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Abstract

In this thesis we address three theoretical problems related to electronic transport
properties of graphene and one related to interacting Bosonic systems with disorder in
one dimension.

Concerning graphene, we have studied some effects of strain. First, we calculated the
effect of random gauge fields due to out off plane deformation in the Boltzmann conduc-
tivity. We have found that strain plays an important role as a disorder source that limits
the conductivity.

We have also studied Weiss oscillation in graphene due to uniaxial strain. We have
used a quantum Boltzmann approach and first order perturbution theory to this end. We
found measurable values to the conductivity in this system.

The effect of weak localization is still a work in progress. Although the pseudo mag-
netic field in graphene does not break time reversal symmetry in the two valleys, we believe
that the channel responsable for intravalley scattering must be sensitive to dephasing due
to strain. This dephasing time has been calculated.

Concerning the Bosonic system, this is also a work in progress. We have identified
some difficulties in the standard procedure of perturbation theory when applied to this
system and a possible way to face them.



Resumo

Nesta tese estudamos três problemas teóricos relacionados ao grafeno e um problema
relacionado a um sistema bosônico interagente e desordenado em uma dimensão.

Sobre o grafeno, estudamos alguns efeitos das deformações. Primeiro, calculamos o
efeito de campos magnéticos aleatórios devido às deformações fora do plano em uma folha
de grafeno na condutividade de Boltzmann. Encontramos que essas deformações são uma
fonte importante de desordem para condutividade.

Também estudamos as oscilações de Weiss no grafeno devido a deformações unidi-
mensionais. Usamos uma equação de Boltzmann quântica e teoria de perturbações até
primeira ordem para resolver esse problema. Encontramos valores acesśıveis experimen-
talmente para a condutividade.

O efeito de localização fraca na conductividade é ainda um problema em andamento.
Mesmo sabendo que o pseudo-campo magnético devido a deformações não quebra a sime-
tria de inversão temporal quando considerados os dois valleys, acreditamos que a parte
responsável pelo espalhamento intra-valleys deve sentir o efeito desse pseudo-campo. O
tempo de desfasagem devido a esse campo foi calculado.

O problema de sistemas bosônicos também está ainda em andamento. Identificamos
algumas dificuldades na teoria de perturbações usada normalmente para sistemas fermiônicos
e uma possivel forma de resolver esse problema.
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1 Introduction

Graphene is a single layer of carbon atoms in a honeycomb structure. Since its syn-

thesis [2, 3], there has been a lot of interest in this material: first, because of its potential

technological applications as the first truly two-dimensional material and second, because

of its unusual mechanical and electronic properties like linear dispersion relation and chi-

ral nature of low energy excitations. These two properties make graphene very different

from the conventional two dimensional electron gas (2DEG). Among these differences,

we mention the possibility of controlling the Fermi energy by a gate voltage [2, 3] and

the spectrum of the quantum Hall effect [4]. The linear dispersion relation and chiral

nature suggests an analogy with Dirac-like particles and allow us to use methods already

developed for quantum electrodynamics to study the behaviour of electrons in graphene

[5].

At room temperature, graphene has a mobility of the order of µ ≈ 15, 000 cm2V−1s−1,

which is larger than any other semiconductor. However, at very low temperatures this

mobility increases only to µ ≈ 200, 000 cm2V−1s−1 [2, 3], in contrast to mobilities of the

order of µ ≈ 106 cm2V−1s−1 found in GaAs [6, 7]. This suggests that the mobility is

limited by impurities. For potential applications of graphene, in electronics for instance,

[8, 9, 10, 11, 12, 13, 14] and spintronics [9, 15, 16, 17, 18, 19, 20], a better understanding

of the mechanism responsible for this limitation is of paramount importance. There are

many studies in this line both numerical [21, 22, 23] and analytical [24, 25].

Many types of disorder have been considered as scattering mechanism in graphene.

One type of disorder that has been extensively studied is disorder due to charged particles.

In references [26, 27, 28, 29, 30], for instance, one can find some studies from a semiclassical

point of view (Boltzmann’s equation).

Another important type of disorder are lattice deformations [31, 32, 33, 34, 35]. There

are studies that support that deformations give raise to random pseudo-electric and psedo-

magnetic fields [36, 37]. This kind of disorder is anisotropic and must be studied in
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a different way [38] than the presented in standard books [39]. This thesis is mainly

concerned with these deformations.

In chapter 2 we give a brief description of the low effective Hamiltonian that governs

the dynamics of electrons in graphene. The lattice structure of graphene consists of carbon

atoms in a honeycomb-like crystalline structure or two inequivalent triangular sub-lattices,

usually called A and B. Powerful electronic structure calculations, like density functional

theory and ARPES experiments [40] indicates that the electronic properties close to the

charge neutrality point are nicely captured by a tight-binding Hamiltonian with nearest-

neighbor hopping. Its continumm limit is the Dirac Hamiltonian for massless fermions

[40]. These are the effective models we use in this thesis. Next, we discuss the influence

of lattice deformation, ubiquitous in graphene since it is a membrane, in its electronic

properties [40]. We show that lattice deformation and strain ca be expressed in terms of

a pseudo-magnetic field in the Dirac Hamiltonian [40].

In chapter 3 we introduce a disorder model for deformation. We discuss how ripples

in the graphene sheet can give raise to random magnetic fields [33]. Those can be either

intrinsic, due to strain, or extrinsic originated, for instance, by an external applied parallel

magnetic field.

In chapter 4 we present the correction to the Drude-Boltzmann conductivity due to

random magnetic field disorder discussed in chapter 3. This analysis is motivated by an

experimental work [41]. We show that intrinsic and extrinsic magnetic fields disorder

contribute differently to the conductivity tensor anisotropy and qualitatively explain the

experimental data.

In chapter 5 we present the calculations of Weiss oscillations due to uniaxial strain

and an external in-plane magnetic field. It has been theoretically predicted that this

phenomena is quite different in graphene from that in 2DEG. We propose an experimental

set up for Weiss oscillations. Moreover, we show that such experiment can provide further

evidence of the existence of pseudo-magnetic fields in deformed graphene.

In chapter 6 we study the weak localization correction to the Drude-Boltzmann con-

ductivity due to random magnetic fields. These quantum corrections complement the

semiclassical analysis presented in chapter 4 and allow to fully discuss the experiment in

Ref. [41].

Finally, in chapter 7 we address a problem of very different nature, namely, obtaining

the N -particle density of state with disorder for fermions in two dimensions. We also
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show some technical difficulties related to bosonic systems. This chapter corresponds to

a work (still in progress) that I started during my Ph.D. under the supervison of Prof.

Klaus Richter in Regensburg, Germany.
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2 Low energy description of
electrons in graphene: Basic
theory

2.1 Elementary electronic structure of graphene

The tight-binding Hamiltonian for the the π-band of graphene in second quantization

reads [40]

H = −
∑
<i,j>

tija
†
ibj +H.c. (2.1)

where a†i (b†i ) creates (annihilates) an electron in site A (B), tij is the electron hopping

integral between neighbor atoms and the sum is taken over nearest neighbors sites only.

In reciprocal space the Hamiltonian (2.1) reads

H = −
∑
k,n

tne
−ik·δna†kbk +H.c. (2.2)

In the above relations we assumed uniform strain, that is, in all sites the strain depends

only on the neighbor direction corresponding to the index n, where the entries correspond

to the sublattices A(B) and δn are the nearest neighbor vectors (see Fig. 2). In matrix

form (2.2) becomes

H = −
∑
n

tn

(
0 e−ik·δn

eik·δn 0

)
. (2.3)

Diagonalization, gives the dispersion relation

E(k) = ±|
∑
n

tne
−ik·δn|. (2.4)

As illustrated in Fig. 1 the two bands touch each other at six points(which turn out to be

high symmetry points in the Brillouin zone, see below). At E = 0 this energy correspond

to the Fermi energy of the undopped system. Among these six points only two of them
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are non equivalent, defining the valley K and K ′. The low energy properties of graphene

can be accounted for by the study of electrons behaviour around these points [40]. Hence,

Figure 1: Dispersion relation for graphene. Taken from [1].

we expand the momentum around the K-symmetry points. To this end, we introduce

the substitution k→K + k and write

H = −
∑
n

tn

(
0 e−iK·δn

eiK·δn 0

)
[cos(k · δn) + iσz sin(k · δn)]. (2.5)

Expanding up to second order in k

H ≈ −
∑
n

tn

(
0 e−iK·δn

eiK·δn 0

)[
1− (k · δn)2

2
+ iσz(k · δn)

]
. (2.6)

It has been shown [42] that the effect of strain in graphene is to modify the hopping

integral as follows

tn ≈ t

(
1− β

a2
δn · u · δn

)
, (2.7)

where a ≈ 1.42 Å is the carbon-carbon distance, t ≈ 2.7 eV is the nearest neighbor

π-orbitals hopping matrix element, and β = −∂ log t/∂ log a ≈ 2 − 3.37 [42, 43] is the

Grüneisen parameter, a dimensionless material dependent parameter that characterizes

the coupling between the Dirac electrons and the lattice deformations and u is the strain
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tensor whose expression is [42]

uxx(r) =
∂ux(r)

∂x
+

1

2

[
∂h(r)

∂x

]2

,

uyy(r) =
∂uy(r)

∂y
+

1

2

[
∂h(r)

∂y

]2

,

uxy(r) =
1

2

(
∂ux(r)

∂y
+
∂uy(r)

∂x

)
+

1

2

∂h(r)

∂x

∂h(r)

∂y
. (2.8)

where h(r) gives the out of plane deformation of the graphene sheet and ui is the dis-

placement vector that can be calculated, for instance, by minimization of the elastic

energy [42]

Helastic =

∫
dr

λ2
[∑

i

uii(r)

]2

+ µ
∑
ij

[uij(r)]2

 , (2.9)

by fixing h(r) and varying the in-plane contribution. λ and µ are in-plane elastic con-

stants. Using the expression for the modified hopping integral in (2.6), we get

H ≈ −t
∑
n

(
0 e−iK·δn

eiK·δn 0

)[
1− β

a2
δn · u · δn

] [
1− (k · δn)2

2
+ iσz(k · δn)

]
.

(2.10)

The above equation can be separated in three terms, namely

H = H0 +Hw +Hs (2.11)

where H0 gives the standard low energy Dirac Hamiltonian,

H0 = −t
∑
n

(
0 e−iK·δn

eiK·δn 0

)
[iσzk · δn] , (2.12)

Hw corresponds to a term called trigonal warping, and is given by

Hw = t
∑
n

(
0 e−iK·δn

eiK·δn 0

)[
(k · δn)2

2

]
, (2.13)

while Hs corresponds to the contribution of strain (in linear order) and is given by

Hs = t
∑
n

(
0 e−iK·δn

eiK·δn 0

)(
β

a2
δn · u · δn

)
. (2.14)

In the following sections we will explore in more detail each one of these contributions.
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2.2 Dirac Hamiltonian and trigonal warping

Let us analyze here H0 and Hw corresponding to Eq. 2.12 and Eq. 2.13. Let us

assume a zigzag type lattice orientation along the x-axis, as shown in Fig. 2. In this case,

the nearest neighbors vectors are

a) b)

Figure 2: Sketch of a graphene lattice a) zigzag orientation in the x-direction and b)
Corresponding Brillouin zone.

δ1 =
a

2

( √
3

1

)
, δ2 =

a

2

(
−
√

3

1

)
, and δ3 = a

(
0

−1

)
. (2.15)

while the two inequivalent high symmetry points are

K =
4π

3a

( √
3/3

0

)
and K ′ =

4π

3a

(
−
√

3/3

0

)
. (2.16)

Using the K-symmetry point for the expansion we arrive at the identity(
0 e−iK·δn

eiK·δn 0

)
= i

σ · δn
a

σz, (2.17)

Hence

HK
0 = t

∑
n

σ · δn
a

(k · δn) . (2.18)

Finally, using the identity

3∑
n=1

(v1 · δn)(v2 · δn) =
3a2

3
v1 · v2 (2.19)
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where v1 and v2 are any arbitrary vectors in the 2D lattice, we write

HK
0 = vFσ · p (2.20)

where vF = 3at/(2~) is usually called Fermi velocity and p = ~k. The eigenvalues of

equation (2.20) are

E(k) = ±vF~|k|. (2.21)

We can interpret E(k) = +vF~|k| as a dispersion relation for electrons (or conduction

band) and E(k) = −vF~|k| as a dispersion relation for holes (or valence band). The

corresponding eigenvectors are:

|k+〉 =
1√
2

(
1

eiθ

)
and |k−〉 =

1√
2

(
1

−eiθ

)
, (2.22)

with θ = arctan(ky/kx).

Trigonal warping is a deviation from the liner dispersion relation. The calculation of

this term around the K-point is straightforward. Using again the identity (2.17), it is

HK
w = −µ

(
0 (px + ipy)

2

(px − ipy)2 0

)
, (2.23)

with µ = 3a2t/8~2. The importance of this contribution will be addressed in Chapter(6).

The Dirac Hamiltonian in the K ′ valley can be obtained as follows. Since K′ = −K,

using (2.17) one writes(
0 e−iK

′·δn

eiK
′·δn 0

)
=

(
0 e−iK·δn

eiK·δn 0

)∗
= −iσ

∗ · δn
a

σz. (2.24)

Hence

HK′

0 = −vF~σ∗ · k. (2.25)

For cases where both valley components mix, it is necessary to consider the full Hamil-

tonian. This more general case will be considered in chapter 6.

2.2.1 Density of states

The electronic density of states is defined as

ρ(E) =
4

A

∑
k

δ(E − E(k)) (2.26)
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where the 4 factor takes into account the valley and spin degeneracy and A is the area of

the graphene sheet. By inserting Eq.(2.21) into Eq. (2.26), we get

ρ(E) =
2

π

|E|
(~vF )2

. (2.27)

This is different from the usual 2DEG where the density of states is constant, independent

of the energy. The electronic density is calculated as

n =

∫ EF

0

ρ(E)dE =
k2
F

π
(2.28)

and we have the relation kF =
√
π|n| between the Fermi wavelength and the electronic

density. Again this expression is different from the one of a 2DEG (k
(2DEG)
F =

√
2π|n|).

This difference between graphene and 2DEG in the density of states and the electronic

densiy as a function of the Fermi wave length can be ascribed to the linear dispersion

relation in graphene.

2.2.2 Helicity and chirality

The helicity is defined as the spin projection along the direction of the momentum. For

graphene one defines the helicity by replacing the actual electronic spin by the pseudospin

degree of freedom correspinding to the A and B sublattices. It reads[44]

ĥ =
σ · p
|p|

=
1

vF |p|
HK . (2.29)

When the linear term in the Hamiltonian is dominant, the helicity is conserved in each

valley (a symmetry of the system). This means that [Ĥ, ĥ] = 0. For the valley K the

helicity is positive(negative) for conduction(valence) electrons respectively, namely

ĥ|k+〉 = |k+〉 (2.30)

ĥ|k−〉 = −|k−〉,

In the valley K ′

ĥ|k′+〉 = −|k′+〉 (2.31)

ĥ|k′−〉 = |k′−〉.

This means that if we have a a long range scalar potential as the dominant source of

disorder, backscattering is prohibited. In order to have backscattering it is needed the

potential to be short-range in nature, this is, we need intervalley scattering.
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Note that if we increase the energy (doping) this symmetry is broken and backscatter-

ing is allowed. This fact can be observed if we consider the linear term in the low energy

Hamiltonian plus the trigonal warping. We explore this issue at length in Chapter(6),

where we discuss the inter and intra-valley contribution to weak localization, namely a

coherent backscattering correction to the Drude-Boltzmann conductivity.

2.3 Strain contribution and lattice orientation

The derivation of an effective low energy correction due to strain is very transparent

and straightforward for the zigzag orientation, while for the armchair is a little more tricky.

Here we put forward a simple derivation that works for any lattice orientation, as shown

in Fig. (3). For convenience, let us assume that the zigzag lattice orientation is rotated

with respect to the strain direction by θ. The strain contribution to the Hamiltonian

Figure 3: Honeycomb lattice orientation with respect to the strain tensor x−y coordinates
axis (a) x-axis aligned with the crystal zigzag direction (b) x-axis is rotated with respect
to the zigzag crystal direction, defined by x′.

reads

HK
s = t

∑
n

i
σ · δn
a

σz

(
β

a2
δTn · u · δn

)
. (2.32)

By construction δn = R(θ)δzz
n , hence 1

HK
s = t

3∑
n=1

i
σ ·R(θ)δzz

n

a
σz

(
β

a2
(δzz
n )T ·

[
RT (θ)uR(θ)

]
· δzz

n

)
(2.33)

1Here δzzn represent the nearest-neighbor vectors of the honeycomb lattice with the zigzag crystallo-
graphic direction oriented along the x-axis of the strain tensor.
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where the (active) rotation matrix is

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
(2.34)

Let us introduce u ≡ RT (θ)uR(θ), where calculated

uxx =
uxx + uyy

2
+
uxx − uyy

2
cos 2θ + uxy sin 2θ (2.35)

uyy =
uxx + uyy

2
− uxx − uyy

2
cos 2θ − uxy sin 2θ (2.36)

uxy =− uxx − uyy
2

sin 2θ + uxy cos 2θ (2.37)

To obtain (δzz
n )T · u · δzz

n we copy the brute force results obtained for δn · u · δn in the

zigzag case (see appendix (B)), namely,

1

a2
(δzz

1 )T · u · δzz
1 =

1

4
(3uxx + 2

√
3uxy + uyy) (2.38)

1

a2
(δzz

2 )T · u · δzz
2 =

1

4
(3uxx − 2

√
3uxy + uyy) (2.39)

1

a2
(δzz

3 )T · u · δzz
3 =uyy (2.40)

Now we calculate δn = R(θ)δzz
n

δ1 =
a

2

( √
3 cos θ − sin θ
√

3 sin θ + cos θ

)
(2.41)

δ2 =
a

2

(
−
√

3 cos θ − sin θ

−
√

3 sin θ + cos θ

)
(2.42)

δ3 = a

(
sin θ

− cos θ

)
(2.43)

Collecting all results we arrive at the final strain Hamiltonian term,

Hs =
3ta

2~

[
−σx

β~
a

(
uxx − uyy

2
cos 3θ + uxy sin 3θ

)
+ σy

β~
a

(
−uxx − uyy

2
sin 3θ + uxy cos 3θ

)]
(2.44)

Hence, we identify the vector

A(θ) =
β~
ae

(
uxx−uyy

2
cos 3θ + uxy sin 3θ

uxx−uyy
2

sin 3θ − uxy cos 3θ

)
. (2.45)
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Using the vector potencial A obtained from the strain analysis in the zigzag case, Eq. (A.6),

it is easy to verify that

A(θ) =
β~
ae

(
cos 3θ − sin 3θ

sin 3θ cos 3θ

)(
uxx−uyy

2

−uxy

)
. (2.46)

Or in a compact form

A(θ) = R(3θ) ·A. (2.47)
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3 Random magnetic fields in
graphene

In this chapter we present a model to study the effect of extrinsic and intrinsic sources

of a random magnetic fields in the dynamics of electrons in corrugated graphene monolayer

samples.

As discused in the introduction, close to the charge neutrality point, the electronic

dispersion relation of pristine graphene monolayers is linear and has two degenerate com-

ponents, with corresponding K and K ′ valley indices[44]. In the presence of a magnetic

field, the effective electronic Hamiltonian for the K-valley reads

HK = vFσ · [p+ eA(r)] = HK
0 + V (r), (3.1)

where the vector potential A(r) has been included in HK by minimal coupling. Here

vF ≈ 106m/s, σ are the Pauli matrices acting on the sublattice space, and p is the

electron momentum operator. The Hamiltonian for the K ′ valley has a similar structure

[44].

In the long wave length description, a generic long-ranged disorder potential V (r) is

represented in both K and K ′ valleys by

V (r) =
∑
i

σiV
(i)(r), (3.2)

where i = 0 stands for scalar disorder (with σ0 = I2) and i = 1, 2 for vector potential

disorder, while i = 3 represents a mass term. The focus of our study are (intrinsic and

extrinsic) disordered gauge fields, associated with V (1) and V (2). In this chapter we do

not explicitly consider scalar disorder.
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Let us introduce

〈k′s′|V |ks〉 =
1

2

[
1 + ss′ei(θ−θ

′)
]
V

(0)
k−k′+ (3.3)

seiθ

2

(
V

(1)
k−k′ − iV

(2)
k−k′

)
+
s′e−iθ

′

2

(
V

(1)
k−k′ + iV

(2)
k−k′

)
,

where the spinor

〈r |ks〉 =
1√
2A

(
1

seiθ

)
eik·r, (3.4)

is an eigenstate of HK
0 , θ = tan−1(ky/kx), s indicates particle (s = +1) or hole (s = −1)

doping, A is the sample area and

V
(i)
k−k′ =

1

A

∫
dr ei(k−k

′)·r V (i)(r) (3.5)

is the momentum representation of V (i). Since we deal with elastic processes, we assume

in the remaining of the paper that s = s′.

3.1 Disordered ripples

The ripple disorder model studied here is defined as follows: We describe the graphene

sheet surface by z = h(r), where h is the surface displacement with respect to the reference

plane z = 0 at the position r = (x, y). The average of h is set to zero. In line with the

experiments on graphene deposited over a substrate[41, 45, 46, 47, 48], we further assume

that the typical heights hrms are much smaller that the ripple lengths λ.

We model the ripple fluctuations in h(r) by the correlation function

〈h(r)h(r′)〉 = h2
rms F

(
|r − r′|

λ

)
, (3.6)

where 〈· · · 〉 denotes an average over disorder. Although theory predicts a power law

height-height correlation function for free-standing membranes [31], experiments support

single-parameter correlations for the (static) ripples of graphene deposited over a sub-

strate. For latter convenience, let us define

h(q) =
1

A

∫
dreiq·rh(r), (3.7)



15

where A is the sample size. In reciprocal space

〈h(q)h(q′)〉 = h2
rms F (q)δq,−q′ , (3.8)

where F (q) is the Fourier transform of the correlation function F (|r − r′|).

We address two mechanisms that generate random magnetic fields. First, we study

the case of an external strong magnetic field B‖ applied parallel to the graphene sheet.

We show that, due to the ripples, B‖ gives rise to a random effective magnetic field Bext(r)

perpendicular to the graphene surface. Next, we discuss the intrinsic pseudo-magnetic

field Bint originated by the strain field corresponding to the graphene sheet profile height

h(r).

3.1.1 Random magnetic field due to ripples and an in-plane ex-
ternal B-field

Let us first consider the setup of a magnetic field applied parallel to the sample

z = 0, that has been experimentally investigated in a variety of systems [49, 50, 51, 41].

For notational convenience, in what follows we fix the direction of B‖ along the x-axis,

namely, B‖ = B‖x̂.

λ

B||

Bext

n̂

x 

z 

h(x,y)

Figure 4: Sketch of h(r) along the x direction. The ripple amplitudes δh are enhanced
and made comparable with λ to help the illustration.

As illustrated in Fig. 4, the parallel magnetic field B‖ has a component perpendicular

to the surface z = h(r) that is given by

Bext(r) = −B‖ · n̂(r). (3.9)
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At the point r0 = (x0, y0), the surface z = h(r) has a unit normal vector

n̂(r0) =
1√

1 +
(
∂h
∂x

)2
+
(
∂h
∂y

)2


∂h/∂x

∂h/∂y

−1


∣∣∣∣∣∣∣∣
r=r0

. (3.10)

We assume that the typical displacement magnitude is characterized by δh. For δh� λ,

we write

n̂(r0) ≈ (∂h/∂x, ∂h/∂y,−1)
∣∣∣
r=r0

. (3.11)

Hence, the effective local perpendicular magnetic field reads

Bext(r) = −B‖ ·∇h(r), (3.12)

and is expressed, in a convenient gauge for B‖ = B‖x̂, by the vector potential

Ax(r) = 0 and Ay(r) = −B‖h(r) . (3.13)

Figure 5(a) illustrates a typical disorder realization of h(r) with fluctuations charac-

terized by the Gaussian correlation function F (x) = exp (−x2/2λ2). The corresponding

magnetic field Bext(r), normal to the graphene sheet, is shown in Fig. 5(b). While h(r)

displays an isotropic disorder, Bext(r) is clearly anisotropic. The anisotropy direction of

Bext(r) depends on the orientation of B‖.

The anisotropy is quantified by inspecting the autocorrelation function

〈Bext(r)Bext(r
′)〉 = B2

‖

〈
∂h(r)

∂x

∂h(r′)

∂x′

〉
, (3.14)

that can be expressed in terms of F by direct differentiation. Alternatively, going to

reciprocal space, one writes〈
∂h(r)

∂x

∂h(r′)

∂x′

〉
= h2

rms

∑
q

q2
x F (q)e−iq·(r−r

′)

= −h2
rms

d2

dx2
F (ρ), (3.15)

with ρ = r − r′.

Hence the corresponding Bext(r) autocorrelation function reads

〈Bext(r)Bext(r
′)〉 = B2

‖
h2

rms

λ2

[
1−

(ρ
λ

)2

cos2 α

]
e−

ρ2

2λ2 (3.16)

where α is the angle between B‖ (or the x-axis) and ρ.
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Figure 5: Typical disorder realization of (a) h(r), characterized by a Gaussian correla-
tion function F . The corresponding (b) Bext(r) for an external B‖ applied along the x
direction, defined in Eq. (14). (c) Bint(r) due to lattice deformations, given by Eq. (3.18).

Figure 6: Extrinsic and intrinsic magnetic field correlations functions: (a) Cext(r − r′) =
〈Bext(r)Bext(r

′)〉 for an external B‖ applied along the x-direction and (b) Cint(r − r′) =
〈Bint(r)Bint(r

′)〉 due to strain in units of h4
rms/λ

6(~β/ea)2, both corresponding to a ripple
disordered surface h(r) characterized by a Gaussian correlation function.
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Figure 6(a) shows the Bext(r) autocorrelation function obtained by averaging over 105

ripple disorder realizations of h(r), as defined by Eq. (3.6) with a Gaussian correlation

function F (for more details see, for instance, Ref. [23]). As expected, it coincides with

Eq. (3.16) and expresses the anisotropy captured by a visual inspection of Fig. 5(b).

3.1.2 Pseudomagnetic field due to strain

The out of plane deformations of a rippled membrane described by h(r) can be asso-

ciated with the strain tensor uij(r) given by [52, 53, 36]

uxx ≈
1

2

(
∂h

∂x

)2

, uyy ≈
1

2

(
∂h

∂y

)2

, and uxy ≈
1

2

(
∂h

∂x

∂h

∂y

)
. (3.17)

For simplicity we have neglected the effect of in-plane deformations.

As discussed in chapter (2), the effect of strain in the low-energy electronic structure

of graphene can be accounted for by introducing a scalar and a vector gauge potential

in the Dirac equation [31, 37, 54]. For the K-valley and for a zigzag crystallographic

orientation along the x-axis, A = (Ax, Ay) is given by

Ax(r) =
~βκ
ea

[uxx(r)− uyy(r)],

Ay(r) = −2
~βκ
ea

uxy(r) , (3.18)

with κ ≈ 1/3 [32]. For any given h(r) one can readily calculate the pseudo-magnetic field

Bint = ∇ ×A. Since Az = 0 and neither Ax nor Ay depend on z, Bint = Bintẑ. Figure

5(c) shows the Bint corresponding to the random rippled surface h(r) of Fig. 5(a). Notice

that the typical correlation length of Bint(r) is much shorter than that of h(r).

Let us calculate 〈Bint(r)Bint(r
′)〉 for a random Gaussian correlated h(r), correspond-

ing to Eq. (3.6) with F (x) = e−x
2/2λ2 . To this end, we calculate the Fourier transform of

the intrinsic pseudo magnetic field, namely

Bint(q) = i
~βκ
ea

[qyuxx(q) + 2qxuxy(q)− qyuyy(q)], (3.19)

with

uij(q) = −1

2

∑
q′

q′i(qj − q′j)h(q′)h(q − q′), (3.20)

where i and j label the Cartesian coordinates.

We use Eqs. (3.19) and (3.20) to write the correlation function of Bint in momen-
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tum space. The evaluation of 〈Bint(q)Bint(−q)〉 amounts to compute the corresponding

〈uij(q)ui′j′(−q)〉, that result in four-point h correlation functions. The calculations can

be done exactly for Gaussian fluctuations and provides a good qualitative estimate for

other cases[31]. We obtain (See appendix (B) for details)

〈Bint(q)Bint(−q)〉 =
h4

rmsπ

32λ2A

(
~βκ
ea

)2

q2

[
16 + λ4q4 sin2 3θ

]
e−λ

2q2/4, (3.21)

where θ is the angle between q and the x-direction. By Fourier transforming back to

coordinate space, we arrive at

Cint(r − r′) ≡ 〈Bint(r)Bint(r
′)〉 =

h4
rms

λ6

(
~βκ
ea

)2
[

8− 20
ρ2

λ2
+ 9

ρ4

λ4
− 2

ρ6

λ6
sin2 3α

]
e−ρ

2/λ2 ,

(3.22)

where α is the angle between ρ = r − r′ and the x-axis. 1

The correlation function Cint(r − r′) has 6 symmetry axes, reflecting the underly-

ing graphene honeycomb lattice symmetry[36]. In other words, information about the

graphene crystal structure survives disorder averaging. Figure 6(b) shows Cint(r − r′)
obtained from 105 numerical realizations of Gaussian correlated disorder for h(r). The

numerical simulations serve as a helpful test to check our analytical results. As in the

previous subsection, we verify an excellent agreement within the statistical precision.

1Since we only considered the out of plane contribution in the strain tensor, Eq. (3.21) gives a slightly
different correlation function than the one found in Ref. [36], where a more general expression for the
strain tensor was used.
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4 Graphene electronic transport
in a random magnetic field

At low temperatures, scalar disorder (short and long ranged) is the main source of

momentum relaxation in graphene systems [21, 55]. In this thesis we use a phenomeno-

logical transport time τs to account for effects of scalar disorder in the conductivity. We

assume that τs is much shorter than the characteristic transport times due to random

gauge fields. In Sec. 5.4, where we compare our results to experiments and, we show

that τs indeed dominates the conductivity in graphene, but some significant transport

properties can only be explained by taking into account random gauge fields effects.

4.1 Drude-Boltzmann conductivity

In this Section we use the effective Dirac Hamiltonian of Eq. (3.1) to calculate the

transport time and the Drude-Boltzmann conductivity of graphene monolayers in the

presence of random gauge fields.

High mobility graphene samples have typical electronic mean free paths of ` & 50

nm [41]. Recalling [44] that the carrier density is related to the Fermi wave number

by kF =
√
π|n|, one readily obtains that kF ` � 1 already for a doping of |n| ≈ 1011

cm−2. This indicates that already for modest carrier densities a semiclassical transport

description is justified. For |n| & 1011 cm−2 the typical graphene conductivity in good

quality samples is much larger than e2/h, the order of magnitude of quantum contributions

to the electronic transport, such as weak localization [56, 57, 21] and universal conductance

fluctuations [58]. In such situations, the Boltzmann approach is very successful in assessing

the conductivity, as shown by direct comparison with numerical simulations using an

atomistic basis [23, 59]. As one approaches the charge neutrality point, and kF ` . 1,

the semiclassical method is no longer suited and one has to resort to more sophisticated

approaches [24, 21].
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We now discuss how to add gauge field disorder in the Boltzmann approach. For long

ranged disorder, some authors [60, 61, 62] argue that it can be advantageous to include

the disorder potential in the classical Liouvillian evolution, that is, to treat V (r) in the

left-hand side of the Boltzmann equation.

This approach is justified in the “classical” regime, where kFλ � 1, that is, where

the random fields characterized by the scale λ vary slowly in the scale of kF . In graphene

with ripple sizes λ of the order of few to ten nanometers [45, 46, 47, 48], the latter

inequality holds for a carrier density |n| � 1012 cm−2, which is much higher than the

doping considered in most experiments [44].

In this thesis, we calculate transport times for both short and long ranged disorder by

evaluating the corresponding Boltzmann collision integral (at the right-hand side of the

equation). As mentioned in the introduction of this chapter, for graphene on standard

substrates (the case of interest here), the random gauge field contribution to the conduc-

tivity is not the dominant one. Hence, the electron mean free path due to ripples is larger

than ` and the arguments justifying the semiclassical approximation hold.

The stationary and uniform Boltzmann equation for graphene under a uniform electric

field E reads [39, 44]

−eE · ∂εk,s
∂p

∂f0

∂ε
=
∑
k′,s′

(gk,s − gk′,s′)Wk′,s←k,s (4.1)

where εk,s = svF~|k|, f0(ε) is the Fermi distribution function, gk = fk − f0 represents

the deviation from the equilibrium distribution due to the electric field, and Wk′,s′←k,s is

the transition rate from state (k, s) to (k′, s), that we calculate using Fermi golden rule,

namely

Wk′,s′←k,s =
2π

~
〈
|〈k′s′|V |ks〉|2

〉
δ(εk,s − εk′,s′), (4.2)

where V is a generic long-ranged disorder potential parametrized by Eq. (3.2). The δ-

function reflects the fact we are dealing with elastic processes and, hence, s = s′. In our

model, the transition rates do not depend on s. Accordingly we drop this index whenever

its omission does not introduce an ambiguity.

The scattering processes we address are anisotropic. The calculation of the transport

properties in this case is slightly different [63, 64] than that of the standard isotropic case

[39]. Here, we adapt the nice method developed by Tokura [38] – that is briefly described

in what follows – to calculate the transport times of massless Dirac electrons in graphene.

In both situations of interest, the scattering potential correlation functions have at
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least one symmetry axis. For convenience, we choose the x-axis along a symmetry axis

and define [38]

gk =

(
−∂f0

∂εk

)
evk τ (θ) ·E, (4.3)

where τ (θ) is the relaxation time vector to be solved. We recall that θ is the angle between

k and the x-axis. Note that τ depends explicitly on θ and implicitly on |k|.

The current density (spin and valley degeneracies included) is given by

j =
4

A

∑
k

evkgk

=
e2

π2

∫ ∞
0

dkk

(
−∂f0

∂εk

)∫ 2π

0

dθ vk vk[τ (θ) ·E], (4.4)

from which one obtains the conductivity tensor

σ =
e2|εF |
~2π2

∫ 2π

0

dθ

(
τx(θ) cos θ τy(θ) cos θ

τx(θ) sin θ τy(θ) sin θ

)
, (4.5)

where εF is the Fermi energy, measured with respect to the charge neutrality point energy.

For the sake of simplicity, in Eq. (4.5) we have taken the zero-temperature limit, namely,

−∂f0/∂ε = δ(ε− εF ).

By substituting the ansatz (4.3) in the Boltzmann equation, Eq. (4.1), one obtains a

set of integral equations for τ (θ), namely

cos θ =

∫ 2π

0

dθ′[τx(θ)− τx(θ′)]W(θ, θ′) (4.6)

sin θ =

∫ 2π

0

dθ′[τy(θ)− τy(θ′)]W(θ, θ′), (4.7)

where θ′ is the angle between k′ and the x-axis, and

W(θ, θ′) =
A

(2π)2

∫ ∞
0

dk′k′Wk′,s←k,s

=
A|εF |

2πv2
F~3

〈
|〈k′, s|V |k, s〉|2

〉
, (4.8)

where, due to the zero-temperature limit, k = k′ = kF .

The matrix element 〈k′, s|V |k, s〉 depends on q = k − k′ and ϕ = π/2 + (θ + θ′)/2,

the angle between q and the x-axis. Hence, W(θ, θ′) is conveniently cast as W(qζ , ϕ). We

use the standard notation ζ = |θ − θ′| and qζ = 2kF sin(ζ/2).

By expressing τx and τy in terms of a Fourier series, one transforms Eqs. (4.6) and
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(4.7) into an (infinite) set of algebraic equations. Using the x-axis symmetry and that

W(θ, θ′) = W(θ′, θ) 1, one shows that[38]

τx(θ) =
∞∑
n=1

τ (n)
x cos[(2n− 1)θ] (4.9)

τy(θ) =
∞∑
n=1

τ (n)
y sin[(2n− 1)θ]. (4.10)

By inserting the above relations in Eq. (4.5), we find that the conductivity tensor is

diagonal, with

σxx =
e2|εF |
~2π

τ (1)
x and σyy =

e2|εF |
~2π

τ (1)
y , (4.11)

that supports the interpretation of τ (1) as a transport time vector.

The symmetry W(θ, θ′) = W(θ′, θ) implies that W(qζ , ϕ) = W(qζ , ϕ+ π) = W(qζ , ϕ−
π). In turn

W(qζ , ϕ) =
∞∑
n=0

Wn(qζ) cos(2nϕ), (4.12)

with an obvious inversion relation.

By using the Fourier expansions for τ (θ) and W (qζ , ϕ), Eqs. (4.6) and (4.7) can be

cast in matrix form [38]

δl,1 =
∞∑
n=1

M−
l,nτ

(n)
x and δl,1 =

∞∑
n=1

M+
l,nτ

(n)
y , (4.13)

where δl,1 is the Kronecker delta and the matrix elements of M± are[38]

M±
l,n =

(−1)l−n

2

[
(1 + δl,n)J|l−n|,n+l−1 ± Jn+l−1,|l−n|

]
, (4.14)

with

Jn,m =

∫ 2π

0

dζWn(qζ)[cos(nζ)− cos(mζ)]. (4.15)

Finally, by inverting M± in Eq. (4.13), one writes the vector transport time components

as

τ (1)
x = [(M−)−1]11 and τ (1)

y = [(M+)−1]11. (4.16)

Note that for isotropic scattering, all Wn with n > 0 are zero and M± is diagonal,

with elements Kl,l = J0,2l−1. Hence, the vector transport time components coincide,

1Microreversibility is usually invoked to guarantee W(θ, θ′) = W(θ′, θ) and Eq. (4.1). In the presence
of an external magnetic field, that breaks time-reversal symmetry, W(θ, θ′) = W(θ′, θ) still holds true
within the Fermi golden rule approximation used in Eq. (4.2)
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τ
(1)
x = τ

(1)
y = τ (1), and read

1

τ (1)
= J0,1 =

∫ 2π

0

dζW0(qζ)(1− cos ζ), (4.17)

which is the standard expression for the transport time in isotropic systems.

4.1.1 Effect of an in-plane magnetic field

Let us now calculate the effect of an external parallel magnetic field on the conduc-

tivity. From Eq. (3.13) we write the effective disorder potential for the K-valley as

Vext(r) = vF eσyAy(r) = −vF eB‖h(r)σy. (4.18)

We recall that h(r) varies slowly in the scale of the lattice spacing and, hence, Vext(r) is

long-ranged and does not mix valleys [44].

The momentum relaxation rate Wk′←k reads

Wk′←k = δ(k − k′)2πe2vF
~2

B2
‖ sin2

(
θ + θ′

2

)
Ch(q)

A
, (4.19)

where

Ch(q) =

∫
dr eiq·r

〈
h(0)h(r)

〉
(4.20)

is the form factor of the height-height correlation function. Here 〈· · · 〉 indicates disorder

average.

From Eq. (4.8) we obtain

W(q, ϕ) =
(eB‖)

2|εF |
4π~3

Ch(q)(1 + cos 2ϕ), (4.21)

which has only 2 non-zero Fourier components, namely,

Wn(q) =
(eB‖)

2|εF |
4π~3

Ch(q), for n = 0, 1 (4.22)

while Wn(q) = 0 for n ≥ 2.

In this case, the M± matrix is tridiagonal and reads [38]

M± =


(1∓ 1

2
)J0,1 −1

2
J1,2 0 · · ·

−1
2
J1,2 J0,3 −1

2
J1,4 · · ·

0 −1
2
J1,4 J0,5 · · ·

...
...

...
. . .

 . (4.23)
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The inverse transport time components are given by

1

τ
(1)
x

=
3

2
J0,1 − Γ3 and

1

τ
(1)
y

=
1

2
J0,1 − Γ3, (4.24)

where Γ3 is isotropic and determined by the continued fraction relation

Γm =
(J1,m−1)2

4(J0,m − Γm+2)
. (4.25)

In practice, we compute Γ3 by assuming that Γm = 0 as a seed for the iteration of (4.25).

The choice of m determines the precision of the calculation: The larger m, the more

accurate is Γ3.

Assuming that Γ3 � J0,1 leads to an interesting result, that is

1

τ
(1)
y

=
1

3τ
(1)
x

=
(eB‖)

2|εF |
8π~3

∫ 2π

0

dζ(1− cos ζ)Ch(q). (4.26)

In this limit τ
(1)
y /τ

(1)
x = 3. In other words, for Γ3 � J0,1 the corrections to the conductivity

due to B‖ lead to ∆σyy = 3∆σxx, regardless of the dependence of correlation function

Ch(q) on q.

For the limiting case of Γ3 = 0 and Ch(q) = 2πλ2h2
rmse

−λ2q2/2, we write τ
(1)
x,y in closed

analytical form, namely

1

τ
(1)
y

=
1

3τ
(1)
x

=
(eB‖)

2|εF |
4~3

(λhrms)
2e−λ

2k2F
[
I0(λ2k2

F )− I1(λ2k2
F )
]
, (4.27)

where I0 and I1 are modified Bessel functions of the first kind. We use [44] kF =
√
π|n|

to express the conductivity in terms of the charge carrier density n. We conclude that the

correction to the conductivity due to an in-plane magnetic field depends quadratically on

hrmsB‖ and has a non-trivial dependence on λ2|n|.

In the high doping limit of λ|n|1/2 � 1, Eq. (4.27) gives

∆σyy = 3∆σxx ≈ 2
√

2~|n|3/2 λ

h2
rms

1

B2
‖
. (4.28)

in agreement with Ref. [41].

Figure 7 shows the resistivity ∆ρyy versus the carrier density n (due to particle hole

symmetry, we only show n > 0) for m = 3 and m → ∞. The optimal m value to

obtain convergence depends on λ2n. The inset shows ∆ρyy for λ2n values outside the

validity range of the asymptotic expansion. As discussed in the next section, the λ2n
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range displayed in the inset corresponds to the typical experimental situation. We find

that the |n|−3/2 scaling predicted by the asymptotic expansion (4.28) that assumes Γ3 = 0

is only a rough approximation.
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Figure 7: Resistivity ∆ρyy in units of ρ0 = (πλhrmsB‖)
2/2~ due to B‖ as a function of

λ2n. Inset: The same as in the main plot in log-log scale to illustrate the dependence of
∆ρxx on |n|.

In general, Γ3 is a non-vanishing correction to the transport time components, hence

τ
(1)
y /τ

(1)
x 6= 3. However, for Gaussian ripple height correlations, the ratio τ

(1)
y /τ

(1)
x is a

function only of λkF .

Figure 8 shows τ
(1)
y /τ

(1)
x versus λ2n. It illustrates the importance of Γ3 in the calcula-

tion of the conductivity corrections. We find that by increasing the carrier concentration

the anisotropic conductivity is considerably favored.

The transport properties predicted by Eq. (4.27) are only slightly modified for the

case of exponential ripple heigh correlations, 〈h(0)h(r)〉 = h2
rmse

−r/λ: For λ|n|1/2 � 1,

the resistivity tensor given by Eq. (4.28) is multiplied [65] by a prefactor of order of unity

times log(λ2|n|).

4.1.2 Effect of strain fields

Let us now consider the effect of the pseudo-magnetic fields due to strain, Bint, in the

conductivity of monolayer graphene sheets. In contrast to the mechanism discussed above,

Bint(r) is solely determined by h(r) and the material properties. Hence, it is intrinsic to

any graphene sample with disordered ripples.
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Figure 8: Ratio τ
(1)
y /τ

(1)
x as a function of πλ2n. For πλ2n < 5.0, the limit m → ∞ is

attained within 10−4 accuracy for m = 13.

We use Eq. (3.18) to calculate the vector transport time τ for the intrinsic effective

vector potential due to strain. For the K-valley Vint reads

Vint(r) = ~vF
βκ

a

{
[uxx(r)− uyy(r)]σx − 2uxy(r)σy

}
. (4.29)

In contrast with the previous subsection, here it is difficult to make quantitative

progress without assuming a specific form for the ripple height correlation function. The

qualitative behavior of the conductivity corrections due to strain that has been reported

in the literature [31] is not sufficient for the analysis we propose.

As in Sec. 3.1.2, we calculate 〈uij(r)ui′j′(r
′)〉 by assuming Gaussian correlated ripple

height fluctuations, Ch(q) = 2πλ2h2
rmse

−λ2q2/2. After some lengthy but straightforward

algebra, we obtain

〈|〈k′s|Vint|ks〉|2〉 =
v2
F~2β2κ2

32a2

πh4
rms

λ2A

{
16 + λ4q4 cos2

[
3

2
(θ + θ′)

]}
e−λ

2q2/4.

Using Eq. (4.8) we arrive at

W(q, ϕ) = Wint

[
16 +

λ4q4

2
(1 + cos 6ϕ)

]
e−λ

2q2/4, (4.30)

where

Wint =
β2κ2|εF |

64a2~
h4

rms

λ2
. (4.31)

(The notation is the same as that of the previous section.)
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The only non-zero Fourier components of W(q, ϕ) are

W0(q) = Wint

(
16 +

λ4q4

2

)
e−λ

2q2/4 and

W3(q) = Wint
λ4q4

2
e−λ

2q2/4. (4.32)

In this case, the M± matrix reads[38]

M± =



J0,1 0 ∓1
2
J3,2 −1

2
J3,4 · · ·

0 J0,3 ∓ 1
2
J3,0 0 0 · · ·

∓1
2
J3,2 0 J0,5 0 · · ·

−1
2
J3,4 0 0 J0,7 · · ·
...

...
...

...
. . .


, (4.33)

and the inverse transport time components are given by

1

τ
(1)
x/y

= J0,1 −
(J3,2)2

4J0,5

− (J3,4)2

4J0,7

+ · · · . (4.34)

Since τ
(1)
x = τ

(1)
y , the conductivity corrections due to the strain field are isotropic. This

result seems to be at odds with the fact that the pseudo-magnetic field autocorrelation

function 〈Bint(r)Bint(r
′)〉 clearly shows an hexagonal symmetry, as illustrated by Fig. 6b.

As shown by Tokura [38], using general arguments, this is a false paradox: The conduc-

tivity tensor becomes anisotropic only for scattering processes characterized by a single

symmetry axis, like in the B‖ case, analyzed in the previous subsection.

Assuming that J0,1 vastly dominates the sum in Eq. (4.34), we obtain

1

τ
(1)
x/y

= Wintπe
−λ2k2F /2

[
(32+8λ2k2

F+16λ4k4
F )I0(λ2k2

F/2)−(64+24λ2k2
F+16λ4k4

F )I1(λ2k2
F/2)

]
,

(4.35)

where I0 and I1 are modified Bessel functions of the first kind.

In the limit of λkF � 1, we write

∆σxx = ∆σyy ≈
e2

h

32π

23β2κ2

λ2a2

h4
rms

λ3|n|3/2. (4.36)

The above asymptotic expansion for ∆σ helps us to develop some insight on the relevant

parameters, but is not accurate for the current experimental situations of interest. As

expected the strain corrections to the conductivity depend on material parameters, and

are a non-trivial function of λ, hrms, and |n|. Since these corrections are small compared to
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other disorder effects, they are difficult to be noticed in standard transport experiments.

This situation changes if we consider the combined effect of intrinsic and extrinsic random

magnetic fields, as we discuss in the next section.

4.1.3 Combined effect of extrinsic and intrinsic random mag-
netic fields

We conclude this chapter by analyzing the combined effect of both previously discussed

sources of random magnetic field disorder. As before, we assume that the system transport

properties are dominated by other scattering processes, with a corresponding (isotropic)

transport time τs.

It is customary to use Matthiessen’s rule when dealing with systems characterized by

different competing relaxation time mechanisms. In our case, Matthiessen’s rule translates

into adding the inverse transport times given by Eqs. (4.24) and (4.34), namely

1

τ
(1)
x/y

=
2± 1

2
Jext

0,1 − Γext
3 + J int

0,1 −
(J int

3,2)2

4J int
0,5

−
(J int

3,4)2

4J int
0,7

+ · · · . (4.37)

This naive approach was shown to be inaccurate when dealing with anisotropic potentials[38].

We analyze the combined effect of intrinsic and extrinsic random magnetic fields by

considering an effective M -matrix given by

M±
tot = M±

ext +M±
int, (4.38)

where M±
ext and M±

int are given by Eqs. (4.23) and (4.33) respectively.

The τ components are

τ (1)
x = [(M−

tot)
−1]11 and τ (1)

y = [(M+
tot)
−1]11, (4.39)

that, for m = 5, explicitly read

1

τ
(1)
x/y

= (1± 1

2
)Jext

0,1 + J int
0,1 +

1

(Jext
0,3 + J int

0,3 ∓ J int
3,0/2)(Jext

0,5 + J int
0,5)− (Jext

1,4 )2/4[
−1

4
(Jext

0,5 + J int
0,5)(Jext

1,2 )2 ∓1

4
J int

3,2J
ext
1,2 J

ext
1,4 −

1

4
(J int

3,2)2(Jext
0,3 + J int

0,3 ∓
1

2
J int

3,0)

]
+ · · ·

(4.40)

This result is clearly different from Eq. (4.37), since it mixes intrinsic and extrinsic effects.

Let us now discuss the dependence of τ on B‖, λ, hrms, and n. For that purpose we
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numerically invert the matrix M±
tot, at order m ≈ 30 − 50 to guarantees an accuracy of

10−5 for the analyzed parameter range.

The resistivity corrections obtained from the Matthiessen’s rule, Eq. (4.37) depend

quadratically on B‖, in line with the experiment [41]. However, the full M -matrix analysis

does not guarantee this simple dependence. In Fig. 9 we plot the resistivity correction

∆ρyy calculated using the full M -matrix and compare it with the one obtained from the

Matthiessen rule, given by Eq. (4.37), for realistic values of hrms, λ, and n. The full

M -matrix calculation (indicated as “exact”) shows an overall higher resistivity than that

obtained from the Matthiessen rule. It depends linearly on B2
‖ for B‖ & 5T and deviates

from this dependence only when B‖ becomes small.
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Figure 9: Resistivity correction ∆ρyy in units of ρ0 = (πλhrmsB‖)
2/2~ as a function of the

in-plane magnetic field B‖ for hrms = 0.2 nm, λ = 30 nm, and n = 1012 cm−2. Inset: The
same as in the main figure for hrms = 0.4 nm and λ = 10 nm.

In contrast, the dependence of ∆ρ with hrms, λ, and |n| is not trivial. For hrms and

λ values taken close to the ones reported by topography experiments [45, 46, 47, 48], a

numerical study using the full M -matrix approach gives ∆ρyy ∝ λ−α with α ≈ 3 · · · 4,

∆ρyy ∝ hβrms with β ≈ 3, and ∆ρyy ∝ |n|−γ with γ ≈ 2. In summary, ∆ρ is very sensitive

on small variations of hrms and λ.

In Fig. 10 we compare Eqs. (4.24), (4.37), and (4.40) to gain insight on how the

strain mechanism affects the ratio τ
(1)
y /τ

(1)
x . We find that the strain fields contribute to a

strong suppression of the anisotropy in the transport time due to a strong B‖. However, for

realistic parameter values the anisotropy is still very large and of the order of τ
(1)
y /τ

(1)
x ≈ 10
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for |n| ≈ 1012 cm−2.
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Figure 10: Anisotropy τ
(1)
y /τ

(1)
x as a function of the carrier concentration n using different

approximation schemes, for hrms = 0.2 nm, λ = 30 nm, and B‖ = 8 T. The red and
green lines stand for the contribution of B‖ without accounting for strain fields. The blue
line represents the contributions of both external and strain fields using the conventional
Matthiessen’s rule. The black line stands for the combined effect of intrinsic and extrinsic
fields obtained for the full M -matrix analysis.

In order to further compare our results with the experiment[41], let us introduce the

magnetoresistance ∆ρ = E · j/j2, where jx = j cos ξ, jy = j sin ξ, and ξ is the angle

between B‖ and j. Using the relation Ei = ρijJj one writes [66]

∆ρ(ξ) = ∆ρxx cos2 ξ + ∆ρyy sin2 ξ. (4.41)

Ref. [41] reports ∆ρ(70o)/∆ρ(20o) ≈ 0.13− 0.26. Using λ and hrms values obtained from

AFM measurements, we obtain τ
(1)
y /τ

(1)
x ≈ 10 for n = 1012 cm−2. This ratio leads to

∆ρ(70o)/∆ρ(20o) ≈ 0.2 in good agreement with the experiment [41].

4.2 Conclusions

In this chapter we studied the effect of random magnetic fields on the transport

properties of a rippled graphene flake. We used the Boltzmann equation, adapted to the

case of anisotropic disorder [38], to address the case of an external magnetic field applied

in-plane, the effect of intrinsic strain fields caused by the graphene corrugation, as well

as the combination of both.
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We find that an external in-plane magnetic field B‖ gives rise to very anisotropic con-

ductivity corrections. By neglecting the effect of strain fields and using a parametrization

of the ripple disorder that is consistent with experiments, we find conductivity corrections

that scale with B2
‖ and |n|−2, consistent with Ref. [41]. In contrast, we obtain τ

(1)
y /τ

(1)
x

ratios as large as 20 · · · 30.

Random gauge fields due to ripples give a small isotropic contribution to the electron

momentum relaxation in graphene. We find, however, that their effect cannot be neglected

in the analysis of the conductivity in the presence of a large B‖. We also concluded that,

due to the anisotropic nature of the problem, the Matthiessen’s rule is not accurate to

address both intrinsic and extrinsic random fields at the same footing. For that purpose

we have to invert the total M -matrix.

This approach allows us to successfully describe the corrections to the Drude conduc-

tivity reported in the experiment [41] using typical λ and hrms parameters taken from the

AMF literature. In addition, we also obtain a suppression of the resistivity anisotropy

(with respect to the case where strain is neglected) that is consistent with Ref. [41]. We

believe that the anisotropic nature of the random magnetic-field disorder also significantly

changes the quantum correction to the conductivity with respect to the isotropic results

and deserves further investigation.

Our results suggest that the investigation of anisotropy corrections to the Drude

conductivity can be a new and insightful path to experimentally quantify effects of random

pseudo-magnetic fields due to strain.
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5 Weiss Oscillations

When a 2DEG is subjected to an electrical modulation and to a perpendicular mag-

netic field a kind of oscillatory behavior, called Weiss oscillations [6, 7], appears in the

conductivity for low magnetic fields. These oscillations are periodic with inverse magnetic

field, as in the case of Shubnikov de Hass (SdH)[67, 68] oscillations which show up and

dominate for higher magnetic fields. Semi-classically, Weiss oscillation can be explained

as a consequence of the commensurability between the cyclotron ratio of the electrons at

the Fermi energy and the period of the modulation. This oscillations were theoretically

studied by many authors from a quantum mechanical point of view [69, 70, 71, 72, 7, 73]

and from a classical point of view for isotropic relaxation time [74] and for anisotropic

relaxation time [75]. In these 2DEG systems, a periodic potential can be achieved by two

interfering laser beams[6, 7] or by depositing an array of parallel metallic strips on the

surface[69].

In this chapter we study Weiss oscillations in graphene due to uniaxial strain. The

source of modulated electric and magnetic potential is the deformation of the sheet.

5.1 Theoretical background

Our model Hamiltonian reads

H = H0 +H ′, (5.1)

where H0 accounts for the dynamics of low-energy electrons in graphene monolayers under

a uniform external magnetic field and H ′ is the effective Hamiltonian due to the modulated

deformation of the graphene sheet.

In the presence of an external applied magnetic field, the effective Hamiltonian for low
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energy electrons in graphene reads [40, 76]

H0 = vFσ · (p+ eAext) , (5.2)

where vF ≈ 106m/s is the Fermi velocity and σ = (σx, σy) are Pauli matrices in the lattice

subspace [40].

For a uniform magnetic field perpendicular to the graphene plane, Bext = B⊥ẑ, the

vector potential can be written in the Landau gauge

Aext = B⊥[(1− α)yx̂+ αxŷ]. (5.3)

We postpone the discussion of the most convenient choice of α to the next section.

In what follows we obtain the effective perturbation Hamiltonian H ′ that describes

the effects of strain due to a periodic out of plane deformation of the graphene sheet given

by

h(x) = h0 cos(2πx/λ), (5.4)

where λ is the modulation period.

5.1.1 Strain induced magnetic and electric fields

As explained in chapter 2, strain modifies the graphene inter-atomic distances and

changes its electronic properties, and this can be accounted for by a term in the Hamil-

tonian given by

H ′ = evFσ ·A (5.5)

where

A(θ) =
~βGκ

ae

(
uxx−uyy

2
cos 3θ + uxy sin 3θ

uxx−uyy
2

sin 3θ − uxy cos 3θ

)
(5.6)

In addition to the pseudo vector potential, strain also induces a scalar potential [77,

78, 79] given by

V (r) = g[uxx(r) + uyy(r)]I (5.7)

where I is the identity matrix in sublattice space and g ≈ 4 eV [80]. For a periodic

modulation in one direction, such as h(x) given by Eq. (5.4) the minimization of the

elastic energy ( see chapter 2) leads to a relaxed configuration where the strain tensor

components are negligibly small [34]. Such analysis does not account for the fact that, in

general, the graphene sheet is pinned to the substrate at random positions [34] that in-
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troduce non trivial minimization constraints. In this study we consider quenched ripples,

setting ux(r) = uy(r) = 0. Hence, we present an upper bound for the strain fields and

for the corresponding vector gauge potential.

The strain tensor corresponding to h(x) of Eq.(5.4) reads

uxx(x) = 2π2

(
h0

λ

)2

sin2(2πx/λ),

uyy(x) = uxy(x) = 0. (5.8)

Hence, the pseudo vector potential reads

A(θ) = A0 sin2(2πx/λ)

(
cos 3θ

sin 3θ

)
, (5.9)

where

A0 =
~βGπ

2κ

ae

(
h0

λ

)2

. (5.10)

The pseudo scalar potential is given by

V (x) = V0 sin2(2πx/λ), (5.11)

with

V0 = 2gπ2

(
h0

λ

)2

. (5.12)

We finish this section pointing out that the electrons of the substrate can screen V (x)

and significantly quench the pseudo scalar potential [81]. Screening modifies the coupling

g as

g → g

ε(q, ω → 0)
, (5.13)

where

1

ε(q, ω)
= 1 + v(q)ΠR(q, ω), (5.14)

is ε(q, ω) the dynamical dielectric function, v(q) = 2πe2/ε0|q| the Coulomb interaction

with ε0 being the substrate dielectric constant, and ΠR(q, ω) is the retarded density-

density correlation function. Within the random phase approximation (RPA) the dielec-

tric function can be expressed as ε(q, ω) = 1 − v(q)χ0(q, ω), where χ0(q, ω) is the pair

bubble diagram. This function was already calculated in Ref. [82]. Explicitly the static
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dielectric function reads:

ε(q, 0) =


1 + v(q)ρ(EF ), q ≤ 2kF ,

1 + v(q)ρ(EF )

[
1− 1

2

√
1−

(
2kF
q

)2

− q
4kF

arcsin
(

2kF
q

)
+ πq

8kF

]
, q > 2kF .

(5.15)

where ρ(EF ) is the density of states at the Fermi energy. We have checked that ε(q, 0) > 40

for SiO2, suggesting a strong suppression of the pseudo electric field.

5.1.2 External in-plane magnetic field

A modulated magnetic field can also be realized by applying an external magnetic

field parallel to a grated patterned graphene sheet. The external magnetic field has a

component perpendicular to the graphene surface profile given by [33]

B′(r) = −B‖ · n̂(r). (5.16)

The normal vector to the surface z = h(r) is

n̂(r) =
1√

1 + (∂h/∂x)2 + (∂h/∂y)2


∂h(r)/∂x

∂h(r)/∂y

−1

 . (5.17)

Since h0 � λ, we write

n̂(r) ≈ (∂h(r)/∂x, ∂h(r)/∂y,−1)T . (5.18)

Hence, the effective local perpendicular magnetic field reads

Bext(r) = −B‖ ·∇h(r), (5.19)

and for B‖ = B‖x̂ is expressed in a convenient gauge, by the vector potential

Ax(r) = 0 and Ay(r) = −A‖ cos(2πx/λ) . (5.20)

with A‖ = B‖h0. The perturbation term is given by

Vext(r) = vF eσyAy(r) = −vF eA‖ cos(2πx/λ)σy. (5.21)
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5.2 Weiss oscillations in graphene

In this section we briefly review the calculations of the Weiss oscillations for modulated

magnetic [83] and electric [84] fields, adapting the results to the vector and scalar fields

obtained in the previous section.

We study the corrections to the conductivity caused by the modulated strain re-

stricting ourselves to the regime where the latter correspond to small perturbation to

the electronic spectrum. In this case, an analytical expression for the Weiss conductivity

oscillations can be obtained following the approach put forward in Refs. [69, 70, 71].

The scalar potential of Eq. (5.11) breaks the translational invariance along the x-axis.

Hence, it is convenient to solve the unperturbed Hamiltonian H0 in the Landau gauge with

α = 1. Hence, the Schrödinger equation H0Ψ(r) = EΨ(r) has eigenvalues [85, 40, 76]

En = sgn(n)
vF~
lB

√
2|n|, (5.22)

with

sgn(n) =


1 n > 0,

0 n = 0,

−1 n < 0.

(5.23)

The corresponding eigenfunctions are [86]

Ψn,ky(r) =
Cn√
LylB

eikyy

(
−isgn(n)Φ|n|−1(x−x0

lB
)

Φ|n|(
x−x0
lB

)

)
, (5.24)

where lB =
√

~/eB ≈ (26 nm)/
√
B(T) is the magnetic length, x0 = l2Bky gives the center

of the wave function,

Cn =

{
1 n = 0,

1/
√

2 n 6= 0,
(5.25)

and

Φn(x) =
e−x

2/2√
2nn!
√
π
Hn(x), (5.26)

where Hn(x) are Hermite polynomials.

Starting from the Kubo formula for the conductivity, it has been shown [72] that the

main contribution to the Weiss oscillations comes from the diagonal diffusive conductivity,
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that in the quasielastic scattering regime can be written as [87]

∆σyy = gvgs
e2

LxLy

∑
ζ

(
−∂f
∂ε

)∣∣∣∣
ε=Eζ

τ(Eζ)vζ,yvζ,y, (5.27)

where gv and gs stand for valley and spin degeneracy (for graphene gvgs = 4), ζ =

(n, ky) are the quantum numbers of the single-particle electronic states, Lx and Ly are

the dimensions of the graphene layer, f(Eζ) is the Fermi-Dirac distribution function, τ(Eζ)

is the electron relaxation time, and vζy is the electron velocity given by the semiclassical

relation

vζ,y =
1

~
∂

∂ky
En,ky , (5.28)

with En,ky calculated in first order perturbation theory as

En,ky = En + 〈n, ky|H ′|n, ky〉. (5.29)

Note that this correction lifts the degeneracy of Landau levels. The dc diffusive conduc-

tivity is then obtained by explicitly summing over the quantum numbers, namely

∑
ζ

[
· · ·
]

=
Ly
2π

∫ Lx/l2B

0

dky

∞∑
n=0

[
· · ·
]
. (5.30)

5.2.1 Modulated scalar potential

Let us now present the theory for Weiss oscillations for graphene monolayers in a

modulated electric field [84]. We highlight the main results that are relevant to our

analysis, deferring the details of the derivation to the original literature [84]. For the

scalar potential, the expectation value of the velocity operator

vs
ζ,y = ~−1∂〈n, ky|V |n, ky〉/∂ky

reads

vs
ζ,y =

2πV0l
2
B

~λ
e−u/2[sgn2(n)L|n|−1(u) + L|n|(u)] sin

(
4π
x0

λ

)
, (5.31)

where u = 8π2(lB/λ)2 and Ln(u) is a Laguerre polynomial.

Inserting the above expression in Eq. (5.27) and using (5.30), ∆σyy reads

∆σs
yy ≈

e2

h

V 2
0 βτ

~
F s(u, β, EF ) (5.32)
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with

F s =
ue−u

β

∞∑
n=−∞

(
−∂f
∂ε

)∣∣∣∣
ε=En

[(1− δ0,n)L|n|−1(u) + L|n|(u)]2 (5.33)

where β = 1/kBT and we assume a constant relaxation time 1 τ = τ(EF ), as well as that

∆En,ky = |En,ky − En| is smaller than the Landau level spacing.

Eq. (5.27) indicates that ∆σyy is dominated by the Landau levels with energy close

to the Fermi energy. In the limit where many Landau levels are filled (for EF > 0 ) or

empty (for EF < 0), it is possible [84] to obtain an analytical expression for ∆σs
yy by using

the asymptotic expression for the Laguerre polynomials

e−u/2Ln(u)
n�1−−→ 1

π1/2(nu)1/4
cos(2

√
nu− π/4) (5.34)

and taking the continuum limit

∞∑
n=−∞

[
· · ·
]
≈
(
lB
vF~

)2 ∫ ∞
−∞

dEE
[
· · ·
]
. (5.35)

The latter is obtained using Eq. (5.22). Hence

F s =
1

π2

T

T∗
cos2

(
2π

kFλ

)[
1 + S

(
T

T∗

)
sin

(
8π
kF l

2
B

λ

)]
, (5.36)

where

S(x) =
x

sinh(x)
and

T

T∗
=

8π2l2B
λvF~β

. (5.37)

5.2.2 Modulated vector potential

Let us now turn our attention to the magnetic modulations. In the case of the pseudo

vector potential, the expectation value of the velocity operator is

vv
ζ,y = A0

lBvF e

~
2√
2

cos(2Kx0) (5.38)

× e−u/2sgn(n)
√
|n|+ 1[L|n|+1(u)− L|n|(u)] sin(3θ),

1The consequences of a constant relaxation time is to neglect quantum oscillation (see Ref. [73]). Since
we are interested in ρxx ∝ σyy which has a classical origin(see Ref. [74, 75]) this is a good approximation
in our case.
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where u = 8π2(lB/λ)2 and Ln(u) is a Laguerre polynomial. For the external in-plane

magnetic field the velocity is

v
‖
ζ,y = A‖

lBvF e

~
2√
2

cos(Kx0)e−u/2sgn(n)
√
|n|+ 1[L|n|+1(u)− L|n|(u)], (5.39)

with u = 2π2(lB/λ)2. Note that here the periodicity is different than that for the strain

case. Inserting Eq. (5.38) and Eq. (5.39) in Eq. (5.27) and using (5.30), the ∆σv
yy reads

∆σv
yy ≈

e2

h

(vF eA0)2τβ

~
sin2(3θ)F v(u, β, EF ) (5.40)

with

F v =
4e−u

β

∞∑
n=−∞

(
−∂f
∂ε

)∣∣∣∣
ε=En

(1− δ0,n)(|n|+ 1)
[
L|n|(u)− L|n|+1(u)

]2
, (5.41)

and a similar relation for the in-plane magnetic field. Following the same strategy as

before we obtain

F v =
1

4π4
(λkF )2

(
T

T∗

)
sin2

(
2π

kFλ

)[
1− S

(
T

T∗

)
sin

(
8π
kF l

2
B

λ

)]
, (5.42)

where S(x) and T/T∗ are defined in Eq. (5.37). The conductivity correction for the case

of an external modulated magnetic field i given by

∆σv
yy ≈

e2

h

(vF eA‖)
2τβ

~
F ‖(u, β, EF ) (5.43)

where F ‖(u, β, EF ) is obtained by taking λ→ 2λ in the expression for F v(u, β, EF ).

5.3 Results and discussion

In this section we discuss the validity range of our results and propose a physical

realization of the Weiss oscillation due to strain and a parallel magnetic field in graphene.

The theory discussed in the previous section is based on three main assumptions,

namely:

(i)The electronic transport is diffusive and in the semiclassical regime, that justified

the calculation of the conductivity using Eq. (5.27). Accordingly, we are addressing

disordered graphene samples characterized by an electron momentum relaxation mean

free path le, where kF le � 1.

(ii) In the calculation of ∆σyy we use perturbation theory assuming that the Landau
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level spacing at the Fermi energy is much larger than the perturbation correction.

(iii)The analytic results for ∆σyy rely on the asymptotic expression given by Eq. (5.34).

Hence, it requires that the Landau levels close to the Fermi energy have n � 1, which

limits the analytic results to a region of weak fields.

The condition (i) kF le � 1 can be expressed as
√
πnevF τ � 1. For good qual-

ity graphene samples, where l & 100nm· · · 1000nm, ne & 3 × 109 · · · 107cm−2, a carrier

concentration easy to attain in experiments.

The derivative of the Fermi distribution in Eq.(5.36) selects only the Landau levels

near the Fermi energy to contribute to the conductivity ∆σyy. This means that the Weiss

oscillations are dominated by the LL with

nF ≈
1

2

(
lBEF
~vF

)2

. (5.44)

The applicability of perturbation theory (ii) demands that the LL spacing En+1 − En is

large as compare with the correction ∆En given by equation Eq. (5.29). Let us consider

the different cases separately. For the scalar potential En+1 − En > ∆En leads to

n <
1

32π8

(
λ

lB

)2(~vF
gλ

)4(
λ

h0

)8

. (5.45)

that at the Fermi energy, reads

16π9

(
glB
~vF

)4

ne <
λ6

h8
0

. (5.46)

For the case of the modulated magnetic fields, En+1 − En > ∆En restricts n to

n <

[(
~π

2Aeλ

)4(
8π4l2B
λ2

)]1/3

, (5.47)

where A = A0 or A‖ for the intrinsic pseudo magnetic or for the external magnetic field,

respectively. At the Fermi energy we write for the strain generated gauge field

π

4

(
2βGκlB

a

)4/3

ne <

[(
λ2

h8
0

)]1/3

. (5.48)

and
π

4

(
2eB‖lB
~π2

)4/3

ne <

[(
1

h4
0λ

6

)]1/3

, (5.49)

for the external parallel magnetic field.

The asymptotic limit addressed in (iii) is the simplest to account for. In Fig.11 we
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compare ∆σyy versus 1/B obtained using the analytical expression Eq. (5.42) , with the

explicit summation of Eq. (5.41) for the external magnetic field.
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Figure 11: External magnetic field contribution to transversal conductivity ∆σ
‖
yy as a

function of 1/B for 150 Landau levels. We used an electronic density of ne = 5×1011cm−2,
λ = 50nm, h0 = 1.5nm, T = 4K and τ = 10−13s and B‖ = 1.5T.

By decreasing the magnitude of the perpendicular magnetic field the Landau level that

crosses the Fermi energy has an increasing n and the agreement between the analytical

and the numerical results become increasingly better.

To study the joint effect of the three modulated potentials considered in this paper,

we again use Eq. (5.27) with the total velocity

vT
ζ,y = vs

ζ,y + vv
ζ,y + v

‖
ζ,y. (5.50)

Following the same steps as before, we write the conductivity as a sum of three indepen-

dent contributions

σT
yy = ∆σs

yy + ∆σv
yy + ∆σ‖yy, (5.51)

since upon integration the cross terms average to zero. We show the three contributions

separately in Fig. 12, rescaling the contribution for the intrinsic modulated potentials

since the external modulation dominates. For the sake of definition, we take an average

on the lattice orientation in Eq. (5.40). In a experimental realization it is possible to

measure the angle θ. The total conductivity is plotted in Fig. 13.

Having stablished that the external parallel magnetic field mechanism dominates the
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Figure 12: Conductivity as a function of 1/B for the external in-plane magnetic field. We
used B‖ = 8T, λ = 100nm, h0 = 0.5nm and τ ≈ 10−13s.
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Figure 13: Total transversal conductivity as a function of 1/B. The parameters used are
B‖ = 8T, λ = 100nm, h0 = 0.5nm, T = 4K and τ = 10−13s.
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Weiss oscillations we now study the temperature dependence. In Fig. 14 we have used

different parameters for which perturbations theory fails for the intrinsic modulations, but

works well for the external one. We show here that the effect of temperature is to reduce

the amplitude of the oscillations. To see whether or not Weiss oscillations dominates

against the Shubnikov de Haas (SdH) we compare the critical temperature for each of

them. For Weiss oscillations, one finds form Eq. (5.37)

kBT
Weiss =

(
~ω0

2π2

)(
λ

4
√

2lB

)
, (5.52)

while for the SdH[67, 68]

kBT
SdH =

(
~ω0

2π2

)(
1√

2kF lB

)
, (5.53)

with ω0 =
√

2vF/lB. For the parameter we use here kBT
Weiss/kBT

SdH > 1, consequently

we expect the Weiss oscillation to be more robust than SdH with temperature.
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Figure 14: Conductivity as a function of 1/B for the external in-plane magnetic field. We
used B‖ = 1.5T, λ = 50nm, h0 = 1.5nm, T = 4K and τ ≈ 10−13s.

We finish this section making some estimates of the relevant parameters in our theory

to establish a link with the semiclassical picture presented in Ref.[74] for 2DEG. For a

magnetic field in a range of 2T−1 6 1/B(T) 6 10T−1 we have 26nm 6 lB 6 57nm. The

typical extension of the wave function at high Landau levels is the cyclotron radio, namely

Rc =
√
nlB, which at the Fermi energy reads Rc = kF l

2
B/
√

2. For the window of magnetic

fields we are interested in, 116nm 6 Rc 6 580nm. Accordingly to the semiclassical theory,

one expects to observe Weiss oscillations only if Rc . le, that is, the electron is typically
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scattered after completing a cyclotron orbit. Fortunately, this requirement can be fulfilled

by the nowadays high mobility graphene samples, that have reported a mean free path

of the order of le & 1µm [88, 89, 90]. This value will enhance our calculation of the

conductivity ∆σyy by a factor of 10.

To see the commensurability between the cyclotron radio and the modulation, let us

consider, for instance, Eq. (5.42) for the magnetic modulation, which is of course out off

phase with respect to the scalar modulation. This equation has maximum when

2Rc =
1

2
√

2

(
m+

1

4

)
λ, m = 1, 2, 3, · · · (5.54)

which is quite similar to the case of a 2DEG apart from a factor of 1/2
√

2 for the intrinsic

magnetic modulation and a factor of 1/
√

2 for the external magnetic modulation.

5.4 Conclusions

We have studied how periodic modulation of the substrate profile can give origin

to Weiss oscillation in the conductivity in monolayer graphene, both by strain induce

pseudofields and by applying a parallel magnetic field. The effect of lattice orientation

has also been taken into account. We used first order perturbation theory and a quantum

Boltzmann equation in order to find the conductivity. Within this framework, we showed

that measurable Weiss oscillation can appear in the transversal conductivity for suitable

parameters of the modulation.

We also studied the behavior of Weiss oscillations with temperature. These are

damped with increasing temperatures, as in the case of SdH oscillation. We think that,

as in the case of 2DEG, Weiss oscillations in graphene are less damped than the SdH

ones. This is because the amplitude of SdH oscillations depends on the LL separation as

compared with the thermal energy[67, 68], while for Weiss oscillations the relevant energy

to be compared with the thermal energy is the difference between flat bands.

Finally, we want to remark that pseudo fields in graphene due to strain has been the

subject of many investigations. The aim of this study is to propose and experiment to test

the effect of this pseudo field in low magnetic fields, namely through Weiss oscillations.
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6 Weak localization corrections in
ripples grephene sheets

In this chapter we study the quantum corrections to the Drude-Boltzmann conduc-

tivity analysed in chapter 4 [33]. Our focus is on the analysis of the weak localization

correction in the presence of a strong in-plane magnetic field. In 2DEG systems, it was

shown experimentally and theoretically [91] that an external B‖ applied in a randomly

corrugated interface causes an increase of the dephasing rate. This idea was used by

Lundeberg and Folk in the analysis of their weak localization experiment on monolayer

graphene sheets [41]. In what follows we adapt the theory of weak localization due to

random magnetic field in 2DEG to graphene and reinterpret the experimental results.

6.1 Description of graphene low energy Hamiltonian

When short-range disorder is present in graphene, the two valleys are coupled and a

more general spinor description than the one presented in chapter 2 is needed in order to

treat them on the same footing. To this end, one writes the low energy Hamiltonian for

pristine graphene as

H0 = vFΣ · p, (6.1)

where

Σx = Πz ⊗ σx, Σy = Πz ⊗ σy, Σz = Π0 ⊗ σz, Σ0 = I, (6.2)

with Π acting in the valley space and σ acts in the sublattice space and vF is the Fermi

velocity. The Hamiltonian (6.1), in contrast to the HK and HK′ presented in chapter 2,
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operates in the spinors ΨT = (ΨK
A ,Ψ

K
B ,Ψ

K′
B ,ΨK′

A ). For electrons in the conduction band

ψK(r) =
eik·r√

2

[
eiθ/2|K−〉+ e−iθ/2|K+〉

]

=
eik·r√

2

eiθ/2


0

1

0

0

+ e−iθ/2


1

0

0

0



 . (6.3)

ψK′(r) =
eik·r√

2

[
eiθ/2|K ′−〉 − e−iθ/2|K ′+〉

]

=
eik·r√

2

eiθ/2


0

0

0

1

− e−iθ/2


0

0

1

0



 . (6.4)

Here 〈r|K+〉 represents the wave function of an electron polarized in the sublattice A of

the valley K and 〈r|K−〉 represents the wave function of an electron polarized in the

sublattice B of the valley K. Note also that

I =
∑
ξ,α

|ξα〉〈αξ|, (6.5)

with ξ = {K,K ′} and α = {↑, ↓} representing valleys and sub-lattice degree of freedom

respectively. In order to describe all possible symmetry breaking classes of disorder, we

define the matrices

Λx = Πx ⊗ σz, Λy = Πy ⊗ σz, Λz = Πz ⊗ σz, Λ0 = I, (6.6)

which clearly commute with the Hamiltonian for pristine graphene. Explicitly, these

matrices read

Σx =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 , Σy =


0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

 , Σz =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 (6.7)
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Λx =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 , Λy =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 , Λz =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (6.8)

With these matrices the trigonal warping term discussed in chapter 2 can be written as

[56]

Hw = −µΣx(Σ · p)ΛzΣx(Σ · p)Σx, (6.9)

and we can write a Hamiltonian for weakly disorder graphene as [56]

H = H0 +Hw + ÎV (r) +
∑

s,l=x,y,z

ΣsΛlVs,l(r). (6.10)

Hence, the most general form for a disorder term in the long wave-length limit reads [56].

Û =
∑

s,l=x,y,z

ΣsΛlVs,l(r). (6.11)

6.2 Drude-Boltzmann conductivity: diagrammatic ap-

proach

In order to introduce the diagammatic technique, we derive here the Drude-Boltzmann

conductivity within this approach. Let us start considering the free single particle Green’s

function, namely [56]

G0(ε,p) =
ε+ vFΣ · p
ε2 − v2

Fp
2
. (6.12)

Assuming that isotropic (diagonal) disorder Îu(r̂) dominates the elastic scattering process

and

〈V (r)V (r′)〉 = u2δ(r − r′), (6.13)

we can use Dyson equation

G(ε,p) = G0(ε,p) + G0(ε,p)V G(ε,p) (6.14)

to calculate the single particle disorder averaged Green’s function. In the first Born

approximation 1 and for εF � ~/τ0, this reads

〈G(ε,p)〉 = G(ε,p) =
ε̄+ vFΣ · p
ε̄2 − v2

Fp
2
, ε̄R/A = ε± 1

2
i~τ−1

0 , (6.15)

1Here we do not consider crossing terms in the self-energy. See for instance [24].
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where 〈· · · 〉 denotes impurity average and ± stands for GR(ε,p) or GA(ε,p) respectively.

Fig 15 shows the disorder diagrams taken into account to write the self-energy. Here the

scattering rate is 1/τ0 = πγu2/~ with γ = pF/(2π~2vF ).

= +

*

=�

�

a)

b)

Figure 15: Diagram representing Dyson series. a) single lines represent free electron
Green’s functions and double lines represet the disorder average Green function. b) Self-
energy where dotted lines represent the disorder potential in first born approximation.

The Drude conductivity can be calculated from Kubo’s formula, namely

gjj =
e2

π~

∫
dp

(2π)2
Tr
[
ṽjG

R(ε,p)v̂jG
A(ε,p)

]
(6.16)

where ṽ = 2v̂ = 2vFΣ. The disorder average Kubo conductivity is diagrammatically

represented by Fig. 16. By inserting GR/A of Eq.(6.15) in Eq. (6.16) one can show that

= +Γ�

a) b)

� �*

Figure 16: a)Diagrammatic representation of the Green function disorder contraction for
the Drude conductivity and b) vertex correction.

Tr
[
ṽjG

R(ε,p)v̂jG
A(ε,p)

]
=

2τ0v
2
F

~

[ 1
2
~τ−1

0

(ε+ vFp)2 + 1
4
~2τ−2

0

+
1
2
~τ−1

0

(ε− vFp)2 + 1
4
~2τ−2

0

]
(6.17)

In the limit of weak impurity scattering, ~/τ0 � εF , one can use the approximation

1
2
~τ−1

0

(ε± vFp)2 + 1
4
~2τ−2

0

≈ πδ(εF ± vFp), (6.18)
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that leads to

gxx = 4e2

(
pF

2π~2vF

)
v2
F τ0 (6.19)

= 4e2γD,

with γ = pF/(2π~2vF ) and D = v2
F τ0.

6.3 Weak localization corrections due to random gauge

fields

Weak localization (WL) is a quantum correction to the conductivity which arises from

the interference of electronic pairs of paths related by time reversal symmetry, as sketched

in Fig. 17. In the weak disorder limit, kF le � 1, we associate a path to the electron

from one point to another and give a probability amplitude for each path. Within the

⟨��(�)���(�)⟩

* *

a)

b) c) d)

Figure 17: Sketch of weak localization correction to the conductivity. a) semiclassical
interpretation b) bare Hikami box c) and d) dressed Hikami boxes.

representation we are using here, the time-reversal operator is T̂ = (Πx ⊗ σx)Cθ, where

Cθ a complex conjugate operator. Now take the correlation between a wave function in

one valley for a ballistic segment of a close loop and its time reversal partner in Fig. (17),

namely

〈ψK(r)T̂ψK(r)〉 ∝ |K−〉|K ′+〉 − |K+〉|K ′−〉, (6.20)
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where 〈· · · 〉 means angular average. The WL correction can be expressed in terms of a

quantity called Cooperon (see below), which is proportional to this correlation function,

as depicted in Fig. 17. This preliminary analysis considered in Ref. [56] suggests that only

singlet isospin2 modes contribute to the conductivity. In fact, in Ref. [56] this correction

was found to be (represented diagrammatically in Fig. 18)

δgWL =
2e2D

π~

∫
d2q

(2π)2
[Cx

0 + Cy
0 + Cz

0 − C0
0 ], (6.21)

where C0
0 represents singlet channel in the iso/pseudospin degree of freedom and Cx,y,z

0 ,

singlet channel in isospin and triplet channel in pseudospin degree of freedom [56].

b) c) d)

a)

� ��

= + �* *

*

*

�

Figure 18: Diagrammatic representation of weak localization correction to the Drude
conductivity. a) the cooperon b) weak localization correction with bare Hikami box c)
and d) weak localization correction with dressed Hikami boxes.

The equation for the Cooperon channels is [56]

[D(i∇− 2e

~
A)2 + Γl0 + τ−1

φ − iω]C l
0(r, r′) = δ(r − r′), (6.22)

where A represents a gauge field for an external perpendicular magnetic field, Γl0 repre-

sents relaxation rates for different sources of disorder that suppress the different channels

[56] and τ−1
φ is a dephasing time, namely a time that destroys the constructive interfer-

ences of time reversal related wave functions.

The effective magnetic field due to strain does not break time reversal symmetry since

it has opposite effect in both valleys. This is why it is called pseudo-magnetic. However,

the Cooperon channels Cx,y
0 are responsible for intravalley scattering and are suppressed

2Hereafter we call isospin the sub-lattice degree of freedom and pseudospin the valley degree of freedom.
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by strain. In the next section we calculate this daphasing time.

6.4 Dephasing due to random gauge fields

In this section we calculate the dephasing time of the weak localization correction

due to both the extrinsic and intrinsic random gauge fields considered in Chapter (4).

We begin describing the procedure put forward by Mathur and Baranger [91] to calculate

the effect of a parallel magnetic field in weak localization peak for a corrugated quasi-2D

systems. These results can be adapted to graphene system with ripple disorder, as done

in Ref. [41]. Next, we adapt the presented derivation to compute the dephasing time due

to an intrinsic strain field.

Let us start considering the integral equation obeyed by the cooperon

C(r, r′) = C(0)(r, r′) +

∫
dr′′C(0)(r, r′′)C(r′′, r′), (6.23)

where, in the limits |r−r′| � λF and kF le � 1, one can show [91] that (at zero magentic

field B = 0)

C
(0)
B=0(r, r′) ≈ 1

2πl2e
exp

(
−|r − r

′|
le

)
(6.24)

The solution to equation (6.23) is found by solving an eigenvalue equation for C(0)(r, r′)∫
dr′C(0)(r, r′)Qγ(r

′) = γQγ(r), (6.25)

from which follows

C(r, r′) =
∑
γ

γ

1− γ
Qγ(r)Qγ(r

′) (6.26)

For a slowly varying eigenfunction of C0(r, r′), equation (6.25) can be transformed in an

diffusion equation [91]

Dτe∇2Qγ(r) +Qγ(r) =

(
γ +

τe
τφ

)
Qγ(r) (6.27)

The parameter τe/τφ is included phenomenologically to consider sources of dephasing,

like electron-electron interaction and electron-phonon interaction, that can diminish the

quantum interference effect of the weak localization. For mathematical simplicity, it is

better to work with a modified cooperon, namely

C
(0)
B=0(r, r′) ≈ 1

2πl2e
exp

(
−|r − r

′|2

2le

)
, (6.28)
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whose slowly varying eigenfunctions obey the same diffusion equation as the ones of

C(0)(r, r′).

Let us now study the effect of a magnetic field on the cooperon. In Ref. [91] it was

shown that in the limit of weak magnetic field, the only effect is to change the phase,

CB(r, r′) = C
(0)
B=0(r, r′) exp

(
i
2e

~

∫ r

r′
dl ·A

)
. (6.29)

In our problem, A can be either the gauge field that originates the intrinsic or the extrinsic

random magnetic fields discussed in previous chapter. Let us take the average over the

surface roughness. This is better done by solving equation (6.23) by iteration, namely

CB(r, r) =
∑
n

C
(n)
B (r, r), (6.30)

with

C
(n)
B (r, r) =

∫
dr1 · · · drnC(n)

B=0(r, r1) · · ·C(n)
B=0(rn, r) exp

(
2πin

φg
φsc

)
,

where φsc = h/2e is the superconducting flux quantum and

φg =

∫ r

r

dl ·A (6.31)

The disorder average of equation (6.30) reads

〈CB(r, r)〉 =
∑
n

〈C(n)
B (r, r)〉, (6.32)

by assuming that the phases φg are Gaussian random variables with zero mean, the

following equality holds

〈exp(iξφg)〉 = exp

(
−1

2
ξ2〈φ2

g〉
)
. (6.33)

With these elements one can calculate the cooperon suppression for the different situations

of interest.

6.4.1 The case of the parallel external magnetic field

The calculation for an external parallel magnetic field was already worked out in

Ref. [91] in the regime of short-ranged roughness λ� le, which is the one met for slowly

varying corrugations in graphene [41, 33]. The result is

〈C(0)
B‖

(r, r′)〉 = C
(0)
B=0(r, r′) exp

(
−2
√
π
e2

~2
B2
‖h

2
rmsλ

(y − y′)2

|r − r′|

)
(6.34)
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Using the above expression for the cooperon, we again transform equation (6.25) in a

diffusion-like equation

(1 +Dτe∇2)Qγ(r) =

(
γ +

τe
τφ

+
τe
τ‖

)
Qγ(r), (6.35)

where the extra term is

τe
τ‖
≈
√
π
e2

~2
B2
‖h

2
rmsλle =

√
π
e2

~2

[(
B‖hrms

λ

)2
]
λ3le (6.36)

The conclusion here is that the effect of a parallel external magnetic field on disorder

ripples in graphene is to enhance the dephasing, this is

τe
τφ
→ τe

τφ
+
τe
τ‖
, (6.37)

making the effective τφ shorter. As a result, the WL peak is suppressed, in line with

experiments [41].

6.4.2 The case of the intrinsic pseudo magnetic field

In the case of strain, the random vector field which enters the cooperon phase correc-

tion is given in equation (3.18). Working in the same form as in last section, we find (see

Appendix D.1)

〈C(0)
Bstrain

(r, r′)〉 = C
(0)
B=0(r, r′) exp

[
−1

2
ξ2
(
〈φ2

g〉
(0)
1 + 〈φ2

g〉
(0)
2 + 〈φ2

g〉
(0)
3 + 〈φ2

g〉
(0)
4

)]
, (6.38)

where

〈φ2
g〉

(0)
1 =

(
~β
ea

)2
3
√
πh4

rms

8λ3
|r − r′|

[
2

3
cos2(θ) +

1

2
cos2(θ) cos2(2θ)

]
〈φ2

g〉
(0)
2 =

(
~β
ea

)2
3
√
πh4

rms

8λ3
|r − r′| cos2(θ) sin2(θ) cos(2θ)

〈φ2
g〉

(0)
3 =

(
~β
ea

)2
3
√
πh4

rms

8λ3
|r − r′| cos2(θ) sin2(θ) cos(2θ)

〈φ2
g〉

(0)
4 =

(
~β
ea

)2
3
√
πh4

rms

8λ3
|r − r′|

[
2

3
sin2(θ) + 2 sin4(θ) cos2(θ)

]
We use 〈C(0)

Bstrain
(r, r′)〉 to transform equation (6.25) in a diffusion-like equation.

(1 +Dτe∇2)Qγ(r) =

(
γ +

τe
τφ

+
τe

τstrain

)
Qγ(r), (6.39)
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where

τe
τstrain

≈ 11
√

2π3β2h4
rmsle

16a2λ3
=

11
√

2π3

16

e2

~2

[
h4

rms

λ6

(
β~
ea

)2
]
λ3le (6.40)

As before, we conclude that pseudo magnetic field due to strain has the effect of enhance

the dephasing.

The rate τe/τ‖ was measured in Ref. [41] in graphene by fitting the weak localization

correction curve with and without in-plane magnetic field. The aim of this experiment

was to extract a relation between hrms and λ. Since the strain field suppressed the in-

travalley contributions to the weak localization correction, τe/τstrain should be taken into

account. Actually, for values hrms = 10nm and λ = 10nm from STM experiments [41],

we obtain 1/τstrain ≈ 1× 1013s−1 and for values hrms = 0.19nm and λ = 32nm from AFM

experiments[41], we obtain 1/τstrain ≈ 1 × 1010s−1, that theoretically explain relaxations

rates observed in experiments [41].
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7 Many-body density of states in
disorder systems

In this chapter we calculate the effects of disorder in the N -particle density of states.

We briefly describe the general procedure to find this quantity and show explicitly the

results for free Fermions in 2-dimensions.

Let us start by explaining the main difference between the one and many particle

density of states. To this end, we begin by calculating the single particle one. Consider

the transition amplitude (propagator)

K(x, t;x′, t′) = 〈x|e
1
~ iH(t−t′)|x′〉. (7.1)

By making analytical continuation to imaginary time, t = −iτ , inserting an identity

resolution of energy eigenstates and taking the trace of this propagator1, we get

Tr[K(x,x, τ − τ ′)] =
∑
n

e−
1
~En(τ−τ ′). (7.2)

By evaluating the propagator at τ − τ ′ = ~β we obtain the single-particle canonical

partition function

Z(β) = TrK(x, ~β) =
∑
n

e−βEn (7.3)

=

∫ ∞
−∞

dE ′
∑
n

e−βE
′
δ(E ′ − En)

=

∫ ∞
−∞

dE ′e−βE
′
ρ(E ′)θ(E ′).

Thus, the density of states is the inverse Laplace transform of the canonical partition

function, namely

ρ(E) = L−1{Z}(E). (7.4)

1The trace is defined as
∫
dxdx′δ(x− x′)
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This expression can be represented diagrammatically as shown in Fig.19a for the single

particle density of states. Hereafter, we use black lines to represent the propagator and

red lines to represent a trace.

Let us discuss how to extend the diagrammatic approach for N > 1 particles. In

Fig.(19)b we represent the density of states for two particles. Note that due to indistin-

guishability, there are two contributions: one that looks like a single particle and another

that looks as two independent ones. To give a better insight on the role played by in-

distinguishability of particles we present in Fig. 20 the case for three particles. Observe

that we see three different contributions due to the exchange of final coordinates. First,

Fig. 20a shows a contribution that looks like three independent particles, Fig. 20b, a

contribution that looks like two independent particles and Fig. 20c, a contribution that

looks like just one particle.

An important contribution of Prof. Klaus Richter group to this problem was recently

published [92]. They used a geometrical interpretation of the symmetrization postulate

(which we remark that is a quantum characteristic of many-body physics ) to calculate

the many-particle density of states for free Bosons and Fermions in 1,2 and 3 dimensions

using only semiclassical tools.

a) b)

+_

Figure 19: Diagrammatic representation of the density of states a) single particle and b)
two particles. Plus and minus sign are for Bosons and Fermions. Black lines represent
propagators and red lines, the trace.

The procedure explained before to calculate the DOS is more suitable to give a dia-

grammatic interpretation of the density of states. Another way to calculate this quantity

is through the imaginary part of the retarded Green function, namely

ρ(E) = − 1

N !

1

π
ImTrĜR, (7.5)

with ĜR the N -particle Green function. Let us explicitly calculate the two particle DOS
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a)

b)

c)

Figure 20: Sketch of diagrammatic contributions to the density of states for three particles.

including disorder 2.

7.1 Effect of disorder in the two-particle density of

states

The Hilbert space for two particles is H = H(1)⊗H(2). The total Hamiltonian operator

is given by

Ĥ = Ĥ
(1)
0 ⊗ I + V (1)(x̂)⊗ I + I⊗ Ĥ(2)

0 + I⊗ V (2)(x̂). (7.6)

where the Hamiltonian operator for each particle is given by

Ĥ = Ĥ0 + V (x̂). (7.7)

Let us assume we know how to solve Ĥ0, and V (x̂) represents a disorder potential defined

by its first and second moments

〈V (x)〉 = 0 (7.8)

〈V (x)V (x′)〉 = n0δ(x− x′), (7.9)

where 〈· · · 〉 stands for a mean over disorder and n0 accounts for the strength of disorder.

For simplicity we consider here the first born approximation, which means n0 = 1/2πρ0τ

2We work in 2 dimensions. So far, we have not found analytic expressions neither for 1d nor 3d.
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with ρ the single particle density of states. The two particle propagator is3

K(x′1, x
′
2;x1, x2, t

′ − t) :=
∑
Pf

〈x′1, t′, x′2, t′|x1, t1x2, t2〉 (7.10)

= 〈x′1|Û(t′, t)|x1〉〈x′2|Û(t′, t)|x2〉

± 〈x′2|Û(t′, t)|x1〉〈x′1|Û(t′, t)|x2〉,

where Û = i(ĜR(t′, t)− ĜA(t′, t)), is the time evolution operator with ĜR/A(t′, t) retarded

and advanced single particle Green’s functions. We now use identity resolutions (the

eigenstates of Ĥ0 taken here as the kinetic energy) and take the trace, namely

Tr[〈K(x1, x2;x1, x2, t
′ − t)〉] =

∑
n,n′,m,m′

〈〈n′|Û(t′, t)|n〉〈m′|Û(t′, t)|m〉〉

×

∣∣∣∣∣
∫
dx1ϕn′(x1)ϕ∗n(x1)

∫
dx1ϕm′(x1)ϕ∗n(x1)∫

dx2ϕn′(x2)ϕ∗m(x2)
∫
dx2ϕm′(x2)ϕ∗m(x2)

∣∣∣∣∣ .(7.11)

Changing to energy and momentum domain

Tr[〈K(x1, x2;E)〉] =
∑
k1,k2

F(E, ε1, ε2)D(k1,k2), (7.12)

where

F(E, ε1, ε2) =
1

2π

∫ ∞
−∞

dE1〈G(k1, E1)G(k2, E − E1)〉 (7.13)

where ε stands for single-particle kinetic energy and D(k1,k2) is a determinant given by

D(k1,k2) =

∣∣∣∣∣ 1 δk1,k2

δk2,k1 1

∣∣∣∣∣ . (7.14)

Explicitly, we have 4

Tr〈K(x1fx2f ;x1i, x2i;E)〉 = (i)2
∑
k1,k2

[
FRR(E, ε1, ε2) + FRRC (E, ε1, ε2) (7.15)

+ FAA(E, ε1, ε2) + FAAC (E, ε1, ε2)

]
D(k1,k2),

where R(A) stands for retarded(advanced) Green’s function. Neglecting correlation be-

tween the two particles (see Fig. 21a), we write

FRR(E, ε1, ε2) = −i 1

(E − ε1 − ε2 + i/τ)
, (7.16)

3Plus or minus sign stands for bosons or fermions respectively.
4We will consider here only explicit calculations for Fermion. For Bosons, we only have to take the

permanent instead of the determinant in Eq.(7.14).
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FAA(E, ε1, ε2) = i
1

(E − ε1 − ε2 − i/τ)
, (7.17)

FRA(E, ε1, ε2) = FAR(E, ε1, ε2) = 0. (7.18)

where ~/τ is the imaginary part of the self energy. If we include correlations (see Fig.

21b), we need to compute

FC(E, ε1, ε2) =
1

2π

∫ ∞
−∞

dE1G(k1, E1)G(k2, E − E1)Λ(k1 + k2, E1, E − E1)

× G(k1, E1)G(k2, E − E1), (7.19)

where

Λ(q, E1, E − E1) =
n0

1− n0

L

∑
q1
G(q1, E1)G(q − q1, E − E1)

.

Computing all the contributions for retarded and advanced Green’s functions explicitly

we get

ΛRR(q, E1, E − E1) = ΛAA(q, E1, E − E1) ≈ n0 (7.20)

ΛAR(q, E1, E − E1) ≈ n0

Dq2τ + i(2E1τ − Eτ)
=

−in0

2E1τ − Eτ − iDq2τ

ΛRA(q, E1, E − E1) ≈ n0

Dq2τ − i(2E1τ − Eτ)
=

in0

2E1τ − Eτ + iDq2τ

with D = v2
F τ the diffusion constant and

FRRC (E, ε1, ε2) =
−2in0

(E − ε1 − ε2 + i/τ)3

FAAC (E, ε1, ε2) =
2in0

(E − ε1 − ε2 − i/τ)3

FARC (E, ε1, ε2) = 0

FRAC (E, ε1, ε2) = 0

Note that the average between retarded and advanced Green’s functions gives rise to a

diffusive term, but gives no contribution to the whole 2-particle propagator. As in the

case for the 1-particle DOS, we take only the retarded-retarded contribution, finally the
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DOS reads

ρ(E) = − 1

2!

1

π

∑
k1,k2

Im

[
1

(E − ε1 − ε2 + i/τ)
+

2n0

(E − ε1 − ε2 + i/τ)3

]
D(k1,k2)

= − 1

2!

1

π

∑
k1,k2

Im

[
1

(E − ε1 − ε2 + i/τ)
+

2n0

(E − ε1 − ε2 + i/τ)3

]
+

1

2!

1

π

∑
k1

Im

[
1

(E − 2ε1 + i/τ)
+

2n0

(E − 2ε1 + i/τ)3

]
(7.21)

a) b)

+_ +_

Figure 21: Diagrammatic representation of the density of states with disorder a) without
correlations b) with correlations and c) the kernel with gives raise to the contraction of two
independent particles with the disorder potential. We call correlations the contraction of
disorder potential for different particles. Double lines represents disorder Green’s function.

Performing the integrals,

ρ(E) ≈ 1

2π
ρ0

(
ρ0E −

1

2

)[π
2

+ tan−1(τE)
]
− 1

2π
ρ2

0E

[
ln(1 + E2τ 2)

2Eτ

]
− n0

1

2π
ρ2

0

1

E

[
Eτ

(1 + τ 2E2)

]
+ n0

1

2π
ρ0

1

E2

[
E3τ 3

(1 + E2τ 2)2

]
, (7.22)

with ρ0 the single particle density of states. This equation is shown diagrammatically in

Fig. 21. We can take the zero disorder limit (τ =∞) to find the free two particle density

of states. It is

ρ(E) =
1

2
ρ2

0E −
1

4
ρ0, (7.23)

and is represented diagrammatically in Fig. 19b.
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7.2 General procedure to find the many particles den-

sity of states

To calculate the many particle DOS let us consider the Hilbert space of the N -particle

system. This is

H = H(1) ⊗H(2) · · · ⊗H(N) (7.24)

For non-interacting particles, we can separate the time evolution operator of the many

particle system as a product of single particle ones, namely

Û(t, t′) = Û (1)(t, t′)⊗ Û (2)(t, t′) · · · ⊗ Û (N)(t, t′). (7.25)

Using now the relation

Û(t′, t) = i(ĜR(t′, t)− ĜA(t′, t)), (7.26)

for each single particle time evolution operator, we can write the many particle one as

Û(t, t′) = iN [ĜR(t′, t)− ĜA(t′, t)]1 ⊗ [ĜR(t′, t)− ĜA(t′, t)]2 ⊗ · · · ⊗ [ĜR(t′, t)− ĜA(t′, t)]N .

(7.27)

Now we ask for the transition amplitude

K(N) = 〈x1(t′)x2(t′)x3(t′) · · ·xN(t′)|x1(t)x2(t)x3(t) · · ·xN(t)〉 (7.28)

=
∑

Permutations(x′)

〈x′1|U(t′, t)|x1〉〈x′2|U(t′, t)|x2〉 · · · 〈x′N |U(t′, t)|xN〉

taking care that we have to sum over all the possible permutations of the final coordinates.

In terms of retarded and advanced time evolution operators

KN = iN
∑

Permutation

〈x′1|[ĜR(t′, t)− ĜA(t′, t)]|x1〉〈x′2|[ĜR(t′, t)− ĜA(t′, t)]|x2〉 · · ·

× 〈x′N |[ĜR(t′, t)− ĜA(t′, t)]|xN〉 (7.29)

The trace of the (average) many particle propagator in energy and momentum domain

can be expressed as

Tr〈KN(E)〉 = iN
∑

k1,··· ,kN

F(ε1, · · · , εN ;E)D(k1, · · · ,kN) (7.30)

where

F(ε1, · · · , εN ;E) =

∫ ∞
−∞

dE1

2π

∫ ∞
−∞

dE2

2π
· · ·
∫ ∞
−∞

dEN−1

2π
(7.31)

× 〈G(k1, E1)G(k2, E2) · · ·G(kN−1, EN−1) · · ·G(kN , E − · · · − EN−1)〉
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and we have to take all the possible combinations of product of retarded and advanced

propagators. D(k1, · · · ,kN) is a determinant that takes into account the permutations

of all the final coordinates. The general calculation follows the same steps discused in

the N = 2 case. As N increases, the algebra becomes more and more involved. Let us

explicitly show the final result for N = 6 particles. Separating the contributions without

correlation and with correlation, namely

ρ(E) = ρWC(E) + ρC(E), (7.32)

The 6-particle density of states reads

ρWC(E) ≈

[
1

720π
(ρ0)6 1

2

1

3

1

4
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720π
(ρ0)

1

6

] [
π

2
+ arctan

(
2τ

6
E

)]
and

ρC(E) =
6!n3

0

6!π
(ρ0)6 1
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1

E

[
τE

(1 + (2τE/6)2)

]
+

6!n3
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+
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]
+
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)
1
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]
+
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6!π
(ρ0)2 1

30

(
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1

5
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1

4

1

2
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1

3

1

3

)
1

E5

[
(2τE/6)5 − 10(2τE/6)7 + 5(2τE/6)9

(1 + (2τE/6)2)5

]
+

6!n3
0

6!π
(ρ0)

1

3

1

6

1

E6

[
3(2τE/6)7 − 10(2τE/6)9 + 3(2τE/6)11

(1 + (2τE/6)2)6

]
,

We show a plot of ρWC(E) in Fig.22 for N=5,6,7 and 8 particles. We do not show

ρC(E) because this part only gives non negligible contributions very close E = 0, which

is not a physical region, as explained below.

Some comments are pertinent here. First of all, it is clear that the density of states

can not be negative, so the oscillatory part of this quantity in Fig. 22 is not physical. An
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Figure 22: Evolution of the many particle density of states with increasing particle number
N. We have rescaled the DOS and the energy putting ρ0 = 1. We also used τ → 0 and
τ → 100 in units of 1/ρ0s for high and low disorder respectively.

important feature of this calculation is the emergence of the ground state of the systems5,

which here occurs only as a consequence of the exchange symmetry of the wave function.

This can be seen from the definition of the ground state

EGS =

∫ EF

−∞
dE ′ρ0(E ′)E ′, (7.33)

with the Fermi energy calculated with

N =

∫ EF

−∞
ρ0(E ′)dE ′. (7.34)

The conclusion we draw from the calculations presented here is that disorder does not

affect to much the many particle density of states. This conclusion is valid at least in the

first Born approximation used here. We plan to go beyond this approximation to see if

correlations are important.

5The ground state happens to be the point where the DOS stops to oscillate. This fact is more accurate
if we increase the number of particles, see for instance Ref. [92].
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7.3 Problems with the Lieb-Liniger model

The Lieb-Liniger model considers a system of Bosons in one dimension with contact

interaction and confined in a finite region. The Hamiltonian reads 6 (~ = 2m = 1)−∑
i

∂2

∂x2
i

+
∑
〈i,j〉

2cδ(xi − xj)

ψ(x1, x2, · · ·xN) = Eψ(x1, x2, · · ·xN), (7.35)

in the domain,

R : 0 6 xi 6 L, (7.36)

where 〈i, j〉 means sum over pairs and c is a positive constant related to the interaction

strength.

To better understand this system, let us consider two bosons. Following the original

approach [96], we consider a finite region of space with subdomain 7

R1 : 0 6 x1 6 x2 6 L. (7.37)

The Schrödinger’s equation then reads[
− ∂2

∂x2
1

− ∂2

∂x2
2

+ 2cδ(x1 − x2)

]
ψ(x1, x2) = Eψ(x1, x2). (7.38)

Following Lieb and Liniger [96], we take into account the contact interaction as boundary

condition on the wave function by solving the equation(
− ∂2

∂x2
1

− ∂2

∂x2
2

)
ψ(x1, x2) = Eψ(x1, x2), (7.39)

with the mixed boundary conditions(
∂

∂x2

− ∂

∂x1

)
ψ(x1, x2)

∣∣∣
x1=x2

= cψ(x1, x2)
∣∣∣
x1=x2

, (7.40)

and periodic boundary conditions

ψ(0, x2) = ψ(x2, L). (7.41)

At this point, the effect of the delta-like interaction has been replaced by boundary con-

6This system has been experimentally realized using optical lattices[93, 94, 95].
7Knowing the wave function in the subdomain R1 allows us to know the wave function R just by

requiring the full symmetry of the wave function.
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ditions on R1. Now we make the Bethe ansatz (valid in R1)

ψ(x1, x2) =
∑
P

APe
i
∑
j kPjxj (7.42)

= A(k1, k2)eik1x1+ik2x2 + A(k2, k1)eik2x1+ik1x2 . (7.43)

We see that ψ(x1, x2) is an eigenstate of Eq.(7.39) with

E = k2
1 + k2

2, (7.44)

and, also an eigenstate of the momentum operator

K̂ = −i
∑
j

∂

∂xj
, (7.45)

with eigenvalue

K = k1 + k2. (7.46)

Using Eq. (7.40) we get
A12

A21

=
i(k2 − k1)− c
i(k2 − k1) + c

, (7.47)

and since this number has unit modulus, it should be a pure phase, namely

A12

A21

= eiθ, (7.48)

with

θ := θ(k2 − k1) = π − 2 arctan

(
k2 − k1

c

)
, 0 6 θ 6 2π. (7.49)

We can redefine the phase as

θ̃ := θ(k2 − k1)− π = −2 arctan

(
k2 − k1

c

)
, −π 6 θ̃ 6 π, (7.50)

and

−A12

A21

= eiθ̃. (7.51)

Using the periodic boundary conditions Eq. (7.41), we get

k1L = (2n1 + 1)π − 2 arctan

(
k2 − k1

c

)
(7.52)

k2L = (2n2 + 1)π + 2 arctan

(
k2 − k1

c

)
.

These are the Bethe equations for unknows ki.

Now we are ready to discuss the difficulty in calculating the DOS for this model. We
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ask for the probability amplitude

〈x′1x′2; t′|x1x2; t〉 = 〈x′1x′2|U(t′, t)|x1x2〉 (7.53)

= 〈x′1x′2|e−iĤ(t−t′)|x1x2〉.

Using energy eigenstates and going to energy domain

TrG(k1, k2 : E) =
∑
k1,k2

1

E − E(k1, k2)
. (7.54)

We can add an infinitesimal positive constant and use the imaginary part to arrive at the

density of states, but note here that the quantization condition given in Eq. (7.52) makes

the change of the sum to integrals a non trivial task, and so far we have not found a way

to do it. This is a key technical difficulty within this approach. The goal is to calculate

the propagator directly in real space and take the inverse Laplace transform to find the

DOS 8.

Another problem appears when considering disorder. All the perturbation theory

described above works well for fermionic systems with a well defined Fermi surface, where

a small parameter to do perturbation theory is δ = ~/EF τ . This parameter does not

exist for bosons. Actually, what we calculated before in Sec. (7.2) can be interpreted as

the effect of disorder on the many quasiparticles density of states. Our goal is to find out

how to adapt disorder perturbation theory for bosonic systems.

8This approach is being considered in the group of professor Klaus Richter.
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APPENDIX A

A.1 Strain contribution for zigzag orientation

Let us now explicitly work out the strain contribution in zigzag orientation for the

K-valley. By inserting (2.17) in (2.14) the Hamiltonian reads

HK
s = t

∑
n

i
σ · δn
a

σz

(
β

a2
δn · u · δn

)
(A.1)

Now, we use some brute force to calculate δn · u · δn. First

δT1 · u · δ1 =
a2

4
(3uxx + 2

√
3uxy + uyy) (A.2)

δT2 · u · δ2 =
a2

4
(3uxx − 2

√
3uxy + uyy) (A.3)

δT3 · u · δ3 = a2uyy (A.4)

Expanding the sum and collecting all results

HK
s = −vF~

[
σx

(
β

2a
(uxx − uyy)

)
+ σy

(
−β
a
uxy

)
.

]
(A.5)

By using the minimal coupling p→ p− qA, we associate the vector potential to

A =
β

2ae
(uxx − uyy,−2uxy) . (A.6)

For the K ′ valley

HK′

s = −v0~
[
σx

(
β

2a
(uxx − uyy)

)
+ σ∗y

(
−β
a
uxy

)]
(A.7)
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A.2 Armchair geometry

For armchair lattice orientation shown in Fig. 23a the primitive translation vectors

are

a) b)

Figure 23: Lattice structure of graphene. a) Armchair orientation and b) Corresponding
Brillouin zone.

a1 =
a

2

(
3
√

3

)
, a2 =

a

2

(
3

−
√

3

)
, (A.8)

and the nearest neighbors vectors are

δ1 =
a

2

(
1

−
√

3

)
, δ2 =

a

2

(
1
√

3

)
, and δ3 = a

(
−1

0

)
. (A.9)

The corresponding reciprocal lattice vectors are

b1 =
2π

3a

(
1
√

3

)
b2 =

2π

3a

(
1

−
√

3

)
(A.10)

and the high symmetry points

K =
4π

3a

(
0

−
√

3/3

)
K ′ =

4π

3a

(
0
√

3/3

)
. (A.11)

The useful identity (2.17) is modified for the armchair geometry. For the K valley

one writes (
0 e−iK·δn

eiK·δn 0

)
= −σ · δn

a
. (A.12)
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The Dirac Hamiltonian for the valley K then reads

HK
0 = t

∑
n

σ · δn
a

(iσzq
′ · δn)

= v0~(σxq
′
x + σyq

′
y)(iσz) (A.13)

= v0~(σyq
′
x − σxq′y)

(A.14)

This expression is obviously not what we want. We can recover the standard Dirac

equation by rotating the coordinate axis by π/2. Before doing it, let us analyse the strain

term.

The strain Hamiltonian for the K valley

Hs = −t
∑
n

σ · δn
a

(
β

a2
δTn · u · δn

)
. (A.15)

It can be calculated by “brute force” as done for the zigzag case

1

a2
δT1 · u · δ1 =

1

4
(uxx − 2

√
3uxy + 3uyy) (A.16)

1

a2
δT2 · u · δ2 =

1

4
(uxx + 2

√
3uxy + 3uyy) (A.17)

1

a2
δT3 · u · δ3 = uxx. (A.18)

Expanding the sum and collecting all terms

HK
s = v0

[
σx

(
−β~

2a

)
(uxx − uyy) + σy

(
β~
a

)
uxy

]
(A.19)

The full Hamiltonian(Dirac and strain contributions) reads

HK = v0

[
σx

(
−py −

β~
2a

(uxx − uyy)
)

+ σy

(
px +

β~
a
uxy

)]
(A.20)

Let us define

HK = v0(σxΠx′ + σyΠy′) (A.21)

with

Πx′ = −py −
β~
2a

(uxx − uyy) and Πy′ = px +
β~
a
uxy (A.22)

By rotating the coordinate system Ox′y′ by π/2, the canonical momentum transforms as
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Π = R(π/2)Π′ (
Πx

Πy

)
=

(
0 1

−1 0

)(
Πx′

Πy′

)
and we arrive to

Πx = px +
β~
a
uxy and Πy = py +

β~
2a

(uxx − uyy) (A.23)

which is the desired result.
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APPENDIX B

B.1 Correlation function for the pseudo magnetic field

due to strain

Here we explicitly derive the expression for the correlation function of the pseudo

magnetic field. We start with the equations for the vector potential

Ax(r) =
~β
ea

[uxx(r)− uyy(r)] (B.1)

Ay(r) = −2
~β
ea
uxy(r), (B.2)

where

uxx ≈
1

2

∂h(r)

∂x

∂h(r)

∂x
, uxy ≈

1

2

∂h(r)

∂y

∂h(r)

∂x
, uyy ≈

1

2

∂h(r)

∂y

∂h(r)

∂y
. (B.3)

With these equations, we can compute the effective magnetic field due to strain as

Bs
z(r) =

∂Ay
∂x
− ∂Ax

∂y
(B.4)

=
~β
ea

[uyyy(r)− 2uxxy(r)− uyxx(r)] .

Defining

h(r) =
∑
q

e−iq·rh(q) (B.5)

we get

uyyy(r) ≈ 1

2

∂

∂y

∂h(r)

∂y

∂h(r)

∂y
=
i

2

∑
q1

∑
q2

q1yq2y(q1y + q2y)e
−i(q1+q2)·rh(q1)h(q2),(B.6)

with the Fourier transform

uyyy(q) =
1

A

∫
druyyy(r)eiq·r =

i

2
qy
∑
q1

q1y(qy − q1y)h(q1)h(q − q1)

= −iqyuyy(q). (B.7)
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In the same way

uyxx(r) ≈ 1

2

∂

∂y

∂h(r)

∂x

∂h(r)

∂x
=
i

2

∑
q1

∑
q2

q1xq2x(q1y + q2y)e
−i(q1+q2)·rh(q1)h(q2)(B.8)

uyxx(q) =
1

A

∫
druyxx(r)eiq·r =

i

2
qy
∑
q1

q1x(qx − q2x)h(q1)h(q − q1)

= −iqyuxx(q) (B.9)

and finally

uxxy(r) ≈ 1

2

∂

∂x

∂h(r)

∂x

∂h(r)

∂y
=
i

2

∑
q1

∑
q2

q1xq2y(q1x + q2x)e
−i(q1+q2)·rh(q1)h(q2)(B.10)

(B.11)

uxxy(q) =
1

A

∫
druyxx(r)eiq·r =

i

2
qx
∑
q1

q1x(qy − q2y)h(q1)h(q − q1)

= −iqxuxy(q) (B.12)

The Fourier transform of the effective magnetic field due to strain is then

Bs
z(q) =

1

A

∫
drBs

z(r)eiq·r = i
~β
ea

[qyuxx(q) + 2qxuxy(q)− qyuyy(q)], (B.13)

and the correlation function in reciprocal space is then

〈B(q)B(−q)〉 =

(
~β
ea

)2 [
q2
y〈uxx(q)uxx(−q)〉+ 2qyqx〈uxx(q)uxy(−q)〉 − q2

y〈uxx(q)uyy(−q)〉

+ 2qyqx〈uxy(q)uxx(−q)〉+ 4q2
x〈uxy(q)uxy(−q)〉 − 2qyqx〈uxy(q)uyy(−q)〉

− q2
y〈uyy(q)uxx(−q)〉 − 2qyqx〈uyy(q)uxy(−q)〉+ q2

y〈uyy(q)uyy(−q)〉
]

(B.14)

〈B(q)B(−q)〉 =

(
~β
ea

)2
[
q2
y

(
〈uxx(q)uxx(−q)〉 − 〈uxx(q)uyy(−q)〉 − 〈uyy(q)uxx(−q)〉

+ 〈uyy(q)uyy(−q)〉

)
+ 2qyqx

(
〈uxx(q)uxy(−q)〉+ 〈uxy(q)uxx(−q)〉

− 〈uxy(q)uyy(−q)〉 − 〈uyy(q)uxy(−q)〉

)
+ 4q2

x〈uxy(q)uxy(−q)〉

]
. (B.15)

Now we use the equations

〈uxx(q)uxx(−q)〉 =
h4
rms

4λ4
+
h4
rmsπ

32λ2A
(12− 4λ2q2

x + λ4q4
x)e
−λ

2

4
q2 (B.16)
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〈uxx(q)uyy(−q)〉 =
h4
rms

4λ4
+
πh4

rms

32λ2A
(2− λ2q2

x)(2− λ2q2
y)e
−λ

2

4
q2 (B.17)

〈uyy(q)uxx(−q)〉 =
h4
rms

4λ4
+
πh4

rms

32λ2A
(2− λ2q2

y)(2− λ2q2
x)e
−λ

2

4
q2 (B.18)

〈uyy(q)uyy(−q)〉 =
h4
rms

4λ4
+
h4
rmsπ

32λ2A
(12− 4λ2q2

y + λ4q4
y)e
−λ

2

4
q2 (B.19)

〈uxx(q)uxy(−q)〉 =
πh4

rmsqxqy(λ
2q2
x − 2)

32A
e−

λ2q2

4 (B.20)

〈uyy(q)uxy(−q)〉 =
πh4

rmsqxqy(λ
2q2
y − 2)

32A
e−

λ2q2

4 (B.21)

〈uxy(q)uyy(−q)〉 =
πqxqyh

4
rms

32A
(q2
yλ

2 − 2)e−
λ2q2

4 (B.22)

〈uxy(q)uxx(−q)〉 =
πqxqyh

4
rms

32A
(λ2q2

x − 2)e−
λ2q2

4 (B.23)

〈uxy(q)uxy(−q)〉 =
πh4

rms

32λ2A
(4 + q2

xq
2
yλ

4)e−
λ2q2

4 (B.24)

from which we get

〈B(q)B(−q)〉 =
h4
rmsπ

32λ2A

(
~β
ea

)2
[
q2
y

(
16 + λ4(q2

x − q2
y)

2

)
+ 2qyqx

(
2λ4qxqy(q

2
x − q2

y)

)

+ 4q2
x

(
4 + λ4q2

xq
2
y

)]
e−

λ2

4
q2 . (B.25)

Making the parametrization

qx = q cos θ (B.26)

qy = q sin θ (B.27)

we finally find the expression

〈B(q)B(−q)〉 =
h4
rmsπ

32λ2A

(
~β
ea

)2
[

16q2 + λ4q6 sin2 3θ

]
e−

λ2

4
q2 (B.28)
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In real space, the correlator reads

〈B(r)B(−r′)〉 =
∑
q

e−iq·r〈B(q)B(−q)〉 (B.29)

=
h4
rms

λ6

(
~β
ea

)2
[

8− 20

λ2
(x2 + y2) +

9

λ4
(x2 + y2)2 − 2y2

λ6
(y2 − 3x2)2

]
e−

r2

λ2 .

We set the parametrization

x = r cos θ (B.30)

y = r sin θ (B.31)

and finally

〈B(r)B(−r′)〉 =
h4
rms

λ6

(
~β
ea

)2
[

8− 20
r2

λ2
+ 9

r4

λ4
− 2

r6

λ6
sin2(3θ)

]
e−

r2

λ2 (B.32)

The variance is given by

〈B(r)B(−r′)〉|r=0 = 8
h4
rmsπ

λ6

(
~β
ea

)2

(B.33)



76

APPENDIX C

C.1 Electrons in high magnetic field

The Hamiltonian for pristine graphene in a magnetic field(one valley only) reads

H = vF

(
0 πx − iπy

πx + iπy 0

)
(C.1)

with the kinetic momentum given by πx = px + eAx and πy = py + eAy. We define

operators

Π+ = πx + iπy =
√

2e~Bb+ (C.2)

Π− = πx − iπy =
√

2e~Bb− (C.3)

so that the Hamiltonian can be written as

H =

√
2vF~
lB

(
0 b−

b+ 0

)
. (C.4)

The eigenvalue problem to solve is then

√
2vF~
lB

(
0 b−

b+ 0

)(
ϕ1

ϕ2

)
= E

(
ϕ1

ϕ2

)
, (C.5)

and explicitly we have two equations, namely

√
2vFh

lB
b−ϕ2 = Eϕ1 (C.6)

and √
2vFh

lB
b+ϕ1 = Eϕ2. (C.7)

solving for ϕ2 we have (√
2vFh

lB

)2

b+b−ϕ2 = E2ϕ2 (C.8)
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what suggests that ϕ is an eigenstate of the number operator with eigenvalues

E =

(
vFh

lB

)√
2n. (C.9)

Suppose now the gauge A = {0, xB}. For this particular choice of gauge, y is a cyclic

variable and the functions can be taken as ϕ1,2 = eikyyϕ1,2(x). Using the explicit form of

the operators in eq. (C.6) and eq. (C.7) and changing variable to

X =
(kyl

2 + x)

l
→ ∂

∂x
=

1

l

∂

∂X
(C.10)

we arrive at the equations
1

l

(
∂

∂X
+X

)
ϕ2 =

iE

~vF
ϕ1 (C.11)

1

l

(
∂

∂X
−X

)
ϕ1 =

iE

~vF
ϕ2 (C.12)

Solving for ϕ2 we get (
∂2

∂X2
+

(
lE

~vF

)2

−X2 + 1

)
ϕ2 = 0 (C.13)

with solution

ϕ2(X) =
1√

lB2nn!
√
π
e−X

2/2Hn(X). (C.14)

ϕ1 follows from the equation

ϕ1(X) = −i~vF
lE

(
∂

∂X
+X

)
e−X

2/2Hn(X) (C.15)

whose solution is now

ϕ1(X) =
−i√

lB2nn!
√
π
e−X

2/2Hn−1(X) (C.16)

The total eigenspinor then reads

Ψn,ky(r) =
eikyy√
2LylB

(
ϕ1(X)

ϕ2(X)

)
. (C.17)
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APPENDIX D

D.1 Dephasing time

In this appendix we explicitly calculate the dephasing time due to the strain pseudo

magnetic field. To this end, we have to compute[91]

〈exp(iξφg)〉 = exp

(
−1

2
ξ2〈φ2

g〉
)
, (D.1)

where ξ = 2π
φsc

and φsc = h
2e

and

〈φ2
g〉 =

n+1∑
i=1

n+1∑
j=1

〈∫
dli ·A(ri)

∫
dl′j ·A(r′j)

〉
. (D.2)

We can consider only diagonal elements, assuming that the off diagonal part is uncorre-

lated (λ << le). We recall here that the strain gauge field is

Ax(r) =
~β
ea

[uxx(r)− uyy(r)] (D.3)

Ay(r) = −2
~β
ea
uxy(r), (D.4)

with

uxx ≈
1

2

∂h(r)

∂x

∂h(r)

∂x
(D.5)

uxy ≈
1

2

∂h(r)

∂y

∂h(r)

∂x
(D.6)

uyy ≈
1

2

∂h(r)

∂y

∂h(r)

∂y
. (D.7)



79

Then, we need to calculate the phase

〈φ2
g〉 =

n+1∑
i=1

n+1∑
j=1

〈∫
dli ·A(ri)

∫
dl′j ·A(r′j)

〉
=

〈∫
dxiAx(ri)

∫
dx′jAx(r

′
j)

〉
(D.8)

+

〈∫
dxiAx(ri)

∫
dy′jAy(r

′
j)

〉
+

〈∫
dyiAy(ri)

∫
dx′jAx(r

′
j)

〉
+

〈∫
dyiAy(ri)

∫
dy′jAy(r

′
j)

〉
=

n+1∑
i=1

n+1∑
j=1

∫
dxi

∫
dx′j

〈
Ax(ri)Ax(r

′
j)
〉

+

∫
dxi

∫
dy′j
〈
Ax(ri)Ay(r

′
j)
〉

+

∫
dyi

∫
dx′j

〈
Ay(ri)Ax(r

′
j)
〉

+

∫
dyi

∫
dy′j
〈
Ay(ri)Ay(r

′
j)
〉

〈φ2
g〉 = 〈φ2

g〉1 + 〈φ2
g〉2 + 〈φ2

g〉3 + 〈φ2
g〉4

Let us work out explicitly one of these contributions. The other three can be calculated

in a similar maner. First consider

〈φ2
g〉1 =

n+1∑
i,j=1

∫ x̄i

x̄i−1

dxi

∫ x̄′j

x̄′j−1

dx′j
〈
Ax(ri)Ax(r

′
j)
〉
, (D.9)

with〈
Ax(ri)Ax(r

′
j)
〉

=

(
~β
ea

)2 [〈
uxx(ri)uxx(r

′
j)
〉
−
〈
uxx(ri)uy′y′(r

′
j)
〉
−
〈
uyy(ri)ux′x′(r

′
j)
〉

+
〈
uyy(ri)uy′y′(r

′
j)
〉]
. (D.10)

Using the correlation function given in section(D.2), one writes

〈φ2
g〉1 =

(
~β
ea

)2
∆4

2λ8

n+1∑
i=1

∫ x̄i

x̄i−1

dxi

∫ x̄′i

x̄′i−1

dx′i[2λ
4 − 2λ2(|xi − x′i|2 + |yi − y′i|2)

+
(
|xi − x′i|2 − |yi − y′i|2

)2
]e−

(ri−r′i)
2

λ2 , (D.11)

or

〈φ2
g〉1 =

(
~β
ea

)2
∆4

2λ8

n+1∑
i=1

Ii, (D.12)

with

Ii =

∫ x̄i

x̄i−1

dxi

∫ x̄′i

x̄′i−1

dx′i[2λ
4 − 2λ2(|xi − x′i|2 + |yi − y′i|2) +

(
|xi − x′i|2 − |yi − y′i|2

)2
]e−

(ri−r′i)
2

λ2

=
1

2
cos2(θi)

√
πλ5

[
|ri − ri−1|+

3

4

1

|ri − ri−1|3
(
|xi − xi−1|2 − |yi − yi−1|2

)2
]
. (D.13)
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Then the result for the first part is

〈φ2
g〉1 =

(
~β
ea

)2 √
π∆4

4λ3

n+1∑
i=1

[
|xi − xi−1|2

|ri − ri−1|
+

3

4

|xi − xi−1|2

|ri − ri−1|5
(
|xi − xi−1|2 − |yi − yi−1|2

)2
]
,

(D.14)

Where we have assumed that |ri − ri−1| � λ. This is justified in the short-range limit

|ri − ri−1| ∼ le � λ. We also used the following relation to parametrize the path of

integration

xi − x̄i−1 = s cos(θi) (D.15)

yi − ȳi−1 = s sin(θi)

x̄i − x̄i−1 = |ri − ri−1| cos(θi)

ȳi − ȳi−1 = |ri − ri−1| sin(θi)

D.2 Correlations functions needed in this appendix

〈uxx(ri)uxx(r′i)〉 = π2λ4∆4

{
1

4π2λ8

+
1

2π2λ12

(
λ2 − |xi − x′i|2

)2
e−

(ri−r′i)
2

λ2

}
(D.16)

〈uyy(ri)uyy(r′i)〉 = π2λ4∆4

{
1

4π2λ8

+
1

2π2λ12

(
λ2 − |yi − y′i|2

)2
e−

(ri−r′i)
2

λ2

}
(D.17)

〈uxx(ri)uyy(r′i)〉 = π2λ4∆4

{
1

4π2λ8
(D.18)

+
1

2π2λ12
(xi − x′i)2(yi − y′i)2e−

(ri−r′i)
2

λ2

}

〈uyy(ri)uxx(r′i)〉 = π2λ4∆4

{
1

4π2λ8
(D.19)

+
1

2π2λ12
(xi − x′i)2(yi − y′i)2e−

(ri−r′i)
2

λ2

}
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〈uxy(ri)uxx(r′i)〉 =
∆4

2λ8
(λ2 − |xi − x′i|2)|xi − x′i||yi − y′i|e

− (ri−r′i)
2

λ2 (D.20)

〈uxx(ri)uxy(r′i)〉 =
∆4

2λ8
(λ2 − |xi − x′i|2)|xi − x′i||yi − y′i|e

− (ri−r′i)
2

λ2 (D.21)

〈uyy(ri)uxy(r′i)〉 =
∆4

2λ8
(λ2 − |yi − y′i|2)|xi − x′i||yi − y′i|e

− (ri−r′i)
2

λ2 (D.22)

〈uxy(ri)uyy(r′i)〉 =
∆4

2λ8
(λ2 − |yi − y′i|2)|xi − x′i||yi − y′i|e

− (ri−r′i)
2

λ2 (D.23)

〈uxy(ri)uxy(r′i)〉 =
∆4

4λ8

{
(λ2 − |xi − x′i|2)(λ2 − |yi − y′i|2)e−

(ri−r′i)
2

λ2

+ |xi − x′i|2|yi − y′i|2e
− (ri−r′i)

2

λ2

}
, (D.24)

∆ represents the hight of the profile using to model disorder.
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