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1. Extreme Events

Various types:

• Rare events --> larger or smaller than some (big) threshold

• Extremal events --> largest or smallest in a given set

• Records --> larger or smaller than any previous

Interesting in stochastic dynamics (unpredictable):

! Fun (sports, Guiness book,…)

! Danger (weather, earthquakes, epileptic seizures,…)

! Money (lotto jackpot, insurance claims,…)

! Curiosity (how often, why, …)

! …



Difficult to handle mathematically:

• Described by tails of probability distribution --> poor statistics

• Normally interested in peak position (mean (LLN) and variance (CLT))

  -->  machinery not so well-developed for tails

==> Statistical description by extreme value theory

Application to empirical data problematic:

• approximations difficult because of poor convergence to limiting distributions

• no insight in mechanisms of origin

• no prediction and prevention

New: Interesting in Statistical Mechanics:

! Conceptual (Foundations of Stat Mech)

! Study causes and effects



Canonical ensemble = subsystem in heat bath

subsystem E,V,N

heat bath Y - E

energy exchange
(V,N fixed)

total system Y,Vtot,Ntot

statistical weight of subsystem:

Boltzmann distribution!=S!(E): Inverse T of heat bath

Not so new: Extreme events in Equilibrium Stat Mech



- origin of exponential: statistical independence of subsystems

E1 E2

- probability p(T,V,N) to find microstate of subsystem with energy E:  p = w(E)/Z

partition function

- sharp peak at some U (mean energy of subsystem) " Helmholtz free energy

F(T,V,N) = -kT ln Z = U - TS



-  second equation: Legrende transformation U(S,V,N) !" F(T,V,N)

- extensivity:  F = V f(T,")

- extremal principle: F takes minimal value for given set of system parameters

Microscopic viewpoint (large deviation theory):

- Consider particle energies Ei in subsystem

- Large deviation theory:  (i) P(E) = Prob[ #i Ei = E] ~ e-A(E)

                                        (ii) < e -!E > ~ e -B(!)

- A,B extensive, satisfy extremal principle A(E) = max! [ B(!) - !E ]

- Microcanonical ensemble: P(E) ~ $(E)  ==>  A(E) = - S(E)

-                                            B(!) = - ln (Z) = ! F(!)

==> choosing ! that maximizes S yields Legendre transformation F = U - TS



Far from equilibrium:

- no generally applicable ensemble

- no large deviation theory (in general)

- but: generally valid Fluctuation Theorems

Gallavotti-Cohen
[Evans, Cohen, Morris "93,
Gallavotti, Cohen "95]

- mathematical asymptotic theorem for certain dynamical systems

- no specific information about entropy production %

- allows (statistical) prediction of negative entropy production (extreme)

2. Gallavotti-Cohen Symmetry



Stochastic dynamics: [Kurchan "98, Lebowitz, Spohn "99, Harris, G.M.S. "07]

Consider stochastic process with set of configurations %

- Trajectory (realization) {%} =  {%0, %1, … %n} with random jump times &i

- Measure some quantity r associated with each transition (energy transfer,
  mass transfer,…) --> (antisymmetric) r%’ ,%  for transition from % ''> %’

- Example: Particles hopping on a lattice

                              k k+1

- r = +/- 1 for jump across k,k+1:

==> sum of all r along trajectory = integrated particle current

g(nk)



Associate some physical quantity with initial state (ln f) and final state (- ln g)

(Example for equilibrium: energy of initial and final configuration)

- Trajectory functional (measurement)

- Integrated current of trajectory (sum of all r) plus boundary parts

- boundary provide appropriate statistical weight in functional

- choice of f,g depends on experimental setting!

- no restriction to any equilibrium condition



Consider instantaneous entropy production [Seifert "05]

Then trajectory functional =  entropy change in environment + boundary terms

- Detailed balance (equilibrium process): r = (E / (kT)

==> Thermal systems: (Senv = Q/T

- Otherwise still well-defined through transition rates

- Stochastic particle systems: proportional to particle current

- Entropy production extensive in time  (~t for each trajectory at large times)



Call corresponding trajectory functional R

- Consider generating function < e-)R>  ==> gives weight e-)r to each transition

- TIME REVERSAL

transition rates of reversed process

= original rates x er                                                                                                                        er

w(%,%’ ) = w(%’ ,%) x                                                                              er

              = w(%’ ,%) er(%’ ,%)

==> weight e(1-))r to each transition

(reversal of entropy production in each elementary step of each trajectory)

w(%,%’ )

w(%’ ,%)



- extra factor for as many transitions as in initial (forward) process

                        < e-)R>F  = < e-(1-))R>B

                      (includes interchange of boundary terms)

- Large deviation property (extensivity of R for t large)

                            < e-)R> ~ e-tg())

- or equivalently                     g()) = g(1-)) + (boundary terms)/t

- Legrende transformation

                                                                                 e-rt

==> Gallavotti-Cohen symmetry
%

t



Conceptually important 

      ==> far-from-equilibrium generalization of Onsager relations

      ==> boosted the whole field of fluctuation theorems

                                      

• GC is asymptotic ==> one can use it to extrapolate

• Numerical tests can be performed in lattice gas models

What is the question?

Rigorous in lattice models with finite local state space (exclusion processes)

==>                   Is GCS valid, if we violate this condition?



3. Classical condensation phenomena

 Granular shaking                                      N=100 plastic particles in box with two compartments separated 
                                      by wall with slit

            Gaseous state                                                                    Condensed state

                                                   T > Tc                     T < Tc

  

i)       Strong shaking (fixed amplitude, 50 Hz frequency): # Equal gaseous distribution

ii)      Moderate shaking (same amplitude, 30 Hz): #  Condensation (with SSB)

Effective, frequency-dependent temperature leads to phase transition

[Schlichting and Nordmeier "96, Eggers !99, Lohse "02]



Granular Clustering: L=5
http://stilton.tnw.utwente.nl/people/rene/clustering.html
Detlef Lohse, Devaraj van der Meer, Michel Versluis, 

Ko van der Weele, René Mikkelsen

Time t = 0…12 sec t approx. 1 min



• molecular diffusion in zeolites

• colloidal particles in narrow channels

• transport in carbon nanotubes

• molecular motors and ribosomes

• gel electrophoresis

• automobile traffic flow

Condensation = traffic jam = phase separation

SFD: Quasi one-dimensional diffusion without passing

Polyribosome:
[http://omega.dawsoncollege.qc.ca/ray/protein/protein.htm

Three phases of kinesin transport (Chodhury et al.)

Single File Diffusion:

Other Complex Systems

•    Network rewiring

•     Accumulation of wealth



J(nk)

Zero-range process (ZRP) with symmetric nearest-neighbour hopping  [Spitzer (1970)]

• Stochastic particle hopping model

• Cluster of size n (or length of domain) $ occupation number in ZRP

•  particle flux J(nk) between compartments (domains) $ hopping rate in ZRP

k

Condensation transition in the zero-range process



Exact grand canonical stationary distribution  [Spitzer, (1970)]

# Product measure with marginals P(n) and local partition function Z

• Fugacity z determines (fluctuating) density "(z)

• Well-defined for fugacities within radius of convergence z* (that depends on J)

• Canonical ensembles for any N by projection on fixed N

• Grand canonical ensemble: What happens if "(z*) is finite?

~



Spatially homogeneous systems

2)     Consider generic case where for large n

                                         J(n)  = A (1 + b/n% )

# radius of convergence of partition function: z < z* = A  

  
# at z* one has finite density "c for % < 1

" For % = 1:     #    P(n) ~ 1/nb 

1) Asymptotically vanishing flux J(n) " 0:  # z*=0 and hence "c = 0 

                  



Interpretation of critical density for b>2 or % < 1 for canonical ensemble: 

• Above critical density all sites except one (background) are at critical density

• One randomly selected site carries remaining O(L) particles 

# Classical analogue of Bose-Einstein condensation
     [Evans !96, Ferrari, Krug !96, O!Loan, Evans, Cates, !98, Jeon, March "00]

# Single random condensation site 
     [Grosskinsky, GMS, Spohn, !05, Ferrari, Landim, Sisko !07, Loulakis, Armendariz "08, 
      Evans, Majumdar "08]]

# Continuous condensation transition ("bg = "c)

# Coarsening as precursor of condensation
     [Grosskinsky, GMS, Spohn, !05; Godreche "05]

Generic model for classical condensation phenomena



4. Breakdown of GCS

Validity of Gallavotti-Cohen symmetry: 

• It!s a mathematical theorem (Good-bye, experimental physics?!)

• Related fluctuation theorems (Jarzinsky, Crooks, …) also rigorous…

• … but then, in which experimental system can you check the

  hypotheses of the theorem? 

   

# In other words, how robust is GC symmetry? (Experimentalists, please return!)

Related fluctuation theorems experimentally well-confirmed in systems with 

- relatively small number of degrees of freedom

- boundary terms matter for experimental time scales



Test of GCS for zero-range process 

Exactly solvable for b=0

# large time regime accessible

# many degrees of freedom

# unbounded state space 

BUT:

• no condensation

• exponentially small probability for large occupation
??



Zero-range process with open boundaries [R.J.Harris, A. Rakos, G.M.S., "05-!07]

General case wn arbitrary

Consider integrated current Jl across bond l,l+1, starting from some initial distribution

Take t large, study mean current jl = Jl / t

# Compute large deviation function el()) from generation function <e-)Jl>

# Compute Legendre transform (probability to observe specific jl



Exact result:

- write master equation in Quantum Hamiltonian form

- make product ansatz for groundstate to obtain lowest eigenvalue (LDF)

Large deviation
function

Legrende
transform

- satisfies GCS, independent of l, but boundary terms ignored



For boundary terms consider totally asymmetric ZRP, wn = 1

- direct computation of complete LDF (no diagonalization --> inclusion of boundary terms)

- mapping to totally asymmetric simple exclusion process
- Bethe ansatz --> determinantal transition probabilities
- summation of determinants yields exact expression

current distribution

input bond

Poisson, by definition of process

output bond

- different from bond 0

- non-analytic behaviour at j = !



How can a mean current larger than exit rate be realized?

- requires previous build-up of large number of particles at site 1 (~t)

  followed by rapid extraction

- implies input/output are independent Poisson processes

  --> product form

- transient condensate through (rare) fluctuation

- causes non-analytic behaviour in tale of

  probability distribution (extreme events)

- mathematical: divergence of boundary term,

  possible because of unbounded local state



Conjecture for full lattice:

- proof for small L by determinant formula obtained from Bethe ansatz



Exact expression for current distribution:

- evaluation by steepest descent for finite L



Back to partially asymmetric ZRP

•  take one site, b=0  for analytic calulation

•  generate equilibrium with fugacity x

•  change boundary parameters to non-equilibrium situation

•  obtain different non-analyticities, depending both on j and x

•  large deviation phase diagram

•  validity of GCS only in restriced

   region, depending on preparation

   of system

•  origin transient condensates



Simulation results for larger lattice:

                     steady state                                                   empty lattice

•  breaking of GCS persists

• measurable in Monte- Carlo simulations



5. Conclusions

Statistical Mechanics of extreme events yields:

• Fluctuation theorems through time reversal

• Gallavotti-Cohen symmetry may break down in “natural” setting

• Violation caused by transient condensation

==> dynamical mechanism underlying non-analytic change of

       extreme event identified

• Large deviation phase diagram

==> Large deviations, fluctuation theorems, extremal events should be

       studied together

==> Study of critical phenomena in extreme events



Mapping of single-file diffusion to zero range process:

• Label particles consecutively

                            n1                        n2                n3                         n4

                1                         2                       3              4

• Map particle label to lattice site

• Map discretized interparticle distance to particle number

                  1             2            3             4


