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A spetial thanks to Dan Browne for pointing out correction scheme using

3-maj gates, which helped to motivate this work.

Agradeço também aos meus amigos. Tanto os que fiz enquanto estava na
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Abstract

This dissertation explores some differences between quantum mechanics and

other theories from a computational perspective, in particular with respect to

the kind of correlations they allow, and their computational consequences. It

starts with an operational characterization of locality, no-signaling and non-

contextuality.

Then it proceeds to an introduction to measurement-based quantum com-

putation, a model in which quantum correlations are used to perform compu-

tation. Such a model is then generalized in a framework, proposed by Anders

and Browne [1] and studied by Raussendorf [2], that aims to make the com-

putational power of correlations more evident. We proceed to see that non-

contextual resources do not provide a computational enhancement and that

quantum resources do provide it even without adaptivity.

We continue by reviewing a scheme for reliable computation using faulty

components, first proposed by von Neumann and later studied by Hajek and

Weller [3] and Evans and Schulman [4]. This scheme is then used to show how

a range of bipartite quantum correlations suffice for reliable computation. We

conclude by showing that quantum correlations that violate non-contextuality

bounds by an arbitrarily small amount can be used to enable reliable compu-

tation.
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Chapter 1
Introduction

Quantum Mechanics has some very counter-intuitive features, and it is still

regarded with awe by the general public. Part of this is due to the fact that,

even a century after its discovery, its interpretation still causes disagreement

between specialists on the subject. This hints to the dire need of a more

palpable axiomatization of quantum mechanics.

In the last few decades the fields of quantum computation and information

have been helping to clarify the difference between quantum mechanics and

other so-called “classical” theories. These fields have brought a new light to

some phenomena that for a long time were regarded only as “some curious

quantum behaviour”, such as non-locality and contextuality.

Practical informational and computational applications of quantum phe-

nomena are helping to illustrate the counter-intuitive features in a compelling

way. Not only does this make it easier to bring the research to the general

public, but it also helps to tell apart what is essential and what is accessory

in quantum theory.

There some different models to perform computation using quantum me-

chanics. Each of them have its own characteristics. In this dissertation we will

focus our attention in a model called measurement-based quantum computa-

tion (MQC). It consists of single qubit measurements in an entangled state,

and the computation is given by the correlations between the measurement

outcomes. This model is interesting because there is a clear distinction be-

tween the classical and quantum parts.

We will be looking at fundamental differences between quantum and other

theories from a computational perspective. Differentiating them by what can

and can not be computed, i.e. its computational expressiveness. In this ap-

proach we will disregard the size of the computation and its time cost.
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Chapter 1. Introduction

To be able to discuss different theories in the same footing we will discuss

correlations in an operational fashion. In this approach we can bypass the

specificities of each theory and see how physical restrictions limit the amount

of correlation that can be observed.

We will start, in chapter 2, by introducing an operational characterization

of locality, no-signaling and non-contextuality. These restrictions limit the

strength of correlations that can be observed. Quantum mechanics was shown

to violate non-contextual and local limits, and this is argued to be what makes

quantum mechanics fundamentally different from “classical” theories. This

chapter, together with chapters 3 and 4 are an introduction to some concepts

and results that will be useful to present our new findings in chapter 5.

Chapter 3 begins with an introduction to measurement-based quantum

computation, a model for quantum computation that exploits quantum corre-

lations to perform computation. Then we will present a general framework for

measurement-based computations, proposed by Anders and Browne in [1].

We will proceed by seeing, in section 3.3, that there is a limit on the success

probability for computations realized using a non-contextual resource, as was

shown by Raussendorf [2]. But, in section 3.4 we will see that there are quan-

tum correlations that allow non-adaptive measurement-based computations,

as was shown by Hoban et al. [6].

In chapter 4 we will study a classical scheme to perform reliable com-

putations using faulty components. This scheme was first proposed by von

Neumann in the 1950’s [7], and relies heavily on redundancy.

In chapter 5 we will present new findings. We will start by seeing that a

range of bipartite quantum correlations suffice for reliable computation. We

will also see that quantum correlations that violate non-contextuality bounds

by an arbitrarily small amount can be used to enable reliable computation.

2



Chapter 2
An Operational Description of

Correlations

Usually physics is discussed in very concrete terms that are embedded in a

certain theory. This makes comparisons between different theories rather com-

plicated. In order to escape the details of each specific theory and compare

them we will adopt a very operational view of physics, described for example

in [8].

Here we will treat experiments as black boxes that receive an input and

give an output. The full operational description consists in providing the joint

probability of all the outputs given any set of inputs. In this operational

description we will disregard the details of the description of the processes

happening in the interior of the boxes.

The interior of this box can be thought as a fully automated laboratory.

These boxes can contain classical devices, quantum ones, or even contain some

alien technology that defies quantum mechanics.

Our objective here is to see how physical restrictions, such as locality and

non-contextuality, restrict the strength of the correlations between the outputs

of these devices. This is important for the study of the computational power

of a correlated resource, i.e. set of of boxes, that will be made in the next

chapter.

This kind of limit was first studied by Bell in his seminal work [9]. He

showed that there is a limit to the correlations that can be observed in mea-

surement outcomes for local theories, and that quantum mechanics violates

this limit. For this reason all the upper bounds imposed by locality are known

as Bell-type inequalities.

We will start by looking at a bipartite scenario, the CHSH game [10]. The

3



Chapter 2. An Operational Description of Correlations

game has this name because it recovers a Bell-type inequality first described

by Clauser, Horne, Shimony and Holt (CHSH) [11]. We will see that quantum

mechanics violates the limit imposed by local theories. We will also see that

it does not violate, in this specific setting, as much as is permitted by special

relativity.

In section 2.2 we will generalize the previous results to n-box scenarios

and also describe them in terms of contextuality. This property of quantum

mechanics was first described by Kochen and Specker in [12]. Abramsky and

Brandenburger [13] showed that non-locality is a special case of contextuality.

We will make use of their definitions without delving into category theory.

2.1 The CHSH game

Here we will be describing a non-local game known as the CHSH game [10].

This game offers a more intuitive way of deducing the Clauser-Horne-Shimony-

Holt (CHSH) Bell-type inequality [11]. In this section we will see that quantum

mechanics is non-local, but not maximally so. The probability of winning the

game gives us a measure of correlations between the outcomes of measurements

on composite systems.

In this game the two participants, Alice and Bob, have to build boxes like

the ones in Figure 2.1. The inputs and the outputs are bits (either 0 or 1).

Descriptions of more general scenarios can be found in [14]. Each box can only

receive one input, and give one output, per round. The players win the game

if, given uniformly random inputs x and y, their boxes give outputs a and b

  

Alice Bob

x

a

y

b

Figure 2.1: Sketch of the CHSH game. The players are very far apart and their
boxes can contain a whole laboratory. The chosen measurements are indicated
by the single-bit inputs x and y and the outcome of these measurements are
indicated by the single-bit outputs a and b.
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Chapter 2. An Operational Description of Correlations

such that:

a⊕ b = xy. (2.1)

Where ⊕ is sum modulo 2, or a XOR gate, that outputs 0 if a = b, and 1 if

a 6= b, and the product of bits is an AND gate that outputs 1 if x = y = 1 and 0

otherwise. This notation will appear several times throughout this dissertation.

In short, to win the game the boxes must have different outputs if, and only

if, both inputs are 1.

Of course, if we allow the boxes to communicate, the game would be too

easy and no fun, as they could simply make a box that always outputs 0

for Alice and a box that outputs the AND of both inputs for Bob. Using

communication and this simple strategy they can always win the game. Things

get more interesting if the players are space-like separated. Or, in other words

if they have less time between receiving the inputs and sending the outputs

than it takes for light to travel from one player to the other.

In the following subsections we will see how different restrictions limit the

maximum winning probability. If the boxes are local devices the maximum

winning probability is 3/4, as we will see in subsection 2.1.1. In subsection 2.1.2

we will see that boxes that contain quantum devices can win the game with

probability up to cos2 (π/8) ≈ 85%. In subsection 2.1.3 we will also see that

even if we forbid devices that can be used to communicate faster than light,

there exist boxes that can win the game with probability 1.

2.1.1 The Local Limit

If the boxes are local devices, Alice and Bob can only win the game with

probability 3/4. This upper bound is a Bell inequality, more specifically a

way to write the Clauser-Horne-Shimony-Holt (CHSH) Bell-type inequality

[11]. To find this upper bound we have to look at the restrictions imposed by

locality on the output probabilities.

A local device can only be influenced by its own input and its own history.

This prohibits any kind of communication between separated devices. For a

more detailed discussion see [14].

Without loss of generality we can consider the output of each box to be

deterministic. Any probabilistic local strategy can be written as a convex com-

bination of deterministic strategies. So, for input x (y) Alice’s (Bob’s) box will

have a predefined output ax (by). To win the game, i.e. satisfy Equation 2.1,

5



Chapter 2. An Operational Description of Correlations

these outputs have to satisfy

a0 = b0,

a0 = b1,

a1 = b0,

a1 6= b1.

(2.2)

To satisfy the 3 first equations all the outputs must be the same, therefore

the fourth equation will not be satisfied. It is easy to check that only tree of

these four equations can be simultaneously satisfied; there are only 16 deter-

ministic strategies to consider. For this reason, deterministic local boxes can

win the game for at most 3 out of the 4 possible inputs, resulting in a maximum

winning probability of 3/4. As the winning probability of a convex combina-

tion of strategies is the convex combination of the winning probabilities, 3/4 is

the maximum winning probability for any local strategy, deterministic or not.

Bell was the first to describe a limit on the correlations imposed by lo-

cality [9]. He also showed that for entangled particles certain measurements

violate this limit, as we will see in the next subsection. Violations of Bell-type

inequalities show that quantum mechanics is non-local.

2.1.2 The Quantum Limit

As mentioned before, quantum mechanics is non-local. This is because for

certain entangled systems and certain measurements it violates upper bounds

on the strength of correlation permitted by locality. Here we will describe the

maximum violation, i.e. the maximum winning probability of the CHSH game

achievable with quantum mechanics.

In order to simplify our study we will make use of a property of the bipartite

state |Φ〉 = (|00〉+ |11〉) /
√

2 [15, p. 69]. Let us consider a measurement

defined as O = O(θ)⊗O(ϕ) where

O(θ) = Z cos θ +X sin θ, (2.3)

and X, Y and Z are the Pauli matrices defined as

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

6



Chapter 2. An Operational Description of Correlations

The result will be the same in both subsystems with probability

p= = cos2
(
θ − ϕ

2

)
. (2.4)

With this in mind Alice and Bob can build boxes with “quantum content”.

In this case each box is a whole automated laboratory with one of the two

qubits of the entangled pair in state |Φ〉 = (|00〉+ |11〉) /
√

2. Alice’s box will

measure A0 = O(π/2) = X for x = 0 and A1 = O(0) = Z for x = 1. Bob’s

box will measure B0 = O(π/4) = (Z +X)/
√

2 for y = 0 and B1 = O(3π/4) =

(X − Z)/
√

2 for y = 1, as seen in Figure 2.2. As the measurements have

spectrum ±1, the measurement outcomes will be either 1, for which the box

will output 0, or −1, for which the box will output 1.

  

A1

A0

B1

B0

Figure 2.2: Graphic representation of the measurement choices for each input,
Ax for Alice’s box and By for Bob’s box.

This strategy wins the game with probability cos2(π/8). For (x, y) ∈
{(0, 0), (0, 1), (1, 0)} to win the game the outputs have to be the same. As

the measurements are separated by π/4 in this case, the game is won with

probability cos2(π/8). When x = y = 1, to win the game the outputs have to

be different. As the measurements are separated by 3π/4 the probability of

losing is cos2(3π/8) = sin2(π/8), so the probability of winning is also cos2(π/8).

As quantum mechanics allows us to win the game with a higher probability

than any local scheme, quantum mechanics can not be local. Cirel’son showed

that, due to the structure of the Hilbert space, cos2(π/8) ≈ 0.85 is the upper

bound allowed by quantum mechanics [16]. This bound does not depend of

which measurements are performed or the dimensionality of the Hilbert space

describing each subsystem.

7



Chapter 2. An Operational Description of Correlations

2.1.3 The No-signaling Limit

Now let us prohibit boxes that could be used, by Alice and Bob, to communi-

cate instantaneously, i.e. faster than light. This restriction does not prohibit

some kind of communication mechanism between the boxes themselves but this

communication can not be exploited for communication between the users. In

more concrete terms, this restriction requires that the output probability of

each box is not affected by the input of the other box. This is formally ex-

pressed as:

∑
a=0,1

p(a, b|x, y) =
∑
a=0,1

p(a, b|x′, y) ∀x, x′, b, y; (2.5)∑
b=0,1

p(a, b|x, y) =
∑
b=0,1

p(a, b|x, y′) ∀y, y′, a, x. (2.6)

Popescu and Rohrlich [17] were the first to notice that even with this re-

striction it is possible to always win the CHSH game. The pair of boxes that

do this are known as PR-boxes and their outputs are determined by

pPR(a, b|x, y) =

1
2

if a⊕ b = xy

0 otherwise.
(2.7)

It is easy to see that PR-boxes respect the no-signaling condition because the

output of each box is uniformly random. Or in more mathematical terms

∑
a=0,1

pPR(a, b|x, y) =
∑
b=0,1

pPR(a, b|x, y) =
1

2
.

Even though PR-boxes can not be physically built without employing com-

munication devices, they give us some interesting insights. First of all, the

upper bound imposed by no-signaling is different from the one imposed by

quantum mechanics. Several attempts to give a more physical justification for

the quantum limit have been made [18]. It is the randomness on the output of

each one of the boxes that permits the violation of locality without permitting

faster-than-light signaling.

8



Chapter 2. An Operational Description of Correlations

2.2 Contextuality

In the previous section we have seen that quantum mechanics can not be fully

explained by local theories. In this section we will see that non-locality can be

seen as particular form of a broader attribute called contextuality. Contextual-

ity in quantum mechanics was first shown by Kochen and Specker in [12], and

unified with non-locality by Abramsky and Brandenburger in [13]. A slightly

different version of this unification, between non-locality and contextuality,

was proposed by Cabello, Severini and Winter in [19].

In a nutshell, contextuality means that the outcome of a measurement does

not depend only on the measurement choice but also on what is measured

alongside. Similarly to locality, the assumption of non-contextuality also im-

poses restrictions on how strongly correlated the measurement outcomes can

be. Our objective here is to study these restrictions.

We will focus our discussion of contextuality on scenarios of n boxes with

single-bit inputs and outputs. The reason for this will become evident in the

next chapter. In these scenarios the inputs form a bit string q = (q1, . . . , qn),

where qk ∈ {0, 1} is the input of the kth box. The outputs also form a bit

string s = (s1, . . . , sn), where sk ∈ {0, 1} is the output of the kth box. Broader

discussions of contextuality can be found in [13, 19, 20].

It is widely known that in quantum mechanics there are measurements

that can not be performed jointly. For example, position and momentum of

a particle can not be simultaneously measured. In order for observables in

quantum mechanics to be jointly measurable the operators associated with all

measurements must commute.

A context is a maximal set of jointly measurable observables. In the CHSH

scenario, discussed in the previous section, each box can perform a single

measurement that depends on its input; Alice’s box measures Ax and Bob’s

By. Therefore, each context is given by a set C(x, y) = {Ax, By}, and the

context choice is fully described by the pair of inputs (x, y). Keep in mind

that the measurement associated to each input is predetermined by the way

the boxes were built. The set of all contexts in the CHSH scenario is

MCHSH = {{A0, B0} , {A0, B1} , {A1, B0} , {A1, B1}} .

The set of all contextsM must always have two properties. Each possible

measurement must belong to at least one context, so X =
⋃
C∈M C, where X is

the set of all possible measurements. A context can not contain another; this

9



Chapter 2. An Operational Description of Correlations

guarantees that each context contains the maximum number of jointly mea-

surable observables. It is immediate to see thatMCHSH has these properties.

Let us now see what the contexts are in the scenario of n boxes. Each box

has two possible measurable observables, one for each input. For the kth box

they are Ok(0) and Ok(1). As each box can only measure a single observable

and observables in different boxes are jointly measurable, the contexts are

given by C(q) =
⋃ n
k=1Ok(qk). Notice that each choice of input describes a

context, thus there are 2n possible contexts in this scenario.

If the outcomes of the measurements depend only on the measurement

choice, and do not depend on the context in which this measurement appears,

they are non-contextual. In the next subsection we will see a more precise

definition of contextuality and also a rough classification of contextuality into

weak and strong versions.

2.2.1 Strong and Weak Contextuality

The local limit on the probability of winning the CHSH game (seen in sub-

section 2.1.1) can also be derived imposing that the devices must be non-

contextual. In order to be non-contextual, the output of each box should

depend only on its input and on some history factors, exactly as imposed by

locality. But in a contextuality scenario we do not need the spatial separa-

tion. It is important to mention that non-locality can always be described as

contextuality, but the converse is not true. For example, Kochen and Specker

contextuality proof [12] of contextuality can not be translated to a non-locality

proof.

Any non-contextual probability distribution can be described by a convex

combination of preassigned measurements outcomes. As quantum mechanics

violates the local upper bound on the winning probability of the CHSH game,

its measurement outcomes can not be described by non-contextual probability

distributions. Therefore, quantum mechanics is contextual. In this sense,

any probability distribution that is not a convex combination of preassigned

measurement outcomes is contextual.

Let us now define a stronger version of contextuality. Strong contextuality

is when there is no pre-assignment of measurements outcomes that can ever

be observed in all the different contexts. Keep in mind that in order to be able

to identify contextuality we need the probability distribution of outcomes for

each context, and this can only be achieved by measuring each context several

times.

10



Chapter 2. An Operational Description of Correlations

To make this clearer let us have a look at the correlations imposed by

PR-boxes. Its probability distribution for each context can be expressed as

follows:

(A0, B0) (A0, B1) (A1, B0) (A1, B1)

(0, 0) 1/2
1/2

1/2 0

(0, 1) 0 0 0 1/2

(1, 0) 0 0 0 1/2

(1, 1) 1/2
1/2

1/2 0

Each row is a different context, each line a different outcome and each ele-

ment is the probability of observing the outcome in the context. It is easy to

check that all the context independent pre-assignments of outcomes can not

be observed in all the contexts. This happens because the three first contexts,

(A0, B0), (A1, B0) and (A0, B1), require all the outcomes to be the same and

the last context, (A1, B1), requires them to be always different.

On the other hand the quantum boxes that we constructed in subsec-

tion 2.1.2 are not strongly contextual. Their probability distribution for each

context is described by:

(A0, B0) (A0, B1) (A1, B0) (A1, B1)

(0, 0) α/2
α/2

α/2
β/2

(0, 1) β/2
β/2

β/2
α/2

(1, 0) β/2
β/2

β/2
α/2

(1, 1) α/2
α/2

α/2
β/2

Where α = cos2 (π/8) and β = sin2 (π/8). It is easy to see that any context

independent pre-assignment of outcomes can be observed.

Strong contextuality implies weak contextuality, but the converse does not

hold. As we have just seen quantum boxes are contextual but not strongly

contextual. In the next subsection we will see that strong contextuality can

be observed in quantum mechanics.

2.2.2 Strong Quantum Contextuality

The following contextuality proof is another way to look at one of Mermin’s

proofs [21] of the Kochen-Specker theorem [12]. Here we will make use of the

box-based framework presented above. This is a proof of strong contextuality.

This also gives a hint of the computational power of contextual correlations,

11



Chapter 2. An Operational Description of Correlations

as pointed out by Anders and Browne [1], which we will discuss further in the

next chapter.

Here we want to build quantum boxes that perform an AND gate of two

inputs (i1 and i2). For this we will make use of 3 boxes, each containing one

qubit of a tripartite GHZ state |Ψ〉 = |001〉+|110〉√
2

[22]. The boxes will receive

the inputs qk ∈ {0, 1} according to q1 = i1, q2 = i2 and q3 = i1⊕ i2. For qk = 0

the box it will measure the Pauli observable Xk and for qk = 1 will measure

Yk. Each measurement outcome is related to the box output sk ∈ {0, 1}.
If the observed value of the kth Pauli observable is 1(−1) the box output is

sk = 0(1). The sum modulo 2 of the outputs will give us the AND, that is

i1i2 = s1 ⊕ s2 ⊕ s3.
It is easy to check that this quantum procedure produces an AND. We start

by noticing that the state |Ψ〉 is a simultaneous eigenstate of the four choices

of input:

X1X2X3 |Ψ〉 = + |Ψ〉 ,

X1 Y2 Y3 |Ψ〉 = + |Ψ〉 ,

Y1X2 Y3 |Ψ〉 = + |Ψ〉 ,

Y1 Y2X3 |Ψ〉 =− |Ψ〉 .

(2.8)

Each measurement outcome is individually random, but to respect the eigen-

value the product of all the outcomes has a definite value. Thus, we have that

(−1)s1⊕s2⊕s3 = (−1)i1i2 , and this guarantees that s1 ⊕ s2 ⊕ s3 = i1i2.

Let us now consider the possibility of non-contextual preassigned outcomes

for each one of these measurements. In this case the value of sk depends only

if the measurement performed in the kth box was either Xk or Yk. So, each sk

can be either sk(qk = 0) = xk or sk(qk = 1) = yk.

We have seen in Equation 2.8 above, these outcomes have to satisfy the

following relations:

x1 ⊕ x2 ⊕ x3 = 0,

y1 ⊕ x2 ⊕ y3 = 0,

x1 ⊕ y2 ⊕ y3 = 0,

y1 ⊕ y2 ⊕ x3 = 1.

(2.9)

Notice that each predefined assignment appears twice in the left hand side, so

if we add these equations we get 0 = 1. Therefore, there is no simultaneous

assignment for these variables in such a way that preserves these relations.

12
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From this we can conclude that these measurements on this tripartite GHZ

state are strongly contextual.

2.3 Non-locality and Contextuality Overview

In classical physics all the theories are local. Electromagnetism for example

has its interactions mediated by fields. In these theories a system can only in

influenced by its immediate surroundings and by itself. This is not the case

for quantum mechanics though, as was first shown by Bell in 1964 [9], and as

we have seen in section 2.1.

Non-locality was treated mainly as some “curious quantum behavior” fol-

lowing its first indication in 1935 [23]. But, in the last two decades there

has been a great development in the understanding and characterization of

non-locality. Several different scenarios were studied, a good review of this

subject can be found in [14]. This renewed interest in non-locality was due to

its new applications. Cryptography [24], quantum state teleportation [25] and

quantum computation [26] are some examples of these applications.

There are also some investigation on the possible underlying principles

that limit quantum non-locality. Popescu and Rohrlich showed in [17] that

relativity’s no faster-than-light signaling limit does not recover the quantum

correlations limit, as we have seen in subsection 2.1.3. A nice introductory

review of some of the possible underlying principles can be found in [18].

The first contextuality proof was given by Kochen and Specker in 1967 [12].

In this elaborate proof they showed how a set of 117 dichotomic measurements

on a spin one particle can not have predefined outcomes independently of the

chosen triad of measurements (contexts). The proof of subsection 2.2.2 is a

much simpler version then the original result from Kochen and Specker. For

a broader discussion of contextuality and other proofs see [20].

The discussion of non-locality has eclipsed that of quantum contextuality,

for all the applications mentioned above. But, in the last few years there has

been work that unifies contextuality and non-locality, where non-locality is

a special version of contextuality. The two slightly different versions of this

unification are due to Cabello, Severini and Winter [19] and Abramsky and

Brandenburger [13].

In the last few years links between contextuality and computational power

have been found. First in a measurement-based framework by Anders and

Browne in [1], which will be discussed in section 3.2. This result was further

13
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developed by Raussendorf in [2], and will be discussed in section 3.3. Com-

putation using magic state distillation was also shown to be possible due to

contextuality by Howard, Wallman, Veitch and Emerson in [27].
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Chapter 3
Correlation-based Computation

In this chapter we will study the link between the correlated resources we

studied in the previous chapter and computation. We will also see how the

physical restrictions discussed in the previous chapter lead to computational

restrictions.

The possibility of using correlations to perform computation only became

apparent with the study of measurement-based quantum computation (MQC).

It is a completely new way of performing computation developed in 2001 by

Raussendorf and Briegel [28]. MQC is fundamentally different from other

models of computation because the computation is carried out by performing

measurements on an entangled state. The correlation between these mea-

surement outcomes is responsible for the computation. In section 3.1 we will

describe one model of MQC in detail.

To study the computational power of correlations, in section 3.2 we will

describe a general framework for MQC. This framework was first described by

Anders and Browne in [1]. It consists simply of a control computer with access

to measurements on a correlated resource. Using this framework we will see

that measurements on GHZ states can upgrade a parity control computer to

universal computation.

In section 3.3 we will look at the limitations of a non-contextual resource.

We will see that resources that are not strongly contextual can only determinis-

tically compute linear functions, thus offering no computational enhancement.

For this reason there is no classical analogue of MQC.

We will also investigate which quantum resources are sufficient to perform

nonadaptive MQC. We will see how the measurements of any computation can

be performed simultaneously if the resource is a sufficiently large GHZ state.

This shows that there is a possible trade-off between time and entanglement
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in this model.

3.1 Measurement-based Quantum Computa-

tion

In measurement-based quantum computation (MQC) we start with an entan-

gled resource and the computation is performed via measurements. This type

of quantum computation has no close classical analogue. In this section we

will focus on the “one way” model of quantum computation (1WMQC) [28].

For a comprehensive introduction to the topic see [29].

1WMQC was first developed by Raussendorf and Briegel [28], building on

the earlier idea of gate teleportation [26]. It receives this name because the

measurements destroy the entangled state, which, for this reason, can only

be used once per computation. It may seem a bit counter-intuitive that this

destructive method can produce any computation.

We will present a description of the model following Richard Jozsa’s in-

troductory notes [30]. Let us start with the implementation of single qubit

unitary gates. Any single qubit unitary gate can be decomposed in the form

U = eiϕJ(α)J(β)J(γ), (3.1)

where

J(θ) =
1√
2

(
1 eiθ

1 −eiθ

)
. (3.2)

This can be shown using the standard parametrization of the unitary group

SU(2).

We choose that decomposition of the unitary operation because J(α) can

be implemented with a single qubit measurement on a 2-qubit maximally en-

tangled state. In order to entangle the state we will perform controlled-Z

(CZmn
1) gates, defined as

CZ12 |i〉1 |j〉2 = (−1)ij |i〉1 |j〉2 i, j = 0, 1. (3.3)

We will also perform measurements in the basis |±α〉 = (|0〉± eiα |1〉)/
√

2. So,

1The subindices indicate which qubits are operated on by the gate. This will become
especially important when we talk about larger systems. As the CZ is symmetrical it makes
no difference which qubit is the control and which is the target.
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let Mn(α) denote the measurement of the nth qubit in this basis, and sn = 0(1)

the outcome corresponding to |+α〉 (|−α〉). Now, it is not difficult to check the

following relation

M1(α)CZ12 |Ψ〉1 |+〉2 = Xs1
2 J(α)2 |Ψ〉2 , (3.4)

where states |±〉 = (|0〉 ± |1〉)/
√

2 form the so-called Hadamard basis.

Equation 3.4 gives us a J(α) gate if the outcome of the measurement M1(α)

is s1 = 0. But, when s1 = 1 it introduces an unwanted Pauli X gate. Even

though this could be solved by post-selecting only computations where s1 =

0, there is a simpler way to correct this. Post-selection also exponentially

decreases the probability of the computation being correct as the number of

measurements increases. As the last measurement will be performed in the

computational Z basis, we can correct this X gate by reinterpreting the result.

Since

X i |o〉 = |o⊕ i〉 i, o = 0, 1,

this gate can be easily corrected in post-processing for sz ⊕ i = o, where sz

is the outcome of the measurement in the Z basis. Now, for larger entangled

resources we need another way to describe the system.

It is usual to use graphs in MQC to describe the system and the operations

in a more concise and visual manner. Here each vertex (•) refers to a qubit in

the |+〉 state. We will also have some special vertices (◦) that refer to qubits

in an arbitrary input state |Ψ〉 = a |0〉+ b |1〉. Each edge between vertices is a

CZ operation involving the corresponding qubits. For example

h x = CZ12 |Ψ〉1 |+〉2 = a1 |0〉1 |+〉2 + b1 |1〉1 |−〉2.

The measurements will also be described in the graphs. An angle right

above a vertex will indicate a measurement on the basis {|+α〉 , |−α〉}. The

outcome of the measurement will appear under the vertex. For example, Equa-

tion 3.4 can be written as

hα x
s1

= Xs1
2 J2(α) |Ψ〉2 .

The order of the operations is important. First of all all the entangling CZ

gates are applied, in any order as they commute with each other. Then the

measurements are performed from left to right. Changing the measurement
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ordering can lead to completely different outcomes. But this does not mean

that we can not use Equation 3.4 recursively in these states. Consider

hα
s1

xβ
s2

x = Xs2J(β)Xs1J(α) |Ψ〉.

Here, as M1(α) and CZ23 belong to disjoint subspaces, therefore they must

commute. For this reason we can apply Equation 3.4 for the first and second

qubits and then again for the second and third and the equality becomes very

simple to prove. Because of this we can perform all the entangling operations

at the beginning of the computation.

As we want to build arbitrary unitary operations we need to apply consecu-

tive J operations. The problem of simply applying consecutive measurements,

as we have just seen, is that the Pauli errors appear in-between the J gates,

ruining the computation. To solve this problem the following commutation

rules are very useful:

Ji(α)Xs
i = eiαsZs

i Ji((−1)sα), (3.5)

Ji(α)Zs
i = Xs

i Ji(α). (3.6)

As mentioned previously, the measurements that give us the result of the

computation are done in the computational basis. Thus, Z gates at the end of

the computation do not change its outcome. Global phases can be completely

ignored for they do not change the measurement outcomes.

Let us now see how to have Pauli errors only at the end of the computation,

where they can be corrected. By using Equation 3.5 we can see that the

measurement pattern to obtain two consecutive J gates is

hα
s1

x(−1)s1β

s2

x = Xs2Zs1J(β)J(α) |Ψ〉.

Here the need for adaptivity becomes evident. In order to correctly implement

the gate, the measurement on the second qubit must depend on the outcome

of the first measurement. As the errors are always Pauli operators, we will

only need two choices of measurements Mk(±ϕk) for the kth qubit.

Now we can finally build the measurement pattern that implements any

given one-qubit unitary operation. It goes as follows
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hα
s1

x(−1)s1β

s2

x(−1)s2γ

s3

x = Xs1⊕s3Zs2J(γ)J(β)J(α) |Ψ〉.

As we are ignoring global phases we can simply commute X and Z, since

XZ = −ZX.

In 1WMQC the resource state is prepared previously to any measurements,

and it is usually easier to prepare all the qubits in the same state. So, it is

usual to prepare all the qubits in the state |+〉. The input state is encoded

in the unitary that will be applied. This can be easily done because for a

input state |Ψ〉 we can always find a V such that V |+〉 = |Ψ〉, and instead of

implementing U we implement U ′ = UV . Thus, measurements on the 4-qubit

state

x x x x
are sufficient to perform any one qubit unitary operation. So, this state is a

universal resource for one qubit operations.

This is not yet sufficient to perform any quantum computation. It is also

necessary to perform some entangling gate [31]; a convenient choice is the

CZ gate. J gates toguether with CZ gates are a universal set for quantum

computation [32]. For this we need nonlinear states. Consider this example

xα1

s1

xα3

s3

x
xα2

s2

x = Xs3
5 J5(α3) CZ45 X

s2
4 J4(α2)X

s1
5 J5(α1) |+〉4 |+〉5 .

In order to get the Pauli errors to the end of the computation the following

commutation rule is very useful

CZijX
s
i = Xs

i Z
s
jCZij ∀ i, j. (3.7)

Measurements on a cluster state of appropriate size enable universal quan-

tum computation [33]. A cluster state consists of a two-dimensional square

lattice. Later it was shown that other types of two-dimensional lattices are

also universal resources [34, 35].

In order to manage the adaptivity and the need for reinterpreting the result

we also need to introduce a control computer. This computer is responsible for
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keeping track of the measurement outcomes and adapting the measurements

accordingly. In the 1WMQC model these corrections are so simple that the

control computer needs only to be able to calculate the parity of a list of bits.

This guarantees that the computation is being performed by the correlations

between the measurement outcomes and not by the control computer. We will

get back to this in more detail in the next section.

3.2 A Framework for Correlation-based Com-

putation

One of the most interesting implications of MQC is discovery of the computa-

tional power of a correlated resource. In this model the quantum and classical

part are very distinct. We have a quantum resource in which single qubits are

measured and a classical control computer. This computer, as mentioned be-

fore, has its computational power greatly increased by the correlations between

the measurement outcomes.

In order to make the computational enhancement of a correlated resource

more clear, Anders and Browne [1] developed a more general framework for

MQC. This framework aims to capture the essential features of MQC without

being restricted by the specific traits of each model.

The framework consists basically of two parts, a control computer of lim-

ited power and a multipartite correlated resource, as seen in Figure 3.1. The

control computer and the correlated resource exchange classical information,

as indicated by the arrows in Figure 3.1.

  

Control Computer

Correlated Resource

Figure 3.1: Sketch of the Anders and Browne framework. Each arrow indicates
one bit of communication between the control computer and the correlated
resource.

We will make use of the box framework presented in the previous chap-

ter to describe the correlated resource. This means that each box receives a
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single input bit, let qk denote the input bit of the kth box. Each box also

outputs a single bit of information, let sk denote the output of the kth box.

It is important to restrict the communication between the control computer

and each party of the resource in order to guarantee that the correlations are

performing the computation. If more inputs were permitted in each party,

the framework would admit several other computational models that are not

correlation-based.

The other component of this framework is a computer of limited power.

This computer can store bits of information, exchange information with the

correlated resource and compute certain functions. This computer must have

a limited power because otherwise the correlated resource would have no room

to improve the overall computational power.

As mentioned in the previous section, even with a very restricted parity

computer we can achieve universal quantum computation by performing mea-

surements on cluster states. A parity computer is only capable of performing

sum modulo 2, i.e. XOR gates. This computer is very limited because it can

only evaluate linear Boolean functions, of the form

fl(x) = a0 ⊕
n⊕
i=1

aixi = a0 ⊕ a · x, (3.8)

with a0 and ai being bit-valued constants. Because of this we will restrict our

discussion to measurement-based quantum computation with a parity control

computer (MQC⊕).

Suppose that we want to calculate an arbitrary Boolean function f(i) = o,

where i = (i1, . . . , in)T is a bit string of inputs and o is the output. The control

computer will calculate the input of the kth box as some linear function of i

and all the previous measurement outcomes via

q = Qi+Ws+w mod 2, (3.9)

where Q and W are matrices that only admit zeros or ones, each row describes

a linear Boolean function, and w is a constant bit string. To preserve the

temporal ordering, i.e. measurements choices can only depend on the results

of past measurements, the matrix W must be lower triangular for a suitable

ordering of the parties. After performing all of the measurements, the output

of the function will be given by a linear function of the inputs and all the
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measurement outcomes

o = z · s+ k · i+ z0 mod 2. (3.10)

Where z and k are bit strings and z0 is a constant bit.

All the matrices in equations 3.9 and 3.10, and also the bit string constants,

are predetermined by the function f and the resource. As mentioned in the

previous section there are universal resources, but specific functions may admit

smaller resources, as we will soon see.

3.2.1 Building a universal set of gates

In this subsection we will look at the smallest correlated resources that enable

the computation of any Boolean function via MQC⊕. The goal here is just

to improve the computational expressiveness of the parity computer. Any

Boolean function can be decomposed in terms of XOR and AND gates [36].

Therefore to perform universal computation it is sufficient to find a correlated

resource that enables us to perform AND gates.

We have already described resources in terms of correlations in the previous

chapter. These correlations can be used by the control computer to perform

gates that the control computer was not able to perform. More specifically in

our case AND gates.

Measurements in PR-boxes, described in subsection 2.1.3, can perform a

deterministic AND gate. Let us see how this works, to perform the AND of

bits i1 and i2. The control computer inputs i1 in one of the boxes receiving s1

from it, and inputs i2 in the other box receiving s2 from it. As we have already

seen the XOR of the outputs of a pair of PR-boxes is always the AND of its

inputs, this means s1 ⊕ s2 = i1i2.

The problem is that we do not have PR-boxes in Nature. And, as we have

seen in subsection 2.1.2, boxes with bipartite quantum system only work with

a probability p ≤ cos2(π/8) ≈ 85%, or in other words fail with a probability of

at least ε ≈ 15%. This introduces an error in the computation. By using the

correction scheme presented in the next chapter we will see in section 5.1 that

boxes that produce an AND with an error probability q < 1/6 are sufficient

to compute any Boolean function with an error probability δ < 1/2.

Anders and Browne were interested only in deterministic computations. A

deterministic computation admits no error in any of the outputs. In order

to deterministically perform an AND gate with MQC⊕ a tripartite GHZ is
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sufficient [1]. We have already seen this as a strong contextuality proof in

subsection 2.2.2.

By having access to measurements on PR-boxes or on tripartite GHZ states,

the parity computer is upgraded to deterministic universal computation. These

results from Anders and Browne suggest some link between the enhancement of

the computational power and strong contextuality. This was later investigated

by Raussendorf, who showed that if the resource is capable of deterministically

computing nonlinear functions, then the resource must be strongly contextual

[2].

3.3 The limitation of a non-contextual resource

Here we will review the computational limitation of a non-contextual resource

in MQC⊕. This connection was pointed out by Raussendorf in [2]. This

justifies why MQC has no classical analogue, since classical resources are non-

contextual and therefore do not enhance the computational expressiveness of

the control computer.

Let us start with the deterministic part of Raussendorf’s proof. He showed

that if a MQC⊕ deterministically computes a nonlinear Boolean function, the

resource must be strongly contextual. We will show that if the resource is

not strongly contextual then the only deterministic computations possible are

linear Boolean functions. The result will follow by negation.

If the resource is not strongly contextual, there is a probability higher than

0 of the output of each box being completely defined only by its input for all

contexts. This means that it is possible that the output of the kth box is a

function only of its input, either sk(qk = 0) or sk(qk = 1), not depending on

the context in which it appears. So, we can write the output of the boxes as

follows

sk(qk) = ck ⊕ dkqk ∀ k, (3.11)

where ck = sk(qk = 0) and dk = sk(qk = 0) ⊕ sk(qk = 1). Or, in the vector

notation, s = c+Dq mod 2, where D = diag(dk).

Non-contextual outcomes in the resource only enable the MQC⊕ computa-

tion of linear Boolean functions. This can be seen by inserting Equation 3.11

in Equation 3.9 and rearranging so that we have

s = c′ +Q′i mod 2, (3.12)
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where c′ = (1+DW )−1(c+Dw) and Q′ = (1+DW )−1DQ. This means that

the outcomes of the boxes are linear functions of the inputs of the computation

(i). This happens because q are linear functions of i and s are linear functions

of q, and the composition of linear functions is still a linear function.

As the output of the computation is a linear function of s and i, from

Equation 3.10 we have that

o = k′ · i+ z′0 mod 2, (3.13)

where k′ = z · Q′ + k and z′0 = z · c′ + z0. Therefore, the output o of the

computation can only be a linear function of i. As the control computer

was already able to compute linear functions, non-contextual resources do not

provide any computational enhancement.

As mentioned before, if a resource is not strongly contextual, this means

that it can be described by a non-contextual model with a probability higher

than 0. Thus, if the resource is not strongly contextual, the computation of a

nonlinear function is going to be wrong with probability higher than 0.

Let us now turn our attention to probabilistic computations. Raussendorf

also showed that non-contextual resources impose an upper limit to the prob-

ability of success in the computation of any nonlinear Boolean function [2].

Here we define the success probability pS of a computation as the smallest

probability, over all inputs, of yielding the correct output.

We need to define the distance ν of a Boolean function f to the closest

linear Boolean function (lin.B.f.),

ν = min
l∈ lin.B.f.

∑
i∈{0,1}n

(1− δ(f(i)⊕ l(i))). (3.14)

This gives us the minimal number of inputs for which f has a different out-

put than any single linear Boolean function. Raussendorf showed [2] that if a

MQC⊕ evaluates a Boolean function of n bits with an average success proba-

bility pS > 1− ν
2n

, then the resource must be contextual.

From the previous result we know that a resource that can have predefined

non-contextual outcomes can only compute linear Boolean functions. A gen-

eral non-contextual resource may be a convex combination of several of these

predefined outcomes, therefore this resource allows the computation of convex

combinations of linear functions.

Let pfail(i) be the probability of failure, for the input i, of a MQC⊕ using

a non-contextual resource. Then we have
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(1− pS) = max
i∈{0,1}n

pfail(i) ≥ 2−n
∑

i∈{0,1}n
pfail(i) ≥

ν

2n
,

because the maximum value of a distribution must be higher or equal to its

mean value, and no linear function has a smaller mean fail probability than the

closest one. So, for contextual resources the success probability is pS ≤ 1− ν
2n

.

By negation it follows that if pS > 1− ν
2n

, then the resource must be contextual.

3.4 Nonadaptive MQC

We will now impose further restrictions in the MQC⊕ framework. We will

have a look at what can be done if we remove adaptivity. This is very inter-

esting because in MQC this means that the time that the quantum part of

the computation consumes is constant. Strikingly Hoban et al. showed that

using sufficiently large number of qubits in the GHZ state we can compute any

function deterministically via nonadaptive MQC⊕ (NMQC⊕) [6].

In NMQC⊕ the control computer (parity computer), receives the input bit-

string of inputs i and uses it to calculate the bit-string of box inputs q. The

input of each box can only be a linear Boolean function of the computational

inputs. Then the control computer sends to each box its respective input, and

obtains the output o of the function by calculating the parity of the outputs

of the boxes, as illustrated in Figure 3.2.

  

i→ q(i)

q → s

s→ o

Figure 3.2: Schematic representation of a NMQC⊕ computation. The input i
is a bit-string. The parity computer makes a preprocessing using i to calculate
the inputs of the boxes q. The boxes send outputs s that are post processed
and generate the output of the computation o.

We have already seen an example of such a computation: the AND gate via

measurements in a tripartite GHZ state, mentioned in subsection 3.2.1, and

which uses the strong contextuality proof from subsection 2.2.2. To perform
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this computation no adaptativity was needed. Let us break this down in order

to see how this gives rise to more general computations.

We start with a m-partite GHZ state |Ψm〉 = (|0〉⊗m + |1〉⊗m)/
√

2. Then

we apply measurements Oj = cos(sjφj)Xj + sin(sjφj)Yj to each qubit. These

measurements act as follows:

O1 |`〉1 = exp
(
i(−1)`s1φ1

)
|`⊕ 1〉1 , (3.15)

where ` = 0, 1. |Ψm〉 is a eigenstate of
∏m

j=1Oj when
∑m

j=1 sjφj = kπ, with k

an integer, see [37].

To compute AND(i1, i2) = i1i2 we have |Ψ3〉 = |000〉+|111〉√
2

2, s = (s1, s2, s3) =

(i1, i2, i1 ⊕ i2) and φ = (φ1, φ2, φ3) = π(1
2
, 1
2
,−1

2
). Then it is not difficult to

check that

3∏
j=1

Oj |Ψ3〉 = −1(i1+i2−(i1⊕i2))/2 |Ψ3〉 = −1i1i2 |ψ〉 , (3.16)

as we have already seen in subsection 2.2.2.

At first the relation

i1i2 =
1

2
(i1 + i2 − (i1 ⊕ i2)), (3.17)

may seem strange for we have a sum over the reals and on integers mod 2

generating a nonlinear Boolean function on the left hand side of Equation 3.17.

But sums over the reals of linear Boolean functions can produce nonlinear

Boolean functions.

Building on this idea Hoban et al. [6] showed that given a Boolean function

f there are always s and φ such that

∏
j

Oj |Ψm〉 = ei
∑

j sj(i)φj |Ψm〉 = −1f(i)+c |Ψm〉 ∀ i ∈ {0, 1}n , (3.18)

where c is a constant bit, if m = 2n − 1 [6]. Therefore, NMQC⊕ can compute

any n-input Boolean function using a (2n− 1)-qubit generalized GHZ state as

resource.

2In subsection 2.2.2 we have used state X3 |Ψ3〉, but this is corrected by measuring −Y3

instead of Y3 when s3 = 1.
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In this chapter we will see the sufficient conditions to perform reliable com-

putation using faulty components. This will be useful because it reduces the

correlations sufficient in order to compute certain families of Boolean func-

tions. In the next chapter we will see how this scheme can be used for this

purpose.

We can not expect to perform deterministic computations using faulty com-

ponents, because the last gate will always introduce an error. Therefore, reli-

able in this context does not mean accurate, but rather biased. More precisely,

we want conditions, on the gate failure probability, that enable us to compute

any Boolean function with a constant error δ < 1/2. If the computation is

reliable one can get the correct result with arbitrarily high probability by re-

peating the computation and choosing the most frequent output.

The scheme for reliable computation presented here consists of two al-

ternating stages, one for error correction and another for computation. The

correction stage uses redundancy to keep the error close to a fixed point during

the computation. The computation stage is where the actual computation of

the function takes place. The error is increased in the computational stage,

but this happens in a way that the error stays in “acceptable” levels.

4.1 Computational Model

Reliable computation consists in being able to compute any given Boolean

function with a constant error δ < 1/2. This error δ can not depend on

the number of gates being applied or on the size of the input. As the result

is biased, δ < 1/2, the error can be arbitrarily decreased by repeating the

computation and taking the most frequent output. Using this the error is
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exponentially reduced with the number of repetitions as a consequence of the

Chernoff bound [38].

For our purposes we will restrict ourselves to ε-noisy gates. An ε-noisy gate

fails with the same probability ε for all inputs. This is equivalent to having

a NOT gate applied to the output of a perfect gate with probability ε. All

the results presented in this chapter rely heavily on this characteristic, and

as was pointed out by Evans [39] a reliable circuit can be made unreliable by

decreasing the error of specific inputs.

It can be argued that it is “unrealistic” to expect that a gate always fails

with a specific probability. There are more general ways to describe errors but

for our purposes this will suffice. This error treatment also fits well with the

correlation-based computation presented in the previous chapter and will be

very useful to extend those results, as we will see in the next chapter.

We are also considering only computations by formulas. A formula is a

circuit with a tree-like structure, where no loops are allowed. A tree structure

means that each component has a single output and each component is used

only once. All Boolean functions can be computed in this fashion. This struc-

ture is important to guarantee that the error of the input-bits of each gate is

independent. This happens because they have no shared history.

The error of the input bits of each gate will be considered to be independent

and the same. As discussed before the errors are independent because the

computation is performed by a formula. Considering gates that receive bits

with different errors makes the error analysis too complicated as the number

of bits is increased. The computational stage, discussed in section 4.3, requires

the error of each input bit to be the same. As we will see, this will be ensured

by the error correction stages.

The input of a Boolean function of n bits can be written as a bit-string

x ∈ {0, 1}n. The probability of x becoming x′ ∈ {0, 1}n, if each bit has been

flipped with probability α, is given by:

p(x′|x) = αm(1− α)k−m, (4.1)

where m is the number of bits that were flipped, m =
∑

i xi ⊕ x′i.
Now we can calculate the error probability of the output of an ε-noisy

gate that receives noisy inputs. The error of the output is the probability

that the output is wrong, i.e. different from the output of an ideal noiseless

gate for noiseless inputs. For a gate that computes g(x) the output will be

wrong for the input x either when the gate works and x becomes x′, such
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that g(x′) 6= g(x), or when the gate fails and the x becomes x′′, such that

g(x′′) = g(x). Therefore, the error of the output is given by:

E[g(x)] = (1− ε)
∑
x′

p(x′|x) + ε
∑
x′′

p(x′′|x). (4.2)

To illustrate this let us calculate the error of the output of a AND gate

for the input 11. For the input 11 we have x′ ∈ {00, 01, 10} and x′′ ∈ {11}.
Let us suppose that this AND gate is ε-noisy and receives input bits with

independent errors α. Combining equations 4.2 and 4.1 it is simple to see that

the error of the output is given by:

E[AND(11)] = (1− ε)(α2 + 2α(1− α)) + ε(1− α)2. (4.3)

All errors are in the interval [0, 1/2], where 0 means no error at all and 1/2

that the bit is completely random. It is not necessary to consider errors higher

than 1/2 because in this case the circuit will be calculating the negation of the

function with an error probability smaller than 1/2. This is important because

in the next section we will be interested in gates that have an output with an

error smaller than the error of the input.

We will make use of a reliable computation scheme that was first developed

by von Neumann in the 1950’s [7]. This scheme consists of two alternating

stages, a correction stage and a computation stage. In the correction stage

the main objective is to get the error to a fixed point, therefore preventing the

error from increasing. The computational stage depends on getting the error

to a fixed value, as will become evident in section 4.3. The computational

stage is were the actual computation takes place, but this has to happen in a

way that keeps the error within acceptable levels.

4.2 Correction Stage

In this section we describe the error correction stage. For this purpose we

will study a family of noisy majority vote gates. The 3-input majority gate

(3-maj ) was first introduced by von Neumann [7]. Tight bounds on the noise

of 3-maj gates sufficient for reliable computation were found by Hajek and

Weller [3]. This result was latter generalized by Evans and Schulman [4] for

k-input majority gates (k-maj ), with k odd.

Majority gates rely on redundancy in order to decrease the error. Having

errors smaller than 1/2 means most of the time the result will be correct,
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therefore taking the majority of the results will decrease the error. By having

enough redundancy the error can be made arbitrarily small. This process gets

trickier when you only have faulty majority gates. In this section we will

study the maximum tolerable noise for error reduction using ε-noisy 3-maj

gates. The argument for general odd k goes along similar lines.

The 3-maj gate takes 3 input bits and returns the value that appears in

2 or 3 of these bits, for the truth table see Table 4.1. As we are interested

in reducing the error of a faulty circuit, the inputs of the 3-maj will be the

outputs of 3 copies of this circuit. Here the redundancy comes into play. As

they are copies of the same circuit containing the same components the error

or their outputs will also be the same. This is why in the ideal case, where the

components always work, all the inputs of the majority would be the same,

either 000 or 111. Assuming that this faulty circuit fails with probability α,

the error of the output of a 3-maj gate in this case is given by:

h(α) = (1− ε)(α3 + 3α2(1− α)) + ε((1− α)3 + 3α(1− α)2). (4.4)

It can be easily seen that if ε ≥ 1/6 then h(α) > α ∀ α < 1/2, i.e. the

3-maj does not reduce the error, so it can not be used for correction in that

regime. For ε < 1/6 there is a fixed point ν < 1/2 such that h(ν) = ν, and for

α > ν we have h(α) < α, while for α < ν we have h(α) > α. See Figure 4.1

for two graphical examples of h(α). It is this fixed point ν < 1/2 that enables

us to perform the computational stage, allowing reliable computation.

It is important for the computational stage that we be able to get the error

arbitrarily close to a fixed point. This can be done by performing several layers

of 3-maj gates. Each layer means replicating the existing circuit, including the

3-maj gates, 3 times and using the outputs as inputs to another 3-maj gate,

input output
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

Table 4.1: 3-maj truth table.
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Figure 4.1: Error of the 3-maj for ε = 0.1, in blue, and for ε = 0.2 in red.

as illustrated in Figure 4.2. To create L layers of 3-maj correction we need

3L copies of the circuit to be corrected. The number of layers will define how

close to ν the error will get after the correction stage.

  

3-maj

1st layer 2nd layer

3-maj

3-maj3-maj 3-maj

Figure 4.2: Scheme of the 1st and 2nd layers of correction. On the 1st layer
a noisy circuit with an error α, blue pentagon, is repeated 3 times and their
outputs are used as inputs for the 3-maj. After the 1st layer the error is h(α).
On the 2nd layer the whole 1st layer is copied and its outputs are used as
inputs to a 3-maj, the output error being h(h(α)).

These results were generalized for k inputs majority gates (k-maj ) by Evans

and Schulman [4]. They showed that for k odd and

βk =
1

2
− 2k−2

k
(
k−1
k−1
2

) , (4.5)

ε-noisy k-maj gates take, after several layers of correction, the error to a fixed

point ν < 1/2 if and only if ε < βk. One can, in the same fashion as with
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the 3-maj, make kL copies of the circuit to apply L layers of k-maj correction.

The advantage of using k-maj gates is that the permissible error grows with k

and can get arbitrarily close to 1/2.

4.3 Computation Stage

In this section we are going to see how the computation is carried out. At

first glance this may seem simple once we are able to reduce the error, but

this impression is misleading. In certain conditions ε-noisy gates can output a

completely random bit, making the computation unreliable. As an example,

let us consider the case of a AND gate in-between error correction stages

described in the previous section.

AND gates can not be used in the computational stage, because they out-

put completely random bits for inputs with errors smaller than 1/2. This

happens when the inputs fail individually with probability α = 1− 1√
2
, as can

be easily checked in Equation 4.3. This makes correction impossible.

This is also the case for other 2-input non-linear gates, as their truth tables

are similar to that of the AND gate. Non-linear gates are necessary to perform

universal computation, as we have seen in the previous chapter. Thus, 2-input

gates are not sufficient for the computational stage of computation.

To keep the error at an acceptable level (smaller than 1/2) we will make use

of Hajek and Weller’s XNAND gate [3]. The truth table for this gate can be

seen in Table 4.2. It is important to notice that XNAND(a, b, b) = NAND(a, b).

As the NAND gate alone is universal [36], the XNAND is also universal.

Let us now calculate the error probabilities of the output of a ε-noisy

XNAND when it behaves as a NAND. When it receives inputs that fail inde-

pendently with error α, the errors of the output are given by:

input output
000 1
011 1
100 1
111 0
001 1
010 0
101 0
110 0

Table 4.2: XNAND truth table.
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NAND

NAND NAND

NAND

XNAND XNAND

. . .

Figure 4.3: An example of the construction of the noisy circuit. The ellipses
indicate L layers of correction, thus there are kL copies of the circuit inside
them.

E[XNAND(0, 0, 0)] = E[XNAND(1, 1, 1)] = (1− α)(2ε− 1) + 1− ε

E[XNAND(1, 0, 0)] = E[XNAND(0, 1, 1)] = (2α2 − 2α + 1)(2ε− 1) + 1− ε.
(4.6)

These errors will only be equal to 1/2 when either α = 1/2 or ε = 1/2. So,

using ε-noisy XNAND gates with ε < 1/2 as NAND gates will guarantee that

the error stays within correctable levels.

It is important that the error of all the input bits be the same. The output

of the XNAND gate can be made completely random by decreasing the error of

one of the inputs to a certain value. For this reason the fixed point of the error

of the output of k-maj gates is so important. But, as the error of the output

of the XNAND is continuous on the error of each bit it will still be smaller

than 1/2 in a small interval around ν. The size of this interval is determined

by the number of correction layers.

Let us see how to reliably compute an arbitrary Boolean function, an exam-

ple of which is presented in Figure 4.3. The noisy circuit for any other Boolean

function is built in the same manner. We start with the decomposition of the

function in terms of perfect NAND gates, as shown in the first part of the

figure. Then we replace the last NAND with a noisy XNAND duplicating the

part of the circuit that gives one of the NAND ’s inputs. To guarantee that

all the inputs, coming from different parts of the circuit, have the same error

we need to apply several layers of correction to each one of them. For this

we will need huge correction structures. Then we repeat this process for the

NAND gates appearing higher above in our formula until all NAND gates are

replaced by XNAND gates.

As the last gate in the noisy circuit is a XNAND, the circuit has an error

δ < 1/2. All the NAND gates have to be replaced to guarantee that correction

is always possible. Even though each correction stage can greatly increase
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the number of gates, an exponential overhead results from nested correction

stages. Each correction stage is analogue to a repetition loop in an algorithm.

Loops within loops have a multiplicative effect. This generates an exponential

overhead that goes with the amount of nested loops.

To summarize: to perform reliable computation using this correction

scheme it is sufficient to have ε-noisy k-maj gates, with ε < βk (see Equa-

tion 4.5), and υ-noisy XNAND gates with υ < 1/2.
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In this chapter we will show our new results. These consist in ways in which

quantum correlations can increase the computational expressiveness of the par-

ity computer. In measurement-based quantum computation (MQC) a parity

computer has its computational power greatly increased by having access to

an entangled resource, as we have seen in chapter 3. Combining this with

the correction scheme, presented in the previous chapter, we will be able to

further reduce the amount of correlations sufficient for the computation of any

function.

We will start, in section 5.1, by showing how to use bipartite quantum

correlations to perform reliable computation, using the framework proposed

by Anders and Browne in [1], which we reviewed in section 3.2. We will see

how a range of quantum correlations suffice to perform reliable computation.

In section 5.2 we will also show that correlated resources, whose correlations

violate non-contextual bounds by an arbitrarily small amount, enable reliable

computation. Even though the number of correlated boxes increases exponen-

tially, this shows a fundamental difference in the computational expressiveness

of non-contextual and contextual resources.

5.1 Computation with Bipartite Quantum Cor-

relations

Our objective in this section is to check if the computational enhancement pro-

vided by a correlated resource gives us a new fundamental distinction between

classical and quantum theories. By classical, we mean resources that are non-

contextual. With this in mind we will apply the correction scheme presented
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in the previous chapter to the MQC⊕ model presented in section 3.2.

We have seen in subsection 3.2.1 that PR-boxes are the smallest resource

that enables universal computation via MQC⊕. This was first shown by Anders

and Browne in [1]. The problem is that PR-boxes are not implementable using

quantum correlations only. Thus, the smallest quantum mechanical resource

that enables the deterministic computation of arbitrary Boolean functions via

MQC⊕ is a tripartite GHZ state.

Here we will be interested in the smallest resource that makes the reliable

computation of any Boolean function possible. Reliable computation means

that the computation has a constant error ∆ < 1/2. In order to perform

reliable computation using the scheme presented in the previous chapter we

need two things: ε-noisy k-maj gates with ε < βk and υ-noisy XNAND gates

with υ < 1/2.

In MQC⊕ the control computer provides us with noiseless XOR gates. For

this reason we will be interested in decompositions of Boolean functions using

only XOR and AND gates. In such a decomposition it is important to minimize

the number of AND gates as they are the only source of errors in this scheme.

5.1.1 Error with a single noisy AND gate

Let us start by analyzing the error of a Boolean function that is decomposed

in noiseless XOR gates and a single ε-noisy AND gate. This will be the case

of the XNAND and the 3-maj gates, as we will see in the next subsections.

The AND gate of any Boolean function decomposed in terms of XOR gates

and a single AND gate can only appear at the beginning, in the middle, or at

the end of the computation. This helps to simplify the analysis of the error

propagation.

If the ε-noisy AND gate is at the end of the function it is not difficult

to see that the function is also ε-noisy. This happens because everything is

noiseless until the AND gate. This gate has an output with error ε for any

input, therefore the error of the whole function will be ε for any input.

If the AND gate is at the middle it receives no error from the previous

gates since they are all noiseless, thus this case is equivalent to the AND being

in the beginning. In these cases we have to be more careful because some XOR

gates will receive a bit with an error as input.

When a noiseless XOR gate receives one perfect input, and one input that

has been flipped with probability p, the output of the gate will also be flipped

with probability p. This bit-flip error is analogue to having a NOT gate (⊕1)
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applied with probability p. The error of a input is directly passed on to the

output, because XOR(a⊕ 1, b) = XOR(a, b)⊕ 1. Therefore, if only one of the

inputs of a noiseless XOR gate has an error, this error is simply propagated

to the output.

Functions that have the ε-noisy AND gate at the beginning or middle are

also ε-noisy. This happens because there is a single AND gate therefore no

XOR gate will receive more than one noisy input. To summarize, we have seen

that any Boolean function decomposed in terms of noiseless XOR gates and a

single ε-noisy AND gate is also ε-noisy.

5.1.2 XNAND gate

Here we will see how even a non-contextual resource enables us to make a

υ-noisy XNAND gate with υ < 1/2. A XNAND gate can be built using XOR

gates and a single AND gate, as was mentioned before. The decomposition is

as follows:

XNAND(a, b1, b2) = (a⊕ b1)(a⊕ b1 ⊕ b2)⊕ a⊕ 1. (5.1)

Because the XNAND can be built with noiseless XOR gates and a single

ε-noisy AND gate, it is also ε-noisy. For this reason we need to build an ε-noisy

AND gate with ε < 1/2.

We have seen in subsection 2.1.1, that local, therefore non-contextual, cor-

relations can produce an AND gate with an average success probability of

up to 3/4. To perform an ε-noisy AND = i1i2 with ε = 1/4, we randomly

choose, with probability 1/4, among linear functions l1 = 0, l2 = i1, l3 = i2

and l4 = i1 ⊕ i2 ⊕ 1. It is easy to check that this convex combination of linear

Boolean functions implements an ε-noisy AND gate, with ε = 1/4.

Because of this a non-contextual resource can produce an ε-noisy AND gate

with an error probability 1/4 ≤ ε < 1/2. The requirements of the XNAND

gate are not very restrictive, as they are always met by in non-contextual

MQC⊕.

5.1.3 3-maj gate

Let us now turn our attention to the requirements for the 3-maj gate to per-

form reliable computation. We will see that a range of bipartite quantum

correlations suffice to reliably compute any Boolean function.
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From the previous chapter we know that we need an ε-noisy 3-maj gate

with ε < β3 = 1/6. We can produce a 3-maj gate using a single AND gate 1.

The decomposition is as follows:

3-maj(a, b, c) = (a⊕ b)(a⊕ c)⊕ a. (5.2)

For an ε-noisy AND gate the 3-maj is also ε-noisy. Therefore, in order

to perform reliable computation we need an ε-noisy AND gate with ε < 1/6.

In this case non-contextual correlations are not sufficient, because they only

allow for ε > 1/4.

We have seen in subsection 2.1.2 that quantum mechanics allows the MQC⊕

computation of an ε-noisy AND gate with ε ≥ sin2(π/8) ≈ 15%. Therefore,

we do not even need to use maximal quantum correlations. Any “quantum

device” that produces an ε-noisy AND gate with 1/6 > ε ≥ sin2(π/8) suffices

for reliable computation.

With this we can conclude that bipartite quantum correlations can be used

to enhance the computational power of the parity computer, allowing for uni-

versal reliable computation.

5.1.4 5-maj gate

The next step is to try to apply the same idea to 5-maj gates. ε-noisy 5-maj

gates are sufficient for reliable computation if ε < β5 = 7/30, as was seen in

chapter 4. The problem is that a 5-maj gate is not as simple to build as a

3-maj gate is.

The decomposition with the smallest number of AND gates we could find

for the 5-maj gate was the one obtained by Amarel et al. in [5]. This decom-

position of the 5-maj gate uses 4 3-maj gates, as seen in Figure 5.1, and the

decomposition is as follows:

5-maj(x) = 3-maj(3-maj(x3, x4, x5), x1, 3-maj(x2, x3, 3-maj(x2, x4, x5))).

(5.3)

Even though we can build ε-noisy 3-maj gates with quantum correlations,

the 5-maj in this decomposition is not ε-noisy. This happens because in some

cases the error from the upper 3-maj gates is propagated and sometimes it is

not.

1We thank Dan Browne for pointing out this decomposition, which helped motivate this
work.
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  5-maj (x)

3-maj

3-maj 3-maj

3-maj

x1

x3 x4 x5 x2 x3

x2 x4 x5

Figure 5.1: Amarel et al. [5] decomposition of the 5-maj gate is terms of 4
3-maj gates.

To illustrate this, let us consider a simpler example. Consider the following

gate built with 2 α-noisy 3-maj gates with noiseless inputs:

o = 3-maj(x1, x2, 3-maj(x3, x4, x5)).

If x1 = x2 then the final output will not depend on the output of the first 3-maj

gate. In this case we can ignore the error of the first 3-maj and consider only

the error of the last. Thus, the output will be wrong with probability α. If

x1 6= x2 the error of the output will be 2α(1− α), for it will be wrong only if

one of the 3-maj gates fails 2.

From this example we see that even though components are ε-noisy, the

gate as a whole is not. For this reason the correction scheme of the previous

chapter does not apply. This problem is recurrent in most decompositions of

k-maj gates, such as those presented in [5].

It remains as an open question to find ε-noisy decompositions of k-maj

gates, that allow further reduction in the strength of bipartite correlations

that enable reliable computation. It is also possible that another correction

method may reduce the strength of bipartite correlations necessary for reliable

computation.

5.2 Computation with Slightly Contextual Cor-

relations

In this section we will show how to reliably compute any Boolean function

using only slightly contextual correlations. Our measure of correlation is the

success probability of the computation of a function. By “slightly contextual”,

2In binary arithmetic two wrongs make it right.
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we mean correlations which violate the bound for the success probability of

function evaluation using non-contextual correlations, showed by Raussendorf

in [2], by an arbitrarily small amount ∆.

In the previous section we have seen that a non-contextual resource suffices

to produce an ε-noisy XNAND gate with sufficiently small error ε < 1/2. Now

we will see that the success probability of evaluating a k-maj gate using non-

contextual resources gets closer to the reliable computation threshold βk as

the number of inputs increases.

Raussendorf showed in [2] that the success probability of evaluating a

Boolean function via MQC⊕ has an upper bound if the resource is non-contextual,

as we have seen in section 3.3. Because non-contextual resources can only de-

terministically compute linear functions, the mean success probability of a

MQC⊕ computation using a non-contextual resource can not be larger than

the mean success probability of the optimal linear approximations.

An optimal linear approximation of a Boolean function is a linear Boolean

function f that has the smallest distance to f . The distance is defined as the

number of inputs for which the linear function yields an output different than

that of f , see Equation 3.14.

5.2.1 A Linear approximation for k-maj gates

Finding the optimal linear approximation for k-maj gates is not an easy task,

for the number of possible linear functions increases exponentially with the

number of inputs. We tried a brute force approach and found that a linear

function that outputs just one of its input bits is optimal for k ≤ 21, with k

odd. Of course, this approach can not yield an analytical proof that these are

the optimal linear approximations of k-maj gates for all k. This remains an

open problem.

The distance between the k-maj and the linear function gl(x) = x1 (the

value is the same for any choice of input bit) can be found by fixing x1 and

looking for disagreement between it and the majority. Let n designate the

number of the (k − 1) other bits with the value 1, i.e. n =
∑k

i=2 xi. When

x1 = 0 then k-maj (x) = 1 for all inputs x with n > k−1
2

. For x1 = 1 the

k-maj gate will have a different output for all inputs with n < k−1
2

. Thus, the

majority will disagree from the first input bit once for all possible combinations

of the k − 1 bits, except for inputs with n = k−1
2

. Therefore the distance is
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given by:

dL = 2k−1 −
(
k − 1
k−1
2

)
. (5.4)

As this was not proven to be an optimal linear approximation we have that

dL ≥ ν, where ν is the minimal distance between a Boolean function and any

linear function, defined in Equation 3.14.

The mean error probability of this linear approximation of the k-maj is

given by

ηk =
dL
2k

=
1

2
− 1

2k

(
k − 1
k−1
2

)
. (5.5)

So, the k-maj gate could be evaluated via MQC⊕ with an error γ ≥ ηk using a

non-contextual resource, or simply by convex combinations of linear functions

by the parity computer.

It is not hard to check that for a large number of inputs (k � 1) we have

ηk ≈
1

2
−
[
π(k − 1)2k

]− 1
2 ,

and

βk ≈
1

2
−
√

π

8k
.

Therefore, in the limit k → ∞ we have ηk → 1
2

and βk → 1
2
. It is also easy

to check that βk < ηk ∀ k. See Figure 5.2 for a graphical comparison between

βk and ηk. This means that even though the gap between the error of this

linear approximation and the threshold for reliable computation goes to zero

as the number of inputs increases, this linear approximation does not allow us

to perform reliable computation.

One could argue that a better linear approximation for the k-maj could

be found, and that this could allow for reliable computation using only linear

Boolean functions. We will now argue that this can not happen, as this would

violate Raussendorf’s bound for the success probability in computing functions

that exhibit high linear distance.

The linear distance was defined as the distance between a Boolean function

and the closest linear function in Equation 3.14. Let us now see that there are

some functions that can not be reliably computed acording to Raussendorf’s

bound, and for this reason non-contextual resources can not suffice for reliable

computation. Functions with maximal linear distance are known as “bent”
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Figure 5.2: Graphical comparison of βk, + sign, and ηk, × sign, for several
number of input bits. Notice that βk < ηk ∀ k, but the gap between them
decreases as the number of inputs increases.

functions [40, sec 2.2]. A k-input bent function has a linear distance of Dbf =

2k−1 − 2
k
2
−1. Several bent functions are known, but for an even number of

inputs the simplest family has the form:

b(x) =

k/2⊕
i=1

x2i−1x2i.

The minimum error for the computation of a bent function using a non-

contextual resource is given by

µk =
Dbf

2k
=

1

2
− 1

2
m
2
+1
. (5.6)

The minimum error of the computation of these functions goes to 1/2 as the

number of inputs increases. Thus, these functions can not be reliable computed

using only a non-contextual resource.

If we could compute an ε-noisy k-maj gate via MQC⊕, with ε < βk, us-

ing only a non-contextual resource we would be able to reliably compute any

Boolean function. In particular, we would be able to reliably compute bent

functions using only a non-contextual resource, and we would have a contra-

diction.
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5.2.2 Slightly Contextual Strategy

Now let us turn our attention to a way of computing ε-noisy k-maj gates

using quantum correlations. We know from section 3.4 that NMQC⊕ can

compute any Boolean function with measurements on a m-qubit GHZ state

|Ψm〉 [6]. In particular for m = (2k − 1), NMQC⊕ can compute a k-maj gate

deterministically. But, as we are interested in reliable computation, we can

reduce the amount of correlations of the resource.

The measure of correlation is the average probability of successfully com-

puting a Boolean function, in this case the k-maj. Let us perform the mea-

surements for NMQC⊕ on state

ρ = 2ε 1 + (1− 2ε) |Ψm〉〈Ψm| ,

with 0 ≤ ε ≤ 1/2. Measurements on ρ instead of the pure GHZ state |Ψm〉
generate an ε-noisy k-maj gate. This is because the measurement on the

maximally mixed state produces uniformly random and uncorrelated bits, so

the result of each measurement is wrong with probability 1/2. Linear functions

that receive at least one uniformly random bit output a uniformly random

bit, this is a consequence of the error propagation of XOR gates discussed in

subsection 5.1.1.

We need the computation to be non-adaptive because otherwise the error

of the outcome of the first measurement outcome could also be introduced

on the choice of the next measurements. This would make the error of the

measurements on each qubit stack up. It would also be hard to guarantee that

the gate is ε-noisy.

Given an arbitrarily small ∆ there is a k such that ηk − βk < ∆. Thus,

there is a (2k− 1)-qubit resource that even being only ∆ more correlated than

the non-contextual limit (ηk) still enables reliable computation via NMQC⊕.

From this we can conclude that there is a fundamental difference in the

enhancement of computational expressiveness between contextual and non-

contextual resources. This is quite striking, despite the exponential overhead

incurred in the number of correlated qubits used.
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Conclusion

Computation and information tasks have been helping to present quantum

mechanics in a more understandable manner. This provides a deeper under-

standing of quantum phenomena, and what is actually quantum about it.

Enhancing such an understanding was the main objective of this thesis.

For this reason computational tasks permeate the whole thesis, going as

far as being the sole content of chapter 4, where a classical scheme for reliable

computation was presented. This approach proved itself to be very fruitful, as

we could see in the discussions and results presented. We started in chapter 2

with a brief review of how to describe quantum phenomena known as non-

locality and contextuality in operational terms.

In chapter 3 we have seen some key results. We started with an introduction

to measurement-based quantum computation (MQC), and then introduced a

more general framework for performing computation using correlations, first

described by Anders and Browne [1]. MQC is not yet as widely known as I

believe it deserves to be, for the deep insights it provides.

Non-contextual resources do not provide any computational enhancement,

which is why before quantum mechanics there was no correlations-based model

for computation, as we saw in section 3.3. To close that chapter, in section 3.4

we studied how simultaneous measurements on a GHZ state, with sufficiently

large number of qubits, enable universal computation.

We have also seen that bipartite quantum correlations can be used to en-

able reliable computation in section 5.1. Unfortunately we were not able to

see if this provides a tight separation between contextual and non-contextual

correlations. This remains an open question for future research.

Most striking of all is that quantum correlations that violate contextuality

bounds by an arbitrarily small amount can be used to enable reliable compu-
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tation, as we have seen in section 5.2. This suggests a fundamental difference

between contextual and non-contextual correlations, from a computation per-

spective.

A good indication that such computer science tasks are relevant for physics

is that they provide us with a fundamental understanding, that is not so deeply

rooted in obscure mathematical considerations. Moreover, such an approach

may help identify some theory that is not quantum mechanics, and which may

supersede it.

Applications for such tasks are also within reach of experiments, and there-

fore have practical significance. Applications also attract the interest of the

general public, providing a way to introduce quantum mechanics to a wider

audience.
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