Statistical Mechanics of Extreme Events

Gunter M. Schütz

Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany and Interdisziplinäres Zentrum für Komplexe Systeme, Universität Bonn

- Extreme Events
- Gallavotti-Cohen Symmetry
- Classical Condensation Phenomena
- Breakdown of GCS
- Conclusions

1. Extreme Events

Various types:

- Rare events --> larger or smaller than some (big) threshold
- Extremal events --> largest or smallest in a given set
- Records --> larger or smaller than any previous

Interesting in stochastic dynamics (unpredictable):

- \triangleright Fun (sports, Guiness book,...)
- \triangleright Danger (weather, earthquakes, epileptic seizures,...)
- \triangleright Money (lotto jackpot, insurance claims,...)
- \triangleright Curiosity (how often, why, ...)
- \triangleright …

Difficult to handle mathematically:

- Described by tails of probability distribution --> poor statistics
- Normally interested in peak position (mean (LLN) and variance (CLT)) --> machinery not so well-developed for tails

==> Statistical description by extreme value theory

Application to empirical data problematic:

- approximations difficult because of poor convergence to limiting distributions
- no insight in mechanisms of origin
- no prediction and prevention

New: Interesting in Statistical Mechanics:

- \triangleright Conceptual (Foundations of Stat Mech)
- \triangleright Study causes and effects

Not so new: Extreme events in Equilibrium Stat Mech

Canonical ensemble = subsystem in heat bath

 $\beta = S'(E)$: Inverse T of heat bath Boltzmann distribution

- origin of exponential: statistical independence of subsystems

$$
E_1 \begin{array}{c} E_2 \\ \hline \end{array} \begin{array}{c} E_2 \\ w_{12}(E_1 + E_2) = w_1(E_1)w_2(E_2) \end{array}
$$

- probability $p(T, V, N)$ to find microstate of subsystem with energy $E: p = w(E)/Z$

partition function

\n
$$
Z(T, V, N) = \sum_{\text{microstates}} e^{-\beta E}
$$
\n
$$
= \sum_{E} \Gamma(E, V, N) e^{-\beta E}
$$
\n
$$
= \sum_{E} e^{-\beta (E - TS)}
$$

- sharp peak at some U (mean energy of subsystem) \rightarrow Helmholtz free energy

$$
F(T, V, N) = -kT \ln Z = U - TS
$$

- second equation: Legrende transformation $U(S, V, N) \leftarrow \leftarrow F(T, V, N)$
- extremal principle: *F* takes minimal value for given set of system parameters
- extensivity: $F = V f(T, \rho)$

Microscopic viewpoint (large deviation theory):

- Consider particle energies E_i in subsystem
- Large deviation theory: (i) $P(E) = Prob[\Sigma_i E_i = E] \sim e^{-A(E)}$

(ii) $\lt e^{-\beta E} \gt \lt e^{-B(\beta)}$

- A,B extensive, satisfy extremal principle $A(E) = max_{\beta} [B(\beta) \beta E]$
- Microcanonical ensemble: $P(E) \sim \Gamma(E)$ ==> A(E) = S(E)

 $B(\beta) = - \ln (Z) = \beta F(\beta)$

 \Rightarrow choosing β that maximizes S yields Legendre transformation $F = U - TS$

2. Gallavotti-Cohen Symmetry

Far from equilibrium:

- no generally applicable ensemble
- no large deviation theory (in general)
- but: generally valid Fluctuation Theorems

Gallavotti-Cohen [Evans, Cohen, Morris "93, Gallavotti, Cohen "95]

$$
\boxed{\frac{p(-\sigma,t)}{p(\sigma,t)}\sim e^{-\sigma t}}
$$

- mathematical asymptotic theorem for certain dynamical systems
- no specific information about entropy production σ
- allows (statistical) prediction of negative entropy production (extreme)

Stochastic dynamics: [Kurchan '98, Lebowitz, Spohn '99, Harris, G.M.S. '07]

Consider stochastic process with set of configurations σ

- Trajectory (realization) $\{\sigma\} = \{\sigma_0, \sigma_1, \ldots \sigma_n\}$ with random jump times τ_i
- Measure some quantity r associated with each transition (energy transfer, mass transfer,...) --> (antisymmetric) $r_{\sigma',\sigma}$ for transition from $\sigma \rightarrow \sigma'$

 $- r = +/- 1$ for jump across k, k + 1:

 \Rightarrow sum of all r along trajectory $=$ integrated particle current

Associate some physical quantity with initial state (ln f) and final state (- ln g) (Example for equilibrium: energy of initial and final configuration)

- Integrated current of trajectory (sum of all r) plus boundary parts
- boundary provide appropriate statistical weight in functional
- choice of f,g depends on experimental setting!
- no restriction to any equilibrium condition

Consider instantaneous entropy production [Seifert "05]

$$
r_{\sigma',\sigma}^{(1)}(\tau) = \ln \left[\frac{w_{\sigma',\sigma}(\tau)}{w_{\sigma,\sigma'}(\tau)} \right]
$$

Then trajectory functional $=$ entropy change in environment $+$ boundary terms

- Detailed balance (equilibrium process): $r = \Delta E / (kT)$

 \Rightarrow Thermal systems: $\Delta S_{env} = Q/T$

- Otherwise still well-defined through transition rates
- Stochastic particle systems: proportional to particle current
- Entropy production extensive in time (~t for each trajectory at large times)

Call corresponding trajectory functional R

- Consider generating function $\langle e^{-\lambda R} \rangle$ ==> gives weight $e^{-\lambda r}$ to each transition

 $=$ weight $e^{(1-\lambda)r}$ to each transition

(reversal of entropy production in each elementary step of each trajectory)

- extra factor for as many transitions as in initial (forward) process

$$
}^F = ^B
$$

(includes interchange of boundary terms)

- Large deviation property (extensivity of R for t large)

$$
\sim e^{-tg(\lambda)}
$$

- or equivalently $g(\lambda) = g(1-\lambda) + (bounday \text{ terms})/t$

Conceptually important

 ==> far-from-equilibrium generalization of Onsager relations ==> boosted the whole field of fluctuation theorems

- GC is asymptotic = = > one can use it to extrapolate
- Numerical tests can be performed in lattice gas models

What is the question?

Rigorous in lattice models with finite local state space (exclusion processes)

==> Is GCS valid, if we violate this condition?

3. Classical condensation phenomena

Granular shaking N=100 plastic particles in box with two compartments separated by wall with slit [Schlichting and Nordmeier '96, Eggers '99, Lohse '02]

- i) Strong shaking (fixed amplitude, 50 Hz frequency): \rightarrow Equal gaseous distribution
- ii) Moderate shaking (same amplitude, 30 Hz): \rightarrow Condensation (with SSB)

Effective, frequency-dependent temperature leads to phase transition

Granular Clustering: L=5

http://stilton.tnw.utwente.nl/people/rene/clustering.html

Detlef Lohse, Devaraj van der Meer, Michel Versluis, Ko van der Weele, René Mikkelsen

Time $t = 0...12$ sec t approx. 1 min

Single File Diffusion:

SFD: Quasi one-dimensional diffusion without passing

- molecular diffusion in zeolites
- colloidal particles in narrow channels
- transport in carbon nanotubes
- molecular motors and ribosomes
- gel electrophoresis
- automobile traffic flow

Condensation $=$ traffic jam $=$ phase separation

Other Complex Systems

- Network rewiring
- Accumulation of wealth

Polyribosome: [http://omega.dawsoncollege.qc.ca/ray/protein/protein.htm

Condensation transition in the zero-range process

Zero-range process (ZRP) with symmetric nearest-neighbour hopping [Spitzer (1970)]

- Stochastic particle hopping model
- Cluster of size n (or length of domain) \Leftrightarrow occupation number in ZRP
- particle flux $J(n_k)$ between compartments (domains) \Leftrightarrow hopping rate in ZRP

Exact grand canonical stationary distribution [Spitzer, (1970)]

 \rightarrow Product measure with marginals P(n) and local partition function Z

$$
P(\vec{n}) = \prod_{i \in \Lambda} P(n_i)
$$

$$
P(n) = \frac{1}{Z} z^n \prod_{k=1}^n J^{-1}(k), \quad Z = \sum_{n=0}^\infty \tilde{P}(n)
$$

- Fugacity z determines (fluctuating) density $\rho(z)$
- Well-defined for fugacities within radius of convergence z* (that depends on J)
- Canonical ensembles for any N by projection on fixed N
- Grand canonical ensemble: What happens if $\rho(z^*)$ is finite?

Spatially homogeneous systems

- 1) Asymptotically vanishing flux $J(n) \rightarrow 0$: \rightarrow z*=0 and hence $\rho_c = 0$
- 2) Consider generic case where for large n

 $J(n) = A (1 + b/n^{\circ})$

 \rightarrow radius of convergence of partition function: $z < z^* = A$

 \rightarrow at z^{*} one has finite density ρ_c for σ < 1

 \rightarrow For $\sigma = 1$: \rightarrow P(n) ~ 1/n^b

$$
\rho(z^*) = \begin{cases} \infty & \text{for } b \le 2\\ \rho_c = 1/(b-2) & \text{for } b > 2 \end{cases}
$$

Interpretation of critical density for $b > 2$ or $\sigma < 1$ for canonical ensemble:

- Above critical density all sites except one (background) are at critical density
- One randomly selected site carries remaining O(L) particles
- \rightarrow Classical analogue of Bose-Einstein condensation [Evans '96, Ferrari, Krug '96, O'Loan, Evans, Cates, '98, Jeon, March '00]
- \rightarrow Single random condensation site [Grosskinsky, GMS, Spohn, '05, Ferrari, Landim, Sisko '07, Loulakis, Armendariz '08, Evans, Majumdar "08]]
- \rightarrow Continuous condensation transition ($\rho_{ba} = \rho_c$)
- \rightarrow Coarsening as precursor of condensation [Grosskinsky, GMS, Spohn, '05; Godreche '05]

Generic model for classical condensation phenomena

4. Breakdown of GCS

Validity of Gallavotti-Cohen symmetry:

- It's a mathematical theorem (Good-bye, experimental physics?!)
- Related fluctuation theorems (Jarzinsky, Crooks, …) also rigorous…
- … but then, in which experimental system can you check the hypotheses of the theorem?

\rightarrow In other words, how robust is GC symmetry? (Experimentalists, please return!)

Related fluctuation theorems experimentally well-confirmed in systems with

- relatively small number of degrees of freedom
- boundary terms matter for experimental time scales

Test of GCS for zero-range process

Exactly solvable for b=0

- \rightarrow large time regime accessible
- \rightarrow many degrees of freedom
- \rightarrow unbounded state space

BUT:

- no condensation
- exponentially small probability for large occupation

Zero-range process with open boundaries [R.J.Harris, A. Rakos, G.M.S., '05-'07]

General case w_n arbitrary

Consider integrated current J_1 across bond I_1I+1 , starting from some initial distribution

Take t large, study mean current j $_\text{l}$ = J $_\text{l}$ / t

 \rightarrow Compute large deviation function $e_i(\lambda)$ from generation function $\langle e \cdot \lambda J \rangle$

 \rightarrow Compute Legendre transform (probability to observe specific j_l

Exact result:

- write master equation in Quantum Hamiltonian form
- make product ansatz for groundstate to obtain lowest eigenvalue (LDF)

Large deviation

\n
$$
e_0(\lambda) = \frac{(p-q)(e^{\lambda} - 1) \left[\alpha \beta \left(\frac{p}{q} \right)^{L-1} e^{-\lambda} - \gamma \delta \right]}{\gamma (p - q - \beta) + \beta (p - q + \gamma) \left(\frac{p}{q} \right)^{L-1}}
$$

Legende

\n
$$
\hat{e}_0(j) = \frac{(p-q)[\alpha\beta(p/q)^{L-1} + \gamma\delta]}{\gamma(p-q-\beta) + \beta(p-q+\gamma)(p/q)^{L-1}} - \sqrt{j^2 + \frac{4\alpha\beta\gamma\delta(p/q)^{L-1}(p-q)^2}{[\gamma(p-q-\beta) + \beta(p-q+\gamma)(p/q)^{L-1}]^2}} - j\ln\left[\frac{2\alpha\beta(p/q)^{L-1}(p-q)}{\gamma(p-q-\beta) + \beta(p-q+\gamma)(p/q)^{L-1}}\right] + j\ln\left[j + \sqrt{j^2 + \frac{4\alpha\beta\gamma\delta(p/q)^{L-1}(p-q)^2}{[\gamma(p-q-\beta) + \beta(p-q+\gamma)(p/q)^{L-1}]^2}}\right]
$$

- satisfies GCS, independent of l, but boundary terms ignored

For boundary terms consider totally asymmetric ZRP, $w_n = 1$

- direct computation of complete LDF (no diagonalization --> inclusion of boundary terms)
- mapping to totally asymmetric simple exclusion process
- Bethe ansatz --> determinantal transition probabilities
- summation of determinants yields exact expression

current distribution input bond

$$
p_0(j,t) \sim e^{-t[\alpha-j+j\ln(j/\alpha)]}
$$

 $j \geq \beta$

Poisson, by definition of process

$$
\text{output bond} \qquad p_1(j, t) \sim \begin{cases} e^{-t[\alpha - j + j \ln(j/\alpha)]} & j < \beta \\ \text{if } (j, t) > j \leq j \end{cases}
$$

\n
$$
p_1(j, t) \sim\n \left\{\n e^{-t[\alpha - j + j\ln(j/\alpha)]} \times e^{-t[\beta - j + j\ln(j/\beta)]}\n \right\}
$$
\n

- different from bond 0
- non-analytic behaviour at $j = \beta$

How can a mean current larger than exit rate be realized?

- requires previous build-up of large number of particles at site 1 $(\sim t)$ followed by rapid extraction
- implies input/output are independent Poisson processes --> product form
- transient condensate through (rare) fluctuation
- causes non-analytic behaviour in tale of probability distribution (extreme events)
- mathematical: divergence of boundary term, possible because of unbounded local state

Conjecture for full lattice:

• Input bond

$$
p_0(j,t) \sim e^{-t[\alpha-j+j\ln(j/\alpha)]}.
$$

• Bulk bonds, $l \neq 0, L$

$$
p_l(j,t) \sim \begin{cases} e^{-t[\alpha-j+j\ln(j/\alpha)]} & j < 1\\ e^{-t[\alpha-j+j\ln(j/\alpha)]} \times e^{-t(1-j+j\ln j)l} & j \ge 1. \end{cases}
$$

• Output bond

$$
p_L(j,t) \sim \begin{cases} e^{-t[\alpha-j+j\ln(j/\alpha)]} & j < \beta \\ e^{-t[\alpha-j+j\ln(j/\alpha)]} \times e^{-t[(\beta-j+j\ln(j/\beta)]} & \beta \le j < 1 \\ e^{-t[\alpha-j+j\ln(j/\alpha)]} \times e^{-t(1-j+j\ln(j)(L-1)} \times e^{-t[\beta-j+j\ln(j/\beta)]} & j \ge 1. \end{cases}
$$

- proof for small L by determinant formula obtained from Bethe ansatz

Exact expression for current distribution:

$$
p_l(j,t) = \prod_{i=1}^{l+1} e^{-t(v_i-j\ln v_i)}
$$

\n
$$
\times \begin{vmatrix} D_0(jt,t) & D_0(jt-1,t) & \dots & D_0(jt-l+1,t) & D_{l+1}(jt-l,t) \\ D_0(jt+1,t) & D_0(jt,t) & \dots & D_0(jt-l+2,t) & D_{l+1}(jt-l+1,t) \\ \dots & \dots & \dots & \dots \\ D_0(jt+l,t) & D_0(jt+l-1,t) & \dots & D_0(jt+1,t) & D_{l+1}(jt,t) \\ \text{with elements} \end{vmatrix}
$$

$$
D_s(x,t) = \frac{1}{2\pi i} \oint e^{t/z} z^{x-1} \prod_{i=s+1}^{l+1} (1 - v_i z)^{-1} dz.
$$

- evaluation by steepest descent for finite L

Back to partially asymmetric ZRP

- take one site, b=0 for analytic calulation
- generate equilibrium with fugacity x
- change boundary parameters to non-equilibrium situation
- obtain different non-analyticities, depending both on j and x
- large deviation phase diagram
- validity of GCS only in restriced region, depending on preparation of system
- origin transient condensates

Simulation results for larger lattice:

- breaking of GCS persists
- measurable in Monte- Carlo simulations

5. Conclusions

Statistical Mechanics of extreme events yields:

- Fluctuation theorems through time reversal
- Gallavotti-Cohen symmetry may break down in "natural" setting
- Violation caused by transient condensation
- ==> dynamical mechanism underlying non-analytic change of extreme event identified
- Large deviation phase diagram
- ==> Large deviations, fluctuation theorems, extremal events should be studied together
- ==> Study of critical phenomena in extreme events

Mapping of single-file diffusion to zero range process:

• Label particles consecutively

- Map particle label to lattice site
- Map discretized interparticle distance to particle number

