patterned etching and epitaxial re-growth of the

second component, as depicted in Fig.1.3(a). SEM images of alternating strip-patterned

and non-patterned graphene/h-BN planar heterojunctions, are shown in part (b). The

seamless links between the lower graphene and upper BN domains are revealed in the

STM image, presented in Fig.1.3(d).

Following these experimental motivations, the state of art on growing quality hybrid

samples and the rich physics behind them, we decided to study hybrid systems composed
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Figure 1.2: Characterization of in-plane graphene/h-BN heterostructures. (a) SEM
image of the pre-grown h-BN domains on Cu foils. (b–e) SEM images of graphene grown
on h-BN domains with the growth times of (b) 20, (c) 30, (d) 60, and (e) 90 s. The
underlying triangular h-BN domains in (d) can be readily distinguished, as highlighted
by the white dashed lines. (f) Optical micrograph of the 30 s grown sample transferred
onto a SiO2/Si substrate. The inset in (f) reveals that the triangular h-BN domains
(lighter colour) are embedded in the percolating graphene film (darker colour). Taken
from Ref. [1].
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Figure 1.3: (a) Schematic illustration of the procedure fabrications of BN–graphene
heterostructures. CVD-grown h-BN sheets are firstly etched by argon ions to obtain
the desired patterns, and then CVD growth of graphene on the etched regions is per-
formed. (b) SEM image of strip-patterned BN–graphene heterostructures. (c) SEM im-
age of graphene–BN monolayer heterostructure. The CVD-grown graphene was etched by
H2 and then used for epitaxial growth of BN along the graphene edge. (d) STM image of
a graphene–BN boundary. The inset is the height profile along the white dashed arrow.
(e) The differential tunneling conductance image at the same region in (d). (a and b) are
reprinted from Ref. [2], (c–e) are reprinted from [3].

of graphene and h-BN nanoribbons and the possibility of getting half-metallic responses.

The challenge was to find a good theoretical model within the tight binding approximation

which is able to present a good agreement with first-principles electronic band structures.

We worked on hybrid systems composed of an in-plane zigzag graphene stripe embedded

in a pair of zigzag BN nanoribbons. We found that due to the different electronegativity of

boron and nitrogen, important energy corrections must be implemented and we extended

a previous proposed edge potential model [13] to take into account also the carbon-boron

and carbon–nitrogen interfaces present in the proposed hybrid systems. Some studies

have also been done in this thesis concerning the possible presence of imperfections in

the hybrid systems. For that study, we consider B and N migrations into the graphene

strip and investigate the possible changes on the gap size of the resulting systems in the

presence of such disorder effects (substitutional disorder).

Other types of disorder are also discussed in the present thesis. The disorder degree

of a sample is generally related to the choice of the insulating substrate where the 2D

system is deposited; excellent graphene samples are grown on h-BN, considered nowadays

as a key element for future electronics and optoelectronic applications[36]. On the other

hand, recent works have taken advantage of local deformations produced when graphene
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Figure 1.4: STM images and STS spectra taken at 7.5 K. (A) Graphene monolayer
patch on Pt(111) with nanobubbles at the graphene-Pt border and in the patch interior
(Itunneling = 50 pA , Vsample = 350 mV, 3D z-scale enhanced 4.6x). (Inset) High-resolution
image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain
in the bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced
2×). (B) STS spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 ×
10−11 ohm−1), and the center of a graphene bubble (shifted upward by 9× 10−11 ohm−1).
Vmod = 350 mV. Taken from Ref.[4].

is grown on different substrates or after being mechanically removed from a flake it is

vertically stacked forming a graphene/h-BN structure. In this last situation graphene

bubbles are formed, inducing important modifications of the electronic properties of the

graphene sheet. One of the most interesting is the formation of a pseudo magnetic field

that can achieve ultra high values, beyond the experimental real magnetic fields[4] as

illustrated in Fig.1.4 in an experiment of graphene on Pt.

Such kind of disorder, may be also experimentally manipulated as an important tool

for engineering transport properties of carbon-based materials. The suggestion of using

strain to tailor electronic properties has been advanced by several authors[37–53], and

pursued in experimental settings [2, 4, 54–56]. Several groups have observed clear sig-

natures of equilibrium properties in strained areas predicted by various models, such as

pseudo-Landau levels and sublattice symmetry breaking in STM images [56–58]. Recent

works have reported transport measurements on ribbon geometries [59, 60], with one

study revealing ballistic transport at room temperatures along nanoribbons deposited on

terraced SiC substrates (thus subject to deformations) [61]. This particular geometry

highlights the possibility of creating extended strained fold-like structures with unusual

transport properties. An example of a kind of fold-strained graphene is illustrated in

Fig.1.5, grown on BN. The details of the height profile along the fold perturbation are

shown in part (d) of the figure.
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Figure 1.5: (a) A schematic for a epitaxial graphene on hexagonal BN grown on Cu foil.
(b) A large-scale derivative STM image obtained from the graphene sample. Image size:
60× 60 nm, sample bias: Vs = −0.3 V, tunneling current: I = 0.1 nA. (c) An STM image
zoomed from the region denoted with a square in (b). Image size: 15 × 15 nm, sample
bias: Vs = −0.3 V, tunneling current: I = 0.1 nA. (d) A height profile obtained along a
dashed line in (c). Taken from ref.[2].

While models for transport through strained areas have been the topic of several

works, transport along deformed areas has been less explored. In fact, due to the peculiar

properties of graphene electronic states under strain, extended deformed areas [56] may

act as natural electronic waveguides. In this thesis, we studied the case of longitudinal

out-of-plane deformations along graphene nanoribbons and show the occurrence of extra

conductance channels running parallel to the structure with the remarkable property of

being valley polarized. Moreover, we are able to identify a valley-polarization property of

such channels. As a consequence, a current injected parallel to the axis of the deformation

will naturally split in space, with states from one valley running along the crest while states

of the other valley run along the sides. We also show that these channels survive in the

presence of highly disordered edges and will behave as quasiballistic for smooth disorder

realizations. These results point towards a realistic implementation of valley polarized

channels that can be achieved in current experimental settings, by appropriate design of

substrates or sample preparation.

The thesis is organized in the following sequence: on Chapter 2 we present all the

basic theoretical tools used to discuss the different problems considered. We start with
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the presentation of the tight binding approximation including Coulomb correlation via

a mean field framework, then we present the Green’s function formalism used to obtain

density of states and transport properties, using the Landauer formula. We show how

we calculate the electronic band structures and the localization of the electronic states.

As some calculations have been performed within the density function formalism we also

dedicate a section to highlight the fundamental ideas and codes used in our calculations.

Chapter 3 is devoted to a presentation of the main important physical aspects of the

graphene and BN two-dimensional lattices. We focus on the nanoribbon main features

of both structures and their responses when submitted to electrical fields. The half-

metallicity phenomena is discussed in detail. In Chapter 4, the hybrid system is fully

investigated and we present the edge potentials adopted to describe the details of the band

structure found by first principle calculations. In Chapter 5 we study transport properties

of a nanoribbon when a folded-like mechanical deformation is taken into account. The

mapping of strain into pseudomagnetic fields may be seen as a key aspect for engineering

electronic properties of folded nanoribbons and valley filtering applications[16]. Finally,

we describe the effects of electronic correlation in deformed nanoribbons. The conclusions

and perspectives are presented in Chapter 6.



2
Mathematical tools

In this chapter, we describe the mathematical procedures used to calculate the elec-

tronic structure of graphene-like nanoribbons. We have considered different theoretical

scenarios to better describe the systems considered in this thesis. The idea was to take ad-

vantage of first principle calculations in fitting Tight Binding (TB) parameters. First, we

describe the Tight Binding model and the self-consistent process of the Hubbard model,

implemented in our code. Then, we explain the electronic and transport properties of de-

vices of interest, in the formalism of Landauer. Also, we describe the framework used to

calculate band structures, and electronic localization along the nanoribbon. Additionally,

we show the recursive Green function renormalization scheme based on Dyson’s equation

for periodic systems, like the nanoribbons that have been systematically employed in this

thesis. Finally, a brief presentation of Density Function Theory is given.

2.1 Tight Binding model with electronic correlation

TB approach is a one-electron model based on the superposition of localized electronic

wavefunctions in each atom. A TB model hamiltonian can be written in terms of creation

c†j and annihilation cj operators at j-th site as

H =
∑

jσ

εjc
†
jσcjσ +

∑

〈ij〉σ

tij(c
†
jσciσ + c†iσcjσ) (2.1)

9
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where εj and tij are the j-th on-site energy and hopping energy between i-th and j-th

sites, respectively.

In this model, the electrons are free to move through the system without interacting

with other electrons, ignoring the effects of strong intra-atomic coulombian repulsion that

sometimes are quite important. Even though this TB model can explain the main features

of graphene-like systems, we need a less restrictive approximation allowing to take into

account the coulomb interaction at each site, or at least the mean effect of the presence of

other electrons in a site. One possibility to overcome this model limitation is to introduce

electronic correlation via a Hubbard term as

H =
∑

j

εjc
†
jσcjσ +

∑

〈ij〉σ

tij(c
†
jσciσ + c†iσcjσ) +

∑

j

Ujnjσnjσ̄, (2.2)

where njσ = c†jcj is the σ-spin occupation operator acting on the j-th site, and U is the

Coulomb energy for two electrons at site j with opposite spins.

In the last expression, the second term of the right side accounts for the electronic

itinerant feature. The third term increases the energy due to the coulombian repulsion

between a pair of electrons occupying the j-th site. Also, the Hubbard term takes into

consideration the Pauli exclusion principle, as the term goes to 0 if electrons with the

same spin occupy the same site.

We can realize that the Hubbard term involves a 4-operator product which does not

allow a diagonalization of the Hamiltonian. Therefore, we use a mean field approximation

to simplify the factor njσnjσ̄. In this mean field approximation, we assume that the

number of electrons in the j-th site is around an average value with small deviations, i.e

njσ ≈ 〈njσ〉+ δn. (2.3)

So, we can write

nj↑nj↓ ≈ (〈nj↑〉+ δnj↑)(〈nj↓〉+ δnj↓). (2.4)

By neglecting quadratic terms, we arrive to

nj↑nj↓ ≈ 〈nj↓〉nj↑ + 〈nj↑〉nj↓ − 〈nj↓〉 〈nj↑〉 , (2.5)

where the last term is just a constant and can be omitted (as it represents just a shift in
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Decimation

N →∞
T

(N)
R → 0

G
(N)
R → G?R

G0(E) =




. . .
gi(E − εi)

. . .


εi = U

(
〈ni〉in − 1/2

)
ρi(E) = − 1

π Im [G?R(E)] 〈ni〉out
=
∫ EF

−∞ ρi(E)dE

Figure 2.1: Self-consistent process used in the Hubbard model. Decimation or renor-
malization procedures introduce information about the geometry of the system.

the energy spectrum). Therefore, the hamiltonian can be written as

H =
∑

j

εjc
†
jcj +

∑

〈ij〉

tij(c
†
jci + c†icj) +

∑

j

Uj (〈nj↓〉nj↑ + 〈nj↑〉nj↓) . (2.6)

This hamiltonian decouples the spin up and down channels and so it can be given as,

H =
∑

σ

Hσ (2.7)

Hσ =
∑

j

εjc
†
jσcjσ +

∑

〈ij〉

tij(c
†
jσciσ + c†iσcjσ) +

∑

j

Uj 〈njσ̄〉njσ. (2.8)

The decoupled hamiltonian 2.8 indicates that the response of σ-spin electrons depends

on the mean field generated by the σ̄-spin electrons, leading then, to a self-consistent pro-

cess when solving the hamiltonian. In this work, we use an iterative process, as indicated

schematically in Fig.2.1, in a decimation or recursive Green function renormalization, that

will be explained later in this chapter (see Section 2.3).

2.2 Transport in nanoconductors

2.2.1 One energy level device

Let us consider a system C, small enough such that the wavelength of their confined

electrons is comparable to the size of the system, so its energy spectrum is discrete[62].

We can then, write a time-independent Schrödinger equation for this isolated device,

(
E − ĤC

)
|ϕ〉 = 0, (2.9)
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where E is treated as an independent variable, and the eigenvalues are given by the

hamiltonian ĤC . If it happens that this device were even smaller in such a way that it is

characterized by just one energy level, εC , we will have the simple equation (E−εC) |ϕ〉 =

0.

Now, let us connect this device to a pair of semi-infinite and macroscopic leads, L (left

lead) and R (right lead). By doing so, we gain a new system L⊕C ⊕R. Because of their

macroscopic nature, the electrodes are characterized by a continuous energy spectrum,

broadening the well defined energy level εC . This broadening causes the electron in the

device to have a finite life time in this energy level, according to the uncertainty principle

4E4t ≥ ~/2. In consequence, the electron has a probability to escape from the device

through the electrodes at an average escape rate ∼ 1/4t = γ/~, γ being the broadening

of the level εC . It is interesting to notice that the escape rate gives us the degree of

interaction between the leads and the device; well connected leads are related to high

lead-device interactions and high escape rates. This lead-device interaction can be added

to the hamiltonian for the isolated device ĤC . The time-dependent Schrödinger equation

then reads (
i~
∂

∂t
− Ĥ + i

γL
2

+ i
γR
2

)
|Ψ(t)〉 = 0, (2.10)

from which we can find the temporal part of the eigenstate, i.e.,

exp(−iEt/~) exp(− γI
2~
t) exp(−γD

2~
t). (2.11)

The probability of finding an electron in the system is then given by

n ∝ exp(−γLt/~) exp(−γRt/~), (2.12)

i.e. the electronic density decreases time-exponentially at a rate γL(R)t/~ trough the L(R)

lead.

Here, we use the assumptions done in the Landauer formalism, as dismissing the

interaction between the electrodes, and the influence of electrons in the leads over the

electrons in the device[63].

Let us consider a perturbation given by a flux of electronic charges from the left lead,

described by the state |sL〉, coming from L to C. Mathematically, it is described by an

inhomogeneous Schrödinger equation,
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(E −Hopen) |ϕ〉 = |sL〉 , (2.13)

with

Hopen = HC − i
γL
2
− iγR

2
, (2.14)

as an effective hamiltonian describing the interaction of the isolated device C after con-

necting to the leads L and R.

We can find |ϕ〉 in terms of |sL〉 by means of the Green function of the open C system

|ϕ〉 = G(E) |sL〉 . (2.15)

On the other hand, we will assume that the number of electronic charges crossing from

the lead to the device is proportional to the rate of escape from the device to the electrode,

and to the number of available states at the lead given by the Fermi-Dirac distribution,

fL(E), i.e,

‖|sL〉‖2 = γLfL(E). (2.16)

This expression can be decomposed in terms of the elements of a base {|j〉} as |sL〉 =
∑

j |j〉 〈j|sL〉, and we obtain γLfL(E) = 〈sL|sL〉 =
∑

j 〈j| (|sL〉 〈sL|) |j〉. Here, we define

an operator ΓI in such a way that it satisfies the following,

ΓLfL(E) ≡ |sL〉 〈sL| , (2.17)

and we can rewrite (2.16) as ‖|sL〉‖2 =
∑

j 〈j| (|sL〉 〈sL|) |j〉 =
∑

j 〈j|ΓLfL(E) |j〉.
The electronic density in the device is then n = 〈ϕ|ϕ〉, which can be written in terms

of a base |j〉 of the device as

n =
∑

j

〈j| (|ϕ〉 〈ϕ|) |j〉 . (2.18)

We can rewrite the last expression by using the result (2.15) to show that n =
∑

j 〈j|
(
G |sL〉 〈sL|G†

)
|j〉. Also, by means of eq.(2.17), it can demonstrated that n =

∑
j 〈j|

(
GΓLfLG

†) |j〉 = Tr(GΓLG
†)fL. The contribution from both leads result in

n = Tr(GΓLG
†)fL + Tr(GΓRG

†)fR (2.19)
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Here, Gn(≡ −iG<) = |φC〉 〈φC | is the correlation function whose diagonal elements

are the electron density n[62]. The mean value measured at the device, at the state |i〉,
is 〈i|Gn |i〉 and hence we can understand (2.18) as the mean total density in the device,

n = Tr(Gn) . Then, according from (2.19), Gn can also be written as

Gn = GΓLG
†fL +GΓRG

†fR (2.20)

It is well known that the Fermi-Dirac distribution, f(E), gives the probability of

finding an electron with energy E. The number of available states, per unit of energy is

then[64]

A = GΓLG
† +GΓRG

† (2.21)

or written in a more reduced way if we define Γ ≡ ΓL + ΓR,

A = GΓG† (2.22)

2.2.1.1 Device with many energy levels: general case

Now we consider a pair of semi-infinite leads (L and R) connected to a device C.

The device is characterized by a discrete energy spectrum, and is big enough so that

interactions between leads can be neglected. If Ĥi (i = L,C,R) represents the hamiltonian

for the isolated L, R and C systems, and V̂ij represents the interaction between a lead

and the device, then the hamiltonian reads

H = ĤL + ĤC + ĤD + V̂LC + V̂ †LC + V̂CD + V̂ †CD. (2.23)

The Schrödinger equation for the complete system can also be written in a matrix

form,




ĤL V̂LC 0

V̂ †LC ĤC V̂ †RC

0 V̂RC ĤR







|φL〉
|φC〉
|φR〉


 = E




|φL〉
|φC〉
|φR〉


 , (2.24)

where |φL,C,R〉 are the components of the eigenfunction at the L, C and R subsystems.

From the last expression, an equation for the central device can be obtained (see Ref.[65])
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(
E − ĤC − Σ̂L − Σ̂R

)
|φC〉 = 0, (2.25)

where

Σ̂L ≡ V̂ †LCgLV̂LC ,

Σ̂R ≡ V̂ †RCgRV̂RC , (2.26)

and gi(E) = (E − Ĥi)
−1, (i = L,C,R) are the Green functions of the isolated subsys-

tems L, C, or R.

The last result can be interpreted as a system with an open hamiltonian Hopen =

HC + Σ̂L + Σ̂R describing the central device interacting with right and left leads through

the non-hermitian self-energies matrices Σ̂L(R)(see ref.[66]). Similar to the imaginary part

of the hamiltonian for the one energy level device example in 2.14, the imaginary part of

the self-energies operators,

Γ̂ = 2Im(Σ̂) = i(Σ̂− Σ̂†), (2.27)

confers a mean lifetime to electrons in the device, leading to an electronic decay rate in

the device and an electronic escape rate from the device to the electrodes.

Expression 2.25 can be directly related to the Green function of the device interacting

with the electrodes as

G−1
C (E) = g−1

C (E)− Σ̂L − Σ̂R, (2.28)

where g−1
C (E) = E −HC is the Green function of the isolated device. From here, it can

be demonstrated that

GC = gC + gCΣ̂LGC + gCΣ̂RGC , (2.29)

or write the following expression in terms of the interactions:

GC = gC + gC V̂
†
LCgLV̂LCGC + gC V̂

†
RCgRV̂RCGC . (2.30)

Considering the interaction as hermitic operators ( V †LC = VCL and V †RC = VCR), we

arrive at Dyson’s equation[65]
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GC = gC + gCVCLGLC + gCVCRGRC ,

GLC = gLV̂LCGC ,

GRC = gRV̂RCGC . (2.31)

From 2.29, it is straightforth to demonstrate (G†C)−1 − G−1
C = Σ̂ + Σ̂† (using the

definition Σ ≡ ΣL + ΣR). From the last expression, we identify Γ according to 2.27, so we

have (G†C)−1 −G−1
C = Γ, from which we can demonstrate GC −G†C = −iGCΓG†C . Hence,

the spectral function from 2.22, A = GCΓG
†
C , is expressed just in terms of GC ,

A = i(GC −G†C). (2.32)

Current through the device In the Landauer approximation, we consider the sta-

tionary state where the electronic charge in the device does not change in time, and it is

mathematically written in terms of Gn as

0 =
d

dt
Ĝn =

i

~

[
Ĥ, Ĝn

]
, (2.33)

and because the particle density is given by the trace of Gn, the current will be given by

its temporal derivative. So, we calculate the trace for the two terms at the right side of

the last equation, Tr(dG
n

dt
) = i

h
(Tr(HGn) − Tr(GnH)). And we can rewrite it by means

of the definition Gn ≡ |φC〉 〈φC | as

Tr

(
dGn

dt

)
=
i

h

∑

j

(
〈j| (|HφC〉) 〈φC |j〉 − 〈j|φC〉 (H |φC〉)† |j〉

)
, (2.34)

where we have considered 〈φC |H = (H |φC〉)† . Here we can substitute H = Hopen ≡
HC +ΣL +ΣR and sum over the states |j〉 to arrive at

=
i

h

(
〈φC |HC +ΣL +ΣR|φC〉 −

〈
φC |HC +Σ†L +Σ†R|φC

〉)
, (2.35)

and because HC is hermitic, the expression reduces to

=
i

h

(〈
φC |ΣL − Σ†L|φC

〉
−
〈
φC |ΣR − Σ†R|φC

〉)
. (2.36)
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By using the definition ΓL(R) ≡ i
(

ΣL(R) − Σ†L(R)

)
, (2.33) takes the following form

0 =
d

dt
Ĝn =

i

h
(〈φC |ΓL|φC〉 − 〈φC |ΓR|φC〉) . (2.37)

Here, we identify the first (second) term at the right as the variation of charge through

the left (right) lead. Then, the electric current trough the right contact is

IR =
e

h
〈φC |ΓR|φC〉 . (2.38)

On the other hand, it can be shown[65] that a perturbation
∣∣ψleft

n

〉
(n stands for the

transverse states, transverse to the current L−C −R), coming from the left lead, causes

a response from the entire system L⊕ C ⊕ R with solutions at each subsystem in terms

of the perturbation as follows,

|φC〉 = GCV
†
LC

∣∣ψleft
n

〉
, (2.39)

|φR〉 = gRVCRGCV
†
LC

∣∣ψleft
n

〉
, (2.40)

|φL〉 =
(

1̂ + gLVLCGCV
†
LC

) ∣∣ψleft
n

〉
. (2.41)

Here,
∣∣ψleft

n

〉
is interpreted as the stationary state of the isolated L-electrode before

being connected to the device C, and reflected totally in one of its ends. When con-

nected to the device, it is generated a response in itself (as noted by (2.41) where 1̂ and

gLVLCGCV
†
LC accounts for the initial perturbation, and the response when connecting to

the device, respectively). It is also generated a response in C and R-electrode, as shown

in (2.39) and (2.40). Substituting (2.39) in (2.38) we arrive to

IR =
e

h

〈
ψleft
n |VLCG†CΓRGCV

†
LC |ψleft

n

〉
. (2.42)

We integrate in energy to obtain the total current

IR =
e

h

∫
dE · fL(E)

∑

n

δ(E − En)
〈
ψleft
n |VLCG†CΓRGCV

†
LC |ψleft

n

〉
. (2.43)

Expanding over sates |j〉 and then summing up the contributions from the transverse

modes allow us rewrite the last expression as
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IR =
e

h

∫
dE · fL(E)

∑

n

δ(E − En)
∑

j

〈
ψleft
n |VLC |j〉 〈j|G†CΓRGCV

†
LC |ψleft

n

〉
, (2.44)

IR =
e

h

∫
dE · fL(E)

∑

j

〈j|G†CΓRGCV
†
LC

∑

n

(∣∣ψleft
n

〉
δ(E − En)

〈
ψleft
n

∣∣)VLC |j〉 . (2.45)

In the last expression, we can recognize the term in parenthesis as the density of states

for the L-electrode, AL. Then, we gain a factor V †LCALVLC that can be rewritten in terms

of the Green function of L if we use 2.32: AL = i(GL − G†L). So, we find V †LCALVLC =

i(V †LCGLVLC − V †LCG†LVLC), and by means of (2.26) we show that V †LCALVLC = i(ΣL −
Σ†L) = ΓL. Therefore, (2.45) becomes

IR =
e

h

∫
dE · fL(E)

∑

j

〈j|G†CΓRGCΓL |j〉 =
e

h

∫
dE · Tr

(
G†CΓRGCΓL

)
fL(E), (2.46)

where we use the convention that the current is measured from the leads to the device.

Finally, perturbations from the left and right electrode would give a net current given

by the Landauer formula

IR =
e

h

∫
dE · Tr

(
G†CΓRGCΓL

)
(fL(E)− fR(E)), (2.47)

with a Transmission function as

T (E) = Tr
(
G†CΓRGCΓL

)
= Tr

(
GCΓLG

†
CΓD

)
. (2.48)

2.3 Recursive Green function renormalization

Dyson’s equation allow us to find the electronic structure of nanoribbons directly from

the Green functions. According to 2.31, the Green function of an arrangement of atomic

sites can be calculated in terms of the Green function of the isolated sites[67]

Gi,j(E) = δi,jGi(E) + Gi(E)
∑

l

Ti,lGl,j(E) . (2.49)
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Figure 2.2: The unit cell of a 2-ZGNR. The “cell” 0 is connected to its neighbor “cell” 1
through the transfer matrix T0,1.

Here Ti,l represents the hopping matrix between cell i and cell l, and Gi is a diagonal

matrix whose elements are the Green functions of each isolated m-th site in the periodic

unit cell, g(m)(E) = (E − εm + iη)−1, where εm is the on-site energy at the m-site, and

η → 0+. Fig.2.2 shows the unit cell and its neighbors for a 2-ZGNR. For this system, the

Green function matrices of a set of isolated sites in the unit cell, the interaction between

the sites inside the unit cell, and the hopping matrices between the unit cell and its

neighbors for a 2-ZGNR (2 zigzag chains and4 atoms in the unit cell) are, respectively,

given by G0, T0,0, and T0,1 as,

G0 =




g(1) 0 0 0
0 g(2) 0 0
0 0 g(3) 0
0 0 0 g(4)


 T0,0 =




0 t 0 0
t 0 t 0
0 t 0 t
0 0 t 0


 T0,1 = T †

0,1̄
=




0 t 0 0
0 0 0 0
0 0 0 0
0 0 t 0


 ,

(2.50)

with t being the hopping energy between two first neighbor atoms, taken as a constant.

Having built the hopping matrices and Green functions of the isolated unit cell, we can

find the Green function of the unit cell open to their infinite neighbors by using the Dyson’s

equation in a recursive procedure. This process is a renormalization scheme by which the

unit cell transforms into an equivalent system keeping the original structure, conserving

the translational symmetry, and decreasing the strength of the hopping matrices compared

with the original system. It is a iterative process by which the transfer matrices tend to

zero in the limit of infinite iterations. To illustrate this process let’s take the Dyson’s

equation considering interactions between first neighbors sites:
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G00 = G0 + G0T̂00G00 + G0T̂01G10 + G0T̂01̄G1̄0

G00 = G(0)
R

[
1 + T̂G10 + T̂ †G1̄0

]
(2.51)

where we have defined G(0)
R ≡

{
[1− G0T̂00]−1G0

}
and T̂ = T̂0,1. For ZGNRs, it can be

shown that T̂0,1̄ = T̂ †. Now we use again Dyson’s equation to find G1̄0 e G10,

G1̄0 = G1̄T̂1̄0G00 + G1̄T̂1̄1̄G1̄0 + G1̄T̂1̄2̄G2̄0 → G1̄0 = G(0)
R

[
T̂G00 + T̂ †G2̄0

]
, (2.52)

G10 = G1T̂10G00 + G1T̂11G10 + G1T̂12G20 → G10 = G(0)
R

[
T̂ †G00 + T̂G20

]
, (2.53)

where we have used the fact that G(1̄)
R ≡

{
[1− G1̄T̂1̄1̄]−1G1̄

}
= G(0)

R .

Then 2.51 becomes:

G00 = G(1)
R

[
1 + T̂ (1)G20 + T̂

(1)
D G2̄0

]
, (2.54)

where

G(1)
R = [1− ZZD − ZDZ]−1 G(0)

R , (2.55)

Z = G(0)
R T , ZD = G(0)

R T † , T̂ (1) = TG(0)
R T , T̂

(1)
D = T †G(0)

R T † . (2.56)

The last result shows that the original system may be replaced by its equivalent, with

its renormalized Green function G(1)
R , and hopping T̂ (1), refering to the sites 2̄, 0, 2 instead

of the original equation 2.51 where it refers to sites 1̄, 0, 1. This process allows us to find

a recursive result:

G(N)
R =

[
1− Z(N−1)Z

(N−1)
D − Z(N−1)

D Z(N−1)
]−1

G(N−1)
R , (2.57)

where
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Z(N−1) = G(N−1)
R T (N−1) ,

Z
(N−1)
D = G(N−1)

R T
(N−1)
D ,

T̂ (N) = T (N−1)G(N−1)
R T (N−1) ,

T̂
(N)
D = T

(N−1)
D G(N−1)

R T
(N−1)
D ,

(2.58)

with initial conditions T (0) = T ; T
(0)
D = T † ; G(0)

R =
{

[1− G0T̂00]−1G0

}
.

The cells of the equivalent system are expected to be very far from each other in

the limit N → ∞, and hence the hopping between neighbor cells would tend to zero,

limN→0 T
(N) = 0. In this limit the final Green function of the system is the renormalized

Green function G(N)
R , within an error defined by

∣∣∣G(N)
R − G(N−1)

R

∣∣∣� δ, with δ being a small

number (of the order of 10−4η).

2.4 Band structure calculation

The electronic band structures of the systems treated in this thesis show how we cal-

culate the electronic band structures and the localization of the electronic states. As some

calculahave been calculated from the eigenvalues of the corresponding hamiltonian H. For

all the studied nanosystems, we use the TB approximation to express the hamiltonian in

a basis of single orbitals centered at each site (one pz orbital per site). For the infinite

and periodic nanoribbons, it is more convenient to work with the hamiltonian of the unit

cell opened to semi-infinite electrodes. The same N -atom unit cell is repeated every a

units in the x-direction, as shown in Fig.2.2. Mathematically, if T~a is the translation

operator along the vector ~a = aêx, then the eigenvector Ψk(~r) of the hamiltonian satisfies

T~aΨk(~r) = eikaΨk(~r). Finally, due to the periodic nature of our system, we can express

the eigenvectors of H as a linear composition of Bloch waves χk(~r),

χk(~r) =
1√
N

N∑

i=1

eikrφ(~r − ~Ri), (2.59)

where φ(~r− ~Ri) is a pz orbital centered at the i-th site. From such considerations, we can

show that the hamiltonian of the open system is a contribution of an isolated unit cell

and its interaction with neighbor cells.
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We call H00 the matrix form of the hamiltonian of a unit cell (cell ‘0’ as shown in

Fig.2.2) as if it was isolated from its neighboring cells

H00 =
〈
χk(~r)

∣∣∣Ĥ
∣∣∣χk(~r)

〉
=
[
H i,j

0,0

]
N×N , (2.60)

with matrix elements H i,i
0,0 = εi and H i,j

0,0 = 1√
N

∫
d~rφ∗(~r − ~Ri)Ĥφ(~r − ~Rj) ≡ t as the

on-site energy value of the i-th site and the hopping integral between the i-th andj-th

site, respectively.

The interaction between neighbor cells is given by

H01 =
〈
χk(~r)

∣∣∣Ĥ
∣∣∣χk(~r − ~a)

〉
. (2.61)

When written in terms of the orbital basis, it becomes

H ij
01 =

1√
N

∫
d~reikrφ∗(~r − ~Ri)Ĥe

−ik(r+a)φ(~r − ~Rj − aêx),

H ij
01 =

[
1√
N

∫
d~reikaφ∗(~r − ~Ri)Ĥφ(~r − ~Rj − aêx)

]
eika =

[
T i,j0,1

]
N×N e

ika, (2.62)

From this last equation, we see that H01 is a N×N matrix with only hopping integrals,

between the i-th site of the ‘0’-cell and the j-th site of the ‘1’-cell. We can find a similar

result for the interaction between the central cell and the cell at the left, H01̄. Finally, we

arrive at the following expression for the hamiltonian of the central cell interacting with

its neighboring cells:

H(k) = H00 + T01 exp(ika) + T01̄ exp(−ika)

For a zigzag nanoribbon with 4 sites (see Fig.2.2), the hamiltonian takes the following

form:

H(k) =




ε1 t 0 0
t ε2 t 0
0 t ε3 t
0 0 t ε4


+




0 t 0 0
0 0 0 0
0 0 0 0
0 0 t 0


 eika +




0 0 0 0
t 0 0 0
0 0 0 t
0 0 0 0


 e−ika, (2.63)

and can be simplified to
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H(k) =




ε1 tfk 0 0
tf ∗k ε2 t 0
0 t ε3 tfk
0 0 tfk ε4


 , (2.64)

where fk = 2 cos(ka/2)eika/2.

For a zigzag nanoribbon with an N -atom unit cell, H(k) adopts a particular shape

when ka = π:

H(ka = π) =




[ε1] 0 0 0
0
0

[
ε2 t
t ε3

]
0
0

0 0
. . . 0 0
0
0

[
εN−2 t
t εN−1

]
0
0

0 0 0 [εN ]




, (2.65)

i.e, the band structure of the zigzag nanoribbon shows two solutions at ε1 and εN at

ka = π. Also, the hamiltonian 2.65 leads to a pair of eigenvectors, localized either on the

1st site, or at the N -th site, i.e., at the edges of the zigzag nanoribbon. Consequently,

by identifying the highest localized states of a zigzag nanoribbon in the correspondent

band structure, we are able to estimate the on-site energy values at the edge atoms.

Moreover, if he zigzag nanoribbons are made up of an alternated arrangement of just

boron and nitrogen atoms, as in the case h-BN nanoribbons, then we can directly obtain

their on-site energies by analyzing the localized states in the band structure.

2.4.1 Band structure localization

In a TB model, the Hk-eigenvectors (see hamiltonian at 2.64 ) can be expressed in

terms of the orbitals centered at every i-th site, i.e. Ψnk(~r) =
∑N

i=1 ciφ(~r − ~Ri), where

the probability amplitudes, ci, must satisfy the normalization condition for the N -atom

unit cell,
∑N

i=1 |ci|
2 = 1. Here, we use the definition given by Zheng et al [13] which allows

us to know the degree of electronic localization in the unit cell, given by a localization

function ,

F ≡
N∑

i=1

|ci|4 , (2.66)

which can be written in terms of A−2
c , Ac being the area of the unit cell.
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Figure 2.3: Band structure of a 8-ZGNR and a 8-ZBNNR in units of hopping energy, t,
in a TB model. The on-site energy values for carbon, boron, and nitrogen atoms are 0, t,
and −t, respectively. F gives localization, in color. The corresponding lattice parameter
is a.

Therefore, by taking into account the normalization condition, we conclude that if the

electron is localized at just one site of the unit cell, then F = 1. However, if it is equally

distributed over the entire the N -atom unit cell, then F = N
(

1√
N

)4

= 1
N
, tending to

zero for wider unit cells.

Flat bands localized at the zigzag edges (called edge states) happen due to the special

geometry of the nanoribbons edges. In Fig.2.3, we can recognize such flat bands at which

the parameter F is around 1 when ka → π. In this limit, we can also find the on-

site energy values at zigzag edge atoms. The examples show the band structures of a

8-ZGNR and a 8-ZBNNR (boron nitride nanoribbon) as calculated by TB hamiltonians

and parameters described in the caption. The localization intensity is given by the color

pattern defined in the Figure.
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Figure 2.4: Orbitals decomposing and inter-atomic (a) s and py-orbital hybridization
and (b) px and py-orbital hybridization. Atoms are centered at A and B.

2.5 Slater-Koster matrix

Consider a pair of carbon atoms, A and B, and their s-orbital and py-orbital inter-

acting as illustrated in Fig.2.4(a). Depending on the crystal geometry where A and B

are embedded, the py-orbital will be tilted at an angle β with respect to the line connect-

ing atoms A and B. We are wondering about their interaction in terms of geometrical

independent ones.

In Fig.2.4(a), we denote~l as the vector going from nucleus B to a point where electronic

density is measured at P , and is written as ~l = l sin(θ) cos(φ)x̂+l cos(θ)ŷ+l sin(θ) sin(φ)ẑ,

in spherical coordinates. If the xy-coordinate system centered at B were rotated around

the z-axis in such a way that its y⊥-axis were perpendicular to ~AB, then the angle rotated

would be π
2
− β. In this new x⊥y⊥-coordinate system, we have ~l = l sin(θ⊥) cos(φ⊥)x̂⊥ +

l cos(θ⊥)ŷ⊥ + l sin(θ⊥) sin(φ⊥)ẑ. Additionally, the unit vectors of the new system may be

written in terms of the unit vectors of the xy-system and the rotation operator R, as

R(π
2
− β)ŷ = ŷ⊥ and R(π

2
− β)x̂ = x̂⊥. If we calculate cos(θ)

cos(θ) =
ŷ ·~l
l

= cos(θ⊥) sin(β) + sin(θ⊥) cos(φ⊥) cos(β). (2.67)

Now consider a x‖y‖-coordinate system centered at B with its y‖-axis parallel to ~AB
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Figure 2.5: Basic hybridization energies for s-p bonds: (a)Vssσ, (b)Vspσ, (c) Vppσ, (d)Vppπ.
From reference [5].

(see Fig.2.4(a)). Here, the polar angle, θ‖, is measured from the y‖-axis. Then, it can be

shown that cos(θ) from (2.67) becomes

cos(θ) = cos(θ⊥) sin(β) + cos(θ‖) cos(β). (2.68)

Because the py-orbital depends on the polar angle θ as 〈~r|py〉 = Rp(r) cos(θ) (see ref-

erence [5]), then expression 2.68 tells us the lobe can be decomposed into the components

parallel and perpendicular to the y⊥-direction, as if it was a vector decomposition,

py = py⊥ sin(β) + py‖ cos(β). (2.69)

The last result 2.68 allows us to express s− p orbital interactions in a crystal in terms

of four basic orbital interactions: Vssσ, Vspσ, Vppσ and Vppπ, as shown in Fig.2.5.

For our example in Fig.2.4(a), we can argue that

〈
s
∣∣∣Ĥ
∣∣∣ py
〉

=
〈
s
∣∣∣Ĥ
∣∣∣ py⊥

〉
sin(β) +

〈
s
∣∣∣Ĥ
∣∣∣ py‖

〉
cos(β). (2.70)

It can be shown that
〈
s
∣∣∣Ĥ
∣∣∣ py⊥

〉
= 0 due to symmetry arguments, and finally we

have

〈
s
∣∣∣Ĥ
∣∣∣ py
〉

= Vspσ cos(β). (2.71)

Now, take the hybridization between px and py-orbitals with the geometry shown

in Fig.2.4(b). The orbitals can be decomposed as px = −px⊥ sin(α) − px‖ cos(α), and

py = py⊥ sin(β)− py‖ cos(β). Then, the interaction between px and py orbitals is
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〈
px

∣∣∣Ĥ
∣∣∣ py
〉

= −
〈
px⊥

∣∣∣Ĥ
∣∣∣ py⊥

〉
sin(α) sin(β) +

〈
px‖

∣∣∣Ĥ
∣∣∣ py‖

〉
cos(α) cos(β). (2.72)

We can reduce this expression by noting that cx ≡ x̂·~l/l = cos(α), cy ≡ ŷ ·~l/l = cos(β),

and cz ≡ (zB − zA)/l are the directional cosines of ~l (going from atom A to atom B) with

respect to the xy-coordinate system. By using the four basic orbital interactions (see

Fig.2.5), we arrive to the following result,

〈
px

∣∣∣Ĥ
∣∣∣ py
〉

= (Vppσ − Vppπ)cxcy. (2.73)

Following this methodology, we can build a hamiltonian for the interaction between

atoms A and B in terms of the interaction between their atomic orbitals 2s, 2pz, 2px, 2py:

hAB =




Vssσ Vspσcz Vspσcx Vspσcy

−Vspσcz (Vppσ − Vppπz)c2
z + Vppπz (Vppσ − Vppπ)czcx (Vppσ − Vppπ)czcy

−Vspσcx (Vppσ − Vppπ)cxcz (Vppσ − Vppπ)c2
x + Vppπ (Vppσ − Vppπ)cxcy

−Vspσcy (Vppσ − Vppπ)cycz (Vppσ − Vppπ)cycx (Vppσ − Vppπ)c2
y + Vppπ



,

(2.74)

and from here, the Slater-Koster hamiltonian[68] is built for a pair of atoms as

HAB =


hAA hAB
h†AB hBB


 . (2.75)

where hAA, hBB are the on-site hamiltonians:

hAA = hBB =




|s〉 |pz〉 |px〉 |py〉

|s〉 εs 0 0 0

|pz〉 0 εp 0 0

|px〉 0 0 εp 0

|py〉 0 0 0 εp




(2.76)
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2.6 DFT calculations

Density Functional Theory (DFT) approximates an interacting many-body problem

to eletrons in an effective potential, leading to the Kohn-Sham equations[69],

− ~2

2m
∇2ϕj + Veffϕj = εjϕj, (2.77)

where the density of the interacting system can be expressed in terms of an auxiliar and

non-interacting system, that can be described by single-particle fictitious spin-orbitals,

ϕj(~r),

n(~r) =
∑
|ϕj(~r)|, (2.78)

and the non-interacting ϕj(~r) orbitals are immerse in the effective potential,

Veff =
1

4πε0

∫
d3r′

n(~r)

|~r − ~r′| + Vext +
δExc
δn

, (2.79)

where the first term refers to the Hartree potential, the second term represents the po-

tential generated by the ions of the crystal, and the third term is the exchange and

correlation potential. Until here, the theory is exact if vxc was known. The usefulness

of DFT calculations depends on finding simple and accurate exchange and correlation

potentials.

In this thesis, we use DFT calculations to retrieve TB parameters in an approximate

way. We also compare our TB results with DFT predictions. We use the Quantum

ESPRESSO (QE) code[70] to perform DFT calculations.

Unless otherwised indicated, we perform spin-DFT calculations using the QE code with

ultrasoft Vandelbirt pseudopotentials[71]. The cutoff energy of plane wave expansion is

30 Ry. We use a k-point sampling of 52 points over the one-dimensional Brillouin zone. We

use a periodic set of ribbons separated by a vacuum of 12Å to avoid spurious interactions.

We used the same separation for nanoribbons in z-direction.

For the zigzag hybrid system, the unit cell is made up of an armchair chain of carbon

atoms embedded in BN regions, with hydrogenated edges.



CHAPTER 2. MATHEMATICAL TOOLS 29

~a1

~a2
CA

CB

x̂

ŷ
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Figure 2.6: First (a), second and third (b) carbon interactions in a graphene sheet.
The interaction can also be expressed in terms of real unit cells defined by the crystal
vectors ~a1, ~a2 as (0, 0), and (1̄, 1̄).

2.7 Fitting TB parameters from QE/WanT

We also use the WanT code [72, 73] as post-processing DFT calculations to project the

Khon-Sham solutions into localized atomic orbitals, in an attempt to estimate hopping

and on-site energy values, useful for our TB model. Here we describe the fitting process

for a graphene sheet.

Quantum Espresso defines a trigonal lattice as shown in Fig.(2.6). The matrix hAB
written in (2.74) takes the following form (cx = x̂·~l/l = cos(5π/6), cy = ŷ ·~l/l = cos(π/3)),

hAB =




Vssσ 0 −
√

3
2
Vspσ

1
2
Vspσ

0 Vppπz 0 0
√

3
2
Vspσ 0 3

4
Vppσ + 1

4
Vppπ −

√
3

4
(Vppσ − Vppπ)

−1
2
Vspσ 0 −

√
3

4
(Vppσ − Vppπ) 1

4
Vppσ + 3

4
Vppπ




=




−3.14 0.00 −3.40 1.97

0.00 −2.10 0.00 0.00

−3.40 0.00 1.76 −1.80

1.97 0.00 −1.80−0.33



,

(2.80)

and can be compared to the first-neighbor hamiltonian from WanT, shown at the right

side of the last expression. The last matrix refers to a particular pair of sites (first

neighbors), but Want provides effective hamiltonians for every pair of sites in the unit

cell. From here, the hopping and on-site energy values can be estimated, and are exposed

in Table (2.1). The calculation displayed Eq.2.80 can be repeated to find hopping values

for the next first neighbors. In Fig.2.7(a) we show the TB band structure using up to

5-first-neighbor hopping values with very good agreement to the DFT band strucutre.

However, when considering just the first-neighbor interaction, the band structure departs
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Figure 2.7: Black lines indicate DFT graphene band structure; and colored lines cor-
respond to TB calculations. Band structure diagram using (a) 5 first nearest neighbors
from WanT, (b) first neighbors hoppings from WanT, and (c) an optimal set of fitted
hopping values, in blue, red, and green dashed lines, respectively.

from DFT results, as displayed in Fig.2.7(b). By adjusting the first-neighbor hoppings,

we are able an optimal set of Slater-Koster parameter values that best match the DFT

band structure, and the result is exhibited in Fig.2.7(c). The Slater-Koster parameters

for first-neighbor interactions are presented in Table (2.1).
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eV units Ref.[74] Ref.[75] QE/WanT fit

εs -7.30 -8.8 -0.82 -3.40

εpx 0.00 0.0 0.41 1.91

εpy 0.00 0.0 0.41 1.91

εpz 0.00 0.0 0.00 0.00

Vssσ -4.30 -7.76 -3.14 -5.40

Vspσ 4.98 8.16 3.93 5.48

Vppσ 6.38 7.48 2.80 5.70

Vppπ -2.66 -3.59 -1.37 -2.55

Vppπz -2.66 -3.59 -2.10 -2.55

Table 2.1: SK parameter values for a graphene sheet.



3
Graphene and h-BN lattice nanoribbons

3.1 Graphene

Graphene is a planar structure of carbon atoms disposed in a hexagonal mesh, bonded

by strong covalent bonds. Graphene, as a 2D structure, was believed to be thermodynam-

ically unstable, and thus the planar mesh would return back to its 3D structure[76]. How-

ever, in 2004, Geim and Novoselov were able to obtain high quality samples of graphene

by repeatedly peeling up graphite crystals with scotch adhesive tapes. The samples re-

vealed high quality graphene sheets in normal conditions[24]. This achievement gave rise

to a plethora of studies not only in fundamental physics research, but also in a quest

for its technological applications. Graphene production also opens the way to the study

of other non-carbon 2D materials useful for nanoelectronics applications, such as Si, Ge,

ZnO, and h-BN[77]. Yet, studies have focused on graphene due to the peculiar behavior

of electrons in a honeycomb arrangement, that can be used as a small laboratory for

quantum electrodynamics research, which usually requires big and costly equipment. Ad-

ditionally, graphene offers possible applications for its use in transistors, integral circuitry,

and hydrogen storage. Doped graphene also promises future devices such as gas sensors

and photo-detectors.

Graphene research begins with the study of other carbon allotropes with hexagonal

lattice such as graphite, carbon nanotubes and fullerenes. We remark the Wallace’s theo-

retical work [78], showing that the conduction and valence bands of a graphite layer shows

32
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a degenerate state at the vertices of the first Brillouin zone of the hexagonal lattice, giving

rise to subsequent studies on graphite [79, 80]. Later in 1985, H. Kroto found strange car-

bon spectral lines coming from giant red stars, discovering in following studies that it was

the very fingerprint of carbon clusters, “fullerenes”, synthesized at laboratory[81]. In 1991,

unique properties of carbon nanotubes attracted the attention of the scientific commu-

nity after they were obtained in arc discharges[82], the same method to obtain fullerenes.

Finally, the mechanical exfoliation procedure allowed the isolation of a unique graphene

sheet in 2004[24]. However, at that time, the procedure used optical interference to recog-

nize one single graphene sheet from other members of packing layers, limiting its industrial

production at large scales, what have restricted its practical application. Nevertheless,

efforts to obtain big graphene layers include beam molecular method, chemical vapor de-

position (CVD) technique, among others. For example, a ∼ 60 cm×60 cm graphene sheet

has been obtained with the CVD technique[83, 84]. However, the fabricated samples show

regions with several layers, affecting graphene application as an electric conductor.

Because electrons in the ultimate atomic layer are weakly bonded to its nucleus, they

are much more influenced by the presence of other carbon atoms in graphene. The elec-

tronic interaction when forming a honeycomb lattice is in such a way that electrons occupy

new states in order to minimize the total energy of the graphene sheet. These new states

are called hybridized orbitals, sp2, and result from a linear combination of the carbon

atomic orbitals 2s, 2px, and 2py. The sp2 orbitals join a carbon atom to its three neigh-

bors. On the other hand, the 2pz atomic orbitals do not hybridize and are responsible for

the peculiar properties of graphene. Also, the electronic interactions between 2pz orbitals

through the sheet determines whether the system is planar or not. This is the case of Ge

and Si for which the weaker interaction between 2pz orbitals in their honeycomb lattices

does not allow a planar structure[85].

Graphene can be modeled by the Tight Binding (TB) approximation. Even though the

TB model was conceived to explain systems where electrons are highly localized around

their nucleus, it also explains some systems with delocalized electrons, such as π-bands

in graphene, reproducing the main features of more sophisticated models such as first

principle calculations.
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~a1

~a2

Figure 3.1: Top: Chiral nanoribbon with index (m,n) = (8,1). A zigzag (armchair)
nanoribbon is obtained by cutting along the dashed line θ = 0º (θ = 30º). Bottom:
hydrogenated 11-AGNR and a 6-ZGNR, with edges parallel to the vertical direction.
Taken from Ref.[6]

Figure 3.2: Top: Armchair (a) and zigzag (b) nanoribbons. Bottom: Band structures
for a 20-AGNR (a) and a 20-ZGNR (b). Taken from reference[7].
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3.2 Graphene nanoribbons

Graphene nanoribbons (GNRs), as mentioned earlier, turn into possible solutions to

overcome the limitations of a null gap in graphene sheets. In 2008, Li et al [27] synthesized

nanoribbons with widths less than 10 nm and thus electronically confining the electrons in

one of the material’s dimensions. The electronic confinement plays an important role at

nanometric scales, where the electronic wavelength becomes comparable to the nanorib-

bon width. Consequently, the high carrier mobility of graphene combines with electronic

confinement to give rise to materials with width-dependent bandgap, which are useful

for applications as components of transistors at room-temperature , and as an electrome-

chanical switching[86].

The first studies on nanoribbons demonstrated the influence of edge shapes in the

response of nanoribbons. In 1987, a TB model applied to polyacenes (1D polymers made

up of an arrangement of aromatic rings)[87] showed that the electronic properties of

such 1D polyacenes depend on the the geometry of the edges. Later, K. Kobayashi[88]

demonstrated by first principles calculations that graphite microstructures with aligned

edges presented unusual properties compared with other carbon allotropes, and were

directly related with localized states at the edges. Consequently, the classification of the

edge shapes would define the electronic character of nanoribbons, and according to their

symmetry, the edges can be zigzag, armchair, or a combination of them in chiral edges as

shown in Fig.3.1.

3.2.1 Zigzag graphene nanoribbon

GNRs with zigzag edges (ZGNRs) are characterized by edge states with spin-polarization,

and antiferromagnetic ordering. TB calculations for a ZGNR show a peak in the DOS at

the Fermi level, as a consequence of the localized edge states, as depicted in Fig.3.3. The

figure also presents the band structure of the ZGNR, where the edge states appear as a

flat band going from ka = 2π/3 at the K valley, to ka = π at X point, with a being the

lattice parameter, a = 2.46Å. The band structure enhances the electronic localization

given in color by the quantity F (defined in Sub-sec.2.4.1), so the edge states are easily

identified.

When considering the Hubbard term in our TB model, as described in Sec.2.1, the

intra-atomic electronic repulsion induces a bandgap in the ZGNR’s electronic structure,
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Figure 3.3: Top: Band structure and DOS of a 32-ZGNR when no electronic correlation
is considered. Colored lines indicate the F -localization. Bottom: LDOS of the first
conduction band at an energy 0.05 eV.
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Figure 3.4: Top: Band structure and DOS of a 32-ZGNR when the electronic corre-
lation U = t = 2.65 eV. Colored lines indicate the F -localization intensity. Bottom:
Magnetization through the transverse direction of the ZGNR.
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as shown in Fig.3.4. The electronic correlation also redistribute the charges according

to the spin of electrons. Fig.3.4(bottom) exhibits the magnetization along the ZGNR.

Clearly, the interaction between the edges is in such a way that the redistribution of

charge leads to a higer occupation of α-spin electrons at one edge, and higher occupation

of β-spin electrons at the other edge. Here, the magnetization is defined as (µB is the

Bohr magneton )[89]

Mi =
µB
2

(〈ni↑〉 − 〈ni↓〉) , (3.1)

so the electronic interaction leads to a ferromagnetic order at each one of the edges, and

an antiferromagnetic order through the ZGNR width.

The electronic and magnetic properties of ZGNRs just discussed turned clear that

ZGNRs may be useful for magnetic applications. However, GNRs reactive edges restrict

their applications as the edges easily oxidize in the presence of air, affecting its electronic

and magnetic properties. Attempts to protect the edges magnetization include edge pas-

sivation with hydrogen atoms, with C2H4 ethylene molecules[90], or with CO2 molecules

due to its easy absorption and enhancement of ZGNRs magnetic properties by turning it

into a ferromagnetic semiconductors[91].

Although this is a stimulating research frame, much of the theoretical predictions

still need experimental corroboration. Intrinsic obstacles for direct graphene nanoribbon

applications comes from the well defined edges issue. To overcome those limitations,

several techniques have been implemented, and include lithography processes and chemical

sonification. Additionally, high quality nanoribbons with ultra-defined edges by unrolling

carbon nanotubes[92] are promising to verify the unusual properties of ZGNRs.

3.2.2 Armchair graphene nanoribbons

On the other hand, armchair graphene nanoribbons (AGNRs) can behave not just as

semiconductors showing a width-dependent bandgap but also as metallic nanowires. TB

approximations show that the number of dimer lines defines whether or not the AGNR

is a metallic or semiconductor system[93]. If the N-AGNR width, W = (N − 1)/2 (in

terms of a, where a is the lattice parameter) satisfies the condition 1/W � 1, then it can

be found an analytic expression for the bandgap[89] located at the Γ symmetry point,
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E
g

(t
)

Figure 3.5: Gap evolution with respect to a transverse electric field for a 32-ZGNR.
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(3.2)

leaving in evidence the dependence of the bandgap with respect to the nanoribbon width[7].

As a consequence, AGNRs can be a metallic system for the N = 3M−1 family. However,

relaxation at the edges of AGNRs leads to an small opening of the bandgap for the 3M−1

family[6]. The bandgap behavior has been measured in AGNRs with atomic-level preci-

sion, indicating that cutting or adding one dimmer line can totally change the electronic

properties of an AGNR[94].

3.2.3 Interaction with external fields

Electric fields affect the electronic response of ZGNRs and metallic AGNRs due to the

presence of electronic carriers at the Fermi level. To include the effects of external fields

in our TB model, we consider that under the presence of an electric field, a charge q at

the position ~r suffers an electrostatic potential energy V = −q ~E · ~r. This potential can

be associated to an operator V̂i = |e| ~E · ~rin̂i acting at the i-site. This term enters in our

TB model affecting the on-site energy, as
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ε′i = εi + |e| ~E · ~ri. (3.3)

Fig.3.5 show the results of a TB calculation for the gap dependence on a transverse

electric field. The calculation does not include electronic correlation. The gap increases

as the external field increases until reaching a maximum bandgap. For higher values of

electric field, the bandgap decreases and oscillates.

3.2.3.1 Half-metallicity

Electronic correlation changes dramatically the scenario depicted in Fig.3.5 for ZGNRs.

Son et al [33] predicted a half-metallic response for ZGNRs in the presence of electric fields.

i.e. when the ZGNR behaves as a metallic system for α-electrons, while it behaves as a

conductor for β-electrons, with α and β being up and down spin components.

To understand the process, let’s consider the system before applying an electric field.

In this case, in the single-orbital model, the occupation at the i-th site is ni = 1. When

a transverse electric is applied to a ZGNR, and considering a sufficiently small electric

field, then we can argue that every i-th site experiences an increase (or decrease) in the

occupation of energy potential of the form ni = 1 − |k|V(~ri), where k is a constant and

V(~r) is a symmetric energy potential centered at the nanoribbon.

Also, the occupation at every i-site is the contribution from its up and down com-

ponents ni = ni↑ + ni↓. If we write the magnetization as mi = ni↑ − ni↓, then we can

demonstrate that

ni↑ − 1
2

= −1
2
|k|Vi + 1

2
mi,

ni↓ − 1
2

= −1
2
|k|Vi − 1

2
mi.

(3.4)

In an antiferromagnetic ordering solution, α(β)-spin electrons occupies mostly the

left(right) edge. So, the magnetization at the edges satisfies mL = −mR ≡M. Then, in

the absence of an external electric field (V = 0), the effective on-site energy of the i-th

site in the Hubbard model (ε′iσ = ε0 + U(〈niσ̄〉 − 1/2)) takes the following form
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εL↑(0) = ε0 − 1
2
UM,

εR↑(0) = ε0 + 1
2
UM,

εL↓(0) = ε0 + 1
2
UM,

εR↓(0) = ε0 − 1
2
UM.

(3.5)

When applying a transverse electric field, the edges are under an electric energy po-

tential, VL = −VR = |e|4V . So, the effective on-site energies at the edges become

εL↑(4V ) = εL↑(0)− 1
2
U |ke|4V,

εR↑(4V ) = εR↑(0) + 1
2
U |ke|4V,

εL↓(4V ) = εL↓(0)− 1
2
U |ke|4V,

εR↓(4V ) = εR↓(0) + 1
2
U |ke|4V.

(3.6)

Therefore, an increasing transverse electric field shifts down(up) the energy spectrum at

the left(right) edge. The process continues until attaining a critical electric field value,

where states at one edge become available to electrons at the other edge, with energy

being equal to the Fermi level. At this point, the bandgap for one of the spin channel

closes. Consequently, only electrons with a specific spin moves at the Fermi level allowing

a spin-polarized current.

The half-metallic response turns ZGNRs interesting for spintronic applications. How-

ever, high external electric field values are required to produce such a response. Re-

search to reduce the electric field values includes chemical functionalization by edge-

oxidization[95], functionalization to carbon nanotubes[96], and hybridization with h-BN

nanoribbons. In this work we are going to focus in hybrid systems of graphene and h-BN

as they combine the conductive properties of graphene with the dielectric characteris-

tics of h-BN, and shows an intrinsic half-metallicity without the presence of an external

electric field.
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Figure 3.6: 2D and 1D h-BN structures counterpart of graphene systems. Taken from
[8]

3.3 Boron nitride structures

Hexagonal boron nitride (h-BN) sheets are considered as the 2D isostructural and

isoelectronic counterpart of graphene (see Fig.3.6). Composed of boron and nitrogen

atoms disposed in a regular network of BN hexagons, the material has an indirect bandgap

of 5.955 eV[97]. The lattice parameter of h-BN is aBN = 0.251 nm, just 1.8% larger than

the lattice constant of graphene, 0.251 nm[98, 99]. The system is partially ionic due to the

large different electronegativities of boron and nitrogen atoms. Hence, the system is more

stable in a multilayer AA’ Bernal configuration[8], difficulting the process of isolating a

monolayer h-BN sheet via the exfoliation process.

Synthesis of h-BN gained attention as an alternative for mechanical support in STM

measurements on graphene samples[100]. The interaction between graphene and SiO2 sub-

strates interfere with graphene’s electronic performance and turns inaccessible to Dirac’s

physics at the neutrality point. However, h-BN shows itself as a dielectric layer, free

of dangling bonds and charge traps due to its high oxidation resistance. Also, STM

measurements exhibits a ∼ 100 times more smooth surface when compared to the high

roughness of SiO2 and an enhancement of the electronic mobility[98, 99, 101]. Recent

applications includes encapsulated carbon nanotubes in h-BN to be used in field effect

transistors[102], showing a 6-7 times current enhancement trough the nanotube, compared

with SiO2 substrates.

One-dimensional structures can also be obtained from h-BN sheets, by unzipping h-
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B C N

electronegativity 2.04 2.55 3.04

calculated ratio 87 pm 67 pm 56 pm

valence electrons 3 4 5

Table 3.1: Electronegativity values of boron, nitrogen and carbon atoms. Taken from
ref.[17].

BN nanotubes, for example. However, differently to quasi 1D graphene structures, h-BN

nanoribbons have a non zero bandgap for both armchair (ABNNR) and zigzag boron

nitride nanoribbons (ZBNNR), and due to its semiconductor features, it has application

in optics and opto-electronics[103].

BNNRs are dielectric materials due to the difference between B and N electroneg-

ativities (see Table 3.1). However, edge functionalization can modify their electronic

properties[104]. DFT calculations show that ABNNRs hydrogenated at boron edges, or

Fe-edge terminated, may lead to a half-metallic state[105–107]. Also, ZBNNRs hydro-

genated at only one edge[13] or ∼ 80% hydrogenated through the ribbon[108] could lead

to a half-metallic system without the requirement of an external electric field. The results

open the way to the study of hybrid systems graphene/h-BN that combines the conductive

properties of graphene and the ionic nature of h-BN nanoribbons.



4
Hybrid nanoribbons

Hybrid structures may allow the use of a single graphene layer in field effect tran-

sistors. Calculations performed[109] on graphene layer sandwiched in h-BN sheets have

revealed not only a tunable bandgap when applying an external electric field, but also a

higher on/off current ratio through the graphene sheet when compared with a pure single

graphene layer. It is shown that the stacking configuration influences the electronic prop-

erties of the hybrid system. For h-BN sandwiched between graphene layers, the bandgap

of the hybrid system in the presence of an electric field reaches maximum values for the

the AAA stacking configuration[9](see Fig.4.1). Also, according to DFT calculations, hy-

brid structures made up of bilayer graphene over stacked h-BN sheets have shown to have

a tunable bandgap depending on the number of h-BN layers, and leading to a conductor

material when a perpendicular electric field is applied[10].

Here we focus on the study of systems where half-metallicity is achieved without the

presence of an external electric field. We combine the dielectric properties coming from

the high electronegativity difference between boron and nitrogen atoms in ZBNNRs with

the spin-dependent properties of ZGNRs. The hybrid system would consist of a planar

ZGNR structure embedded in a pair of ZBNNRs. Such systems might be synthesized

through a series of CVD steps[3, 110] or etching graphene over lithographic patterned

h-BN[111]. STM measurements of hybrid h-BN/graphene interfaces are shown in Fig.4.2.

We describe the effects of zigzag edges on ZBNNRs on the electronic structure using edge

potentials. Then, we study hybrid ZBNNR/ZGNR/ZBNNRs, where ZBNNRs induce

an electric field across the zigzag graphene strip, breaking the spin degeneracy of the

44
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electronic band structure. We propose a correction to the on-site energies in the used TB

model in the form of edge and interface potentials. A set of optimal TB parameters are

found from DFT calculations that enables us to explain non-magnetic and spin-dependent

band structures of hybrid systems.

4.1 Edge potentials in ZBNNRs

DFT calculations predict an indirect gap for ZBNNRs as shown in Fig.4.3. Here Eg
is the indirect gap energy and EX is the energy difference between the highest valence

band and the lowest conduction band at ka = π (X symmetry point). Fig.4.4 exhibits the

behavior of Eg and EX with respect to the nanoribbon width, where we compare our DFT

results (blue symbols) with the results from ref.[12]. Additionally, TB approximation can

also explains the behavior of Eg and EX .

In Fig.4.5(left) we compare the DFT band structure of a 12-ZBNNR with our simple

TB model. By identifying the edge states at ka = π, we can estimate the on-site energy

values at the edge sites to be used in our TB model (see Sec.2.4). The eigenvalues of the

hamiltonian 2.65:

Hka=π =




[εB] 0 0 0
0
0

[
εN t
t εB

]
0
0

0 0
. . . 0 0
0
0

[
εN t
t εB

]
0
0

0 0 0 [εN ]




, (4.1)

will give us directly the on-site energies εB and εN for boron and nitrogen atoms. The

resulting TB band structure is shown in Fig.4.5(right). However, we can notice two main

differences of TB with respect to the DFT band structures: a degenerated state at ka = π,

and the presence of highly-localized flat bands. Also, according to this TB approach, Eg
and EX would be equal between them, and would show no dependence on the nanoribbon

width. To solve those differences, Zheng et al [13] proposed a correction to the on-site

energies in the form of exponential-like edge potentials. The correction comes from the

different electronegativities of boron and nitrogen atoms, and the partially ionized edges

composed of just boron or nitrogen atoms. The proposed edge potentials reads
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Figure 4.1: Top: Different stack configurations for an hybrid h-BN/graphene system and
their responses to an external electric field. Bottom: Band structure of a bilayer graphene
deposited over h-BN layers. The h-BN can introduce new states into the bandgap. Taken
from [9](top), and [10](bottom).
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Figure 4.2: (a) SEM morphology and (b) STM measurements of hybrid h-BN/graphene
interfaces. (c) Most of the samples stabilize in zigzag interfaces. Taken from ref.[11].
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Figure 4.3: 12-ZBNNR band structure according to our DFT calculations.
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Figure 4.4: n-ZBNNR gap evolution with respect to the nanoribbon width n. Filled
black symbols correspond to DFT results from Nakamura et al (figure adapted from [12]),
while blue symbols correspond to our DFT calculations.
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Figure 4.5: 12-ZBNNR band structures according to DFT (left) and TB (right) calcu-
lations. Highly localized states are in red.
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Figure 4.6: Fitting DFT results and EgX1, compared to predictions from reference [13].

4(eV) λ(Å) δP ≡ (PB − PN)

Optimal fit 2.470 9.0 −0.3564
Zheng et al[13] 2.246 9.0 −0.2254

Table 4.1: Parameter values for EgX to fit with DFT results in our TB calculations and
obtained by Zheng et al [13].

Vedge(x) = PBe
−|x−xB |/λ + PNe

−|x−xN |/λ, (4.2)

where xB and xN are the posititions of the boron and nitrogen edges. PB, PN and λ

being parameters to be adjusted to fit DFT results. If we define 4 ≡ (εB − εN)/2 and

δP ≡ (PB − PN), then it can be demonstrated that[13]

EX(L) = 24+ δP · (1− e−L/λ) (4.3)

where L is the nanoribbon width. So, by adjusting an optimal δP value, we can fit EX
from DFT calculations by means of the last expression. Fig.4.6 shows the resulting fitting

we found, superposed to our DFT data. We also compare our fit with that of Ref.[13]. In

Table 4.1 we display the fitting parameters.

On the other hand, we were unable to reproduce the DFT band structures of different
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Figure 4.7: (a) Dependence of PB + PN with respect to the nanoribbon width in order
to match TB band structures and DFT results. Dashed line corresponds to the limit case
PB = −0.3564 and PN = 0 . (b) Relative edge potentials correcting the atomic on-site
energies along the n-ZBNNR. The relative edge potential is calculated with respect to its
maximum value. (c, d) Electronic band structures for 4 and 12-ZBNNR. Dashed lines
indicate DFT calculations and colored lines show TB results including edge potentials.
Colors indicate the F -localization.
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Figure 4.8: Unit cell of the hybrid 5BN/6G/5BN.

nanoribbon widths by using a unique pair of PB and PN values. We adjusted the TB

band structures to the DFT results by means of a set of PB and PN values. While

δP ≡ (PB−PN) can be fixed to a constant value, as indicated in Table 4.1, each parameter

depends on the nanoribbon width, as implied by the dependence of the sum PB + PN

shown in Fig.4.7(a). Even though this figure shows higher PB and PN values for shorter

nanoribbons, the difference δP ≡ (PB − PN) preserves the constant value. Fig.4.7(b)

shows the resulting Vedge when fitting PB and PN values for different nanoribbon widths.

For comparison, we have normalized the nanoribbon width, L, to 1. Fig.4.7(c) and (d)

show the TB band structures of ZBNNRs when using an optimal fitted Vedge to match

DFT band structures.

4.2 Interface potentials in zigzag hybrid systems

Here we study an hybrid system made up of a graphene stripe embedded in ZBNNRs.

Optimal on-site energies and hopping parameter values for other BN/graphene systems

are reported elsewhere[18]. However, for the present hybrid system, we adjust those

parameter values to obtain an electronic effective potential[112], affected by the presence

of ZBNNR’s edges and BN/C interfaces. We follow a similar recipe to edge potentials

proposed by Zheng et al[13], to study the hybrid system with B and N edges (see Fig.4.8).

Additionally to the edge corrections, we also consider the effects of the zigzag interfaces

(N/C and C/B), on the on-site energies of the hybrid system.

The Quantum ESPRESSO (QE)[70] code is also used to compute the electronic struc-

ture for the hybrid systems, followed by the WanT Package[72, 73] to obtain on-site and

hopping energy values. The codes provide a procedure based on projecting the Khon-

Sham solutions into localized atomic orbitals. The corresponding Hamiltonian in the real

space has a Slater-Koster-matrix shape[68] from which we may obtain the TB parameter

values. Even though the post-processing DFT calculations consider interaction between a

large range of neighbor atoms, we are just interested in the on-site energy and first nearest
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Figure 4.9: Left: On-site energies according to DFT calculations (black symbols) and
TB model (blue symbols). The inset shows the unit cell of the zigzag hybrid system.
Right: DFT (dashed lines) and TB (colored lines) band structures. Colors indicate the
F -localization.

neighbor hopping values. Therefore, the parameters obtained from QE and WanT will be

taken and adjusted to build an optimal set of TB parameters, accordingly to the present

demand. The results obtained from post-processing DFT calculations for the on-site en-

ergy values, εi, for B, N and C atoms are shown as black circles in Fig.4.9, which may be

fitted into an envelope function according to

εi = ε
(0)
i + V (xi) (4.4)

where ε(0)
i are the on-site energy values for the i-site far enough from the edges or inter-

faces.

The envelope function V (x) is not directly obtained from post-processing DFT cal-

culations due to the influence of a large number of neighbor interactions. Here, we are

interested in an effective TB model taking only the first nearest neighbor interactions.

Blue triangles in the left panel of Fig.4.9 are obtained by using an optimal envelope that

reproduces quite well the band structures of several hybrid systems. The optimal en-

velope function is proposed within a similar recipe for edge potentials in ZBNNRs as

exponential-type functions . Here, the present proposal incorporates the effects from BN
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PB PN PG λ λG

−1.18 eV −0.66 eV 1.5 eV 9.0Å 1.7Å

Table 4.2: Parameter values for the effective potential through our hybrid system.

edges and BN/graphene interfaces, i.e. for the BN region we have the same contribution

from the edges, as done in the previous section,

Vedge(x) = PBe
−|x−xB |/λ + PNe

−|x−xN |/λ, (4.5)

which accounts for the different electronegativities and high π-electron density at xB and

xN edges. For the internal graphene strip the contributions from the interfaces are chosen

also as decaying exponential functions centered at the xL and xR interfaces,

Vint(x) = −PGe−|x−xL|/λG + PGe
−|x−xR|/λG . (4.6)

Post-processing DFT calculations may provide the hoppings and the atomic on-site

energies. However, DFT consider many neighbor contributions, while we are interested

in the first-neighbor interaction for our simple TB model. Also, unnocupied states with

high kinetic energy may have plane-waves components that do not project well in a finite

atomic basis[113] and may lead into unphysical atomic on-site energy values. To ovecome

this difficulty, we can estimate the B and N on-site energy values by identifying the edge

states in a band-structure diagram, as explained in 2.4. To identify the edge states, we

calculate the degree of localization in all electronic bands according to the localization

function F defined in Sub-sec.2.4.1. The band structure diagrams are shown in Fig.4.9

for DFT and TB calculations. For the TB diagram, the degree of localization is indicated

in color, where the maximum value F = 1 corresponds to the case where the electron is

localized in just one atom. Maximum F values happen at ka = π for electrons localized at

the B or N atoms at the edges of the zigzag nanoribbon (indicated by the upper and lower

dotted lines in the same figure). Then, by adjusting the on-site energy values of B and

N, we are able to match the boron-nitride edge states of DFT and TB band structures.

The resulting parameter values for edge and interface potentials are shown in Table4.2.

The λG value describes a short-range interface potential when compared to the edge

potentials range, λ, in the BN nanoribbon regions. This is a reasonable result since the

graphene stripe is composed just of carbon atoms (no changes in the electronegativity
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Figure 4.10: Results for 5BN/2G/5-BN and 2BN/12G/2-BN structures. Left: On-site
energies according to DFT calculations (black symbols) and TB model (blue symbols).
The insets show the unit cells of the zigzag hybrid systems. Right: DFT (dashed lines)
and TB (colored lines) band structures, where colors indicate the F -localization.. The
same TB parameters and fitting curves were used for short (top) and long (bottom)
graphene stripes.
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ε
(0)
C ε

(0)
B ε

(0)
N tCC tCB tCN tBN UC UB UN

0.0 3.31 −1.09 −2.65 −2.25 −1.80 −2.40 2.7 0.0 0.0

Table 4.3: Optimal TB parameter values for our zigzag mBN/nG/mBN nanoribbon
systems. Units are given in eV.

Figure 4.11: First principle results of Park et al [14] for a 36(red symbols)- and 84(blue
symbols)-ABNNR (a) and 27(red symbols)- and 46(blue symbols)-ZBNNR (b) as a func-
tion of a transverse electric field. Insets indicate the gap response to a potential difference
between the edges.

values happen through the graphene stripe) where charge carriers are more susceptible to

electronic screening when compared with the BN region. It is important to remark that

the same TB parameter values explain the main band structure features of other hybrid

systems, and the interface potential proposed fits them even for wider graphene stripes, as

shown in Fig.4.10, where the exponential behavior from interfaces is more clear. Actually,

we have worked with a set of mBN/nG/mBN with (m;n) = (5; 2, 3, . . . , 6), (3; 6), (4;

6), (4; 4), (2; 12).

The curves were fitted by taking ε(0)
i values to be in agreement with TB results from

Zhao et al work[18] for BN quantum dots embedded in graphene. Here we considered

those values with some adjustments (see Table 4.3) to better reproduce the DFT band

structure of the hybrid systems. We shifted the on-site energy values for B and N atoms

by 0.55 eV to match TB and DFT band structures at ka = π. Also, we depart 0.10 eV

from their tCN value to explain better the non-magnetic solution for 5BN/2G/5BN, as

discussed in the next sub-section.
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Figure 4.12: First principle results of Bhowmick et al[15]. Left: Half-metallicity in an
in-plane hybrid h-BN/6G/h-BN system. Center: Half-metallicity is lifted at a critical
value of a transverse electric field. Right: Gap dependence of the hybrid system with
respect to the external electric field.
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Figure 4.13: DFT(top) and TB(bottom) band structure calculations formBN/nG/mBN
ribbons. (m;n) = (5; 2) for (a) and (d). (m;n) = (5; 4) for (b) and (e). (m;n) = (5; 6)
for (c) and (f).
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4.2.1 Half-metallicity in hybrid systems

Due to the high electronegativity difference between B and N atoms, an electric field

is induced across the ZBNNR. To illustrate this response, we show in Fig.4.11 the depen-

dence of an armchair(a) and a zigzag(b) BNNR with an external electric field. Differently

from the armchair response, the asymmetric gap behavior observed for the zigzag BNNR

suggests an intrinsic electric field induced in the nanoribbon that can be compensated

by an external field in the opposite direction. Furthermore, the half-metallic response of

the in-plane graphene embedded in a pair of ZBNNRs is explained by the presence of

an effective electric potential generated through the graphene stripe. When an external

electric field is applied to the hybrid system in the opposite direction, the gap for the

up and down spin channels eventually equal each other at a critical external electric field

value as shown in the DFT results by Bhowmick et al [15] in Fig.4.12. Here we model the

intrinsic field according to Eq.4.6.

When the graphene’s width is comparable to λG, the interface potential resembles the

potential generated by a constant electric field, where the system becomes half-metallic for

a critical electric field value[33]. We have adjusted PG so that half-metallicity is achieved

for certain systems (see Fig.4.13), accordingly to reported DFT calculations[114].

Up to now, we have used our TB parameter values in an attempt to retrieve DFT

results. Particularly, DFT predicts a half-metallic response for mBN/nG/mBN systems

with (m;n) = (5; 4) and (5; 6), while (m;n) = (5; 2) remains as a non-magnetic solution,

as shown in Fig.4.13(a-c), in agreement with Ding et al results[114]. For comparison, we

also show our TB results in Fig.4.13(d-f). Edge states and valence bands (next to the X

point at ka = π) are quite similar to DFT results, and the closing-gap trend for wider

graphene stripes is recovered.

Finally, electronic and transport properties are calculated with this fitting. Fig.4.14

shows the band structure of the 5BN/6G/5BN system and the corresponding DOS and

transport properties of the hybrid system. The conductance is enhanced for energies

around the Fermi level. The hybrid system is antiferromagnetically ordered between the

two edges (one interface is spin down and the other interface with spin up).
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Figure 4.14: Spin-dependent (a) band structures, (b) DOS, and (c) conductance for
an hybrid 5BN/6G/5BN system. (d) Magnetization along the unit cell in unit of Bohr
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Figure 4.15: Band structures for the 5BN/6G/5BN system, (a) according to the pro-
posed TB and fitting parameters listed in Tables 4.2 and 4.3, (b) zero edge and interface
potentials, (c) zero edge and interface potentials and decreased tCN , tBN values by a factor
of 0.8, (d) zero edge and interface potentials and decreased tCN , tBN values by a factor
of 0.4, (e) zero edge potential, (f) zero interface potential, (g) UC = 3.0 eV with both
interface and edge potentials, and (h) UC = 0 with edge and interface potentials.
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Figure 4.16: mBN/6G/mBN band structures for m = 5(left), 7(center) and 9(right),
using the same TB and fitting parameters.
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Figure 4.17: (a) Spin-dependent bandgap and (b) magnetization at the left and right
graphene interfaces of a hybrid system as a function of an external field applied in the
transverse direction of a 5BN/6G/5BN nanoribbon.

4.3 TB and fitting parameters considerations

In this section we analyze the role of some parameters on the electronic band struc-

tures. Different approaches are considered to obtain the TB parameters and contributions

from the edges and interfaces. Such approaches avoid the use of edge and interface poten-

tials, which result in the band structure shown in Fig.4.15(b), but correcting the hopping

energy values at the edges [6, 115] due to a relaxation on the B-N bondings at the edge

atoms. We proposed a similar approach for the interfaces hoppings N/C and C/B in the

hybrid system. Fig.4.15(c) and (d) exhibit band structures for decreasing tCN and tBN

values, and as a result, the bandgap decreases to reach similar DFT bandgap results. This

approach can be combined with on-site energy corrections at the interfaces, in a similar

fashion to Zhao et. al.[116], which proposed energy corrections to the on-site energies

of edge atoms in ZBNNRs, in order to reproduce DFT band structures. They consider

a positive energy correction at atoms at one edge, and a negative energy correction at

atoms at the other edge of the ZBNNR. This approach mimics the potential induced by

the ionized B and N edges in a ZBNNR. However, for the hybrid systems we study, this

approach leads into nonphysical interface-hopping values tending to zero and very high

on-site energy corrections at carbon atoms in the interfaces. Note that in the limit of zero

hoppings at the interface, the graphene stripe would be isolated (unconnected) from the

ZBNNRs, giving rise to the characteristic zero-energy edge states of a ZGNR. However,

we chose more reasonable hopping values, in agreement with the literature for similar
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systems[18].

It turns out that the correction on the on-site energies at every site, when modeled

by an interface potential, also plays an important role not only at the degeneracy point

at ka = π, but also defines the bandgap as it decreases when the intensity of interface

potential, PG, increases. Therefore, we chose an appropriate value of PG to narrow the

bandgap, in an attempt to reproduce DFT results.

Also, according to Eq.4.6, each one of the on-site corrections considered for the edge

atoms reaches their maximum absolute values for wider graphene stripes. On the other

hand, with a similar argument presented in Sub-sec.3.2.3.1, higher values of edge potentials

at each interface lead to a a closing bandgap for one spin. Consequently, ZGNRs with

wider widths would present a trend of a closing bandgap for one spin channel, and a

semiconductor gap for the other spin channel. Fig.4.13 illustrate clearly this trend. Even

longer graphene stripes embedded in short ZBNNRs show the trend, and present a half-

metallic behavior, in agreement with DFT results (see Fig.4.10(bottom)). Therefore, the

absence of interface and edge potentials in the theoretical model leads to an opening of the

bandgap of the hybrid system and the absence of half-metallicity, as shown in the studies

presented in Fig.4.15(c,d,e,f), where we do not consider neither the edge nor interface

potentials, or one of them, respectively.

It is important to remark that we did not include electronic correlation on B and

N atoms due to the spin-unpolarized nature of ZBNNRs. We only include a non zero

Hubbard term for carbon electrons with an optimal value for UC . Higher UC values

shifts positively the k-position of the spin-down bandgap, as shown in Fig.4.15(g). It also

breaks the spin degeneracy of other bands, in disagreement with DFT results. Conversely,

Fig.4.15(h) shows the band structure of the hybrid system when no electronic correlation

is present.

Attempts to find the optimal TB parameters without the use of interface potentials,

but just hopping and on-site energy values adjustments, works well for a specific hybrid

nanoribbon width. However, interface potentials provided a more robust scenario for

the use of the same set of TB parameter values. Fig.4.16 shows the same half-metallic

behavior, even for wider boron-nitride regions by considering increasing values of m in

the hybrid mBN/6G/mBN system (m=5, 7, and 9).

The interface potential proposed here is the optimal one which mimics the intrinsic

electric field with a critical value that leads into a half-metallic hybrid system.
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ε
(0)
C ε

(0)
B ε

(0)
N tCC tCB tCN tBN UC UB UN

0.0 2.76 −1.64 −2.65 −2.25 1.70 −2.40 0 0 0

Table 4.4: TB parameters for armchair mBN/nG/mBN nanoribbon systems. Units are
given in eV. Taken from Ref.[18].

When adding a negative external electric field, the bandgap for the up channel de-

creases rapidly, while the bandgap for the down channel widens. For increasing negative

electric fields, the bandgaps for spin channels up and down eventually equal each other, as

shown in 4.17(a). This response resembles that of a ZGNR around a critical electric field

value where the system reaches the half-metallic stage[33, 117]. In our hybrid system, the

critical electric field is played by the intrinsic field induced by the ZBNNRs. Therefore,

adding an external electric field breaks the half-metallic behavior. This response is in

agreement with DFT results from Bohwmick et al [15] shown in Fig.4.12. Positive electric

field values added to the hybrid system also remove the half-metallic response. However,

for enough high values of electric field, our TB model predicts that the hybrid nanoribbon

turns again into a half-metallic system. After this point, the system becomes a nonmag-

netic semiconductor for both spin channels. Additionally, consider Fig.4.17(b) where the

system exhibits a magnetization quenching for negative electric fields. This response also

resembles the magnetization response of a ZGNR in the neighborhood of a critical value of

an external transverse electric field[117, 118]. Moreover, increasing positively the external

field leads to a second magnetization quenching.

4.4 Armchair hybrid system

Differently from the systems with zigzag edges studied in previous sections, the TB

band structures of ABNNRs fits well with DFT results without energy corrections as edge

potentials. This is because each edge is composed of both boron and nitrogen atoms,

leading to an average non-ionized edge. Also, Sasaki et. al. [119] explain the absence of

pseudospin polarization in terms of a gauge field for the edge states.

To calculate transport properties of armchair hybrid systems, we use the TB parame-

ters provided in the literature [18], shown in Table 4.4. Our models are the armchair unit

cells displayed in Fig.4.18(a-d). Begining with a pristine ABNNR, carbon dimers replaces

B and N atoms, maintaining constant the width of the hybrid system to 17 dimers. The
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Figure 4.18: (a-d) Unit cells of different hybrid armchair nanoribbons. The ribbon axis
is parallel to the armchair edge. (a) 8BN/2G/7BN, (b)7BN/3G/7BN, (c) 7BN/4G/6BN,
(d) 6BN/5G/6BN. (e) Bandgap behavior of an isolated AGNR (red marks) and an AGNR
being part of a 17-dimer-hybrid system (blue marks). (f) Conductace of the hybrid
armchair 5BN/7G/5BN, 17ABNNR and 17AGNR.
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Figure 4.19: (a) Hybrid 5BN/6G/5BN nanoribbon with a boron atom diffusing trough
the graphene stripe. Green, yellow, and gray balls represent boron, nitrogen, and carbon
atoms, respectively. Bandgap dependence with respect to boron (b) or nitrogen (c) sub-
stitutions along the graphene ribbon in the unit cell. Zigzag edges are parallel to vertical
direction

center part of Fig.4.18 shows the bandgap evolution of hybrid systems with respect to the

AGNR width. For comparison, bandgap evolution of pristine AGNRs with respect to its

width is superposed. For the calculations, the hopping at the isolated edges were decreased

in a 12% with respect to the hoppings in the bulk material due to edge relaxation [6, 115].

The armchair hybrids show a similar bandgap behavior as their pristine counterpart, and

can be categorized in 3m, 3m+ 1, and 3m+ 2 families, all of them semiconductors when

edge hopping relaxation is considered. The right part of Fig.4.18 exhibits the conductiv-

ity of pristine 17-AGNR and 17-ABNNR. Hybrid systems show a intermediate bandgap

between the pristine AGNR and ABNNRs, as illustrated in Fig.4.18(right).

4.5 Effect of impurities

To describe more realistic systems we also study roughness and a less sharped zigzag in-

terface. Also, we considere atom diffusion from the BN region to the graphene interface[120].

We model this roughness by substituting carbon atoms by boron or nitrogen atoms in ev-
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Figure 4.20: Total energy per unit cell when a boron (left) or nitrogen (right) atom
substitutes a carbon atom in the hybrid system. The energy of the pristine system is
−4.67 eV/unit cell.
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Figure 4.21: Gap dependence with respect to the relative position of two substitutional
impurities at the graphene stripe. For 4Na = 0, the two impurities belong to the same
(n-th relative) armchair chain. The green(gray) line corresponds to a N-B (N-C) configu-
ration near the two interfaces. Dashed lines are the bandgap up(blue) and down(red) for
the pristine case.
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ery periodic unit cell. Spontaneous magnetization in ZBNNRs doped with carbon atoms

in substitutional positions in the lattices has been reported [121]. The understanding

of the effects of such lattice imperfections on the electronic properties may improve the

controlled electronic responses of those nanostructured materials.

Departing from the pristine configuration to treat a more realistic system with rough-

ness at the interfaces will demand a high DFT computational cost. To overcome this

difficulty, we use the TB model with the parameters and fitting curves we have found for

the hybrid system. With this approach we can study larger nanoribbons engineer hybrid

systems’ bandgaps with a less computationally cost compared with DFT calculations.

We consider a system with a unit cell shown in Fig.4.19(a). Here, a boron (nitrogen)

atom replaces a carbon atom, and we analyze the gap evolution Fig. 4.19.b(c) with respect

to the substitution at the n-th site. Substituions at the interfaces h-BN/graphene increases

the bandgap for channels up and down. We also obtain a diminishing gap trend and an

enhancement of the half-metallic response when the impurity substitution is verified at

the center of the graphene stripe. Boron and nitrogen impurities substitution exhibit, as

expected, opposite trends for the bandgap behavior as a function of the impurity position

along the graphene material.

Using our TB parameters with edge and interface potentials, we calculate the total

energy of the system when a boron atom substitutes a carbon atom in the graphene stripe,

as shown in Fig.4.20(left). We also include the results corresponding to the case when a

carbon atom is substituted by a nitrogen atom. The curves indicate the preference for

a boron subsituting a carbon atom at the interface, where it is bonded with a nitrogen

atom. A similar behavior happens for the nitrogen substitution on the other edge. Our

calculations are preliminar results that should be compared to DFT results. Work along

this line is in progress.

We study further the effects of interaction between impurities at opposite interfaces.

For a fixed nitrogen position inside the graphene stripe (marked with a red arrow in

Figs.4.21 (a) and (b)), we vary the position of a boron and a carbon atom at the opposite

BN/graphene interface (marked with green and gray arrows, respectively). The results

Fig.4.21(c) shows maximum bandgap when impurities are located in the same armchair

chain, located at opposite positions in the two interfaces.
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4.6 Final considerations

In this chapter, we proposed and discussed the inclussion of an interface potential to

explain the effects of a h-BN/graphene zigzag interface in a 2-dimensional hybrid system.

Because of the ionic nature of B and N atoms, the h-BN/graphene interface works as an

effective linear arrangement of electronic charges. Depending on the h-BN atoms at the

interface, the effective accumulation of electronic charges causes a positive or negative po-

tential, modifying the on-site energy values in the graphene region. Particularly, a ZGNR

embedded in a pair of ZBNNRs shows a half-metallic response as if it were submerged in

an intrinsic electric field generated by the ZBNNRs. This TB approach is used along with

edge potentials to better explain the main features of DFT band structure results. The

use of interface and edge potentials can contribute to explain the electronic properties of

hybrid systems with defects and impurities, which, in the DFT, lead to time-consuming

calculations.



5
Strain in nanoribbons

Since the original prediction by Fujita et al. [7], edge states in pristine graphene

have been heralded as ideal ballistic channels with potential in electronic applications. To

better understand the nature of these states, Sasaki et al. [8] studied the effects of a highly

localized strain defect along different crystal directions (modeled by a δ-function gauge

field in a Dirac model). The analytic solution showed the emergence of states along the

zigzag direction with properties similar to those of edge states: pseudospin polarization,

i.e., local sublattice symmetry breaking, and same flat band dispersion, but localized at

the position of the deformation. These characteristics are well understood in terms of the

effective pseudomagnetic field generated by the deformation[37, 38].

Here we show that longitudinal out-of-plane deformations along a graphene membrane

generate extra conductance channels running parallel to the structure with the remarkable

property of being valley polarized. As a consequence, a current injected parallel to the

axis of the deformation will naturally split in space, with states from one valley running

along the crest while states of the other valley run along the sides. These results [16] point

towards a realistic implementation of valley polarized channels that can be achieved in

current experimental settings by appropriate design of substrates or sample preparation.

This chapter is organized in the following sequence: first, we describe the hamiltonian

of a deformed ZGNR in the framework of continuum elasticity theory, and the pseudo-

magnetic field due to the strain. Second, we study the effects of strain on the electronic

and transport properties of ZGNRs. Finally, electronic correlation is added to the model

to study the effects on the half-metallic response.

68
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x
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z

Figure 5.1: Left: Folded graphene nanoribbon. Colors indicate increasing height values
along the z-axis. The system is periodic along the x-direction (zigzag edge). Right:
Folding parameters, A and b, of the Gaussian function.

5.1 Model

Here we study a graphene nanoribbon under a Gaussian out-of plane strain (see

Fig.5.1). If the edges of the nanoribbon are parallel to the x-axis, then we model a

deformation centered at the nanoribbon axis and parallel to the edges according to the

function

h(y) = A exp(−(y/b)2), (5.1)

where h(yi) and yi are the height and position along the unit cell of the i-th site, respec-

tively. The deformation is then, characterized by the parameters A and b, describing the

amplitude and extent of the deformation, respectively.

We use the TB model to study the effects of the deformation on the nanoribbon,

H =
∑

〈ij〉

tij(c
†
jci + c†icj), (5.2)

the hopping parameter between the i-th and j-th atoms, tij (first nearest neighbors),

depends on the value of the carbon-carbon distance lij according to

tij = t exp

(
−β
(
lij
d
− 1

))
, (5.3)

where t and d are the hopping energy and carbon-carbon distance in the absence of strain.

Here t = 2.8 eV, d = 1.42Å, and β =
∣∣∣∂ ln(t0)
∂ ln(d)

∣∣∣ ' 3[41, 122]. The variation in the hopping

energy is due to the change in the superposition of π orbitals when the carbon-carbon

distance is altered. In the linear elasticity theory framework[123, 124], the variation in



CHAPTER 5. STRAIN IN NANORIBBONS 70

the carbon-carbon distance is calculated in terms of the strain tensor,

εµν =
1

2
(∂νuµ + ∂µuν + ∂µh∂νh), (5.4)

where uµ and h are the in-plane and out-of plane deformations, respectively. The carbon-

carbon distance departs from d according to

lij = d+ εxx
x2
ij

d
+ εyy

y2
ij

d
+ 2εxy

xijyij
d

, (5.5)

where xij and yij are the projections of d over the x-axis and y-axis, respectively. In last

equation, only the components of the strain tensor account for the deformation. xij, yij
and d are measured when in the absence of strain. For a Gaussian deformation depending

only on the y coordinate, the components of the strain tensor are null, except for the

yy-component, i.e.,

εyy =
1

2
∂yh∂yh, (5.6)

and consequently, the carbon-carbon distance becomes,

lij = d+ εyy
y2
ij

d
, (5.7)

which can take its maximum value for a bonding parallel to the y-direction. The effect of

strain is then maximized for zigzag nanoribbons with edges parallel to the Gaussian axis,

in the configuration shown in Fig.5.1.

5.2 Pseudomagnetic field

In the neighborhood of the K valley, the hamiltonian of graphene approximates to the

Dirac equation,

Hk = vF~σ · ~p. (5.8)

where vF is the Fermi velocity and σ’s are the Pauli matrices.

When the honeycomb lattice suffers strain, the geometry of the deformation can be

mapped into the Dirac equation for graphene as[119, 125],
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Figure 5.2: (a) Strain distribution and (b) pseudomagnetic field in the valley K in
a ZGNR under the effects of a gaussian strain with parameters A = 5d = 0.7 nm and
b = 10d = 1.4 nm.

HK = vFσ · (~p+ ~A(r)), (5.9)

where A can be interpreted as a pseudomagnetic vector potential, and depends on the

variations of the bonding distances with respect to the case with no strain. It can be

demonstrated that [126]

(
Ax
Ay

)
=

(
εxx − εyy
−2εxy

)
=

(
−2(y2/b4)h2

0

)
, (5.10)

and the pseudomagnetic field is calculated as ~B = ~∇× ~A.

From the Gaussian function 5.1, it can be shown that the maximum strain is located

at ym = ±b, and from here we get that the maximum strain intensity εm = α2/e, with

e = 2.71828... and α = A/b.

Fig.5.2 shows the strain distribution along the ZGNR, and the pseudomagnetic field

for the valley K. Notice that the pseudomagnetic field inverts signal for the valley K ′

as can directly be shown by means of the Dirac equation for the valley K ′. It is also

interesting to notice the change of sign of the pseudomagnetic field that happens along

the confinemet direction of the ZGNR.
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Figure 5.3: (a) Conductance for ribbon ( width W = 25.8 nm) with different strained
folds parameters. Curves are shifted for clarity. Dashed horizontal lines mark zero value
for proper comparison. (b) LDOS profile across the ribbon with upper/lower panels
showing results for: εm = 0%− 9.2% [black to green curves in (a)].

5.3 Effects of strain on the electronic properties

In Fig. 5.3 we show the conductance results for ZGNRs under no strain, εm = 0

(black line), and also for increasing values. For εm = 0, the first conductance plateau

represents two ballistic channels (one per spin) due to edge states in the zero energy

band while the second plateau contains six channels. As strain increases, the onset of the

second conductance plateau moves to lower energies and becomes wider. The increase in

width is produced by spectral transfer from other energies, and its onset at lower energies

represents an effective increase in the conductance. The number of channels contributing

to the conductance within the energy range of the first plateau in the unstrained ribbon

(energies below 0.1 eV in Fig.5.4 (c) increases with strain from two to six (with four

channels added to the existing two). Fig.5.3(b) shows two LDOS profiles across the ribbon

at the energy E = 0.05 eV, with the upper/lower panels showing results for ribbons with

εm = 0 and εm = 9.2%. An enhanced LDOS develops around the deformed region with a

similar spatial distribution to the exhibited by the pseudomagnetic field (see Fig.5.2(b)).

The increase in LDOS at the edges corresponds to edge states. A and B curves denote

the two graphene nanoribbon sublattices.
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Figure 5.4: Band structure of a 112-ZGNR. Undeformed nanoribbon (a) is compared
to the strained nanoribbon (b) with folding parameters A = 5d = 0.7 nm and b = 10d =
1.4 nm. (c) and (d) shows a zoom of the band structures from (a) and (b), respectively.
Colored lines represent the degree of F -electronic localization [16].
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Figure 5.5: (a) Profile of a ZGNR under a folded strain with parameters (A, b) =
(5d, 10d). (b) Band structure of a 112-ZGNR under strain. Colored lines indicate the
accumulation of charge in the central region between xn1 and xn2.

5.3.1 Effects on the band structure

Now we analyze the electronic band structure of a 112-ZGNR to study the effects

of such folded-like deformation. When no deformation is present, the hamiltonian for a

N -ZGNR of the zigzag nanoribbon, at ka = π, is

H(ka = π) =




[ε0] 0 0 0
0
0

[
ε0 t
t ε0

]
0
0

0 0
. . . 0 0
0
0

[
ε0 t
t ε0

]
0
0

0 0 0 [ε0]




, (5.11)

with eigenvalues Em = ε0 ± t for m = 2, ..., N − 1 leading to degenerate states as shown

Fig.5.4(a). However, the degeneracy is lifted when the hopping energy values suffer a

perturbation such as the folded deformation, as displayed in Fig.5.4(b). In this figure the

strain parameters considered, A and b, lead to α2 = 25% that corresponds to a maximum

strain of εm = 9.2%. The strain also affects the bands near the Dirac point in the band

structure diagram. Additionally, we verify a positive shift of the Dirac cone position at

K for increasing stress, and a negative shift for the Dirac cone position at K ′.
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Strain causes a rearrangement of charge through the nanoribbon, as can be deduced

from the degree of localization shown in the same figure. Here we use the definition of

Zheng et al [13] for the F -localization, given in Eq.2.66. F is defined as a sum of the

4th powers of the wavefunction’s probability coefficients, and it is summed over all the

sites of our ZGNR unit cell. On one hand, delocalized electrons can be represented by

a wavefunction with equal coefficients. A straightforward calculation would allow us to

determine that F reaches the minimum value for our system. On the other hand, F can

reach the maximum value, equal to one, when electrons are completely localized in only

one site. This is the case for states from the zero energy band at ka = π which are

more electronically localized than those states near the Dirac point. Therefore, F is a

number that provides us the localization signature of an electronic state. Lastly, not only

F allows us a rapid search of states with localization in an energy-momentum diagram,

but also it can be used as a way to compare the level of localization between different

bands. For example, Fig.5.4(c) and (d) show the band structure of the same ZGNR in

the neighborhood of the Dirac cone, before and after applying the strain. The result show

that strain causes localization for high energy bands.

In order to determine the real position of the localized states with respect to the

folded strain, we can define δρs as a sum of the squares of the wavefunction’s probability

coefficients, with the sum running over the sites belonging to the folding range. This

sum is compared to the case when there is no folding εm = 0 over the same range,

δρs ≡
∑

i

∣∣∣c(ε)
i

∣∣∣
2

−
∑

i

∣∣∣c(ε=0)
i

∣∣∣
2

, (5.12)

where ci is the wave function amplitude at the i-th site (the wavefunction can be written

in terms of orbitals centered at each site as Ψnk(~r) =
∑N

i=1 ciφ(~r − ~Ri)). The sum in

Eq.5.12 is calculated adding contributions from i-th sites around the strained region if

the condition h(yi) ≥ 0.01Å is satisfied. Roughly speaking, δρs help us to define where

the localization is present, and whether or not the charge accumulation is due to the fold

strain or due to edge states, for example. In an energy-momentum diagram, the color

code would indicate which bands show an increase/decrease in the probability density

(red/blue) in the fold structure. Fig.5.5 identifies the states where charge accumulates

or decreases in the folded region, and we can identify that the high energy bands are

localized inside the folded deformation.
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5.3.2 Effects on the LDOS

The real space distribution of the localized states can be further analyzed by means of

the probability density, |ci|2 with i = 1, . . . , 2N for a N-ZGNR. Figs.5.6(a) and (b) show

the probability density at an energy E = 0.15 eV for valleys K and K ′, respectively. Blue

(red) symbols indicate a positive (negative) group velocity (v ∝ ∂E/∂k).

The states, labeled by k1 and k2 , are located at symmetric positions around both

Dirac points (red and blue) as shown in panel (c). Full and empty symbols correspond to

sub-lattice A and B, respectively. The color scale represents values of the pseudomagnetic

field at each valley, as depicted in the bottom part of the panel.

Fig.5.6(c) shows the band structures in the neighborhood of valleys K and K ′. For

the valley K, two states with E = 0.15 eV contributes to the LDOS with positive phase

velocity, while just one state contributes to the LDOS with negative phase velocity. Valley

K ′ mirrors the results for valley K.

Fig.5.6(d) shows the LDOS through the transverse direction of the ZGNR (across the

strained fold) obtained by adding up all states at energy E = 0.15 eV with the same group

velocity, from both valleys K and K ′. Mathematically,

siA(B)
≡
∑

v>0, K′

∣∣∣ciA(B)

∣∣∣
2

+
∑

v>0, K

∣∣∣ciA(B)

∣∣∣
2

. (5.13)

Notice that two states with positive group velocity from valley K ′ (see Fig.5.6.c)

contribute to the sum. We also add a bar color to identify if the main contribution comes

from the valley K or valley K ′ by using the following rate,

riA(B)
≡
∑

v>0, K′

∣∣∣ciA(B)

∣∣∣
2

−∑v>0, K

∣∣∣ciA(B)

∣∣∣
2

siA(B)

. (5.14)

Therefore, Fig.5.6(d) identifies the valley separation: LDOS for states from valley K

is enhanced at the center (larger values of pseudomagnetic field) while that from valley

K ′ is larger at the sides. We have obtained similar results for different ribbon sizes and

strain values. This valley filtering is enhanced for larger pseudomagnetic field values (the

maximum value of the pseudomagnetic field is Bpm ∝ εm/b) and it can be modulated by

narrowing the rate b/W (W is the nanoribbon width) with the same fixed strain εm.

We have then shown that for folded like ZGNRs states with the same velocity show

real space valley polarization, i.e., a current injected along the deformed structure will
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Figure 5.6: Probability densities for states at energy E = 0.15 eV. Blue (red) curves
correspond to state k1 (k2) with negative (positive) velocity. Filled (empty) symbols
indicate sub-lattice A (B). (a) States near Dirac point K. (b) States near Dirac point K ′.
Color scale indicates magnitude of pseudomagnetic field (bottom). (c) Position of states
in band structure: right K and left K ′, respectively. (d) Total LDOS with states from
both valleys with same velocity. Color scale indicates location in band structure: yellow
near K and black near K ′. Results for a 112-ZGNR (width W = 23.7 nm) and strain
parameters A = 5d = 0.7 nm and b = 10d = 1.4 nm [16].
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Figure 5.7: Schematic representation of deformed zigzag graphene nanoribbon with
a Gaussian fold like out-of plane deformation acting as a valley filter separating the
contributions from K and K’ valley, marked with yellow and black arrows, respectively.

split into two currents: one along the center of the strained fold constituted by states

from one valley, and another running at its sides with contributions from states of the

other valley as shown schematically in Fig. 5.7.

5.4 Effects of electronic correlation in strained ZGNRs

We now discuss the effects of taking into account the electronic correlation in the fold-

strained zigzag nanoribbon. First, we consider the case in which the ZGNR is under no

strain. In the TB model, ZGNRs have a gap-less band structure and a pair of degenerate

edge states at the Fermi level. However, electronic repulsion opens a bandgap that depends

on the ribbon width[127] as shown in Fig.5.8. The figure exhibits the effects of considering

electronic correlation on the band structure of nanoribbon with different widths. For wider

nanoribbons, the zero-gap of a graphene sheet is eventually recovered.

When applying a transverse electric field, the degenerate band structure is lifted,

and the bandgap evolves with respect to the external electric field as shown in Fig.5.9.

Half-metallicity is achieved for a critical value of the electric field, as explained earlier in

Sub-sec.3.2.3.1. Fig.5.9 also shows the bandgap oscillations for large electric field values,

in agreement with the literature[128]. Additionally, Fig.5.9 exhibits the robustness of the

half-metallic response for ZGNRs with large widths.

As discussed in the previous section, strain causes localization in high energy bands.

We investigate then if the localization at higher energies can be further enhanced for

increasing intensities of electronic correlation. The results are shown in Fig.5.10.

We now show in Fig.5.11 the results for the evolution of the bandgap with respect
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to an external electric field, when both strain and correlations are considered for a 112-

ZGNR. In all figures the results for U = t are compared with those corresponding to null

correlation (U = 0). The large width of the nanoribbon ensures that the strained fold is

fully embedded in the system, i.e., b/W � 1. The figure shows almost no change in the

critical electric field value to achieve half-metallicity, even for larger strain intensities, as

shown in Fig.5.11(c). Figures (b) and (d) have the same α2 = 6% but different A and b

parameters, and show almost no modification in the bandgap dependence with respect to

the electric field. However, intense strain could lead to a degenerate bandgap even in the

presence of smaller external field intensities, as ilustrrated in Fig.5.11(c). In that sense,

the strain can be used to taylor the spin-dependence of the gaps.
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6
Conclusions

The proposal of this thesis was to develop theoretical approaches able to present a

good description of graphene and hexagonal boron nitrate nanoribbon systems within

extended tight binding models. We were particularly interested in modelling a hybrid

system composed of a graphene nanoribbon embedded in two h-BN nanoribbons that

could predict some of the main important band structure features next to the Fermi energy,

revealed by density function theory results. Some effort has been put in investigating the

half-metallicity phenomena that happens for a simple zigzag graphene nanoribbon in the

presence of an electric field, and also for the hybrid system chosen of mixed graphene and

h-BN nanoribbons in the absence of external fields.

With this in mind we analyze first the main aspects of the electronic properties of

graphene and h-BN nanoribbons. Simple tight binding approximations were used as

starting points and real-space normalization schemes are followed to derive Green’s func-

tions, total and local density of states and also the conductance. The hybrid graphene-BN

nanoribbon system is studied via Hubbard-like model Hamiltonian within a mean field

approximation. Edge potentials were proposed as corrections for on-site energies. Also,

interface potentials between both systems were taken into account as extra corrections,

to investigate how the BN-graphene nanoribbon interfaces are perturbed. Optimal tight-

binding parameters are found from DFT calculations that are performed here by following

the Quantum Espresso code, based on density-functional theory, plane waves and pseu-

dopotentials. As predicted, due to different electronegativities of the boron and nitrogen

atoms, an electric field is induced across the zigzag graphene strip, breaking the spin de-
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generacy of the electronic band structure. This is illustrates in the spin-dependent band

structures, density of states and conductance results. We have also studied the evolu-

tion of the spin-dependent gaps as a function of an external electric field applied in the

transversal direction of the nanoribbons. The results are actually relevant to propose this

family of hybrid structures for possible applications in spintronic devices.

To deal with more real hybrid system we take into account the existence of some

imperfections in the central region of the structures. Then, we studied the effects of

impurities along the embedded graphene stripe and at the interface regions. We found

that the energy gap sizes may be properly engineered by controlling the spatial doping

process and, moreover, that binding energy impurity calculations may be used to study

impurity diffusion processes along the mixed nanoribbons. We show that substitutional

impurities may enhance half-metallic response. Different impurity configurations and the

corresponding energy stabilities were studied.

As a second proposed theme we considered zigzag graphene nanoribbons under me-

chanical deformations that may be considered as central elements in the novel field of

straintronics. Because strained folds can be engineered on graphene samples on appropri-

ate substrates, we study their effects on graphene transport properties and on the local

density of states. It is important to remark that various strain geometries have been theo-

retically proposed recently to produce specific properties as robust pseudomagnetic fields,

but that their experimental realization has been limited to some particular examples in the

literature. We have shown the existence of an enhanced local density of states along the

direction of the strained fold that originates from localization of higher energy states and

provides extra conductance channels at lower energies. Conductance calculations reveal

extra channels within the energy range corresponding to the first conductance plateau for

the undeformed ribbon, in addition to those due to edge states. Band structure calcula-

tions confirm that these channels were originated from higher energy states that localize

along the strained fold-like area. More important, we have shown that states with the

same velocity show real space valley polarization. In other words the results indicated

that a current injected along the deformed structure will be split into two currents: one

along the center of the strained fold constituted by states from one valley, and another

running at its sides with contributions from states of the other valley. In addition to

exhibiting sublattice symmetry breaking, these states are valley polarized, with quasibal-

listic properties in smooth disorder potentials. These findings could be tested in properly
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engineered experimental settings.

As an extension of the previous work we started an investigation on the half-metallic

properties and the effects of Coulomb correlations on spatially inhomogeneous strain in

graphene nanoribbons. A recent experimental setup of a graphene membrane laying

over random-sized-SiO2 nanospheres generates periodic "strain pockets" on the graphene

sheet[129]. The inhomogeneous deformation present in the samples produces confinement

effects, that are expected to enhance local interactions. Experimental transport measure-

ments show an oscillatory dependence on doping and an external magnetic field. Those

results share similarities with quantum dot systems, where a Hubbard term successfully

accounts for the effects of on-site electronic repulsion. The study of these systems are

relevant because they can be used as a unique platform for electronic structure engineer-

ing to mix bandgap modulation, electronic confinement, and electronic interaction and

may lead to a variety of responses such as spin-filtering properties, Mott insulator phase

systems, or showing similar electronic properties to an array of quantum dots.

It is important to mention that different theoretical tools and approaches have been

developed for all these studies and that the combination of them was seen to be quite

important to a better description of our nanostructured system. Following these ideas

we are also investigating now the role played by external magnetic fields on the graphene

and BN isolated nanoribbons on lifting other degeneracies that are clearly marked in the

respective band structures.



Bibliography

[1] J. H. Meng, X. W. Zhang, X. B. Wang, H. L.and Ren, C. H. Jin, Z. G. Yin, X. Liu, and H. Liu. Synthesis of in-plane

and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition

and chemical vapor deposition. Nanoscale, 7:16046–16053, 2015. x, 3, 4

[2] W. Jang, H. Kim, Y. Shin, M. Wang, S. Jang, M. Kim, S. Lee, S. Kim, Y. Song, and S. Kahng. Observation of

spatially-varying fermi velocity in strained-graphene directly grown on hexagonal boron nitride. Carbon, 74:139–145,

2014. x, xi, 5, 6, 7

[3] L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A.-P. Li, and G. Gu. Het-

eroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science, 343(6167):163–

167, 2014. x, 3, 5, 44

[4] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crommie.

Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles. Science, 329(5991):544–547,

2010. xi, 6

[5] A. H. Castro Neto. Selected Topics in Graphene physics. ArXiv e-prints, April 2010. xi, 26

[6] Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett.,

97:216803, Nov 2006. xii, 34, 39, 60, 64

[7] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe. Peculiar localized state at zigzag graphite edge. Journal

of the Physical Society of Japan, 65(7):1920–1923, 1996. xii, 34, 39, 68

[8] A. Pakdel, Y. Bando, and D. Golberg. Nano boron nitride flatland. Chem. Soc. Rev., 43:934–959, 2014. xii, 42

[9] X. Zhong, R. G. Amorim, R. H. Scheicher, R. Pandey, and S. P. Karna. Electronic structure and quantum transport

properties of trilayers formed from graphene and boron nitride. Nanoscale, 4:5490–5498, 2012. xii, 44, 46

[10] J. E. Padilha, Renato Borges Pontes, and Adalberto Fazzio. Bilayer graphene on h-bn substrate: investigating the

breakdown voltage and tuning the bandgap by electric field. Journal of Physics: Condensed Matter, 24(7):075301,

2012. xii, 44, 46

[11] Yabo Gao, Yanfeng Zhang, Pengcheng Chen, Yuanchang Li, Mengxi Liu, Teng Gao, Donglin Ma, Yubin Chen, Zhihai

Cheng, Xiaohui Qiu, Wenhui Duan, and Zhongfan Liu. Toward single-layer uniform hexagonal boron nitrideâgraphene

patchworks with zigzag linking edges. Nano Letters, 13(7):3439–3443, 2013. PMID: 23758663. xii, 47

[12] J. Nakamura, T. Nitta, and A. Natori. Electronic and magnetic properties of BNC ribbons. Phys. Rev. B, 72:205429,

Nov 2005. xii, 45, 48

[13] F. Zheng, K. Sasaki, R. Saito, W. Duan, and B.-L. Gu. Edge states of zigzag boron nitride nanoribbons. Journal of

the Physical Society of Japan, 78(7):074713, 2009. xiii, i, 5, 23, 43, 45, 49, 51, 75

[14] C.-H. Park and S. G. Louie. Energy gaps and stark effect in boron nitride nanoribbons. Nano Letters, 8(8):2200–2203,

2008. PMID: 18593205. xiii, 55

[15] S. Bhowmick, A. K. Singh, and B. I. Yakobson. Quantum dots and nanoroads of graphene embedded in hexagonal

boron nitride. The Journal of Physical Chemistry C, 115(20):9889–9893, 2011. xiii, 56, 57, 62

86



BIBLIOGRAPHY 87

[16] R. Carrillo-Bastos, C. León, D. Faria, A. Latgé, E. Y. Andrei, and N. Sandler. Strained fold-assisted transport in

graphene systems. Phys. Rev. B, 94:125422, Sep 2016. xv, xvi, 8, 68, 73, 77

[17] N. Greenwookd and A. Earnshaw. Chemistry of the Elements. Second edition. Elsevier Butterworth-Heinemann,

2005. i, 43

[18] R. Zhao, J. Wang, M. Yang, Z. Liu, and Z. Liu. BN-embedded graphene with a ubiquitous gap opening. The Journal

of Physical Chemistry C, 116(39):21098–21103, 2012. i, 51, 55, 61, 62

[19] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer. Ultrahigh electron

mobility in suspended graphene. Solid State Communications, 146(9–10):351 – 355, 2008. 1

[20] C. Kittel. Introduction to Solid State Physics, 8th edition. Wiley, New York, 2004. 1

[21] A. H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim. The electronic properties of graphene.

Rev. Mod. Phys., 81:109–162, Jan 2009. 1

[22] A. Geim M. Katsnelson, K. Novoselov. Chiral tunnelling and the klein paradox in graphene. Nature Physics, 2:620–

625, August 2006. 1

[23] A. Celis, M. N. Nair, A. Taleb-Ibrahimi, E. H. Conrad, C. Berger, W. A. de Heer, and A. Tejeda. Graphene

nanoribbons: fabrication, properties and devices. Journal of Physics D: Applied Physics, 49(14):143001, 2016. 1

[24] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov.

Electric field effect in atomically thin carbon films. Science, 306(5696):666 –669, 2004. 1, 32, 33

[25] G. et al Bhimanapati. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 9(12):11509–

11539, 2015. PMID: 26544756. 2

[26] D. Akinwande et al. A review on mechanics and mechanical properties of 2d materialsâgraphene and beyond. Extreme

Mechanics Letters, 13:42 – 77, 2017. 2

[27] Xiaolin Li, Xinran Wang, Li Zhang, Sangwon Lee, and Hongjie Dai. Chemically derived, ultrasmooth graphene

nanoribbon semiconductors. Science, 319(5867):1229–1232, 2008. 2, 35

[28] J. Campos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. Ahm Kim, T. Hayashi, Z. Ren,

D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus, and M. Terrones.

Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Letters, 8(9):2773–2778, 2008.

PMID: 18700805. 2

[29] J. Cai, P.. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, Ari P. Seitsonen, M. Saleh, X. Feng,

K. Mullen, and R. Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466(7305):470–

473, Jul 2010. 2

[30] L. Jiao, X. Wang, G.. Diankov, Hailiang Wang, and H. Dai. Facile synthesis of high-quality graphene nanoribbons.

Nat Nano, 5(5):321–325, May 2010. 2

[31] A. L. Elías, A. R. Botello-Méndez, D. Meneses-Rodríguez, V. Jehová González, D. Ramírez-González, L. Ci, E. Muñoz

Sandoval, P. M. Ajayan, H. Terrones, and M. Terrones. Longitudinal cutting of pure and doped carbon nanotubes

to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Letters, 10(2):366–372, 2010. PMID:

19691280. 2

[32] V. Fal’ko. Graphene: Quantum information on chicken wire. Nature Physics, 3:151, 2007. 2



BIBLIOGRAPHY 88

[33] Y. Son, M. L. Cohen, and S. G. Louie. Half-metallic graphene nanoribbons. Nature, 444:347–349, November 2006.

2, 40, 57, 62

[34] A. Pakdel, X. Wang, C. Zhi, Y. Bando, K. Watanabe, T. Sekiguchi, T. Nakayama, and D. Golberg. Facile synthesis

of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. J. Mater. Chem., 22,

2012. 2

[35] X. Li, X. Wu, X. C. Zeng, and J. Yang. Band-gap engineering via tailored line defects in boron-nitride nanoribbons,

sheets, and nanotubes. ACS Nano, 6(5):4104–4112, 2012. PMID: 22482995. 3

[36] A. K. Geim and I. V. Grigorieva. Van der waals heterostructures. Nature, 499(7459):419–425, Jul 2013. Perspectives.

5

[37] D. Moldovan, M. Ramezani Masir, and F. M. Peeters. Electronic states in a graphene flake strained by a gaussian

bump. Phys. Rev. B, 88:035446, Jul 2013. 6, 68

[38] R. Carrillo-Bastos, D. Faria, A. Latgé, F. Mireles, and N. Sandler. Gaussian deformations in graphene ribbons:

Flowers and confinement. Phys. Rev. B, 90:041411, Jul 2014. 68

[39] F. Guinea, M. I. Katsnelson, and A. K. Geim. Energy gaps and a zero-field quantum hall effect in graphene by strain

engineering. Nat Phys, 6(1):30–33, Jan 2010.

[40] Vitor M. Pereira and A. H. Castro Neto. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett.,

103:046801, Jul 2009.

[41] Vitor M. Pereira, A. H. Castro Neto, and N. M. R. Peres. Tight-binding approach to uniaxial strain in graphene.

Phys. Rev. B, 80:045401, Jul 2009. 69

[42] F. de Juan, M. Sturla, and M. A. H. Vozmediano. Space dependent fermi velocity in strained graphene. Phys. Rev.

Lett., 108:227205, May 2012.

[43] J. L. Mañes, F. de Juan, M. Sturla, and M. A. H. Vozmediano. Generalized effective hamiltonian for graphene under

nonuniform strain. Phys. Rev. B, 88:155405, Oct 2013.

[44] J. V. Sloan, A. A. Pacheco Sanjuan, Z. Wang, C. Horvath, and S. Barraza-Lopez. Strain gauge fields for rippled

graphene membranes under central mechanical load: An approach beyond first-order continuum elasticity. Phys. Rev.

B, 87:155436, Apr 2013.

[45] E. Prada, P. San-Jose, G. León, M. M. Fogler, and F. Guinea. Singular elastic strains and magnetoconductance of

suspended graphene. Phys. Rev. B, 81:161402, Apr 2010.

[46] M. M. Fogler, F. Guinea, and M. I. Katsnelson. Pseudomagnetic fields and ballistic transport in a suspended graphene

sheet. Phys. Rev. Lett., 101:226804, Nov 2008.

[47] M.A.H. Vozmediano, M.I. Katsnelson, and F. Guinea. Gauge fields in graphene. Physics Reports, 496(4):109 – 148,

2010.

[48] M. Mucha-K. and V.I. Fal’ko. Pseudo-magnetic field distribution and pseudo-landau levels in suspended graphene

flakes. Solid State Communications, 152(15):1442 – 1445, 2012. Exploring Graphene, Recent Research Advances.

[49] D. Faria, A. Latgé, S. E. Ulloa, and N. Sandler. Currents and pseudomagnetic fields in strained graphene rings. Phys.

Rev. B, 87:241403, Jun 2013.

[50] D. Gradinar, M. Mucha-K., H. Schomerus, and V. I. Fal’ko. Transport signatures of pseudomagnetic landau levels in

strained graphene ribbons. Phys. Rev. Lett., 110:266801, Jun 2013.



BIBLIOGRAPHY 89

[51] D. A. Bahamon and Vitor M. Pereira. Conductance across strain junctions in graphene nanoribbons. Phys. Rev. B,

88:195416, Nov 2013.

[52] Hui Yan, Yi Sun, Lin He, Jia-Cai Nie, and Moses H. W. Chan. Observation of landau-level-like quantization at 77 k

along a strained-induced graphene ridge. Phys. Rev. B, 85:035422, Jan 2012.

[53] M. Neek-Amal and F. M. Peeters. Strain-engineered graphene through a nanostructured substrate. i. deformations.

Phys. Rev. B, 85:195445, May 2012. 6

[54] C. N. Lau, W. Bao, and J. Velasco. Properties of suspended graphene membranes. Materials Today, 15(6):238–245,

2012. 6

[55] N.N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright, S. D. Solares, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio.

Electromechanical properties of graphene drumheads. Science, 336(6088):1557–1561, 2012.

[56] H. Lim, J. Jung, R. S. Ruoff, and Y. Kim. Structurally driven one-dimensional electron confinement in sub-5-nm

graphene nanowrinkles. Nature Communications, 6(8601), 2015. 6, 7

[57] T. Georgiou, L. Britnell, P. Blake, R. V. Gorbachev, A. Gholinia, A. K. Geim, C. Casiraghi, and K. S. Novoselov.

Graphene bubbles with controllable curvature. Applied Physics Letters, 99(9):093103, 2011.

[58] T. Mashoff, M. Pratzer, V. Geringer, T. J. Echtermeyer, M. C. Lemme, M. Liebmann, and M. Morgenstern. Bistability

and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide. Nano

Letters, 10(2):461–465, 2010. PMID: 20058873. 6

[59] M. Y. Han and P. Kim. Graphene nanoribbon devices at high bias. Nano Convergence, 1(1):1, Feb 2014. 6

[60] D. Bischoff, A. Varlet, P. Simonet, M. Eich, H. C. Overweg, T. Ihn, and K. Ensslin. Localized charge carriers in

graphene nanodevices. Applied Physics Reviews, 2(3):031301, Jul 2015. 6

[61] J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E. H. Conrad, C. Berger,

C. Tegenkamp, and W. A. de Heer. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature,

506(7488):349–354, 2014. 6

[62] S. Datta. Quantum Transport: Atom to transistor. Cambridge University PRESS, 2005. 11, 14

[63] M. Di Ventra. Electrical Transport in Nanoscale Systems. Cambridge University Press, 2008. 12

[64] S. Datta. Electronic Transport in Mesoscopic Systems, 1st edition, pp 152. Cambridge University Press, 1995. 14

[65] M. Paulsson. Non equilibrium Green’s functions for dummies: Introduction to the one particle NEGF equations.

arXiv:cond-mat/0210519v2 [cond-mat.mes-hall], 2006. 14, 15, 17

[66] D. A. Areshkin and Branislav K. Nikolić. Electron density and transport in top-gated graphene nanoribbon devices:

First-principles green function algorithms for systems containing a large number of atoms. Phys. Rev. B, 81:155450,

Apr 2010. 15

[67] E. Economou. Green’s Functions in Quantum Physics. Springer, 2006. 18

[68] J. C. Slater and G. F. Koster. Simplified LCAO method for the periodic potential problem. Phys. Rev., 94:1498–1524,

Jun 1954. 27, 51

[69] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–

A1138, Nov 1965. 28



BIBLIOGRAPHY 90

[70] P. Giannozzi et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of

materials. Journal of Physics: Condensed Matter, 21(39):395502 (19pp), 2009. 28, 51

[71] David Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892–

7895, Apr 1990. 28

[72] A. Calzolari, N. Marzari, I. Souza, and M. B. Nardelli. Ab initio transport properties of nanostructures from maximally

localized Wannier functions. Phys. Rev. B, 69:035108, Jan 2004. 29, 51

[73] A. Ferretti, B. Bonferroni, A. Calzolari, and M. B. Nardelli. Want code. 29, 51

[74] D. Tománek and S. G. Louie. First-principles calculation of highly asymmetric structure in scanning-tunneling-

microscopy images of graphite. Phys. Rev. B, 37:8327–8336, May 1988. 31

[75] D. Gosálbez-Martínez, J. J. Palacios, and J. Fernández-Rossier. Spin-orbit interaction in curved graphene ribbons.

Phys. Rev. B, 83:115436, Mar 2011. 31

[76] N. D. Mermin. Crystalline order in two dimensions. Phys. Rev., 176:250–254, Dec 1968. 32

[77] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci. Two- and one-dimensional honeycomb structures of

silicon and germanium. Phys. Rev. Lett., 102:236804, Jun 2009. 32

[78] P. R. Wallace. The band theory of graphite. Phys. Rev., 71:622–634, May 1947. 32

[79] J. W. McClure. Band structure of graphite and de haas-van alphen effect. Phys. Rev., 108:612–618, Nov 1957. 33

[80] J. C. Slonczewski and P. R. Weiss. Band structure of graphite. Phys. Rev., 109:272–279, Jan 1958. 33

[81] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. C60: Buckminsterfullerene. Nature,

318:162–163, November 1985. 33

[82] S. Iijima. Helical microtubules of graphitic carbon. Nature, 354:56–58, November 1991. 33

[83] S. Bae, H. Kim, Youngbin. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Young Il. Song, Y.-J.

Kim, K. Kim, B. Ozyilmaz, J.-H. Ahn, B. Hong, and S Iijima. Roll-to-roll production of 30-inch graphene films for

transparent electrodes. Nat Nano, 5(8):574–578, Aug 2010. 33

[84] Y. Lee, S. Bae, H. Jang, S. Jang, S. Zhu, S. Sim, Y. Song, B. Hong, and J. Ahn. Wafer-scale synthesis and transfer

of graphene films. Nano Letters, 10(2):490–493, 2010. PMID: 20044841. 33

[85] S. Cahangirov, M. Topsakal, and S. Ciraci. Armchair nanoribbons of silicon and germanium honeycomb structures.

Phys. Rev. B, 81:195120, May 2010. 33

[86] Hong Li, Nabil Al-Aqtash, Lu Wang, Rui Qin, Qihang Liu, Jiaxin Zheng, Wai-Ning Mei, R.F. Sabirianov, Zhengx-

iang Gao, and Jing Lu. Electromechanical switch in metallic graphene nanoribbons via twisting. Physica E: Low-

dimensional Systems and Nanostructures, 44(10):2021 – 2026, 2012. 35

[87] K. Tanaka, S. Yamashita, H. Yamabe, and T. Yamabe. Electronic properties of one-dimensional graphite family.

Synthetic Metals, 17(1-3):143 – 148, 1987. 35

[88] K. Kobayashi. Electronic structure of a stepped graphite surface. Phys. Rev. B, 48:1757–1760, Jul 1993. 35

[89] K. Wakabayashi and S. Dutta. Nanoscale and edge effect on electronic properties of graphene. Solid State Commu-

nications, 152(15):1420–1430, 2012. 38



BIBLIOGRAPHY 91

[90] Y. Li, Z. Zhou, C. R. Cabrera, and Zhongfang Chen. Preserving the edge magnetism of zigzag graphene nanoribbons

by ethylene termination: Insight by clar&#39;s rule. 3:2030 EP –, Jun 2013. Article. 38

[91] Wen cai Yi, Wei Liu, Lei Zhao, Rashed Islam, Mao sheng Miao, and Jing yao Liu. Asymmetric passivation of edges:

a route to make magnetic graphene nanoribbons. RSC Adv., 7:27932, 2017. 38

[92] C. Tao, L. Jiao, O. Yazyev, Y. Chen, J. Feng, X. Zhang, R. Capaz, J. Tour, A. Zettl, H. Dai S. Louie, and M. Crommie.

Spatially resolving edge states of chiral graphene nanoribbons. Nature Physics, 7:616–620, August 2011. 38

[93] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Edge state in graphene ribbons: Nanometer size effect

and edge shape dependence. Phys. Rev. B, 54:17954–17961, Dec 1996. 38

[94] Wen-Xiao Wang, Mei Zhou, Xinqi Li, Si-Yu Li, Xiaosong Wu, Wenhui Duan, and Lin He. Energy gaps of atomically

precise armchair graphene sidewall nanoribbons. Phys. Rev. B, 93:241403, Jun 2016. 39

[95] R. Ramprasad, Paul von Allmen, and L. R. C. Fonseca. Contributions to the work function: A density-functional

study of adsorbates at graphene ribbon edges. Phys. Rev. B, 60:6023–6027, Aug 1999. 41

[96] P. Lou. A new kind of edge-modified spin semiconductor in graphene nanoribbons. The Journal of Physical Chemistry

C, 118(8):4475–4482, 2014. 41

[97] G. Cassabois, P. Valvin, and B. Gil. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics,

10, 2016. 42

[98] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero,

and Brian J. LeRoy. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron

nitride. Nature Materials, 10:282, 2011. 42

[99] R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie. Local

electronic properties of graphene on a bn substrate via scanning tunneling microscopy. Nano Letters, 11(6):2291–2295,

2011. PMID: 21553853. 42

[100] C. R. Dean, A. F. Young, I. Meric, L. Wang C. Lee, S. Sorgenfrei, K. Watanabe, P. Kim T. Taniguchi, K. L. Shepard,

and J. Hone. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5:722, 2010. 42

[101] K. Lee, H. Shin, J. Lee, I. Lee, G. Kim, J. Choi, and S. Kim. Large-scale synthesis of high-quality hexagonal boron

nitride nanosheets for large-area graphene electronics. Nano Letters, 12:714, 2012. 42

[102] J.-W. Huang, C. Pan, S. Tran, B. Cheng, K. Watanabe, T. Taniguchi, C. N. Lau, and M. Bockrath. Superior current

carrying capacity of boron nitride encapsulated carbon nanotubes with zero-dimensional contacts. Nano Letters,

15(10):6836–6840, 2015. PMID: 26390365. 42

[103] K. Watanabe, T. Taniguchi1, and H. Kanda. Direct-bandgap properties and evidence for ultraviolet lasing of hexag-

onal boron nitride single crystal. Nature Materials, 3, 2004. 43

[104] Xiao-jun Wu, Men-hao Wu, and Xiao Cheng Zeng. Chemically decorated boron-nitride nanoribbons. Frontiers of

Physics in China, 4(3):367–372, Sep 2009. 43

[105] L. Lai, J. Lu, G. Luo, J. Zhou, R. Qin, Z. Gao, and W.juan Mei. Magnetic properties of fully bare and half-bare

boron nitride nanoribbons. The Journal of Physical Chemistry C, 113:2273, 2009. 43

[106] Y. Wang, Y. Ding, and J. Ni. Electronic structures of fe-terminated armchair boron nitride nanoribbons. Appl. Phys.

Lett., 99, 2011.



BIBLIOGRAPHY 92

[107] H.M. Rai, S.K. Saxena, V. Mishra, R. Late, R. Kumar, P.R. Sagdeo, N.K. Jaiswal, and P. Srivastava. Half-metallicity

in armchair boron nitride nanoribbons: A first-principles study. Solid State Communications, 212:19 – 24, 2015. 43

[108] W. Chen, Y. Li, G. Yu, C.-Z. Li, S. B. Zhang, Z. Zhou, and Z. Chen. Hydrogenation: A simple approach to realize

semiconductor-half-metal-metal transition in boron nitride nanoribbons. Journal of the American Chemical Society,

132(5):1699–1705, 2010. PMID: 20085366. 43

[109] R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W.-N. Mei, Z. Gao, and J. Lu. Tunable and

sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride. NPG Asia Mater, 4:e6, Feb

2012. 44

[110] P. Sutter, R. Cortes, J. Lahiri, and E. Sutter. Interface formation in monolayer graphene-boron nitride heterostruc-

tures. Nano Letters, 12(9):4869–4874, 2012. PMID: 22871166. 44

[111] Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J.-C.

Idrobo, R. Vajtai, J. Lou, and P. M. Ajayan. In-plane heterostructures of graphene and hexagonal boron nitride with

controlled domain sizes. Nat Nano, 8(2):119–124, Feb 2013. 44

[112] J. M. Pruneda. Origin of half-semimetallicity induced at interfaces of c-bn heterostructures. Phys. Rev. B, 81:161409,

Apr 2010. 51

[113] L. A. Agapito, A. Ferretti, A. Calzolari, S. Curtarolo, and M. Buongiorno Nardelli. Effective and accurate represen-

tation of extended bloch states on finite hilbert spaces. Phys. Rev. B, 88:165127, Oct 2013. 53

[114] Yi Ding, Yanli Wang, and Jun Ni. Electronic properties of graphene nanoribbons embedded in boron nitride sheets.

Appl. Phys. Lett, 95:123105, 2009. 57

[115] C. Ritter, S. S. Makler, , and A. Latgé. Energy-gap modulations of graphene ribbons under external fields: A

theoretical study. Phys. Rev. B, 77:195443, May 2008. 60, 64

[116] K. Zhao, M. Zhao, Z. Wang, and Y. Fan. Tight-binding model for the electronic structures of sic and bn nanoribbons.

Physica E: Low-dimensional Systems and Nanostructures, 43(1):440 – 445, 2010. 60

[117] F. Culchac, R. Capaz, A.T. Costa, and A. Latgé. Magnetic response of zigzag nanoribbons under electric fields.

Journal of Physics: Condensed Matter, 26(21):216002, 2014. 62

[118] T. Nomura, D. Yamamoto, and S. Kurihara. Electric field effects in zigzag edged graphene nanoribbons. Journal of

Physics: Conference Series, 200(6):062015, 2010. 62

[119] Ken ichi Sasaki, Shuichi Murakami, and Riichiro Saito. Gauge field for edge state in graphene. Journal of the Physical

Society of Japan, 75(7):074713, 2006. 62, 70

[120] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto. 2d materials and van der waals heterostructures.

Science, 353(6298), 2016. 64

[121] A.J. Du, Sean C. Smith, and G.Q. Lu. Chemical Phys. Lett., 44(181), 2007. 66

[122] A. H. Castro Neto and Francisco Guinea. Electron-phonon coupling and raman spectroscopy in graphene. Phys. Rev.

B, 75:045404, Jan 2007. 69

[123] L. Landau and E. M. Lifshitz. Theory of elasticity. (Volumen 7 of A Course of Theoretical Physics). Pergamon

Press, Cambridge, 1970. 69

[124] M. I. Katsnelson. Graphene: Carbon in Two Dimensions. Cambridge University Press, Cambridge, 2012. 69



BIBLIOGRAPHY 93

[125] J. C. Slonczewski and P. R. Weiss. Band structure of graphite. Phys. Rev., 109:272–279, Jan 1958. 70

[126] Hidekatsu Suzuura and Tsuneya Ando. Phonons and electron-phonon scattering in carbon nanotubes. Phys. Rev. B,

65:235412, May 2002. 71

[127] K. Wakabayashi, K. Sasaki, T. Nakanishi, and T. Enoki. Electronic states of graphene nanoribbons and analytical

solutions. Science and Technology of Advanced Materials, 11(5):054504, 2010. 78

[128] T. S. Li, Y. C. Huang, S. C. Chang, Y. C. Chuang, and M. F. Lin. Transport properties of ab-stacked bilayer graphene

nanoribbons in an electric field. The European Physical Journal B, 64(1):73–80, 2008. 78

[129] Y. Zhang, Y. Kim andd M. Gilbert, and N. Mason. Electron transport in strain superlattices of graphene.

arXiv:1703.05689 [cond-mat.mes-hall], 2017. 85


