

UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE FÍSICA Programa de Pós-Graduação em Física

Tese de Doutorado

O Ajuste Direto de Curvas de Energia Potencial de Moléculas Alcalinas

Marcos Melo de Almeida

Agosto de 2012

UNIVERSIDADE FEDERAL FLUMINENSE

INSTITUTO DE FÍSICA

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

O Ajuste Direto de Curvas de Energia Potencial de Moléculas Alcalinas

Marcos Melo de Almeida

Orientador: Prof. Dr. Carlos Eduardo Fellows **Co-orientador:** Prof. Dr. Frederico Vasconcellos Prudente

> Tese apresentada ao Instituto de Física da Universidade Federal Fluminense para a obtenção do título de Doutor em Física.

Niterói - Agosto de 2012

O Ajuste Direto de Curvas de Energia Potencial de Moléculas Alcalinas

Copyright Agosto de 2012 by Marcos Melo de Almeida

\mathbf{Resumo}

Neste trabalho realizamos os ajustes das Curvas de Energia Potencial (CEP's) das moléculas diatômicas alcalinas heteronucleares de NaLi e RbCs, respectivamente a mais leve e a mais pesada deste grupo de moléculas. Para a realização do ajuste, utilizamos o método do Algoritmo Genético na busca dos parâmetros que melhor ajustam as formas funcionais análiticas que atribuímos as CEP's. Os dados de entrada deste ajuste são CEP's obtidas através de metodologias *ab initio*, níveis vibracionais ou números de onda associadas as linhas espectrais obtidas através do espectro de Fluorescência Induzida por Laser (FIL) pela técnica espectroscópica da Transformada de Fourier.

Abstract

In this work, we have fitted Potential Energy Curves (PECs) of alkaline heteronuclear diatomic molecules of NaLi and RbCs, respectively the lightest and the heaviest one of this group of molecules. To perform the fitting, we had employed Genetic Algorithm for searching best parameters which fit the analytical functional form that we had supposed for PECs. The input data were obtained from theoretical PECs built by *ab initio* methodologies, vibrational levels or wave numbers related to spectroscopic lines from spectrum of Laser Induced Fluorescence obtained by Fourier Transforms technique.

Agradecimentos

Agradeço primeiramente à minha família, pela insistência em que eu apresentasse a tese. Acho que sem esta cobrança não a teria apresentado. Meus pais, Dora e Nilton, que mesmo a distância sempre se fizeram presentes; meus irmãos Mateus e Lucas, pelos momentos de descontração vividos; e minha esposa, Mariana, pelo apoio e carinho durante estes dez anos juntos.

A Fred, por ter aceitado a dura tarefa de me co-orientar a distância durante todo este tempo. Também pela compreensão e amizade que demonstrou nos períodos mais turbulentos do trabalho.

A Fellows, por ter me orientado nos trabalhos como espectroscopistas e acreditar sempre que este trabalho daria certo. Agradeço também a ele o pouquíssimo conhecimento de laboratório que tenho e consegui neste período trabalhando com ele. Algumas vezes destruindo alguma coisa e outras tantas tentando fazê-las funcionar.

Aos novos amigos que fiz aqui no laboratório, e que tornaram a estadia nesta terra longe de casa mais tranqüila. Obrigado a Bárbara Kelly, Luiz, Reginaldo e Andreia.

Aos camaradas Antônio Arapiraca e Érico Figueiredo por compartilharem comigo as angústias e esperanças enquanto fazíamos os nossos trabalhos de doutorado.

(Este trabalho foi financiado pela CAPES)

Pensar, pensar

"Acho que na sociedade actual nos falta filosofía. Filosofía como espaço. lugar, método de reflexão, que pode não ter um objectivo determinado, como a ciência, que avança para satisfaxer objectivos. Falta-nos reflexão, pensar, precisamos do trabalho de pensar, e parece-me que, sem ideias, não vamos a parte nenhuma.

José Saramago (1922-2010)

Último post de José Saramago em seu blog, no dia de sua morte, 18 de Junho de 2010.

Dedico este trabalho à minha família.

Sumário

Li	sta de Figuras	vi
Li	sta de Tabelas	vii
1	Introdução	1
2	 O problema molecular 2.1 Definição do problema	5 7 11 17 19
3	Metodologias 3.1 Ajuste de Dunham . 3.2 O método de Rydberg-Klein-Rees ou RKR . 3.3 O método da Abordagem Perturbativa Inversa ou IPA . 3.4 O Ajuste Direto . 3.4.1 O Algoritmo Genético Híbrido .	24 25 27 29 31 33
4	Resultados 4.1 A molécula de NaLi 4.2 A molécula de RbCs	40 40 48
5	Conclusões	61
\mathbf{A}	Hamiltoniano no sistema de referência do centro de massa	63
В	Método da Representação da Variável DiscretaB.1MetodologiaB.2DVR igualmente espaçada	65 65 67
\mathbf{C}	Tabelas	69

Referências Bibliográficas

104

Lista de Figuras

$2.1 \\ 2.2 \\ 2.3$	Curva de energia potencial de uma molécula diatômica	14 20 21
3.1	Diferença entre os níveis vibracinais RKR e IPA para o estado fundamental da molécula de RbCs.	30
3.2	Esquema diferenciando o ajuste direto das metodologias mediadas por cons-	22
3.3 3.4	Diagrama esquemático de funcionamento do Algoritmo Genético Esquema da atuação dos operadores genéticos sobre o conjunto de parâmetros.	35 37
4.1	O melhor ajuste médio da função objetiva em função das gerações. Em a) a taxa de convergência da função objetiva com relação aos diferentes ope- radores de cruzamento e mutação. em b) a taxa de convergência com os operadores sigma e SBX para diferentes taxas de mutação e cruzamento. As legendas "mut" e "cx" designam a mutação e o cruzamento, respectivamente.	
4.2	Os números são as taxas de mutação e cruzamento	42
	e (d) ajuste com 11 parâmetros	48
4.3	Desvio quadrático médio em função do número de gerações. Neste ajuste foram utilizadas 35 diferenças entre as linhas do espectro determinado por	
	Fellows e colaboradores	49
4.4	Desvio quadrático médio em função do número de gerações. Neste ajuste	
	Fellows e colaboradores	51
4.5	Comparação entre as CEP's teóricas e a CEP IPA (Parte superior). Discre- pância entre os níveis vibracionais calculados e os níveis IPA utilizados como	
	referência (Parte inferior).	52
4.6	A CEP teórica e IPA (parte superior) e a diferença entre elas (parte inferior).	55
4.7	Diferença entre os níveis vibracionais téoricos e os níveis experimentais	57

Lista de Tabelas

4.1	Pontos MCQDPT usados para o ajuste da CEP do estado eletrônico $X^1\Sigma^+$	
	da molécula de NaLi	41
4.2	Testes realizados para diferentes tipos de operadores de mutação e cruza-	
	mento. Os valores da função objetiva χ^2 apresentados na tabela $^{a)}$ estão em	
	cm^{-2}	43
4.3	Testes realizados para diferentes taxas dos operadores cruzamento SBX e $\ $	
	mutação $sigma$. Os valores da função objetiva χ^2 são apresetados na tabela	
	a) em unidades de cm^{-2}	44
4.4	Parâmetros e desvio quadrático médio dos quatro ajustes da função de Ryd-	
	berg estendida para os dados <i>ab initio</i> e espectrocópicos obtidos para a mo-	
	lécula de NaLi	45
4.5	Comparação entre os valores experimentais e os determinados no ajuste para	
	a distância de equilíbrio e a energia de dissociação. Os valores são dados em	
	unidades atômicas e os números em parêntesis são as incertezas experimentais.	45
4.6	Comparação entre os níveis de energia vibracional ^a) (em cm^{-1}) para o NaLi	
	obtidos do ajuste 4 $(E(teo))$ e os correspondentes valores experimentais $(E(exp))$	
	usados no ajuste	47
4.7	Parâmetros para 4 cálculos com 35 diferenças entre níveis de energia	50
4.8	Parâmetros para 4 cálculos com 2152 diferenças entre níveis de energia	53
4.9	Faixas dos dados experimentais para o ajuste direto. As faixas são definidas	
	pelo valores de J'' e faixa de v'' para cada progressão- v'' empregada	54
4.10	Parâmetros obtidos pelo ajuste direto. a_i são dados em unidades atômicas,	
	onde as distâncias são dadas em unidades de bohrs e a energia em unidades	
	de hartrees	56
4.11	Constantes espectroscópicas	56
4.12	Comparando os coeficientes da expansão multipolar. Fellows ¹ foram obti-	
	dos pelo ajuste da Equação (4.1) , Fellows ² adicionando-se a Equação (4.1)	
	uma representação analítica para a energia de troca e Fellows ³ adicionando a	
	Equação (4.1) uma representação analítica para a energia de troca e funções	
	de amortecimento.	58
4.13	Comparação entre os níveis vibracionais teóricos e experimentais. Os últimos	
	seis níveis experimentais foram extrapolados por Fellows [76]. Unidades em	_
	cm^{-1}	60

Capítulo 1

Introdução

O estudo das moléculas diatômicas alcalinas tem aumentado nas últimas décadas com o aparecimento de novas técnicas de produção de moléculas frias e ultrafrias (ver as referências [1–3] e a bibliografia inclusa). O estudo destes sistemas abriram portas para a investigação de um novo regime químico. Além disto, a manipulação destas moléculas tem sido tratada como um possível dispositivo em um novo estágio da indústria dos computadores. Particulamente, a molécula heteronuclear mais pesada, RbCs, que possui o maior momento de dipolo permanente entre as moléculas diatômicas alcalinas, é um cadidato especial na produção de moléculas ultrafrias. Um cálculo de estrutura eletrônica ab initio é uma tarefa difícil para os pesquisadores nesta área, considerando que o grande número de elétrons na molécula de RbCs introduz a necessidade de cálculos de correlação eletrônica incluindo efeitos relativísticos, no sentido de descrever a Curva de Energia Potencial (CEP) da melhor maneira possível. Uma das tentativas para contornar este problema incômodo é realizar um procedimento de ajuste direto da CEP a partir das informações espectroscópicas da molécula. O ajuste é realizado visando a minimização de uma função objetiva associada ao desvio quadrático das quantidades experimentais e as determinadas numericamente pelo ajuste, utilizando-se uma função analítica com parâmetros livres para representar a CEP.

Nas últimas duas décadas tem crescido o interesse na aplicação de procedimentos de ajuste de mínimos quadrados para a obtenção de curvas de energia potencial de moléculas diatômicas a partir de um grande número de dados espectroscópicos. Este aumento de interesse tem origem na necessidade de ultrapassar as dificuldades que surgem da utilização de métodos *ab initio*. De uma maneira simples, esses procedimentos consistem do ajuste de parâmetros do Hamiltoniano radial associado com o estado eletrônico de interesse de modo que a posição das linhas espectrais experimentais (linhas associadas a rotação-vibração e rotação pura) ou qualquer outra informação do espectro, como os quanta de energia, sejam precisamente reproduzidos pelos autovalores correspondentes do Hamiltoniano. A partir deste procedimento de ajuste direto podemos obter também as funções radiais associadas a correção Born-Oppenheimer dependente da massa atômica dos núcleos, desde que os dados estejam disponíveis para os vários isotopólogos. Uma outra grande vantagem deste procedimento com relação aos procedimentos utilizando cálculos ab initio vem das CEP's serem representadas por funções analíticas, diferentemente das tradicionais tabelas numéricas que precisam ser interpoladas e/ou extrapoladas para sua utilização em outros procedimentos nos quais são solicitadas como entradas. Vale ressaltar neste contexto os trabalhos pioneiros de Coxon e Hajigeorgiou [4–6] e Zimmermann e colaboradores [7] que desenvolveram primeiro metodologias numéricas para realização dos ajustes diretos. Desde então, muitos outros grupos [8–18] têm explorado e expandido a utilização de tais métodos. Uma abordagem algébrica foi proposta por Ogilvie [19,20] para tratar com a redução dos dados espectroscópicos diatômicos com um conjunto compacto de parâmetros definindo as CEP's e as funções radiais da correção Bohr-Oppenheimer. Com o passar dos anos, pareceu existir uma discrepância entre as abordagens numérica e algébrica: Le Roy [13] mostrou recentemente que a fonte do desacordo é simplesmente devido a convenção de truncamento adotada por Ogilvie para a expansão de Dunham como é implementada no programa RADIATOM [19-26].

Uma inspiração dos métodos de ajuste direto vem do método Rydberg-Klein-Rees (RKR) [27–29] que, durante a segunda metade do século XX, tem sido utilizado para construir potenciais numéricos para o estudo dos níveis rovibracionais ou da dinâmica da molécula. O método RKR utiliza um procedimento direto de inversão semi-clássico. Estes potenciais numéricos podem ser usados para descrever a dinâmica nuclear de moléculas diatômicas. Apesar da grande precisão destes potenciais, a abordagem semi-clássica limita a exatidão do potencial. Adicionalmente, correções perturbativas de segunda ordem ou maiores são consideradas. Com o objetivo de ultrapassar as limitações, uma abordagem da perturbação inversa conhecida por IPA (do inglês, Inverse Perturbative Approach) foi desenvolvida por Kosman e Hinze [30] e por Vidal e Scheingraber [31]. Em oposição ao método semi-clássico RKR, o IPA foi estabelecido como uma abordagem completamente quantum-mecânica para obtenção das CEP's de moléculas diatômicas. Entretanto, ambos RKR e IPA são limitados pelas regiões onde níveis vibracionais são espectroscopicamente observados. Desde que estes níveis para estados dissociativos são quase nunca determinados, a descrição da região de dissociação é um problema para estas metodologias.

Para a implementação da busca dos parâmetros da função analítica que melhor

ajustam as CEP's utilizamos o Algoritmo Genético (AG) como metodologia. Nos últimos vinte anos, o AG tem se revelado uma poderosa ferramenta para pesquisa de estruturas de aglomerados atômicos e moleculares associados a mínimos globais (ver na Ref. [32] e referências contidas), tanto quanto para estudos de otimização envolvidos na dobra de proteínas [33,34], entre outros. Embora a maioria dos trabalhos esteja focada no desenvolvimento de AG efetivos para a otimização de geometria global [35–44], existem também aplicações para tratar com os processos de ajuste de dados experimentais (ver as Refs. [45,46] e bibliografia inclusa). Desde que a atribuição as linhas espectrais é um problema bastante complicado, existem vantagens na aplicação de AG's para automatizar este processo tedioso [47–50] que era tradicionalmente feito pela identificação visual de padrões. Algoritmos Genéticos também têm sido aplicados com sucesso para ajustar dados espectroscópicos como, por exemplo: Ressonância Magnética Nuclear [51], espectros de fluorescência/absorção em moléculas poliatômicas [52], espectroscopia Mössbauer [53], análise espectroscópica de raio-X multi-objectiva [54] e determinação espectroscópica do infra-vermelho próximo de parâmetros de diesel combustível [55].

Nesta tese faremos a apresentação da metodologia que estamos empregando para o ajuste de curvas de energia potencial e apresentaremos os resultados para os ajustes dos estados fundamentais das moléculas diatômicas de NaLi e RbCs. O ajuste da CEP da molécula de NaLi é baseado na utilização de uma CEP construída a partir da metodologia ab initio conhecida como Teoria da Perturbação Quase Degenerada Multiconfiguracional (mais conhecida pela sigla MCQDPT, do inglês) e de níveis vibracionais determinados experimentalmente por Fellows e colaboradores [56] para o estado eletrônico fundamental. A CEP ab initio faz parte do trabalho desenvolvido pelo autor durante o mestrado [57] na Universidade Federal da Bahia sob a orientação do prof. Frederico Vasconcellos Prudente e consta de um cálculo da energia eletrônica do estado fundamental $1^{1}\Sigma^{+}$ para 22 diferentes distâncias internucleares. Os níveis vibracionais determinados experimentalmente por Fellows são ao todo 48, sendo os quatro mais energéticos determinados a partir da extrapolação dos dados. Por este motivo só utilizamos os primeiros 44 níveis para o ajuste direto, totalizando um dado de entrada para o ajuste com 66 informações sobre o estado eletrônico. Os resultados encontrados no ajuste direto do estado fundamental da molécula de NaLi encontram-se disponíveis na revista Journal Physics B em um artigo publicado no ano de 2008 [58].

Para a realização do ajuste direto do estado eletrônico fundamental $1^{1}\Sigma^{+}$ da molécula de RbCs utilizamos quantidades obtidas diretamente do espectro de fluorescência registrado por Fellows e colaboradores. Estas quantidades não encontram-se publicados na literatura e são os quanta de energia obtidos através da separação entre as diferentes posições de linhas associadas as transições rovibracionais entre um estado eletrônico excitado e o estado fundamental. Organizando as linhas do espectro em progressões-v'' as diferenças entre as linhas destas progressões nos fornece os quanta de energia associados a níveis rovibracionais do estado eletrônico fundamental. O desafio de realizar este segundo ajuste é maior do que o primeiro, visto que a quantidade de informação no dado de entrada totaliza 2152 quanta, uma quantidade bem maior de informação precisando ser ajustada. Em outro artigo publicado em 2011 [59], também na revista *Journal Physics B*, estão os resultados encontrados nesta tese para o estado fundamental da molécula de RbCs. Mais recentemente, o mesmo AG foi utilizado no ajuste da função potencial para $Ar - C_6H_{12}$ [60] e para obter um modelo analítico para a interação dos íons SiNCS⁺ e (CH3)₂SiNCS⁺ com monocamadas [61].

A tese é dividida em capítulos e no seu final são encontrados alguns apêndices sobre temas relacionados ao desenvolvimento do trabalho. No Capítulo 2 tratamos do problema teórico de sistemas moleculares, discutindo aproximações para a determinação de soluções. No Capítulo 3 tratamos das metodologias mais importantes empregadas para a redução de dados e apresentamos a metodologia do Algoritmo Genético que empregamos na realização deste trabalho. No Capítulo 4 apresentamos os resultados encontrados para as moléculas diatômicas de NaLi e RbCs e comparamos os nossos resultados com os encontrados previamente na literatura. Por fim, apresentamos no Capítulo 5 as conclusões deste trabalho. No Apêndice A apresentamos os cálculos para a transformação entre sistema de referência utilizados na descrição da molécula, a transformação de um sistema de referência fixo no laboratório para um fixo no centro de massa da molécula. No Apêndice B discutiremos o Método da Representação da Variável Discreta ou método RVD (em inglês, DVR), que utilizaremos para solução da equação de Schrödinger, determinando os autovalores associados aos estados eletrônicos em cujo ajuste estamos interessados. Finalizando a tese, apresentamos o Apêndice C, no qual são encontradas as tabelas com todos os dados de entrada utilizados no ajuste da molécula de RbCs, juntamente com os dados encontrados no ajuste e uma comparação entre eles.

Capítulo 2

O problema molecular

2.1 Definição do problema

Escrevendo a equação de Schrödinger dependente do tempo para um sistema molecular temos que

$$i\hbar\frac{\partial\Psi(\overline{\mathbf{R}},\overline{\mathbf{r}},t)}{\partial t}=\hat{\overline{\mathbf{H}}}_{mol}(\overline{\mathbf{R}},\overline{\mathbf{r}})\Psi(\overline{\mathbf{R}},\overline{\mathbf{r}},t),$$

sendo $\overline{\mathbf{R}}$ o vetor posição dos núcleos e $\overline{\mathbf{r}}$ o vetor posição dos elétrons com relação a um referencial fixo no laboratório, onde o hamiltoniano molecular para N núcleos e n elétrons, na ausência de campos externos e de acoplamentos spin-órbita e spin-spin, é dado por

$$\hat{\overline{\mathbf{H}}}_{mol} = -\sum_{A=1}^{N} \frac{\hbar^2}{2M_A} \nabla_A^2 - \sum_{i=1}^{n} \frac{\hbar^2}{2m} \nabla_{\overline{\mathbf{r}}_i}^2 - \frac{e^2}{4\pi\epsilon_0} \sum_{i=1}^{n} \sum_{A=1}^{N} \frac{Z_A}{r_{iA}} + \frac{e^2}{4\pi\epsilon_0} \frac{1}{2} \sum_{\substack{i=1\\j\neq i}}^{n} \frac{1}{r_{ij}} + \frac{e^2}{4\pi\epsilon_0} \frac{1}{2} \sum_{\substack{A=1\\B\neq A}}^{N} \frac{Z_A Z_B}{R_{AB}} + \frac{e^2}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{1}{r_{ij}} + \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{A=1\\B\neq A}}^{N} \frac{Z_A Z_B}{R_{AB}} + \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{A=1\\B\neq A}}^{n} \frac{1}{r_{ij}} + \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{A=1\\B\neq A}}^{N} \frac{Z_A Z_B}{R_{AB}} + \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{A=1\\B\neq A}}^{n} \frac{1}{r_{ij}} + \frac{e^2}{$$

Aqui, M_A é a massa e Z_A é o número atômico do A-ésimo núcleo, m é a massa e e é a carga elétrica do elétron, r_{iA} é a distância entre o i-ésimo elétron e o A-ésimo núcleo, r_{ij} é a distância entre o i-ésimo e o j-ésimo elétron e R_{AB} é a distância entre os A-ésimo e B-ésimo núcleos. O índice A sob os laplacianos indicam que as derivadas são tomadas com respeito às coordenadas do A-ésimo núcleo e o índice i que as derivadas são tomadas com respeito às coordenadas do i-ésimo elétron.

Para o caso de uma molécula diatômica podemos ao invés de escrever os vetores posição dos núcleos com relação a um sistema de referência cartesiano qualquer, escrever as coordenadas dos núcleos em função de outros dois vetores linearmente independentes: o vetor posição do centro de massa dos núcleos \mathbf{R}_{CM} e o vetor posição relativa $\mathbf{R}_{rel} = \overline{\mathbf{R}}_2 - \overline{\mathbf{R}}_1$. Além disso, pode-se escrever os vetores posição dos elétrons em função do centro de massa dos núcleos, $\mathbf{r}_i = \overline{\mathbf{r}}_i - \overline{\mathbf{R}}_{CM}$. Admitindo que o centro de massa dos núcleos está em repouso, podemos eliminar as coordenadas necessárias para a descrição da translação da molécula e reescrever o Hamiltoniano molecular como¹

$$\hat{\mathbf{H}}_{mol} = -\frac{\hbar^2}{2\mu} \nabla_{\mathbf{R}_{rel}}^2 - \sum_{i=1}^n \frac{\hbar^2}{2m} \nabla_{\mathbf{r}_i}^2 - \frac{e^2}{4\pi\epsilon_0} \sum_{i=1}^n \sum_{A=1}^2 \frac{Z_A}{r_{iA}} + \frac{e^2}{4\pi\epsilon_0} \frac{1}{2} \sum_{\substack{i=1\\j\neq i}}^n \frac{1}{r_{ij}} + \frac{e^2}{4\pi\epsilon_0} \frac{Z_1 Z_2}{R_{rel}},$$

onde o fator μ é a massa reduzida dos núcleos. Os cálculos para esta transformação são apresentados no Apêndice A.

Como $\hat{\mathbf{H}}_{mol}$ não depende do tempo, a solução da equação de Schrödinger pode ser escrita a partir do produto

$$\Psi(\mathbf{R}_{rel}, \mathbf{r}, t) = \psi(\mathbf{R}_{rel}, \mathbf{r})T(t).$$

Assim sendo, podemos escrever

$$\frac{i\hbar}{T(t)}\frac{\partial T(t)}{\partial t} = \frac{1}{\psi(\mathbf{R}_{rel},\mathbf{r})}\hat{\mathbf{H}}_{mol}(\mathbf{R}_{rel},\mathbf{r})\psi(\mathbf{R}_{rel},\mathbf{r}).$$

Para que isto seja verdade, é necessário que os dois lados da equação sejam iguais a uma constante C. A parte temporal da solução é dada por,

$$i\hbar \frac{\partial T(t)}{\partial t} = CT(t) \Rightarrow T(t) = e^{-iCt/\hbar},$$

e a solução da parte espacial é encontrada resolvendo-se o problema de autovetor e autovalor abaixo:

$$\hat{\mathbf{H}}_{mol}(\mathbf{R}_{rel},\mathbf{r})\psi(\mathbf{R}_{rel},\mathbf{r}) = C\psi(\mathbf{R}_{rel},\mathbf{r})$$

Nesta equação, o autovalor associado ao operador \mathbf{H}_{mol} é a energia molecular E_{mol} . Logo, as equações acima são reescritas como

$$T(t) = e^{-iE_{mol}t/\hbar}$$
$$\hat{\mathbf{H}}_{mol}(\mathbf{R}_{rel}, \mathbf{r})\psi(\mathbf{R}_{rel}, \mathbf{r}) = E_{mol}\psi(\mathbf{R}_{rel}, \mathbf{r}), \qquad (2.1)$$

e a solução da equação de Schrödinger dependente do tempo pode ser escrita como

$$\Psi(\mathbf{R}_{rel},\mathbf{r},t) = \psi(\mathbf{R}_{rel},\mathbf{r})e^{-iE_{mol}t/\hbar},$$

onde $\psi(\mathbf{R}_{rel}, \mathbf{r})$ é chamada de solução estacionária para o sistema molecular e a equação (2.1) é a equação de Schrödinger independente do tempo.

¹Este resultado é uma aproximação, pois desconsideramos um termo chamado de *polarização de massa*, que no caso de uma molécula diatômica é dado por $-\sum_{i,j} \vec{\nabla}_i \cdot \vec{\nabla}_j / 2M$, sendo M a massa total dos núcleos [62].

A resolução do problema molecular passa então por encontrar as soluções estacionárias da equação de Schrödinger independente do tempo. Para facilitar a compreensão do problema molecular, reescrevemos o hamiltoniano molecular da seguinte forma:

$$\hat{\mathbf{H}}_{mol}(\mathbf{R}_{rel}, \mathbf{r}) = \hat{\mathbf{T}}_{nu} + \hat{\mathbf{H}}_{ele}(\mathbf{R}_{rel}, \mathbf{r})$$
(2.2)

onde $\hat{\mathbf{T}}_{nu}$ é o operador energia cinética do movimento relativo dos núcleos dado por

$$\hat{\mathbf{T}}_{nu} = -\frac{\hbar^2}{2\mu} \nabla_{\mathbf{R}_{rel}}^2,$$

e $\hat{\mathbf{H}}_{ele}$ é o hamiltoniano eletrônico dado por

$$\hat{\mathbf{H}}_{ele} = -\sum_{i=1}^{n} \frac{\hbar^2}{2m} \nabla_{\mathbf{r}_i}^2 - \frac{e^2}{4\pi\epsilon_0} \sum_{i=1}^{n} \sum_{A=1}^{2} \frac{Z_A}{r_{iA}} + \frac{e^2}{4\pi\epsilon_0} \frac{1}{2} \sum_{\substack{i=1\\j\neq i}}^{n} \frac{1}{r_{ij}} + \frac{e^2}{4\pi\epsilon_0} \frac{Z_1 Z_2}{R_{rel}} = \\ = \sum_{i=1}^{n} \hat{\mathbf{h}}(i) + \frac{e^2}{4\pi\epsilon_0} \frac{1}{2} \sum_{\substack{i=1\\j\neq i}}^{n} \frac{1}{r_{ij}} + P_{nuc}(R_{rel}).$$
(2.3)

Aqui, $\hat{\mathbf{h}}(i)$ é o operador hamiltoniano de uma partícula para o *i*-ésimo elétron movendo-se no campo elétrico dos núcleos dado por

$$\hat{\mathbf{h}}(i) = -\frac{\hbar^2}{2m} \nabla_{\mathbf{r}_i}^2 - \frac{e^2}{4\pi\epsilon_0} \sum_{A=1}^2 \frac{Z_A}{r_{iA}}$$

e $P_{nuc}(\mathbf{R}_{rel})$ é o potencial de interação coulombiana entre os núcleos dado por

$$P_{nuc}(\mathbf{R}_{rel}) = \frac{e^2}{4\pi\epsilon_0} \frac{Z_1 Z_2}{R_{rel}}$$

O problema de resolver a equação (2.1) a partir da equação (2.2) é bastante complicado, já que o movimento dos elétrons é influenciado pela posição dos núcleos e vice-versa. Este acoplamento entre os movimentos nucleares e eletrônicos pode ser contornado quando consideramos o fato da inércia eletrônica ser bem menor que a nuclear.

2.2 A teoria de Born-Huang e a aproximação adiabática

Devido ao núcleo ser muito mais massivo que os elétrons podemos assumir que uma pequena variação da posição relativa entre os núcleos reajustará instantâneamente a "nuvem eletrônica", rebalanceando a energia total nuclear com a energia total eletrônica. Fenomenologicamente, podemos imaginar que o estado desta "nuvem eletrônica" dependerá da posição dos núcleos, de tal forma que o estado eletrônico depende do vetor posição relativa dos núcleos, que a partir de agora chamaremos apenas por **R**. Em um trabalho em 1927 [63], Max Born e Robert Oppenheimer propõem a solução do problema eletrônico desconsiderando o movimento dos núcleos. Neste trabalho, utilizando uma abordagem perturbativa onde a razão entre as massas eletrônica e nuclear m/M é um parâmetro muito pequeno, eles mostram que a energia cinética nuclear é ordens de grandeza menor que a energia eletrônica, podendo então ser desconsiderada em primeira aproximação. Esta aproximação passou a ser então conhecida como a *aproximação de Born-Oppenheimer*. Uma consequência direta desta aproximação é a possibilidade de poder escrever a função de onda total da molécula como o produto entre uma função nuclear e outra eletrônica, na qual existe uma dependência paramétrica das coordenadas dos núcleos.

Para tratar o problema molecular, empregamos o formalismo variacional desenvolvido por Max Born e Kerson Huang [64]. Neste formalismo, a função de estado é expandida por um conjunto de funções de base eletrônica, como as funções de Born e Oppenheimer, e os coeficientes desta expansão são funções das coordenadas dos núcleos.

Assumimos inicialmente que o conjunto das funções $\{\zeta_{\alpha}(\mathbf{r}; \mathbf{R})\}$ são autofunções do operador hamiltoniano eletrônico $\hat{\mathbf{H}}_{ele}$, isto é,

$$\hat{\mathbf{H}}_{ele}\zeta_{\alpha}(\mathbf{r};\mathbf{R}) = E_{\alpha}^{ele}(\mathbf{R})\zeta_{\alpha}(\mathbf{r};\mathbf{R})$$
(2.4)

e que formam uma base no espaço de Hilbert para as coordenadas eletrônicas independente do valor de \mathbf{R} .

Desta maneira podemos expandir a função de estado molecular da seguinte forma:

$$\psi(\mathbf{R}, \mathbf{r}) = \sum_{\alpha} \xi_{\alpha}(\mathbf{R}) \zeta_{\alpha}(\mathbf{r}; \mathbf{R}), \qquad (2.5)$$

onde as funções $\xi_{\alpha}(\mathbf{R})$ são coeficientes da expansão da função de estado $\psi(\mathbf{R}, \mathbf{r})$ que dependem da posição relativa dos núcleos. A existência de tal conjunto de funções de base é possível já que $\left[\hat{\mathbf{H}}_{ele}, \hat{\mathbf{R}}\right] = 0$. Podemos então determinar estados que sejam autoestados de ambos os operadores.

Substituindo a equação (2.5) na equação (2.1), obtemos

$$-\frac{\hbar^2}{2\mu}\sum_{\alpha}\left[\left(\nabla_{\mathbf{R}}^2\xi_{\alpha}(\mathbf{R})\right)\zeta_{\alpha}(\mathbf{r};\mathbf{R})+2\left(\vec{\nabla}_{\mathbf{R}}\xi_{\alpha}(\mathbf{R})\right)\cdot\left(\vec{\nabla}_{\mathbf{R}}\zeta_{\alpha}(\mathbf{r};\mathbf{R})\right)+\xi_{\alpha}(\mathbf{R})\left(\nabla_{\mathbf{R}}^2\zeta_{\alpha}(\mathbf{r};\mathbf{R})\right)\right]+\\+\sum_{\alpha}E_{\alpha}^{ele}(\mathbf{R})\xi_{\alpha}(\mathbf{R})\zeta_{\alpha}(\mathbf{r};\mathbf{R})=E_{mol}\sum_{\alpha}\xi_{\alpha}(\mathbf{R})\zeta_{\alpha}(\mathbf{r};\mathbf{R}),$$

onde E_{α}^{ele} representa a energia eletrônica associada ao α -ésimo estado do operador $\hat{\mathbf{H}}_{ele}$. Multiplicando a expressão acima pela esquerda por $\zeta_{\beta}^{*}(\mathbf{r}; \mathbf{R})$ e integrando nas coordenadas eletrônicas, temos que

$$-\frac{\hbar^2}{2\mu}\sum_{\alpha}\left[\left(\nabla_{\mathbf{R}}^2\xi_{\alpha}(\mathbf{R})\right)\delta_{\beta\alpha} + 2\left(\vec{\nabla}_{\mathbf{R}}\xi_{\alpha}(\mathbf{R})\right)\cdot\left(\vec{\tau}_{\beta\alpha}^{(1)}\right) + \xi_{\alpha}(\mathbf{R})\tau_{\beta\alpha}^{(2)} + E_{\alpha}^{ele}(\mathbf{R})\xi_{\alpha}(\mathbf{R})\delta_{\beta\alpha}\right] = E_{mol}\sum_{\alpha}\xi_{\alpha}(\mathbf{R})\delta_{\beta\alpha},$$
(2.6)

onde fizemos uso da ortonormalidade entre as diferentes autofunções eletrônicas e definimos

$$\vec{\tau}_{\beta\alpha}^{(1)} := \int \zeta_{\beta}^{*}(\mathbf{r}; \mathbf{R}) \vec{\nabla}_{\mathbf{R}} \zeta_{\alpha}(\mathbf{r}; \mathbf{R}) d\mathbf{r}$$
(2.7)

$$\tau_{\beta\alpha}^{(2)} := \int \zeta_{\beta}^{*}(\mathbf{r}; \mathbf{R}) \nabla_{\mathbf{R}}^{2} \zeta_{\alpha}(\mathbf{r}; \mathbf{R}) d\mathbf{r}.$$
(2.8)

Podemos escrever a equação (2.6) na forma matricial:

$$\left[-\frac{\hbar^2}{2\mu}\left(\nabla_{\mathbf{R}}^2 + 2\vec{\tau}^{(1)}\cdot\vec{\nabla}_{\mathbf{R}} + \tau^{(2)}\right) + \mathbf{E}^{ele}(\mathbf{R})\right]\xi(\mathbf{R}) = E_{mol}\xi(\mathbf{R}),\tag{2.9}$$

onde a matriz $\mathbf{E}^{ele}(\mathbf{R})$ é diagonal e os seus elementos são as energias eletrônicas $E^{ele}_{\alpha}(\mathbf{R})$ e $\xi(\mathbf{R})$ é um vetor coluna cujos elementos são os coeficientes da expansão da função de estado $\psi(\mathbf{R}, \mathbf{r})$.

É fácil mostrar que a matriz $\vec{\tau}^{(1)}$ é anti-hermitiana usando a ortonormalidade entre as diferentes funções eletrônicas. E se estas funções eletrônicas forem reais, os elementos de sua diagonal são nulos. Os elementos fora de sua diagonal são conhecidos como acoplamentos não-adiabáticos de primeira ordem. Os elementos fora da diagonal da matriz $\tau^{(2)}$ representam os acoplamentos não-adiabáticos de segunda ordem.

Quando os acoplamentos não-adiabáticos puderem ser desprezados, os vários estados eletrônicos da molécula estarão desacoplados. A esta aproximação damos o nome de *aproximação adiabática*. Faremos uma pequena digressão para analisar quando será possível desprezar tais termos.

Como vemos na Equação (2.4), empregamos autofunções do operador hamiltoniano eletrônico como funções de base para expandir a função de estado estacionária. Assim, da equação (2.4), temos que

$$\left\langle \zeta_{\beta} \left| \vec{\nabla}_{\mathbf{R}} \left(\mathbf{H}_{ele} \left| \zeta_{\alpha} \right\rangle \right) = \left\langle \zeta_{\beta} \right| \vec{\nabla}_{\mathbf{R}} \left(E_{\alpha}^{ele}(R) \left| \zeta_{\alpha} \right\rangle \right) \Rightarrow \left\langle \zeta_{\beta} \left| \left(\vec{\nabla}_{\mathbf{R}} \mathbf{H}_{ele} \right) \right| \zeta_{\alpha} \right\rangle + E_{\beta}^{ele}(R) \vec{\tau}_{\beta\alpha}^{(1)} = \left(\vec{\nabla}_{\mathbf{R}} E_{\alpha}^{ele}(R) \right) \left\langle \zeta_{\beta} \left| \zeta_{\alpha} \right\rangle + E_{\alpha}^{ele}(R) \vec{\tau}_{\beta\alpha}^{(1)} \Rightarrow \right\rangle$$

$$\begin{split} \left\langle \zeta_{\beta} \left| \left(\vec{\nabla}_{\mathbf{R}} \mathbf{H}_{ele} \right) \right| \zeta_{\alpha} \right\rangle + E_{\beta}^{ele}(R) \vec{\tau}_{\beta\alpha}^{(1)} = E_{\alpha}^{ele}(R) \vec{\tau}_{\beta\alpha}^{(1)} \Rightarrow \\ \vec{\tau}_{\beta\alpha}^{(1)} = \frac{\left\langle \zeta_{\beta} \left| \left(\vec{\nabla}_{\mathbf{R}} \mathbf{H}_{ele} \right) \right| \zeta_{\alpha} \right\rangle}{E_{\alpha}^{ele}(R) - E_{\beta}^{ele}(R)}, \end{split}$$

onde assumimos que $\alpha \neq \beta$. Com este resultado concluímos que quanto maior a diferença de energia entre os dois estados eletrônicos, menor será o valor do acoplamento não-adiabático entre eles. Quando estes termos se tornarem muito pequenos podemos considerá-los nulos. Assim, os diferentes estados eletrônicos que são autofunções do hamiltoniano eletrônico são considerados desacoplados, isto é, cada estado molecular é bem resolvido por uma função produto do tipo $\psi_{\alpha}(\mathbf{R}, \mathbf{r}) = \xi_{\alpha}(\mathbf{R})\zeta_{\alpha}(\mathbf{r}; \mathbf{R})$. Quando dois níveis de energia eletrônica se aproximam muito, esta aproximação deixa de ser válida pois o denominador torna-se pequeno e o acoplamento não pode mais ser desprezado.

Voltemos à equação (2.8), que poderá ser escrita de uma outra forma, pois

$$\int \zeta_{\beta}^{*}(\mathbf{r};\mathbf{R}) \nabla_{\mathbf{R}}^{2} \zeta_{\alpha}(\mathbf{r};\mathbf{R}) d\mathbf{r} = \vec{\nabla}_{\mathbf{R}} \cdot \int \zeta_{\beta}^{*}(\mathbf{r};\mathbf{R}) \vec{\nabla}_{\mathbf{R}} \zeta_{\alpha}(\mathbf{r};\mathbf{R}) d\mathbf{r} + \sum_{\gamma} \left[\int \zeta_{\beta}^{*}(\mathbf{r};\mathbf{R}) \left(\vec{\nabla}_{\mathbf{R}} \zeta_{\gamma}(\mathbf{r};\mathbf{R}) \right) d\mathbf{r} \right] \cdot \left[\int \zeta_{\gamma}^{*}(\mathbf{r}';\mathbf{R}) \left(\vec{\nabla}_{\mathbf{R}} \zeta_{\alpha}(\mathbf{r}';\mathbf{R}) \right) d\mathbf{r}' \right],$$

onde fizemos uso da anti-hermiticidade da matriz $\vec{\tau}^{(1)}$ e da relação de completeza das funções eletrônicas $\zeta_{\alpha}(\mathbf{r}; \mathbf{R})$. Da relação acima, temos que

$$\tau_{\beta\alpha}^{(2)} = \vec{\nabla}_{\mathbf{R}} \cdot \vec{\tau}_{\beta\alpha}^{(1)} + \sum_{\gamma} \vec{\tau}_{\beta\gamma}^{(1)} \cdot \vec{\tau}_{\gamma\alpha}^{(1)}.$$
(2.10)

Assumindo a expressão (2.10) e substituindo na equação (2.9), podemos reescrevê-la como

$$-\frac{\hbar^2}{2\mu} \left[\nabla_{\mathbf{R}}^2 \xi(\mathbf{R}) + 2\vec{\tau}^{(1)} \cdot \left(\vec{\nabla}_{\mathbf{R}} \xi(\mathbf{R}) \right) + \left(\vec{\nabla}_{\mathbf{R}} \cdot \vec{\tau}^{(1)} \right) \xi(\mathbf{R}) + \vec{\tau}^{(1)} \cdot \vec{\tau}^{(1)} \xi(\mathbf{R}) \right] + \\ + \mathbf{E}^{ele}(\mathbf{R}) \xi(\mathbf{R}) = E_{mol} \xi(\mathbf{R}) \Rightarrow \\ -\frac{\hbar^2}{2\mu} \left\{ \nabla_{\mathbf{R}}^2 + \vec{\tau}^{(1)} \cdot \vec{\nabla}_{\mathbf{R}} + \vec{\nabla}_{\mathbf{R}} \cdot \vec{\tau}^{(1)} + \vec{\tau}^{(1)} \cdot \vec{\tau}^{(1)} \right\} \xi(\mathbf{R}) + \\ + \mathbf{E}^{ele}(\mathbf{R}) \xi(\mathbf{R}) = E_{mol} \xi(\mathbf{R}), \tag{2.11}$$

onde escrevemos

$$\vec{\tau}^{(1)} \cdot \left(\vec{\nabla}_{\mathbf{R}} \xi(\mathbf{R}) \right) + \left(\vec{\nabla}_{\mathbf{R}} \cdot \vec{\tau}^{(1)} \right) \xi(\mathbf{R}) = \vec{\nabla}_{\mathbf{R}} \cdot \left(\vec{\tau}^{(1)} \xi(\mathbf{R}) \right).$$

Note que podemos associar o termo entre chaves da equação (2.11) a um operador energia cinética generalizado $\mathcal{P} \cdot \mathcal{P}$

$$\frac{1}{2\mu}$$

10

onde $\mathcal{P} = -i\hbar \left(\vec{\nabla}_{\mathbf{R}} + \vec{\tau}^{(1)} \right)$ é o operador momentum linear generalizado, de forma que a equação (2.11) pode ser escrita como

$$\frac{\mathcal{P} \cdot \mathcal{P}}{2\mu} \xi(\mathbf{R}) + \mathbf{E}^{ele}(\mathbf{R})\xi(\mathbf{R}) = E_{mol}\xi(\mathbf{R}), \qquad (2.12)$$

No caso da aproximação adiabática, ou seja, quando consideramos nulos os acoplamentos entre os estados eletrônicos, a equação (2.12), para cada estado eletrônico, pode então ser escrita como

$$-\frac{\hbar^2}{2\mu}\nabla^2_{\mathbf{R}}\xi_{\alpha}(\mathbf{R}) + E^{ele}_{\alpha}(\mathbf{R})\xi_{\alpha}(\mathbf{R}) = E_{mol}\xi_{\alpha}(\mathbf{R}), \qquad (2.13)$$

que é uma equação para o movimento dos núcleos sob a influência de um potencial efetivo $E_{\alpha}^{ele}(\mathbf{R})$. As autofunções que satisfazem à equação acima são associadas aos estados rovibracionais da molécula. A Equação (2.13) é conhecida como a equação de Schrödinger para o movimento dos núcleos de uma molécula. Como a energia potencial $E_{\alpha}^{ele}(\mathbf{R})$ não deve depender da orientação espacial da molécula com relação ao sistema de referência, E_{α}^{ele} deve ser função unicamente de R para o caso diatômico. Por causa disto, ela é também chamada de curva de energia potencial (CEP). Quando mais graus de liberdade tomam conta na determinação do potencial, no caso de moléculas poliatômicas, ela é chamada de superfície de energia potencial (SEP).

2.3 Aproximação semi-clássica ou de Wentzel-Kramers-Brillouin para a função de estado vibracional

Podemos escrever o vetor posição relativa dos núcleos em coordenadas esféricas que, em função das coordenadas cartesianas, são descritas por

$$R = (x^{2} + y^{2} + z^{2})^{1/2},$$

$$\theta = \operatorname{arccot} \left[z / (x^{2} + y^{2})^{1/2} \right] e^{-1/2},$$

$$\phi = \operatorname{arccos} \left[x / (x^{2} + y^{2})^{1/2} \right].$$

Assim, a equação (2.13) pode ser escrita como

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] \xi_\alpha(R, \theta, \phi) + E_\alpha^{ele}(R) \xi_\alpha(R, \theta, \phi) = E_{mol} \xi_\alpha(R, \theta, \phi)$$
(2.14)

Como a energia potencial E_{α}^{ele} depende somente do módulo do vetor **R**, então podemos empregar o método de separação das variáveis para escrever a autofunção da equação de Schrödinger para os núcleos como, $\xi_{\alpha}(R, \theta, \phi) = \varphi(R)\Theta(\theta)\Phi(\phi)/R$. O produto de funções $\Theta(\theta)\Phi(\phi) = Y_{LM}(\theta, \phi)$ são as funções conhecidas como harmônicos esféricos que satisfazem à equação

$$-\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]Y_{lm}(\theta,\phi) = J(J+1)Y_{JM}(\theta,\phi), \quad (2.15)$$

onde, na Equação (2.15), o operador

$$\mathbf{L}^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

é o operador momento angular orbital total dos núcleos ao quadrado, \mathbf{L}^2 , e $\hbar^2 J (J+1)$ é o autovalor associado a este operador. Os harmônicos esféricos, que são autofunções associadas a este operador, descrevem os estados rotacionais da molécula diatômica. Logo, podemos escrever a Equação (2.14) como

$$-\frac{\hbar^2}{2\mu}\frac{d^2\varphi(R)}{dR^2} + V_{\alpha,J}(R)\varphi(R) = E_{mol}\varphi(R).$$
(2.16)

onde as soluções $\varphi(R)$ são as autofunções da equação de Schrödinger radial (2.16) que, divididas por R, descrevem os estados vibracionais associados a um determinado estado eletrônico $E_{\alpha}^{ele}(R)$ com um momento angular orbital dos núcleos total igual a $\hbar \sqrt{J(J+1)}$ e $V_{\alpha,J}(R) = \hbar^2 J (J+1) / 2\mu R^2 + E_{\alpha}^{ele}(R)$ é um potencial efetivo. As energias encontradas pela solução da Equação (2.16) serão as energias rovibracionais de um determinado estado eletrônico do sistema molecular em questão.

Supondo que a função de estado vibracional da molécula diatômica seja dada por

$$\varphi(R) = A(R) \exp[iS(R)/\hbar], \qquad (2.17)$$

onde A(R) e S(R) são quantidades reais que representam respectivamente a amplitude de probabilidade real e uma ação, podemos substituí-la na Equação (2.16), encontrando

$$\left\{ -\frac{\hbar^2}{2\mu} \frac{d^2 A(R)}{dR^2} - i \frac{\hbar}{2\mu} \left[2 \frac{dA(R)}{dR} \frac{dS(R)}{dR} + A(R) \frac{d^2 S(R)}{dR^2} \right] + \frac{A(R)}{2\mu} \left(\frac{dS(R)}{dR} \right)^2 - (E_{mol} - V_{\alpha,J}(R)) A(R) \right\} \exp[iS(R)/\hbar] = 0.$$

A equação acima pode ser separada por ordens de grandeza em potências de \hbar , onde consideramos o seu valor muito pequeno. O limite imposto a \hbar é o que caracteriza-se em algumas literaturas como o limite clássico ao qual a teoria quântica determinaria as leis da teoria clássica. Por este motivo é que chamamos a aproximação acima de *semi-clássica*. Esta aproximação é também chamada de Wentzel-Kramers-Brillouin, ou simplesmente WKB, em homenagem aos físicos que trabalharam primeiramente com tal aproximação [65–67].

Se considerarmos somente termos até a primeira ordem em \hbar , o primeiro termo da equação anterior pode ser desprezado, de tal forma que para a igualdade ser verdadeira, temos que

$$\frac{A(R)}{2\mu} \left(\frac{dS(R)}{dR}\right)^2 - (E_{mol} - V_{\alpha,J}(R)) A(R) = i \frac{\hbar}{2\mu} \left[2\frac{dA(R)}{dR} \frac{dS(R)}{dR} + A(R) \frac{d^2S(R)}{dR^2} \right],$$
(2.18)

e como a ordem de grandeza dos membros da igualdade são diferentes, devemos afirmar que ambos são nulos. Além disso, um lado é real e o outro é complexo.

Analisando o segundo membro da igualdade (2.18), podemos determinar que:

$$\frac{1}{A(R)}\frac{dA(R)}{dR} = -\frac{1}{2}\left(\frac{dS(R)}{dR}\right)^{-1}\frac{d^2S(R)}{dR^2}$$

Integrando ambos os membros da equação acima encontramos

$$A(R) = C \left(\frac{dS(R)}{dR}\right)^{-1/2},$$
(2.19)

onde C é uma constante arbitrária. Analisando o primeiro membro de (2.18), temos que

$$\left(\frac{dS(R)}{dR}\right)^2 = 2\mu \left(E_{mol} - V_{\alpha,J}(R)\right),$$

o que implica que S(R) será igual a

$$\pm \int_{R_0}^R \sqrt{2\mu \left(E_{mol} - V_{\alpha,J}(R')\right)} dR' \text{ ou } \pm \int_R^{R_0} \sqrt{2\mu \left(E_{mol} - V_{\alpha,J}(R')\right)} dR', \qquad (2.20)$$

dependendo se R_0 for maior ou menor que o ponto R, respectivamente. R_0 é um ponto qualquer a ser definido de maneira conveniente.

Vamos admitir que o potencial efetivo sobre os núcleos tem apenas um poço, assim como o da Figura 2.1. Representamos a energia E_{mol} desta molécula pela linha horizontal cortando a curva em dois pontos diferentes que denotaremos por R_1 e R_2 .

A região dentro do poço, limitada pelos pontos R_1 e R_2 , define a região classicamente permitida para o movimento dos núcleos. Nesta região o potencial $V_{\alpha,J}(R)$ nunca é maior que a energia E_{mol} , de forma que a função S(R) é dada por

$$S_C(R) = \pm 2\pi\hbar \int_{R_0}^R \frac{dR'}{\lambda(R')}.$$

Figura 2.1: Curva de energia potencial de uma molécula diatômica

onde assumimos que $1/\lambda(R) = \sqrt{2\mu \left(E_{mol} - V_{\alpha,J}(R)\right)}/2\pi\hbar$ é uma função real e não-negativa.

Na região em que o movimento não é permitido classicamente, o valor do potencial $V_{\alpha,J}(R)$ é sempre maior que o da energia da molécula, de tal forma que a função S(R) é dada por

$$S_{NC}(R) = \pm i2\pi\hbar \int_{R_0}^R \frac{dR'}{l(R')}$$
 ou $\pm i2\pi\hbar \int_R^{R_0} \frac{dR'}{l(R')}$,

novamente dependendo da posição relativa entre os pontos R_0 e R, e onde assumimos que $1/l(R) = \sqrt{2\mu (V_{\alpha,J}(R) - E)}/2\pi\hbar$ também é uma função real e não-negativa.

Em primeira aproximação, escrevemos as soluções para a equação de Schrödinger (2.16) como:

$$\varphi_C(R) = k_C^+ \sqrt{\frac{\lambda(R)}{2\pi}} \exp\left[i2\pi \int_{R_0}^R \frac{dR'}{\lambda(R')}\right] + k_C^- \sqrt{\frac{\lambda(R)}{2\pi}} \exp\left[-i2\pi \int_{R_0}^R \frac{dR'}{\lambda(R')}\right]$$
(2.21)

$$\varphi_{NC}(R) = k_{NC}^+ \sqrt{\frac{l(R)}{2\pi}} \exp\left[2\pi \int_{R_0}^R \frac{dR'}{l(R')}\right] + k_{NC}^- \sqrt{\frac{l(R)}{2\pi}} \exp\left[-2\pi \int_{R_0}^R \frac{dR'}{l(R')}\right]$$
(2.22)

As constantes k_C^+ , k_C^- , k_{NC}^+ e k_{NC}^- são constantes arbitrárias que devem ser determinadas pelas condições de contorno do problema e obedecendo as restrições físicas a que devem satisfazer qualquer função de estado.

Fórmulas de Conexão

Para que as funções (2.21) e (2.22) descrevam uma função de estado, elas devem ser contínuas nos pontos de conexão entre as regiões classicamente permitida e proibida. Além disto a função (2.22) deve tender a zero para as regiões assintóticas do problema.

Devemos determinar então os valores das constantes arbitrárias k_C^+ , k_C^- , k_{NC}^+ e $k_{NC}^$ para que as funções satisfaçam as condições acima. Para isto vamos assumir uma região muito próxima do ponto de retorno R_2 do potencial efetivo sobre os núcleos representado na Figura 2.1. Nesta região podemos descrever o potencial como

$$V_{\alpha,J}(R) = E + (R - R_2) \left. \frac{dV_{\alpha,J}}{dR} \right|_{R=R_2}$$

linearizando-o.

Desta forma a equação de Shrödinger nesta região é dada por

$$\begin{aligned} -\frac{\hbar^2}{2\mu}\frac{d^2\varphi(R)}{dR^2} + \left(E + (R - R_2)\frac{dV_{\alpha,J}}{dR}\right)\varphi(R) &= E\varphi(R) \Rightarrow \\ \frac{d^2\varphi(R)}{dR^2} - \frac{2\mu}{\hbar^2}|f_0|(R - R_2)\varphi(R) &= 0, \end{aligned}$$

onde $f_0 = -dV_{\alpha,J}/dR|_{R=R_2} < 0$, que é a força que age classicamente sobre a partícula. Realizando a mudança de variável $y = (2\mu |f_0|/\hbar^2)^{1/3}(R-R_2)$, encontramos a equação

$$\frac{d^2\varphi(y)}{dy^2} - y\varphi(y) = 0, \qquad (2.23)$$

que é a equação cuja solução são as funções de Airy [68].

Como a variável y para pequenos desvios de R do ponto R_2 deve ter valores muito grandes, já que ela é inversamente proporcional a $\hbar^{2/3}$, podemos tomar os valores assintóticos das funções de Airy, que são dados por

$$\varphi(y \to +\infty) = \frac{c}{2} y^{-1/4} \exp\left(-\frac{2}{3} y^{3/2}\right)$$
 e (2.24)

$$\varphi(y \to -\infty) = c \sin\left(\frac{2}{3}y^{3/2} + \frac{\pi}{4}\right), \qquad (2.25)$$

onde desprezamos os termos de ordem superior ou igual a -7/4.

Utilizando a aproximação linear do potencial para escrever a função de estado encontrada com a aproximação semi-clássica, mostramos que

$$\lambda(R) = \frac{2\pi\hbar}{\sqrt{2\mu \left(E - V_{\alpha,J}(R)\right)}} \simeq \frac{2\pi\hbar}{\sqrt{-2\mu(R - R_2)|f_0|}} = 2\pi \left(\frac{\hbar^2}{2\mu|f_0|}\right)^{1/3} y^{-1/2},$$

de modo que

$$2\pi \int_{R}^{R_2} \frac{dR'}{\lambda(R')} = \int_{y}^{0} dy' y'^{1/2} = -\frac{2}{3}y^{3/2},$$

O mesmo pode ser mostrado para a função real l(R).

Desta maneira as funções (2.21) e (2.22) são dadas por:

$$\begin{split} \varphi^{C}(y) &= k_{C}^{+} \left(\frac{\hbar^{2}}{2\mu f_{0}}\right)^{1/6} y^{-1/4} \exp\left(-i\frac{2}{3}y^{3/2}\right) + k_{C}^{-} \left(\frac{\hbar^{2}}{2\mu f_{0}}\right)^{1/6} y^{-1/4} \exp\left(i\frac{2}{3}y^{3/2}\right) \\ \varphi^{NC}(y) &= k_{NC}^{+} \left(\frac{\hbar^{2}}{2\mu f_{0}}\right)^{1/6} y^{-1/4} \exp\left(-\frac{2}{3}y^{3/2}\right) + k_{NC}^{-} \left(\frac{\hbar^{2}}{2\mu f_{0}}\right)^{1/6} y^{-1/4} \exp\left(\frac{2}{3}y^{3/2}\right) \end{split}$$

Comparando a equação (2.25) com a primeira equação acima, percebemos que para as duas serem iguais basta que $k_C^- e^{i\pi/4} = -k_C^+ e^{-i\pi/4} = c'/2i$, onde $c' = c \left(\hbar^2/2\mu f_0\right)^{-1/6}$. Agora, comparando a equação (2.24) com a última das equações acima encontramos que $k_{NC}^+ = c'/2$ e $k_{NC}^- = 0$.

Um procedimento idêntico ao realizado agora, pode ser realizado para o ponto R_1 , basta para isto ter em mente que o valor da força que atua classicamente sobre os núcleos agora tem um sentido contrário e a nova variável deve ser escrita como $y = (2\mu f_0/\hbar^2)^{1/3}(R-R_1)$, onde $f_0 = -dV_{\alpha,J}/dR > 0$.

Por fim, temos que a função de estado para a equação de Schrödinger radial de uma molécula diatômica em um poço potencial pode ser escrita para as regiões permitida e proibida classicamente como

$$\varphi^C(R) = c' \sqrt{\frac{\lambda(R)}{2\pi}} \sin\left(2\pi \int_{R_0}^R \frac{dR'}{\lambda(R')} + \frac{\pi}{4}\right), \text{ para } R_1 < r < R_2 \qquad (2.26)$$

$$\varphi^{NC}(R) = \frac{c'}{2} \sqrt{\frac{l(R)}{2\pi}} \exp\left[-2\pi \int_{R_2}^{R} \frac{dR'}{l(R')}\right], \text{ para } r > R_2$$
 (2.27)

$$\varphi^{NC}(R) = \frac{c'}{2} \sqrt{\frac{l(R)}{2\pi}} \exp\left[2\pi \int_{R}^{R_1} \frac{dR'}{l(R')}\right], \text{ para } r < R_1$$
(2.28)

Regras de quantização de Bohr-Sommerfeld

Para que possa existir um estado estacionário dado pelas equações (2.26), (2.27), (2.28) é necessário que a função (2.26) independa do valor de R_0 sendo ele R_1 ou R_2 . Para determinados valores de energia que possuem um estado estacionário, temos que

$$\begin{aligned} c_{2}'\sqrt{\frac{\lambda(R)}{2\pi}} \sin\left(2\pi \int_{R}^{R_{2}} \frac{dR'}{\lambda(R')} + \frac{\pi}{4}\right) &= c_{1}'\sqrt{\frac{\lambda(R)}{2\pi}} \sin\left(2\pi \int_{R_{1}}^{R} \frac{dR'}{\lambda(R')} + \frac{\pi}{4}\right) = \\ c_{1}'\sqrt{\frac{\lambda(R)}{2\pi}} \sin\left[2\pi \int_{R_{1}}^{R_{2}} \frac{dR'}{\lambda(R')} + \frac{\pi}{2} - \left(2\pi \int_{R}^{R_{2}} \frac{dR'}{\lambda(R')} + \frac{\pi}{4}\right)\right] = \\ c_{1}'\sqrt{\frac{\lambda(R)}{2\pi}} \left[\sin\left(2\pi \int_{R_{1}}^{R_{2}} \frac{dR'}{\lambda(R')} + \frac{\pi}{2}\right)\cos\left(2\pi \int_{R}^{R_{2}} \frac{dR'}{\lambda(R')} + \frac{\pi}{4}\right) - \\ -\cos\left(2\pi \int_{R_{1}}^{R_{2}} \frac{dR'}{\lambda(R')} + \frac{\pi}{2}\right)\sin\left(2\pi \int_{R}^{R_{2}} \frac{dR'}{\lambda(R')} + \frac{\pi}{4}\right)\right]\end{aligned}$$

Para que a igualdade acima seja verdadeira, temos que

$$\sin\left(2\pi \int_{R_1}^{R_2} \frac{dR'}{\lambda(R')} + \frac{\pi}{2}\right) = 0 \quad e \quad -\frac{c_1'}{c_2'} \cos\left(2\pi \int_{R_1}^{R_2} \frac{dR'}{\lambda(R')} + \frac{\pi}{2}\right) = 1,$$

isto significa que

$$2\pi \int_{R_1}^{R_2} \frac{dR'}{\lambda(R')} = \frac{\sqrt{2\mu}}{\hbar} \int_{R_1}^{R_2} dR' \sqrt{E - V_{\alpha,J}(R')} = (n + \frac{1}{2})\pi \quad \text{e} \quad \frac{c_1'}{c_2'} = (-1)^n,$$

onde $n \ge 0$, já de $\int_{R_1}^{R_2} dR' / \lambda(R')$ é uma funcão positiva. A primeira condição diz respeito a regra de quantização de Bohr-Sommerfeld.

2.4 O espectro de moléculas diatômicas e ordens de grandeza

Born e Oppenheimer [63], por meio de métodos perturbativos, mostraram que o termo associado a energia cinética dos núcleos da equação (2.2) é duas ordens de grandeza menor que a do termo associado a energia eletrônica. Além do mais, a energia associada com a rotação de uma molécula diatômica, quando comparada com a energia vibracional, também é cerca de duas ordens de grandeza menor.

Esta diferença entre as ordens de grandeza é experimentalmente evidenciada pelo fato da espectroscopia óptica molecular poder ser dividida em três tipos [69]:

- Espectroscopia rotacional: transições exclusivas dentro de um mesmo nível vibracional, mas entre níveis rotacionais diferentes, tomam parte em uma faixa de energia associada as microondas e a rádio frequência.
- 2. Espectroscopia vibracional: quando as transições se dão entre níveis vibracionais distintos, as energias associadas encontram-se na faixa do infravermelho.

3. Espectroscopia eletrônica: a transição entre dois diferentes níveis eletrônicos em uma molécula diatômica são estudados na faixa do espectro visível e do ultravioleta.

Baseados nestas evidências experimentais, afirmamos que a energia molecular pode ser escrita como

$$E_{mol} = E^{ele} + E^{vib} + E^{rot}, (2.29)$$

onde E^{ele} , E^{vib} e E^{rot} são, respectivamente, as energias eletrônica, vibracional e rotacional da molécula. É importante ressaltar que apesar de escrevermos a energia como a soma de três parcelas distintas, os diferentes níveis de energia estão acoplados, já que o estado vibracional é diretamente influenciado pelo estado eletrônico da molécula e o estado rotacional também é influenciado pelo modo como a molécula vibra.

De acordo com a teoria quântica, a absorção ou emissão de um fóton pela molécula é dada realizando-se uma transição entre possíveis estados moleculares. A diferença de energia entre estes dois estados tem a mesma energia do fóton absorvido ou emitido de tal maneira que a energia total do sistema se conserve. A relação de Einstein é válida

$$\Delta E_{mol} = hc\sigma,$$

onde h é a constante de Planck, c a velocidade de propagação da luz no vácuo e σ é o número de onda associada ao fóton.

Seguiremos a convenção adotada por Herzberg [69], em que o estado mais excitado é denotado por um primo e o estado menos excitado por dois, e desta forma escreveremos o número de onda do fóton como

$$\sigma = \frac{E'}{hc} - \frac{E''}{hc}$$

Por conveniência, vamos escrever a equação (2.29) em unidades de número de ondas (ou inverso do comprimento de onda). Para isto dividimos a expressão (2.29) por hc obtendo

$$T = T_{ele} + G + F, \tag{2.30}$$

onde cada um destes termos é conhecido como o *valor de termo*. Os termos do lado direito são os termos eletrônico, vibracional e rotacional, respectivamente.

A conveniência na utilização dos valores de termos para o conhecimento dos níveis de energia deve-se ao fato do comprimento de onda da radiação absorvida ou emitida, ou o número de onda associada a ela, serem as grandezas medidas experimentalmente para a determinação dos espectros moleculares. A separação entre estas diferentes regiões espectroscópicas para definição do tipo de transições ocorendo na molécula não é simplesmente uma definição baseada na diferença entre ordens de grandeza dos diferentes valores de termos em (2.30). O espectro das moléculas diatômicas apresenta em cada uma destas regiões características distintas, padrões distintos de arranjo das posições das linhas. A indentificação destes padrões e o ajuste das posições por meio de expressões simples é um dos primeiros passos para a determinação do espectro, atribuindo às linhas experimentais quais estados que tomaram parte durante a emissão ou absorção do fóton relacionado a elas. Como uma quantidade muito grande de linhas é observada no espectro, o ajuste das suas posições por meio de expressões mais simples pode ser imaginado como uma redução dos dados obtidos a uma pequena quantidade de parâmetros livres das expressões utilizadas.

2.5 Redução de dados espectroscópicos

No espectro atômico, são observadas linhas simples e finas, cujas posições destas no espectro óptico são descritas por expressões bastantes simples conhecidas como as séries de Rydberg

$$\sigma = \frac{A}{(n_1 + a)^2} - \frac{B}{(n_2 + b)^2},$$

onde A, B, $a \in b$ são parâmetros a serem ajustados para as transições em um estado atômico e que determinam com precisão os números de onda associados as estas transições. Os números inteiros $n_1 \in n_2$ são chamados de números quânticos principais utilizados na descrição dos estados.

Já no espectro molecular, diferentemente do espectro atômico, é observado um espectro formado por bandas. Bandas são regiões de comprimento de onda mais ou menos alongadas, que se observadas com um espectroscópio de alta resolução, perceber-se-á que estas bandas são compostas por uma quantidade muito grande de linhas espectroscópicas. Chamamos de *cabeça da banda* a extremidade da banda cuja intensidade cai repentinamente a zero, enquanto o outro lado cai mais vagarosamente. De acordo com o lugar onde esta queda mais vagarosa é tomada, se para maiores ou menores comprimentos de onda de uma banda, dizemos que a banda é sombreada para o vermelho ou violeta. A Figura 2.2 mostra um espectro de bandas típico.

Os espectros moleculares na região do vísivel e do ultravioleta próximo consistem de séries de bandas cuja separação entre os números de onda diminui muito vagarosamente com a diminuição do número de onda das bandas; estas séries são chamadas progressões. Podemos

Figura 2.2: Bandas das moléculas de CN e C₂. A figura foi retirada de Ref. [69].

representar os números de onda das bandas de cada uma das progressões aproximadamente pela fórmula

$$\sigma = \nu_{v'} - \left(a''v'' - b''v''^2\right),\tag{2.31}$$

onde $\nu_{v'}$, $a'' \in b''$ ($b'' \ll a''$) são constantes positivas a serem encontradas de forma a melhor ajustar a representação matemática das bandas descritas pela Equação (2.31) e v'' é um número inteiro e não-negativo. Como as constantes são sempre positivas, $\nu_{v'}$ é o maior número de onda associado a uma banda da progressão-v''. Pode ser necessária a introdução de potências mais altas de v'' na expressão acima. Progressões como estas são conhecidas como progressões-v''.

As progressões-v'' estão associadas as transições eletrônicas entre um determinado estado vibracional do estado superior e os estados vibracionais do estado eletrônico de energia mais baixa, que são identificados pelo número inteiro v''. Podemos verificar algumas transições na Figura 2.3, onde é representada uma parte de uma progressão deste tipo, indicada pelas setas verdes; as setas para baixo indicam que supomos um decaimento radiativo para o estado eletrônico mais baixo.

Analisando esta representação, vemos que o termo $\nu_{v'}$ é o número de onda associado a transição entre um determinado estado vibracional do estado eletrônico superior e o vibracional menos energético do estado eletrônico inferior. Este número de onda é determinado pela Equação (2.31) para o valor de v'' = 0.

Se b'' = 0, a equação 2.31 forneceria uma série de bandas equidistantes com uma separação igual a a''. Um resultado idêntico é encontrado para um potencial hârmonico, onde a separação entre os consecutivos níveis de energia é constante. Se b'' for diferente de 0, mas muito menor que a'', então a separação entre duas bandas consecutivas diminui gradu-

Figura 2.3: Representação gráfica das transições permitidas entre dois estados eletrônicos.

almente, e o b'' pode ser pensado como uma constante associada a uma correção anarmônica do potencial efetivo sobre os núcleos associado ao estado eletrônico menos energético.

Tomando os números de onda associados as bandas com maior número de onda de cada progressão-v'', as bandas $\nu_{v'}$, obtemos uma outra progressão, com outras constantes. Nesta progressão, a separação entre as bandas diminuem para números de onda maiores. Estes números de onda podem ser representados por

$$\nu_{v'} = \nu_{00} + \left(a'v' - b'v'^2\right), \qquad (2.32)$$

onde v' assume valores inteiros e não-negativos e ν_{00} , a' e b' são constantes positivas, onde ν_{00} está associado ao menor número de onda da progressão. Esta progressão é conhecida como uma progressão-v'.

As progressões-v' são progressões associadas a transições entre um determinado estado vibracional do estado eletrônico menos energético e os estados vibracionais do estado eletrônico mais energético, não precisando necessariamente ser o estado vibracional fundamental do estado eletrônico menos energético como afirmamos acima, tomando somente os $\nu_{v'}$ como constituintes desta progressão. O número inteiro v'' caracteriza o estado vibracional do estado eletrônico superior. As setas em azul na Figura 2.3 indicam uma progressão deste tipo.
Analisando novamente a representação gráfica na Figura 2.3, a seta laranja, representa o número de onda ν_{00} , que está associado a transição entre os estados vibracionais fundamentais dos dois estados eletrônicos.

As constantes $a' \in b'$ têm interpretações idênticas as constantes $a'' \in b''$, só que dizendo respeito ao potencial efetivo sobre os núcleos associado ao estado eletrônico mais energético.

Assim, substituindo a expressão (2.32) em (2.31), obtemos

$$\sigma = \nu_{00} + \left(a'v' - b'v'^2\right) - \left(a''v'' - b''v''^2\right), \qquad (2.33)$$

que representa a totalidade de bandas associadas as transições vibracionais entre dois estados eletrônicos.

Em uma análise mais fina, com uma resolução maior das linhas que formam as bandas, podemos observar também que elas obedecem um determinado padrão e que podemos, a partir de uma expressão empírica representada por polinômios, descrever os números de onda associadas a estas linhas. Esta expressão é dada por uma função do segundo grau

$$\sigma = c + dm - em^2,$$

onde c, $d \in e$ são constantes positivas a serem ajustadas para cada uma das bandas e m é um número inteiro. Algumas vezes, termos de ordem maior que dois no polinômio são necessários para ajustar os números de onda dentro da precisão associada as medidas destes. Estas linhas que formam as bandas são devidas a transições entre os diferentes níveis rotacionais dos estados vibracionais associados a banda.

Como podemos notar, a quantidade de linhas que podem surgir em um espectro de um molécula diatômica é enorme e a redução destes dados espectroscópicos torna-se uma necessidade. Assim como o ajuste dos parâmetros da expressão de Rydberg para descrever as linhas espectroscópicas de um átomo pode ser pensada como uma maneira compacta de escrever os dados espectroscópicos, o ajuste dos parâmetros das expressões empíricas para descrever as bandas e as linhas de uma banda no espectro de uma molécula diatômica também o será.

Algumas formas de redução partindo de primeiros princípios têm sido propostas na literatura no último século. Uma das formas mais populares é o ajuste dos parâmetros das expressões determinadas por Dunham em seus trabalhos [70,71], onde partindo da equação de Schrödinger radial, ele determinar expressões polinomiais, semelhante as empíricas descritas acima, para descrever os níveis de energia em um determinado estado eletrônico. Outras formas partem da construção de um potenciais efetivo sobre os núcleos. Conhecendo-se este potencial poderíamos resolver a equação de Schrödinger radial (2.16) e determinar os níveis de energia e outras quantidades de interesse. Aqui destacam-se duas metodologias diferentes: a primeira associada a determinação de potenciais númericos e a segunda ao ajuste de parâmetros de uma forma analítica atribuída ao potencial.

Dentre as metodologias associadas a determinação de potenciais numéricos podemos citar o método proposto por Rees [29], que derivou expressões analíticas equivalentes ao método de construção gráfica para as curvas de energia potencial desenvolvido por Rydberg [27] e Klein [28], que posteriormente ficou conhecido como método Rydberg-Klein-Rees ou simplesmente RKR, em homenagem as pessoas que desenvolveram a metodologia. Um outro método é o da Abordagem Perturbativa Inversa ou, do acrônimo em inglês, IPA, proposto por Kosman e Hinze [30] e Vidal e Scheingraber [31], que partindo de um potencial inicial, geralmente um potencial RKR, atribuído a um hamiltoniano não perturbado, tenta determinar correções perturbativas ao potencial de forma que minimize o desvio entre as energias determinadas experimentalmente e as encontradas resolvendo-se a equação de Schrödinger para este novo potencial com correções perturbativas.

Um dos inconvenientes da metodologia proposta por Rees é o de conhecer uma expressão para as energias da moléculas em função dos números quânticos que designam o estado vibracional e rotacional e o da metodologia IPA o conhecimento de um potencial inicial.

As metodologias de ajuste de parâmetros de uma forma analítica atribuída a um determinada curva de energia potencial tem ganhado grande força nas últimas duas décadas, a partir dos trabalhos de Coxon e Hajigeorgiou [4–6] e de Zimmermann e colaboradores [7]. Estas metodologias têm recebido o nome genérico de *Ajuste Direto*, já que *a priori* a única informação necessária para o ajuste da curva de energia potencial é fornecida pelo próprio espectro, com as transições associadas a cada uma das linhas já atribuídas. Em particular, nesta tese estamos interessados em estudar o Ajuste Direto das Curvas de Energia Potencial de moléculas diatômicas alcalinas utilizando o Algoritmo Genético como procedimento de busca dos melhores parâmetros que ajustam o potencial.

Capítulo 3

Metodologias

Neste capítulo vamos tratar de algumas metodologias utilizadas na redução de dados espectroscópicos. Estas metodologias se diferenciam basicamente por dois aspectos. O primeiro aspecto diz respeito a expressão que será ajustada com os dados experimentais, enquanto o segundo aspecto é quanto a forma de expressar as quantidades que serão ajustadas, ou seja, como descrevê-las.

Os primeiros ajustes realizados de dados experimentais determinaram coeficientes associados a polinômios que ajustariam os números ou comprimentos de onda das linhas do espectro. Eram polinômios de baixo grau, dependendo da região espectroscópica, podendo ser acrescentados monômios de 3^a ordem ou 4^a ordem para correções no ajuste, permitindo descrever a posição das linhas dentro da precisão em que o espectro foi medido. Estas expressões, puramente empíricas, sem nenhum fundamento teórico, foram utilizadas por um longo tempo para a redução de dados. A estranha aparência destes espectros, em especial os espectros atômicos, com suas linhas que não conseguiam ser descritas pela teoria clássica da Física em voga durante o final do século XIX foi o grande motivador de alguns cientistas como Niels Bohr e Arnold Sommerfeld para quebrarem paradigmas e proporem um novo modelo atômico, regido por outras leis mecânicas, diferentes das clássicas.

Com o avanço da Teoria Quântica, metodologias baseadas em seus primeiros princípios começaram a ser utilizadas e expressões mais elaboradas, porém ainda baseadas em polinômios, foram sendo introduzidas na redução dos dados para descreverem os valores de termos do espectro. Uma das mais importantes metodologias deste tipo é a utilizada por Dunham [70,71] como veremos abaixo.

Em meados do século XX, novas metodologias foram sendo desenvolvidas de forma a construir Curvas de Energia Potencial de uma maneira que pudessem ser utilizadas em cálculos numéricos com interesse no estudo do movimento dos núcleos. Tais CEPs numéricas baseiam-se em tabelas de distância internuclear versus energia. Os métodos mais conhecidos desta classe são os método RKR e IPA.

No final do século XX e começo do século XXI, novas metodologias puderam ser trabalhadas com maior eficiência devido ao aumento do poder dos computadores, dando origem ao que conhecemos hoje de maneira genérica como métodos de ajuste direto. Estes métodos tem em comum o fato de atribuir a uma CEP uma forma funcional analítica, e os parâmetros desta forma funcional devem ser ajustados de forma a minimizar o erro entre os dados espectroscópicos obtidos do espectro e os dados encontrados resolvendo-se a equação de Schrödinger radial.

As grandes diferenças entre os métodos de ajuste direto estão na metologia utilizada para a determinação do conjunto otimizado de parâmetros da forma analítica empregada na descrição da CEP e na própria forma analítica empregada. Uma das metodologias de busca mais utilizada pelos pesquisadores é o método de Levenberg-Maquardt. Neste trabalho, utilizamos uma metodologia baseada no Algoritmo Genético (AG), uma ferramenta de busca poderosa na solução de problemas não-lineares. Algumas expressões tem sido propostas e estudadas por Leroy e colaboradores [72], na Universidade de Waterloo, no Canadá, empregando modificações na expressão do potencial de Morse e de Lennard-Jones para a descrição de CEPs. Um outro trabalho realizado por Varandas e colaboradores [73], da Universidade de Coimbra, tem proposto uma função modelo chamada por eles de EHFACE2U ¹ para a descrição do estado fundamental das moléculas de Cs₂ e HF. Neste trabalho empregamos como formas funcionais a função de Rydberg estendida, para o ajuste da molécula de NaLi, e uma segunda forma baseada em um trabalho realizado por Patkowski e colaboradores [74] para o dímero de Ar₂.

Passaremos então a descrição dos métodos mais utilizados pela comunidade nas próximas seções e finalizaremos o capítulo com uma descrição da metodologia de ajuste direto usando o Algoritmo Genético que desenvolvemos neste trabalho.

3.1 Ajuste de Dunham

Em 1932, Dunham [70, 71] utilizando o método WKB para determinar a solução da equação de Schrödinger radial, mostrou que para uma função potencial efetivo genérica

¹acrônimo para Extended Hartree-Fock Approximate Correlation Energy, o 2 siginificando que é para uma molécula diatômica e o U indicando um comportamento assintótico correto para o limite do átomo unido quando da dissociação da molécula.

 como

$$V_J = hca_0\xi^2 \left(1 + a_1\xi + a_2\xi^2 + \dots \right) + B_e \left(1 - 2\xi + 3\xi^2 + \dots \right),$$

onde ξ é a separação nuclear com relação a posição de equilíbrio, as energias associados aos autoestados podem ser descritas como uma série de potências em v + 1/2 e em J(J + 1):

$$F_{vJ} = \sum_{i,j} Y_{ij} (v + 1/2)^{i} [J(J+1)]^{j},$$

sendo as constante Y_{ij} dependentes das constantes $\{a_k\}$ que descrevem o potencial.

O potencial de Dunham, como pode ser visto, é a combinação de um potencial anarmônico, onde a constante a_0 é uma constante associada a frequência de oscilação para pequenos deslocamentos com relação a posição de equílibrio, e a energia de rotação de um rotor não rígido, onde B_e é o momento de inércia da molécula para a separação de equilíbrio.

Os resultados encontrados por Dunham apresentam uma justificativa teórica para as expressões empíricas de ajuste das linhas espectrocópicas que constituem as bandas. Ele conseguiu associar estas novas constantes teóricas às antigas, que são determinadas experimentalmente, de tal forma que

$$\begin{array}{lll} Y_{10}\sim \omega_e & Y_{20}\sim -\omega_e x & Y_{30}\sim \omega_e y \\ Y_{01}\sim B_e & Y_{11}\sim -\alpha_e & Y_{21}\sim \gamma_e \\ Y_{02}\sim -D_e & Y_{12}\sim -\beta_e & Y_{40}\sim \omega_e z \end{array}$$

Os valores de termos vibracionais e rotacionais podem ser expandidos pelas expressões [75]:

$$G(v) = Y_{10}\left(v+\frac{1}{2}\right) + Y_{20}x_e\left(v+\frac{1}{2}\right)^2 + Y_{30}\left(v+\frac{1}{2}\right)^3 + \cdots$$
 (3.1)

$$F_{v}(J) = Y_{v1}J(J+1) + Y_{v2}\left[J(J+1)\right]^{2} + Y_{v3}\left[J(J+1)\right]^{3} + \cdots, \qquad (3.2)$$

onde

$$Y_{v1} = Y_{01} + Y_{11}\left(v + \frac{1}{2}\right) + Y_{21}\left(v + \frac{1}{2}\right)^2 + \dots e$$

$$Y_{v2} = Y_{02} + Y_{12}\left(v + \frac{1}{2}\right) + \dots ,$$
(3.3)

que juntas descrevem os diversos níveis de energia de uma molécula diatômica. As expressões (3.1) e (3.2) são encontradas como soluções do oscilador anarmônico e do rotor não rígido. Explicitamos nas equações (3.1) e (3.2) a depedência destes com os números quânticos de vibração e rotação que caracterizam o estado molecular.

A partir das expressões de Dunham para os valores de termos, podemos determinar quais os parâmetros que melhor ajustariam estes valores. Para determinar os parâmetros de Dunham é necessário primeiramente atribuir aos diferentes valores de termo os números quânticos do estado superior e inferior da transição correspondente. Uma atribuição ruim pode implicar em um ajuste com uma variância não desejada entre os valores de termos calculados e os determinados experimentalmente. Depois de atribuídas as transições, é possível montar um sistema linear de equações onde para cada valor de termo, ou a cada nível de energia de um estado eletrônico, teremos uma equação que terá como variáveis os parâmetros de Dunham.

O sistema de equações a ser resolvido dependerá da escolha das expressões e parâmetros que descreverão os dados experimentais. Um número finito dos parâmetros de Dunham é escolhido, e este número definirá o sistema de equações. Métodos de minimização de desvios quadráticos são então aplicados às equações com o objetivo de determinar o melhor conjunto de parâmetros de Dunham.

3.2 O método de Rydberg-Klein-Rees ou RKR

O método RKR consiste na construção de uma curva de energia potencial para um determinado estado eletrônico de uma molécula diatômica a partir de uma expressão conhecida dos níveis de energia vibracionais e rotacionais de um estado eletrônico. Conhecendo os níveis de energia, poderíamos determinar os pontos de retorno clássicos associados a cada nível e assim construir a CEP desejada na forma de uma tabela de distância internuclear versus valor numérico do potencial associado àquela distância. Potenciais deste tipo recebem a designação de potenciais numéricos.

Seja a CEP dada por

$$V_J(R) = V_0(R) + \frac{\hbar^2}{2\mu R^2} J(J+1),$$

onde V_0 é o potencial efetivo para uma molécula diatômica sem rotação e o outro termo é a energia cinética de rotação. Assumindo uma função como

$$A(E,J) = \frac{\sqrt{2\mu\pi}}{2\hbar} \int_{R_1}^{R_2} dR \left(E - V_J(R)\right) dR$$

podemos demostrar que esta função possui algumas propriedades como, por exemplo,

$$\frac{\partial A}{\partial E} = \frac{\sqrt{2\mu\pi}}{2\hbar} \int_{R_1}^{R_2} 1 dR = \frac{\sqrt{2\mu\pi}}{2\hbar} \left(R_2 - R_1\right) \tag{3.4}$$

28

$$\frac{\partial A}{\partial J} = \frac{\hbar\pi}{\sqrt{2\mu}} \int_{R_1}^{R_2} \left(-\frac{(2J+1)}{R^2} \right) dR = \frac{(2J+1)\hbar\pi}{\sqrt{2\mu}} \left(\frac{1}{R_2} - \frac{1}{R_1} \right).$$
(3.5)

Assim podemos determinar os pontos de retorno clássicos do potencial associados a um determinado nível de energia da molécula conhecendo as derivadas da função A(E, J). Mas para isto precisaríamos conhecer o potencial $V_J(R)$, o que *a priori* não conhecemos; a CEP que representa este potencial efetivo sobre os núcleos é o que tentamos determinar.

Para contornar este problema, vamos usar a indentidade

$$\int_{a}^{b} \left(\frac{x-a}{b-x}\right)^{1/2} dx = \int_{a}^{b} \left(\frac{b-x}{x-a}\right)^{1/2} dx = \frac{\pi}{2}(b-a),$$

de forma que poderemos reescrever a função A(E, J) de outra maneira,

$$A(E,J) = \frac{\sqrt{2\mu}}{\hbar} \int_{R_1}^{R_2} \int_{E_{min}}^{E} dR dE' \frac{(E-E')^{1/2}}{(E'-V_J(R))^{1/2}} = \int_{E_{min}}^{E} dE' \left[\frac{\sqrt{2\mu}}{\hbar} \int_{R_1}^{R_2} dR \left(E' - V_J(R) \right)^{-1/2} \right] \left(E - E' \right)^{1/2},$$

e reescrevendo a equação dentro dos colchetes temos

$$A(E,J) = 2 \int_{E_{min}}^{E} dE' \frac{\partial}{\partial E'} \left[\frac{\sqrt{2\mu}}{\hbar} \int_{R_1}^{R_2} dR \left(E' - V_J(R) \right)^{1/2} \right] \left(E - E' \right)^{1/2}.$$

Assumindo que a variável E' é a energia do sistema e observando que a expressão entre colchetes tem o seu valor definido pela regra de quantização de Bohr-Sommerfeld, a função A(E, J) passa a ser dada por

$$A(E,J) = 2\pi \int_{E_{min}}^{E} dE' \frac{\partial(v+1/2)}{\partial E'} \left(E - E'(v,J) \right)^{1/2} = 2\pi \int_{0}^{v(E)} dv \left(E - E'(v,J) \right)^{1/2} dv \left(E$$

onde a expressão da energia em função dos números quânticos vibracional e rotacional é uma expressão conhecida, que pode ser dada, por exemplo, pela expansão de Dunham para os níveis de energia de um estado eletrônico. Para isto basta determinarmos quais são os melhores parâmetros de Dunham para ajustar esta expressão.

Agora que conhecemos uma forma para determinar a expressão A(E, J) a partir de uma expressão para a energia em função dos números quânticos, podemos determinar os pontos de retorno clássicos utilizando as derivadas da função A(E, J) dadas nas Equações (3.4) e (3.5). Como estamos interessados na construção da CEP, tomaremos J = 0. Resolvendo o sistema formado por estas duas equações, temos que

$$R_{1,2} = \left(f^2 + \frac{f}{g}\right)^{1/2} \mp f,$$
(3.6)

onde tomamos as soluções positivas do sistema devido as restrições impostas a distância internuclear. Aqui $f \in g$ são funções positivas dadas por

$$f = \lim_{J \to 0} \left(\frac{\hbar}{\sqrt{2\mu\pi}} \frac{\partial A(E,J)}{\partial E} \right)$$
$$g = \lim_{J \to 0} \left(-\frac{1}{\hbar\pi} \sqrt{\frac{\mu}{2}} \frac{\partial A(E,J)}{\partial J} \right)$$

3.3 O método da Abordagem Perturbativa Inversa ou IPA

O método IPA parte de um potencial efetivo inicial para os núcleos de uma molécula diatômica com o intuito de constuir um novo potencial onde correções perturbativas quânticas são realizadas de forma a minimizar a discrepância entre os níveis de energia experimentais tomados como referência e os valores calculados a partir deste potencial corrigido, quando da resolução da equação de Schrödinger radial.

Tomando a equação de Schrödinger radial não perturbada, temos que

$$H_0\varphi_{vJ}^0(R) = E_{vJ}^0\varphi_{vJ}^0(R).$$

Assumindo uma perturbação no potencial, podemos escrever a equação acima como

$$(H^0 + \Delta V(R))\varphi_{vJ}(R) = E_{vJ}\varphi_{vJ}(R),$$

onde a correção de primeira ordem na energia é dada por

$$\Delta E_{vJ} = \left\langle \varphi_{vJ}^0(R) \right| \Delta V(R) \left| \varphi_{vJ}^0(R) \right\rangle,$$

Ao contrário da teoria de perturbação comum que é aplicada a este tipo de problema, não estamos interessados em calcular correções nos níveis de energia do sistema, e sim em determinar a correção perturbativa do potencial sobre o sistema, ou seja $\Delta V(R)$, invertendo a abordagem pertubativa, já que determinamos

$$\Delta E_{vJ} = E_{vJ} - E_{vJ}^0,$$

onde E_{vJ} é o valor experimental e E_{vJ}^0 é o autovalor calculado de equação de Schrödinger radial.

Podemos assim, assumindo que

$$\Delta V(R) = \sum_{i} c_i f_i(R),$$

onde $f_i(R)$ é um conjunto de funções de base, e escrever a correção perturbativa de primeira ordem na energia como

$$\Delta E_{vJ} = \sum_{i} c_i \left\langle \varphi_{vJ}^0(R) \right| f_i(R) \left| \varphi_{vJ}^0(R) \right\rangle.$$
(3.7)

A partir da determinação dos coeficientes c_i podemos escrever a correção na CEP inicial, que geralmente é uma CEP obtida de uma construção utilizando o método RKR, e construir uma curva de energia potencial que descreva os níveis de enegia com uma precisão mais próxima da experimental.

Na Figura 3.1, grafamos a discrepância entre os níveis de energia determinados pelo método RKR e os níveis determinados utilizando o método IPA para a molécula diatômica de RbCs, a partir dos resultados obtidos por Fellows e colaboradores na Ref. [76].

Figura 3.1: Diferença entre os níveis vibracinais RKR e IPA para o estado fundamental da molécula de RbCs.

Esta discrepância deve-se as correções perturbativas realizadas empregando-se o método IPA ao potencial inicial RKR. Como podemos perceber, este níveis de energia diferem uns dos outros por até centésimos de cm^{-1} . Os níveis de energia IPA e RKR foram conseguidos resolvendo-se a equação de Schrödinger radial para os respectivos potenciais númericos, empregando o método da representação da variável discreta (DVR) para a realização das integrais necessárias para a resolução do problema (ver Apêndice B).

3.4 O Ajuste Direto

Curvas de Energia Potencial são quantidades essenciais para o estudo teórico e compreensão da dinâmica de uma molécula diatômica. A partir destas é possível determinar os vários estados de energia e autofunções associados a estes. Com esta determinação é possível encontrar tempos de vida de um estado excitado, momentos dipolares ² e outras quantidades de interesse tanto teórico quanto experimental no estudo destes sistemas.

Por muito tempo duas abordagens se sobressaíram para a construção destas curvas. Uma abordagem desenvolvida a partir dos primeiros princípios, que consiste em, a partir da aproximação de Bohr-Oppenheimer, resolver o problema do Hamiltoniano eletrônico e uma segunda que constrói as curvas a partir de constantes experimentais obtidas, por exemplo, através do ajuste dos parâmetros de Dunham.

A metodologia de primeiros princípios baseia-se em determinar as energias eletrônicas e as autofunções associadas para diferentes configurações nucleares (distância entre os dois núcleos de uma molécula diatômica) do Hamiltoniano eletrônico construindo assim potenciais numéricos que representem as CEPs de interesse. A resolução do Hamiltoniano é realizada supondo-se uma função de estado para descrever o estado eletrônico. Esta função de estado deve ser tal que minimize a energia do sistema, ou o valor médio do operador Hamiltoniano. O problema básico dos cálculos de estrutura eletrônica via primeiros princípios pode ser resumido a um problema de minimização do funcional energia. A solução que minimiza este funcional é dada por um problema de autovalor e autovetor do operador Hamiltoniano eletrônico, onde os autovalores são os valores de energia eletrônica para uma determinada configuração nuclear e os autovetores são coeficientes que expandem a função de estado em um conjunto de funções de base determinados preliminarmente. Uma maior discussão sobre algumas metodologias de primeiros princípios para cálculos de estrutura eletrônica pode ser encontrada na Ref. [57].

Estas metodologias tem tido grande sucesso na descrição dos sistemas moleculares. Porém a precisão obtida na determinação dos níveis de energia não são as melhores possíveis e podem desviar algumas ordens de grandeza da precisão da medida obtida no laboratório para as energias vibracionais do sistema. Para diminuir estes desvios algumas correções são realizadas no Hamiltoniano, incluindo termos que em um primeiro momento foram desprezados pela sua pequeníssima ordem de grandeza em comparação com a energia cinética e potencial associada aos elétrons. Apesar da melhora nos resultados a introdução destes

²Para determinar o momento de dipolo precisa-se, além da CEP, do conhecimento da função momento de dipolo de transição eletrônico. Para mais informações sobre o cálculo desta quantidade ver [57, 77]

termos no Hamiltoniano eletrônico torna a resolução do problema mais complexa e custosa computacionalmente. Um outro inconviniente destas metodologias é fornecer como resultado um potencial numérico, isto é, uma tabela para algumas distâncias internucleares versus a energia eletrônica associada a essa distância. Desta forma, para conhecermos a energia eletrônica para uma configuração que se encontra entre outras duas, é necessário realizar uma interpolação, e para conhecermos a energia para distâncias muito pequenas ou perto da dissociação, realizamos uma extrapolação, aproximando o resultado dos valores esperados para esta energia e introduzindo cada vez mais erros na determinação das CEPs. Um outro procedimento seria ajustar uma função analítica aos pontos deste potencial numérico.

Por outro lado, metodologias de construção das curvas a partir de constantes determinadas experimentalmente consistem em saber escrever as energias vibracionais associadas a um estado eletrônico em função destas constantes obtidas experimentalmente, como os parâmetros de Dunham. Conhecendo as energias em função das constantes é possível determinar os pontos de retorno clássico para este "oscilador anarmônico" e construir novamente um pontencial numérico. As curvas determinadas por esta metodologia descrevem muito bem as energias eletrônicas e a determinação dos níveis vibracionais a partir delas, como não poderia deixar de ser, encontram-se em excelente acordo com as medidas experimentais. O incoviniente deste tipo de metodologia é que a curva de energia potencial só é conhecida para regiões nas quais estes níveis de energia experimental são conhecidos. Se a quantidade de níveis conhecidos de um determinado estado eletrônico não preencher uma boa parte do poço do potencial, a descrição da dissociação pode ser mal realizada, introduzindo grandes erros nas extrapolações para a determinação da curva nesta região. Isto deve-se ao fato do ajuste das constantes experimentais ter sido realizado com os níveis determinados experimentalmente. Um bom ajuste das constantes para estes níveis não assegura um bom ajuste para os outros não determinados.

A partir da década de 1990, com o aumento do poder computacional, uma nova abordagem para a construção de curvas de energia potencial começou a ser desenvolvida. Nesta abordagem os dados obtidos experimentalmente são ajustados a uma forma analítica proposta para descrição da curva de energia potencial. Neste ajuste, os parâmetros da forma analítica são pesquisados de maneira tal que reduzam a variância entre os dados experimentais e os respectivos resultados teóricos obtidos resolvendo-se a equação de Schrödiger radial a partir da CEP ajustada. Por causa desta característica, estas metodologias receberam o nome genérico de *Ajuste Direto*, já que não é mais necessário a determinação de constantes experimentais a partir do espectro para realizar a construção das CEPs de interesse. A Figura 3.2 mostra um esquema onde diferenciamos o ajuste direto das metodologias mediadas por constantes experimentais.

Figura 3.2: Esquema diferenciando o ajuste direto das metodologias mediadas por constantes experimetais

Algumas metodologias tem sido desenvolvidas por diferentes grupos ao redor do mundo. As diferenças essenciais entre elas estão na escolha da melhor representação analítica para as CEP e no método utilizado para a pesquisa do conjunto otimizado de parâmetros da função que melhor ajusta os dados de entrada que deverão ser reproduzidos. Para realizar a busca dos parâmetros nós utilizamos um algoritmo conhecido na literatura como Algoritmo Genético Híbrido. O adjetivo híbrido é dado porque utilizamos um algoritmo de otimização local juntamente com o Algoritmo Genético. No nosso caso este algoritmo de otimização local é baseado no método L-BFGS (acrônimo para Broyden-Fletcher-Goldfarb-Shanno limited memory quasi-Newton) [78, 79]. Passamos agora a uma discussão com mais detalhes sobre a metodologia empregada na procura do conjunto otimizado de parâmetros utilizados na representação analítica da Curva de Energia Potencial.

3.4.1 O Algoritmo Genético Híbrido

Para a pesquisa do melhor conjunto de parâmetros implementamos uma metodologia baseada no Algoritmo Genético Híbrido. Chamamos de Algoritmo Genético a uma classe de algoritmos de busca, cujo processo é inspirado nas regras de seleção natural que explicam a evolução natural da população de uma determinada espécie [80].

O conjunto de parâmetros que utilizamos é empregado na construção de uma forma funcional analítica que representará o estado fundamental da molécula diatômica. No caso da molécula de NaLi utilizamos a função de Rydberg estendida, de forma que o potencial é dado por

$$V(R) = -D_e \left(1 + \sum_{k=1}^p a_k \rho^k \right) exp(-a_1 \rho),$$
(3.8)

onde $\rho = R - R_e$ é a separação internuclear da distância de equilíbrio R_e .

Utilizamos, para a molécula de RbCs, uma forma funcional analítica inspirada no trabalho de ajuste do potencial de interação entre dois átomos de argônio, realizado por Patkowski e colaboradores [74], sendo que retiramos algumas constantes utilizadas por ele e introduzimos outras. O potencial é dado pela expressão

$$V(R) = \left(a_1 + a_2R + \frac{a_3}{R} + a_4R^2 + a_5R^3\right)e^{-\left(a_6R + a_7R^2\right)} - \sum_{k=3}^5 f_{2k}(a_8R)\frac{C_{2k}}{R^{2k}},\tag{3.9}$$

onde R é a separação internuclear e $f_{2k}(\rho) = 1 - e^{-\rho} \sum_{i=0}^{2k} \rho^i / i!$.

A partir de agora denotaremos o conjunto dos parâmetros $a_i, D_e, R_e \in a_i, C_{2k}$ pelo vetor **z**³ e o potencial será dado parametricamente em função deste:

$$V(R) \equiv V(R; \mathbf{z}).$$

Nesta classe de algoritmos, cada conjunto de parâmetros z que é proposto ser solução do problema é considerado um indivíduo, e os parâmetros são considerados genes.

Durante cada iteração, uma população de indivíduos é criada. Dentro desta população, os indivíduos mais bem adaptados, isto é, o conjunto de parâmetros que melhor descrevem a solução do problema são selecionados. Estes indivíduos selecionados darão origem a uma nova geração após sofrerem ação de operadores genéticos como o *operador cruzamento* e o *operador mutação*. Estes operadores simulam fenômenos ocorridos com os cromossomos em um nível celular, possibilitando o aparecimento de indivíduos mais bem adaptados ao ambiente em que vivem. Por causa disto, os conjuntos de parâmetros são também chamados cromossomos.

Para medir o nível de adaptação de um indíviduo, nós estimamos o valor de uma função objetiva, que deve nos inferir o quão bom é um conjunto de parâmetros no ajuste de uma determinada CEP. Esta função objetiva, pelo seu caráter é também chamada na literatura de *fitness function*. Geralmente, os dados experimentais utilizados como referência para o ajuste tem precisões e incertezas diferentes e por isto não podem ser levados em um mesmo pé de igualdade. Para dar conta desta diferença, a função objetiva deve levar em maior consideração dados com maior precisão do que os dados com uma maior incerteza.

 $^{{}^{3}\}mathbf{z} \equiv [a_{1},...,a_{n},D_{e},R_{e}]$ ou $\mathbf{z} \equiv [a_{1},...,a_{8},C_{6},C_{8},C_{10}]$

No programa desenvolvido para o trabalho, além dos operadores e processos de seleção que caracterizam o Algoritmo Genético, também implementamos uma rotina de otimização local sobre os indivíduos selecionados em uma iteração. Essa implementação é realizada tendo em vista evitar que uma solução convirja para mínimos locais, possibilitando a pesquisa por um mínimo global e melhorando a convergência do cálculo. A Figura 3.3 mostra um esquema da rotina desenvolvida neste trabalho com o objetivo de construir uma CEP que descrevesse os níveis de energia molecular com uma grande precisão.

Figura 3.3: Diagrama esquemático de funcionamento do Algoritmo Genético

Após uma visão geral do funcionamento desta metodologia, passamos a discutir estas operações em mais detalhes separadamente.

Otimização local da população

Após a criação de uma geração, os indivíduos desta sofrem um processo de otimização local realizada utilizando o método L-BFGS [78,79]. Este método é um processo iterativo que requer somente o conhecimento da função $V(R; \mathbf{z})$ e das derivadas desta com relação aos parâmetros. É uma extensão de baixa memória do método BFGS, daí a letra L iniciando o acrônimo.

Os métodos quasi-Newton são caracterizados por uma modificação ao método de Newton para a obtenção de mínimos ou máximos locais de uma função através da minimização da matriz Hessiana (matriz com as derivadas segundas com relação aos parâmetros) da função para qual desejamos encontrar esses extremos locais.

Neste trabalho implementamos o cálculo da derivada de duas formas diferentes. No ajuste da molécula de NaLi implementamos o cálculo da primeira derivada utilizando a razão entre as diferenças finitas. Após sugestões feitas por um dos árbitros do artigo na Ref. [58], no qual publicamos os resultados para a molécula de NaLi, implementamos o cálculo da primeira derivada aplicando o teorema de Hellmann-Feynman [81]. Desta forma, no ajuste da molécula de RbCs, o cálculo das derivadas primeiras para a otimização local da população foi realizada utilizando-se uma expressão analítica. De acordo com o teorema:

$$\frac{\partial V}{\partial z_j} = \left\langle \frac{\partial \hat{\mathbf{H}}_{mol}}{\partial z_j} \right\rangle_{\text{médio}},\tag{3.10}$$

onde o termo do lado direito da Equação 3.10 é o valor médio da derivada do operador Hamiltoniano com relação ao parâmetro z_j no estado rovibracional que estamos interessados. Desta maneira o cálculo das derivadas torna-se mais rápido e preciso devido a sua representação.

O número máximo de iterações é limitado pelo parâmetro LSL (local search length), porém se for alcançado um mínimo, o processo de otimização é interrompido e o número de iterações é menor que o valor especificado para LSL.

Estimativa da população com relação aos dados experimentais

Depois da otimização local ter sido realizada sobre os indivíduos, uma estimativa da adequação deles como solução para o problema é realizada utilizando para esta finalidade a função objetiva. A função objetiva estima a adaptação de um indivíduo comparando quantidades acessíveis experimentalmente obtidas no laboratório com as mesmas quantidades calculadas a partir da CEP obtida com o conjunto de parâmetros ou genes. A função que nós utilizamos é dada por

$$\chi^{2} = \sum_{j=1}^{N_{exp}} \omega_{j}^{exp} [E_{j}^{calc}(\mathbf{z}) - E_{j}^{exp}]^{2} + \sum_{j=1}^{N_{ab}} \omega_{j}^{ab} [V^{fit}(R_{j}; \mathbf{z}) - V^{ab}(R_{j})]^{2}, \qquad (3.11)$$

onde $N_{exp} \in N_{ab}$ são as quantidade de dados experimentais e *ab initio* utilizados no ajuste, $E_j^{calc}(\mathbf{z})$ é a quantidade acessível experimentalmente calculada a partir do indivíduo \mathbf{z} e $V^{fit}(R_j; \mathbf{z})$ o valor do potencial ajustado par um ponto R_j . $\omega_j^{exp} \in \omega_j^{ab}$ são os pesos dados aos desvios quadráticos na expressão (3.11) para as quantidades experimetais e *ab initio*, respectivamente. Geralmente este peso é igual ao inverso da incerteza ao quadrado da medida, mas para o caso do NaLi fizemos $\omega_j^{exp} = 100 \in \omega_j^{ab} = 1$ e para o RbCs fizemos $\omega_j^{exp} = 1/N_{exo}$. Este peso é maior quanto menor for a incerteza de uma medida, de forma a levar em maior consideração as medidas obtidas com maior precisão, como é esperado de uma função construída com o objetivo de medir o quão boa é uma solução que deve representar dados espectroscópicos com a precisão que eles são determinados. Desta maneira o nosso problema torna-se um problema de minimização da função (3.11) via a obtenção de um conjunto de parâmetros otimizado.

Figura 3.4: Esquema da atuação dos operadores genéticos sobre o conjunto de parâmetros.

Operadores de cruzamento ou crossover

Após a estimativa de adequação dos indivíduos, os mais adaptados serão selecionados e serão os pais da nova geração que aparecerá. Porém antes disto estes pais ainda sofrerão a ação dos operadores de cruzamento. O operador de cruzamento ou *crossover* simula um fenômeno que ocorre em nível do núcleo celular, quando da divisão da celula por meiose (processo em que o material genético da célula mãe é divida entre duas células filhas, reduzindo o número de cromossomos pela metade). No processo de meiose, dois cromossomos trocam entre si partes deles antes de gerar as células filhas. Esse processo é chamado de cruzamento cromossômico e toma lugar no início da meiose. Algumas propostas tem sido colocadas na literatura e implementadas para simular o cruzamento entre dois indivíduos de uma geração, que aqui serão chamados de pais. Tais operadores são o *cruzamento em um ponto* e *cruzamento binário simulado* (conhecido como SBX).

O operador cruzamento em um ponto, como sugere o próprio nome, um algoritmo muito simples para a implementação do cruzamento entre dois pais. Ele seleciona aleatoriamente um ponto de corte no cromossomo de dois pais e troca a parte final dos cromossomos entre eles. Este processo está representado na letra a) da Figura 3.4. Devido a sua forma de operar, o operador cruzamento em um ponto é também chamado de operador recombinação discreta. Umas das desvantagens deste operador é que ele somente recombina cromossomos, sem levar em consideração a melhor carga genética de um dos pais para a formação de uma criança mais bem adaptada. Para contornar estes incovenientes foram desenvolvidos operadores de cruzamento altenativos, que levem esta questão em consideração.

Um operador bem conhecido que realiza este tipo de operação é o operador SBX. A letra b) da Figura 3.4 representa esquematicamente a sua operação. Os valores dos parâmetros que formarão o cromossomo da Criança 1 e Criança 2 são obtidos dos valores dos parâmetros do Pai 1 e Pai 2 a partir das seguintes operações:

- 1. Selecione um número aleatório $\mu \in [0, 1]$,
- 2. Calcule

$$\begin{array}{rcl} \beta & = & (2\mu)^{1/(\eta+1)}, & \text{se } \mu \leq 0,5 \\ \beta & = & (1/2(1-\mu))^{1/(\eta+1)}, & \text{se } \mu > 0,5, \end{array}$$

3. Obter as crianças

Criança 1 =
$$0, 5[(1 + \beta) \times \text{Pai } 1 - (1 - \beta) \times \text{Pai } 2]$$

Criança 2 = $0, 5[(1 - \beta) \times \text{Pai } 1 + (1 + \beta) \times \text{Pai } 2],$

onde o η é um número real não negativo. Números grandes de η aumentam a probabilidade de criar descedentes que são parecidos com os pais. Para valores pequenos as soluções são muito diferentes para serem selecionadas como filhos. Bons resultados foram obtidos em problemas de valores reais de dimensionalidades e dificuldades variadas [82,83].

Operadores mutação

Após a nova geração ter sido criada pela operação de crossover sobre os pais, estes novos sujeitos sofrem a operação de mutação. A operação de mutação é realizada fazendo-se uma mudança no valor dos genes de um indivíduo. O fenômeno de mutação é um fenômeno também comum em nível celular e é caracterizado pela modificação de mudança da sequência das unidades de material genético encontradas nos cromossomos. Existem diversas causas para esta mudança como, por exemplo, um erro de cópia dos cromossomos durante o processo de divisão celular, a exposição a radiação ionizante, um agente químico ou biológico, como um vírus, entre outros.

Na letra c) da Figura 3.4 está representando uma mutação sofrida no segundo gene do indivíduo i. No estudo realizado nesta tese sobre o NaLi, dois operadores de mutação foram avaliados com relação ao seu desempenho: *mutação aleatória* e o *mutação sigma*.

O operador *mutação aleatória* realiza um operação muito simples. Como o próprio nome dele sugere, ele seleciona um novo valor para um determinado gene aleatoriamente dentro de um intervalo de pesquisa previamente definido.

Já o operador mutação sigma obtem o novo valor a partir da expressão

$$z_2^m = z_2^1 + \sigma \times (z_2^{max} - z_2^{min}) \times N(0, 1),$$

onde N(0,1) representa um valor aleatório amostrado de uma distribuição normal, z_2^{max} e z_2^{min} são respectivamente os limites superior e inferior do intervalo de pesquisa para o segundo gene e σ é um parâmetro do algoritmo.

No próximo capítulo apresentamos os resultados obtidos para o ajuste direto das moléculas diatômicas alcalinas heteronucleares de NaLi e RbCs e comparamos estes com resultados previamente encontrados na literatura.

Capítulo 4

Resultados

Neste capítulo apresentamos os resultados para o ajuste direto da curvas de energia potencial associadas ao estado fundamental de duas moléculas diatômicas alcalinas heteronucleares. A primeira é a mais leve delas, a molécula de NaLi, cujo ajuste será realizado utilizando como entrada uma CEP construída através de um cálculo *ab initio* utilizando a metodologia MCQDPT (para maiores detalhes, ver [57]) e os níveis vibracionais determinados por Fellows [56] utilizando a técnica espectroscópica de transformada de Fourier para um espectro de Fluorescência Induzida por Laser (FIL). A segunda molécula é a mais pesada delas, a molécula de RbCs, onde utilizamos como dado de entrada o espectro também obtido por Fellows [76] utilizando as mesmas técnicas empregadas no estudo da molécula de NaLi. A técnica da transformada de Fourier possibilita obter um espectro de alta resolução, definindo linhas espectroscópicas com larguras a meia altura de ordem de grandeza de centésimos de cm^{-1} , determinando nesta ordem de grandeza a precisão da posição de uma determinada linha.

4.1 A molécula de NaLi

Para realizar o estudo da molécula de NaLi utilizamos uma CEP *ab initio* construída por 22 pontos, como pode ser visto na Tabela 4.1, e os 44 níveis vibracionais obtidos experimentalmente por Fellows, totalizando um número de 66 dados para a entrada do ajuste direto do estado fundamental da molécula heteronuclear alcalina mais leve. O ajuste foi dividido em dois passos sendo o primeiro um ajuste utilizando como dado de entrada apenas a CEP *ab initio*. Em um segundo passo realizaremos o ajuste incluindo os níveis de energia vibracional, onde cada dado será ponderando: um peso de valor 1 é dado aos pontos

R/a_0	${ m energia}/{10^{-6}}E_h$
3,5	17804
3,75	3318
4,0	-8062
4,25	-16746
4,5	-23115
5,0	-30292
5,5	-32177
6,0	-30767
6,5	-27525
7,0	-23445
7,5	-19189
8,0	-15178
8,5	-11657
9,0	-8735
$10,\! 0$	-4634
$11,\! 0$	-2362
$12,\! 0$	-1194
13,5	-445
$15,\! 0$	-184
$17,\! 0$	-69
$20,\! 0$	-14
30,0	-1

Tabela 4.1: Pontos MCQDPT usados para o ajuste da CEP do estado eletrônico $X^1\Sigma^+$ da molécula de NaLi.

da CEP e um peso igual a 100 é dado aos níveis vibracionais. Com isto esperamos que os resultados do ajuste representem mais fielmente os resultados experimentais.

A inclusão da CEP justifica-se pelo fato dos níveis vibracionais não cobrirem todo o poço do potencial e a utilização destes apenas realizaria uma descrição pobre da região de dissociação da molécula. Mesmo não sendo a CEP uma das melhores publicadas na literatura, o fato dela conter informações sobre a região assintótica do potencial auxilia o ajuste na descrição desta região. É importante salientar que estes pontos não são os resultados encontrados na dissertação de mestrado desenvolvida por mim [57] e sim resultados prévios obtidos no desenvolvimento daquele trabalho.

Antes de partir para o ajuste em si, determinando a CEP que melhor ajusta os dados de entrada, realizamos um estudo sobre os operadores utilizados no cálculo do Algoritmo Genético para determinar qual destes melhor se adapta aos cálculos que pretendemos realizar. A primeira parte do estudo diz respeito a performance destes operadores quanto a taxa de convergência e quanto a solução encontrada.

Para isto fizemos diversos cálculos utilizando diferentes combinações dos operadores. Os cálculos foram realizados utilizando a seguinte configuração: número de cálculos por combinação = 10; número de cálculos da função objetiva = 8000; tamanho da população = 12; tamanho da competição entre indivíduos = 2; operadores de cruzamento = em um ponto e SBX, onde fizemos $\eta = 3, 0$; operadores de mutação = aleatória e sigma, onde fizemos $\sigma = 0, 1$; LSL = 1000; taxa de mutação = 0,05; taxa de cruzamento = 0,75. Utilizamos como função analítica a ser ajustada a função de Rydberg estendida [Eq. (3.8)] com nove parâmetros. Um gráfico com os melhores ajustes médios dos 10 cálculos para as diferentes combinações de operadores em função das gerações é visto na Figura 4.1(a). Podemos analisar que o melhor resultado para a taxa de convergência da função objetiva é obtida com a combinação do operador de mutação sigma e o operador de cruzamento SBX. A Tabela 4.2 mostra alguns valores correspondente a estes testes.

Figura 4.1: O melhor ajuste médio da função objetiva em função das gerações. Em a) a taxa de convergência da função objetiva com relação aos diferentes operadores de cruzamento e mutação. em b) a taxa de convergência com os operadores sigma e SBX para diferentes taxas de mutação e cruzamento. As legendas "mut" e "cx" designam a mutação e o cruzamento, respectivamente. Os números são as taxas de mutação e cruzamento.

O pior resultado foi encontrado quando combinamos o operador de mutação aleatória com o operador de cruzamento em um ponto. Um aspecto que vale a pena ressaltar

operadores de	operadores o	le mutação
cruzamento	aleatória	sigma
em um ponto	$\begin{array}{c} 488431\\ 21262 \end{array}$	$\frac{182308}{20772}$
SBX	$\frac{102616}{17329}$	$75146 \\ 17122$

^{a)} O melhor ajuste médio e o melhor ajuste dos 10 cálculos da função objetiva χ^2 são dados na primeira e segunda linhas, respectivamente.

Tabela 4.2: Testes realizados para diferentes tipos de operadores de mutação e cruzamento. Os valores da função objetiva χ^2 apresentados na tabela ^{a)} estão em cm^{-2} .

é a capacidade do operador SBX de encontrar a melhor solução. Note que sempre que o usamos a função objetiva diminui mais rapidamente. Já o operador *sigma* apresenta apenas uma pequena melhora na convergência quando trocamos o operador de mutação aleatória por ele. Com os resultados obtidos neste teste, passaremos a utilizar nos cálculos seguintes apenas os operadores sigma e SBX.

Após o teste com os diferentes operadores, realizamos uma análise das taxas de mutação e cruzamento e como elas influenciam os resultados. Fizemos cálculos semelhantes aos do teste anterior para diferentes valores destas taxas. Os resultados para a convergência da função objetiva em função das gerações pode ser visto na Figura 4.1(b). A Tabela 4.3 apresenta também alguns resultados para este teste.

Uma primeira observação é sobre a importância das taxas nos cálculos. Como podemos notar na Figura 4.1(b), a ordem de grandeza da variação entre as curvas na segunda parte do estudo é uma ordem de grandeza menor do que quando alteramos os operadores, sugerindo que a escolha dos operadores é mais importante na convergência do cálculo que as taxas de cruzamento e mutação. Uma segunda observação é com relação aos valores do melhor ajuste médio e do melhor ajuste dos cálculos. Utilizando as taxas do teste anterior com os operadores *sigma* e SBX como referência, podemos observar que todos os resultados para o melhor ajuste médio foram menores com as outras taxas. Podemos dizer o mesmo para o melhor ajuste dos cálculos, excetuando os resultados para uma taxa de mutação igual a 0,2, que foram maiores do que o valor encontrado para as taxas de referência. O melhor dos resultados foi encontrado para uma taxa de cruzamento de 1,0 e uma taxa de mutação

taxa de	taxa de mutação					
$\operatorname{cruzamento}$	0,05	$0,\!1$	0,2			
0,75	75146	36120	43861			
	17122	14360	26013			
$1,\!0$	49201	29469	37581			
	13831	13394	21635			

^{a)} O melhor ajuste médio e o melhor ajuste dos 10 cálculos da função objetiva χ^2 são dados na primeira e segunda linhas, respectivamente.

Tabela 4.3: Testes realizados para diferentes taxas dos operadores cruzamento SBX e mutação sigma . Os valores da função objetiva χ^2 são apresetados na tabela ^a) em unidades de cm^{-2} .

de 0,1. A partir de agora usaremos estas taxas como padrão em todos os cálculos que se seguirãos ajustes das CEPs proprimamente ditos.

Realizamos 4 cálculos nos quais os números dos parâmetros dos potenciais dados pela expressão (3.8) diferem. Começamos com um cálculo onde utilizamos apenas 5 parâmetros, seguidos por cálculos com 7, 9 e 11 parâmetros. Os valores destes, juntamente com o valor do desvio quadrático médio para cada um dos ajustes, encontram-se na Tabela 4.4.

Os parâmetros D_e e R_e não são impostos *a priori* nos cálculos. Uma análise para testar a qualidade do cálculo é comparar os valores destes parâmetros no ajuste com os seus valores determinados experimentalmente por Fellows [56,84]. Note que o potencial apresenta um mínimo para $\rho = 0$ o que implica em $R = R_e$, onde R_e é a posição de equilíbrio, e que o valor mínimo deste potencial é $-D_e$, sendo o simétrico da energia de dissociação, já que o valor assintótico deste potencial é zero. Os valores destas constantes espectroscópicas são apresentados na Tabela 4.5.

Como podemos observar na Tabela 4.5, os resultados que mais se aproximam do valor experimental foram os do ajuste 4, o ajuste que apresenta o maior número de parâmetros. A discrepância entre os nossos resultados e os experimentais são $1,513 \times 10^{-5}$ hartrees para a energia de dissociação e 0,0272 bohrs para a distância de equilíbrio. A energia de dissociação dada por Fellows [56] é igual a 7105,5 (1,0) cm^{-1} e convertendo a nossa melhor estimativa, feita no ajuste 4, para unidades de cm^{-1} , encontramos um valor de 7103,4 cm^{-1} , sendo a discrepância igual a 2 cm^{-1} e da mesma ordem de grandeza que a incerteza

		•					
		ajustes"					
	1	2	3	4			
		L)					
		parâmetros ^o					
D_e	$0,\!032413373$	$0,\!032272999$	$0,\!032399123$	-0,032365540			
R_e	$5,\!5003617$	$5,\!5139121$	$5,\!4982039$	$5,\!4865604$			
a_1	$1,\!0572296$	$0,\!8774290$	$1,\!0952386$	$0,\!98528874$			
a_2	$0,\!34938679$	$0,\!17800140$	$0,\!39374455$	$0,\!27844397$			
a_3	$4{,}3826194{\times}10^{-2}$	$-4,7391504 \times 10^{-3}$	$6,\!3610957{ imes}10^{-2}$	$3,\!0010578\! imes\!10^{-2}$			
a_4		$-4,5880738 \times 10^{-3}$	$2,5608268 \times 10^{-3}$	$-1,\!0316092\! imes\!10^{-3}$			
a_5		$4,2315415 \times 10^{-4}$	$-1,0756819 \times 10^{-3}$	$-1,\!8915786\! imes\!10^{-3}$			
a_6			$-1,1644694 \times 10^{-4}$	$-8,\!6376274\! imes\!10^{-5}$			
a_7			$4,\!2330714\! imes\!10^{-5}$	$1,\!3545263\! imes\!10^{-4}$			
a_8				$-1,7618077 \times 10^{-5}$			
a_9				$7,2158300 \times 10^{-7}$			
	de	svios quadráticos m	$édios^{c)}$				
ah initio	20, 702 (18,058)	44 265 (8 480)	2227(0.041)	22624(0.722)			

ab initio	$30,\!792(18,\!058)$	$44,\!265\ (8,\!489)$	$22,\!327(0,\!941)$	$22,\!634(0,\!733)$
vibracionais	$10,\!474(28,\!181)$	$^{2,265(36,631)}$	$0,\!573(47,\!221)$	$0,\!184\ (38,\!409)$

^{a)} Os ajustes 1, 2, 3, e 4 incluem 5, 7, 9, and 11 parâmetros de ajuste. na Eq. (3.8),

respectivamente.

 $^{b)}$ Valores estão em unidades atômicas.

^{c)} Valores estão em cm^{-1} ; valores em parêntesis são os desvios calculados para os dados ab*initio* apenas.

Tabela 4.4: Parâmetros e desvio quadrático médio dos quatro ajustes da função de Rydberg estendida para os dados *ab initio* e espectrocópicos obtidos para a molécula de NaLi.

	Experimental	Ajuste 1	Ajuste 2	Ajuste 3	Ajuste 4
D_e	0,032375041(456)	$0,\!032413373$	$0,\!032272999$	$0,\!032399123$	$0,\!032365540$
R_e	$5,\!4594(38)$	$5{,}5003617$	$5,\!5139121$	$5,\!4982039$	$5,\!4865604$

Tabela 4.5: Comparação entre os valores experimentais e os determinados no ajuste para a distância de equilíbrio e a energia de dissociação. Os valores são dados em unidades atômicas e os números em parêntesis são as incertezas experimentais.

experimental.

Os desvios quadráticos médios apresentados na Tabela 4.4 mostram um resultados interessante. Na primeira linha são apresentados os desvios quadráticos médios dos resultados obtidos com o primeiro passo do ajuste, onde apenas a CEP MCQDPT foi utilizada como dado de entrada. O resultado do desvio quadrático médio entre os níveis vibracionais e entre parêntesis o desvio quadrático médio entre os pontos da CEP ajustada e a de entrada. Na segunda linha apresentamos os mesmos desvios quadrático médio, porém utilizando a CEP ajustada no segundo passo, utilizando os níveis vibracionais e a CEP MCQDPT.

Notamos um melhor ajuste sendo realizado com o aumento de parâmetros na forma funcional da CEP no primeiro passo, uma melhora tanto no desvio dos níveis quanto no desvio da CEP. Porém no segundo passo, o desvio da CEP aumenta com o aumento de parâmetros. Uma melhora do ajuste dos níveis ocorre em detrimento do ajuste da CEP MCQDPT. Este fato deve-se a pouca precisão na determinação da CEP MCQDPT, porém a sua inclusão no cálculo é fundamental. Um teste feito utilizando somente os níveis vibracionais como entrada mostram uma CEP ajustada com um profundidade menor que a encontrada experimentalmente. Neste teste, devido a menor energia de dissociação apenas os 44 estados vibracionais determinados experimentalmente por Fellows foram encontrados. Os outros 4 estados não determinados experimentalmente, mas preditos por extrapolação dos resultados de Fellows [56], só foram obtidos no ajuste conjunto dos níveis vibracionais e da CEP, descrevendo muito bem o valor para energia de dissociação como vimos na Tabela 4.5.

Com os parâmetros dos ajustes fizemos alguns cálculos para comparar os níveis vibracionais calculados a partir da função analítica e os determinados experimentalmente. A Figura 4.2 apresenta as diferenças entre os níveis cálculados pelos quatro ajustes e os 44 níveis experimentais determinados em ordem decrescente do número de parâmetros do potencial. Podemos ver que com o aumento do número de parâmetros do potencial, a ordem de grandeza da diferença diminui. No ajuste 1 ela chega a ser de algumas dezenas de cm^{-1} , enquanto no ajuste 4 ela passa a ser de décimos de cm^{-1} .

Por fim, na Tabela 4.6 apresentamos os valores dos níveis vibracionais obtidos no ajuste 4, entre parêntesis encontram-se os valores determinados no ajuste dos dados *ab initio* somente, o primeiro passo do ajuste. Na terceira coluna da tabela temos os valores determinados experimentalmente por Fellows. Na última coluna a diferença entre os resultados téoricos e experimentais.

\overline{v}	E(teo)	E(exp)	$\Delta E = E(exp) - E(teo)$
0	107 046 (106 061)	107 020	0.014(1.771)
0	127,846(126,061)	127,832	-0,014(1,771)
1	381, 162 (375, 918)	381,122	-0,040(5,204)
2	631, 167 (622, 619)	631,115	-0,052(8,496)
3	877, 845 (866, 128)	877,788	-0,057(11,660)
4	1121, 170 (1106, 408)	1121,117	-0,053(14,709)
5	1361, 114(1343, 417)	1361,068	-0,046(17,651)
6	1597,644(1577,111)	1597,603	-0,041(20,492)
7	1830,720 (1807,442)	1830,678	-0,042(23,236)
8	2060, 301 (2034, 361)	2060,250	-0,051(25,889)
9	2286, 337 (2257, 813)	2286,274	-0,063(28,461)
10	2508,777(2477,741)	$2508,\!699$	-0,078(30,958)
11	2727,563(2694,084)	2727,472	-0,091(33,388)
12	2942,633(2906,777)	2942,532	-0,101(35,754)
13	3153,920(3115,753)	3153,812	-0,108(38,059)
14	$3361, 349 \ (3320, 939)$	$3361,\!239$	-0,110(40,300)
15	$3564, 844 \ (3522, 257)$	$3564,\!735$	-0,109(42,478)
16	$3764, 320 \ (3719, 627)$	$3764,\!218$	-0,102(44,591)
17	$3959,687\ (3912,961)$	$3959{,}599$	-0,088(46,638)
18	4150,848 ($4102,169$)	4150,783	-0,065(48,614)
19	4337,700(4287,151)	$4337,\!668$	-0,032(50,517)
20	$4520, 130 \ (4467, 806)$	$4520,\!143$	$0,013\ (52,337)$
21	4698,021 (4644,021)	$4698,\!088$	$0,067\ (54,067)$
22	4871,245(4815,680)	$4871,\!372$	0,127~(55,692)
23	5039,663 (4982,656)	$5039,\!856$	0,193(57,200)
24	$5203, 130\ (5144, 815)$	$5203,\!386$	$0,256\ (58,570)$
25	$5361, 486\ (5302, 013)$	$5361,\!800$	$0,314\ (59,786)$
26	$5514, 561 \ (5454, 096)$	$5514,\!924$	0,363(60,828)
27	$5662, 171 \ (5600, 895)$	$5662,\!570$	0,399~(61,675)
28	$5804, 119\ (5742, 232)$	$5804{,}537$	$0,418\ (62,305)$
29	$5940, 190\ (5877, 913)$	$5940,\!608$	0,418~(62,695)
30	$6070, 154 \ (6007, 726)$	$6070,\!551$	0,397~(62,825)
31	$6193,760\ (6131,444)$	$6194,\!117$	0,357~(62,673)
32	$6310,741\ (6248,819)$	$6311,\!039$	0,298~(62,220)
33	$6420,806\ (6359,578)$	$6421,\!035$	$0,230\ (61,457)$
34	$6523, 645 \ (6463, 428)$	$6523,\!801$	$0,156\ (60,373)$
35	$6618,931\ (6560,047)$	$6619,\!022$	$0,091\ (58,974)$
36	$6706, 321 \ (6649, 088)$	$6706,\!364$	0,043(57,276)
37	$6785, 467 \ (6730, 178)$	$6785,\!485$	$0,018\ (55,307)$
38	$6856,028\ (6802,925)$	$6856,\!042$	$0,014\ (53,117)$
39	$6917, 697 \ (6866, 933)$	$6917,\!706$	$0,008\ (50,773)$
40	$6970, 228 \ (6921, 836)$	$6970,\!192$	-0,036 (48,356)
41	$7013,454\ (6967,348)$	$7013,\!318$	-0,136(45,970)
42	$7047,278\ (7003,353)$	$7047,\!079$	-0,199(43,726)
43	7071, 578 (7029, 984)	7071,644	$0,066\ (41,660)$

^{a)} Os valores em parêntesis referem-se ao ajuste dos dados *ab initio* apenas, (*i.e.*, o primeiro passo do ajuste AG).

Tabela 4.6: Comparação entre os níveis de energia vibracional^a) (em cm^{-1}) para o NaLi obtidos do ajuste 4 (E(teo)) e os correspondentes valores experimentais (E(exp)) usados no ajuste.

Figura 4.2: Diferenças entre o ajuste direto e os níveis de energia vibracionais. (a) ajustes com 5 parâmetros, (b) ajuste com 7 parâmetros, (c) ajuste com 9 parâmetros e (d) ajuste com 11 parâmetros.

4.2 A molécula de RbCs

As linhas de transição que utilizamos para ajustar os dados partem de estados rovibracionais do estado eletrônico $A^1\Sigma^+$, cujo os valores dos números quânticos vibracionais não conhecemos para estados vibracionais e rotacionais conhecidos do estado eletrônico fundamental. Devido a esta característica do espectro, agrupamos as linhas em progressões-v''e tomamos as diferenças entre as diferentes posições das linhas dentro das progressões, determinando os quanta de energia do estado fundamental. Estes quanta de energia referentes a estados vibracionais e rotacionais bem definidos do estado fundamental são a informação básica extraída do espectro da molécula de RbCs.

Para estimar a qualidade de nossa solução, é necessário que determinemos, a partir da CEP que estamos ajustando a esta informação, os quanta de energia entre os estados rovibracionais do estado eletrônico fundamental. Com o intuito de obter uma melhor descrição da região de dissociação da molécula, implementamos na rotina que os quanta de energia são sempre tomados com relação ao nível vibracional mais alto dentro da progressão, de tal maneira que os estados vibracionais mais energéticos tenham um maior peso dentro da função objetiva. Para resolvemos a equação de Schrödinger radial (2.13), cuja curva de energia potencial efetiva sobre os núcleos é dada pela função analítica (3.9) mais o termo associado a energia cinética de rotação dos núcleos. O número quântico de rotação J é definido para cada progressão e utilizamos o método da Representação da Variável Discreta (DVR) que foi proposto por Harris [87] e generalizado por Light e colaboradores [88]. Este método é de um baixíssimo custo computacional e tem como grande vantagem, o fato da matriz energia potencial descrita nas funções de base DVR ser diagonal. Para mais detalhes ver o Apêndice B.

Figura 4.3: Desvio quadrático médio em função do número de gerações. Neste ajuste foram utilizadas 35 diferenças entre as linhas do espectro determinado por Fellows e colaboradores

Na Figura 4.3 apresentamos a evolução da função objetiva em função das gerações criadas em quatro cálculos idênticos utilizando apenas 35 quanta de energia obtidos de duas progressões-v''. Uma convergência é obtida para valores da função objetiva menores que $0,01cm^{-2}$, especialmente para o cálculo 2. Funções objetivas com este valor de desvio padrão médio entre os nossos quanta calculados e os obtidos do espectro, fornecem resultados que diferem dentro da ordem de grandeza da precisão experimental da posição das linhas espectroscópicas.

Na Tabela 4.7 apresentamos os genes dos indivíduos melhores adaptados em cada um dos quatro cálculos, isto é, as melhores soluções encontradas para o ajuste. Observemos

PARÂMETROS	CÁLCULO 1	CÁLCULO 2	CÁLCULO 3	CÁLCULO 4
$a_1 (u.a.)$	-1,9390	-1,8352	-1,8875	-1,9768
$a_2 (u.a.)$	$0,\!3854$	$0,\!3642$	$0,\!3782$	$0,\!3768$
$a_3 (u.a.)$	$8,\!2726$	$8,\!4927$	7,7708	$8,\!6984$
$a_4 (u.a.)$	$0,\!1117$	$0,\!1204$	$0,\!1316$	$0,\!1359$
$a_5 (u.a.)$	$0,\!0335$	$0,\!0312$	$0,\!0328$	0,0333
$a_6 (u.a.)$	$0,\!8820$	$0,\!8840$	$0,\!8452$	$0,\!8768$
$a_7 (u.a.)$	-0,0242	-0,0234	-0,0240	-0,0230
$a_8 \ (10^{-3} \ u.a.)$	-0,4381	$-0,\!4565$	-0,3973	-0,4203
$C_6(10^6 cm^{-1} \text{\AA}^6)$	$24,\!56$	$26,\!23$	$28,\!60$	$23,\!91$
$C_8(10^8 cm^{-1} \text{\AA}^8)$	$11,\!43$	$12,\!62$	$11,\!43$	$11,\!49$
$C_{10}(10^{10} cm^{-1} \text{\AA}^{10})$	$4,\!498$	4,004	$4,\!678$	$4,\!299$
$\sigma^2(10^{-3}cm^{-2})$	8,29	$5,\!29$	9,40	$14,\!46$

Tabela 4.7: Parâmetros para 4 cálculos com 35 diferenças entre níveis de energia.

que o menor valor encontrado para a função objetiva equivale a $5,29 \times 10^{-3} cm^{-2}$, obtendo um desvio padrão entre resultados teóricos e experimentais de $0,0707 cm^{-1}$.

Na Figura 4.4 encontramos o gráfico indicando a tendência da função objetiva em função das gerações de parâmetros para um ajuste mais audacioso e custoso que fizemos para a molécula de RbCs. Neste cálculo realizamos o ajuste de 2152 quanta associados a níveis rovibracionais variados e que cobriam toda a faixa de energia do estado eletrônico fundamental da molécula diatômica.

A mesma tendência notada para o primeiro ajuste é verificada aqui, porém os valores da função objetiva para os diferentes cálculos são maiores em duas ordens de grandeza se comparados ao ajuste anterior. Isto é conseqüência direta do aumento de quanta a serem ajustados. O cálculo que melhor ajustou, como visto na Tabela 4.8, foi o cálculo 2, apresentando uma função objetiva igual a $2,61 \times 10^{-1} cm^{-2}$, obtendo um desvio padrão entre resultados teóricos e experimentais de $0,511 cm^{-1}$.

Uma comparação entre os ajustes nos mostram características interessantes. Na Figura 4.5 mostramos as curvas de energia potencial entre os melhores cálculos de cada um dos ajustes e a diferença entre os níveis de energia RKR e os calculados com as respectivas CEP's para estados com o número quântico rotacional J = 0 com relação aos níveis vibracionais IPA. Por se tratar de uma metodologia mais precisa que o RKR, tomamos o IPA como referência também na comparação entre os níveis calculados com as CEP's.

Podemos notar que o cálculo para o segundo ajuste apresenta um acordo melhor

Figura 4.4: Desvio quadrático médio em função do número de gerações. Neste ajuste foram utilizadas 2152 diferenças entre as linhas do espectro determinado por Fellows e colaboradores

com a curva obtida de um ajuste IPA. A curva do primeiro ajuste apresenta um valor de separação interatômica maior que o encontrado para a curva IPA, além de apresentarem os pontos de retorno clássicos para os movimentos de oscilação dos núcleos maiores do que os calculados na determinação de pontenciais como IPA e RKR. O maior número de quanta e a maior faixa de variação dos números quânticos vibracionais, cobrindo praticamente toda a faixa energética do estado eletrônico fundamental, são a causa do melhor ajuste conseguido no segundo cálculo.

Para mostrar isto podemos observar na Figura 4.5, onde é mostrado a diferença entre os níveis vibracionais calculados nos dois ajuste e no RKR com relação aos níveis vibracionais IPA. No primeiro ajuste utilizamos apenas uma v''-progressão em que o maior número quântico vibracional não ultrapassava v = 40. Como resultado os níveis vibracionais calculados para esta curva apresentam um grande desvio comparado com os níveis de referência IPA para valores de números quânticos vibracionais que não estão representados na progressão utilizada no ajuste.

O mesmo já não ocorre com os níveis calculados pela CEP do segundo ajuste, onde 61 v''-progressões foram utilizadas com níveis vibracionais que variavam desde o menor

Figura 4.5: Comparação entre as CEP's teóricas e a CEP IPA (Parte superior). Discrepância entre os níveis vibracionais calculados e os níveis IPA utilizados como referência (Parte inferior).

PARÂMETROS	CÁLCULO 1	CÁLCULO 2	CÁLCULO 3	CÁLCULO 4
$a_1 (u.a.)$	-1,8817	$-1,\!9305$	-1,9792	-2,0537
$a_2 (u.a.)$	$0,\!3728$	$0,\!3965$	$0,\!3868$	$0,\!3646$
$a_3 (u.a.)$	$8,\!6787$	$8,\!4831$	8,5038	$8,\!8029$
$a_4 (u.a.)$	$0,\!1389$	$0,\!1186$	$0,\!1218$	$0,\!1139$
$a_5 (u.a.)$	$0,\!0309$	$0,\!0330$	0,0326	0,0316
$a_6 (u.a.)$	$0,\!8711$	$0,\!8822$	$0,\!8660$	0,8484
$a_7 (u.a.)$	-0,0243	-0,0263	-0,0241	-0,0225
$a_8 \ (10^{-3} \ u.a.)$	-0,4173	-0,3169	-0,4215	-0,3459
$C_6 \ (10^6 cm^{-1} \text{\AA}^6)$	$26,\!91$	$28,\!60$	$28,\!38$	$28,\!80$
$C_8 \ (10^8 cm^{-1} \text{\AA}^8)$	11,22	$11,\!35$	$11,\!89$	$12,\!80$
$C_{10} \ (10^{10} cm^{-1} \text{\AA}^{10})$	4,804	4,760	4,733	$4,\!692$
$\sigma^2 \ (10^{-1} cm^{-2})$	9,38	$2,\!61$	4,22	9,93

Tabela 4.8: Parâmetros para 4 cálculos com 2152 diferenças entre níveis de energia.

deles até os mais próximos dos estados vizinhos aos estados dissociativos. Na tabela 4.9 encontramos a faixas de v'' e o valor de J'' para cada progressão-v''

A discrepância entre os níveis vibracionais calculados pelo segundo ajuste e os valores de referência não ultrapassam $0.5 \ cm^{-1}$, exceto em regiões próximas a dissociação, onde a variação deste níveis se torna maior.

Na Figura 4.6 vemos a diferença entre as curvas de energia potencial teórica determinada no segundo ajuste e a curva IPA determinada por Fellows [76]. Notamos que na região próxima ao mínimo do potencial e na região assintótica da CEP do ajuste encontrase em bom acordo com relação a curva IPA. As maiores diferenças ocorrem na região em que a distância internuclear é pequena. Neste ponto o método IPA já não possui precisão para a determinação dos pontos de retorno clássico e pode ocorrer do potencial numérico apresentar comportamentos não físicos, como determinar um mesmo ponto de retorno para dois níveis energéticos distintos, o que implicaria uma força repulsiva de valor infinito para o potencial naquela região. Problemas como este podem ser evitados com o ajuste de um potencial analítico.

Porém, depois de realizados todos os testes, observamos um erro nas massas reduzidas encontradas no cálculo DVR para a solução da equação de Schrödinger. Um fator de conversão calculado erroneamente deixou as massas reduzidas menores do que elas realmente eram. A diferença entre as massas eram pequenas, mas como estamos tratando com cálculos de precisão refizemos os ajustes com as massas corrigidas e o melhor resultado en-

\overline{n}	J''	faixa v''	n	J''	faixa v''	n	J''	faixa v''
1	4	2-26	21	83	12-58	41	123	3-78
2	4	5 - 20	22	83	27 - 81	42	123	37-99
3	24	14-38	23	97	1-111	43	129	0-39
4	24	94 - 114	24	97	42 - 98	44	129	12-68
5	24	5 - 19	25	97	13-56	45	135	0-53
6	39	12 - 119	26	101	40 - 104	46	135	24 - 85
7	39	2-37	27	101	0-42	47	143	8-58
8	44	0-118	28	104	2-54	48	143	25 - 75
9	44	1-36	29	104	0-44	49	148	0-48
10	52	37-54	30	104	44 - 109	50	148	29-85
11	52	1 - 115	31	107	20-65	51	152	13-71
12	68	0-43	32	107	3-46	52	152	3-47
13	68	37 - 90	33	107	2-81	53	160	7-78
14	68	36 - 108	34	107	0-46	54	169	8-61
15	71	2 - 116	35	113	21 - 80	55	169	0-36
16	71	12-58	36	113	29-85	56	174	8-61
17	79	1 - 119	37	113	3-47	57	174	1 - 37
18	79	25-63	38	113	14-57	58	186	24-73
19	79	5 - 50	39	118	0-47	59	206	1-47
20	79	13-44	40	118	14-64	60	237	0-44
						61	259	0-42

Tabela 4.9: Faixas dos dados experimentais para o ajuste direto. As faixas são definidas pelo valores de J'' e faixa de v'' para cada progressão-v'' empregada

Figura 4.6: A CEP teórica e IPA (parte superior) e a diferença entre elas (parte inferior).

contrado para os parâmetros são apresentados na Tabela 4.10. A partir deste ponto, todos os resultados que apresentaremos do ajuste dizem respeito a este último.

Na Tabela 4.11 encontramos algumas constantes espectroscópicas calculadas com os resultados do ajuste e comparamos com resultados previamente publicados na literatura. Os resultados encontrados por nós está em excelente acordo com os resultados experimentais determinados por Fellows [76] e Gustavsson [86] e mais próximos destes do que os resultados teóricos encontrados por Pavolini [89] e Allouchet [90]. O resultado para o R_e foi estabelecido pela identificação do mínimo da CEP e concorda com os resultados experimentais nos centésimos de angstroms, enquanto outros resultados teóricos apresentam acordo na ordem de décimos da unidade.

-1,9504268
$0,\!39593461$
$8,\!2933763$
-0,025994820
$-0,30692011 \times 10^{-3}$
$0,\!11351898$
$0,\!033213600$
$0,\!87509116$
29,783746
$11,\!085596$
$4,\!8508464$
$0,\!56$

Tabela 4.10: Parâmetros obtidos pelo ajuste direto. a_i são dados em unidades atômicas, onde as distâncias são dadas em unidades de bohrs e a energia em unidades de hartrees.

	R_e (Å)	$D_e(cm^{-1})$	$\omega_e(cm^{-1})$	$\omega_e x_e (cm^{-1})$	$B_e(10^2 cm^{-1})$
Presente	4,410	3836,1	50.33	$0,\!1241$	$1,\!6730185$
Fellows <i>et al</i> [76]	$4,\!4272$	3836, 1	$50,\!0137$	$0,\!109529$	$1,\!660059$
Gustavsson <i>et al</i> [86]	4,418	3845	$50,\!01358$	$0,\!10983$	$1,\!660092$
Pavolini et al [89]	$4,\!385$	4183	$45,\!60$		
Allouchet <i>et al</i> [90]	$4,\!379$	3873	$51,\!35$		1,690

Tabela 4.11	Constantes	espectroscó	picas

Figura 4.7: Diferença entre os níveis vibracionais téoricos e os níveis experimentais.

A energia de dissociação foi determinada pelo ajuste da expressão

$$V(R) = D_e - \frac{C_6}{R^6} - \frac{C_8}{R^8} - \frac{C_{10}}{R^{10}},$$
(4.1)

onde o valor do potencial é tomado próximo à região assintótica e os coeficientes utilizados foram os encontrados no ajuste. Esta expressão é uma aproximação na descrição do potencial para grandes distâncias internucleares. Esta aproximação pode ser feita já que para grandes distâncias a superposição entre as nuvens eletrônicas dos dois átomos é pequena e a interação elétrica entre os átomos pode ser considerada como a interação entre dois dipolos. Este é o significado da Eq. (4.1) (para maiores detalhes ver Margenau [91]). A energia de dissociação determinada pela metodologia apresenta uma discrepância com os resultados experimentais mais recentes de Fellows de uma unidade de cm^{-1} e uma dezena de cm^{-1} com o resultado experimental mais antigo de Gustavsson. Enquanto que o melhor resultado teórico, obtido por Allouchet, apresenta uma diferença de algumas dezenas de unidade de energia.

Os valores de ω_e e $\omega_e x_e$ são determinados por um ajuste de uma função quadrática, inspirado na expansão de Dunham para os termos de valor vibracionais dado na Eq. (3.1). As duas quantidades apresentam um acordo de três algarismos significativos com os resultados experimentais, sendo a diferença entre os dois valores de ω_e nos décimos de unidade e de $\omega_e x_e$ nos milésimos de unidade. Não encontramos valores de $\omega_e x_e$ teóricos na literatura, porém os valores teóricos de ω_e não apresentam um resultado melhor do que os obtidos por nós. O mais próximo dos valores experimentais é o determinado por Allouchet, cuja diferença entre os valores é da ordem de grandeza da unidade de energia.
	$C_6(10^6 cm^{-1} \text{\AA}^6)$	$C_8(10^8 cm^{-1} \text{\AA}^8)$	$C_{10}(10^{10} cm^{-1} \text{\AA}^{10})$	χ_4
Presente	29,78	$11,\!08$	$4,\!851$	1,18
Marinescu et. al. [92]	$25,\!466$	$9,\!859$	$4,\!0932$	$1,\!07$
Patil <i>et. al.</i> [93]	$26,\!42$	$9,\!597$	$3,\!629$	$1,\!04$
Bussery et. al. [94]	$35,\!44$	$11,\!97$		
Dalgarno et. al. [95]	$25,\!88$			
$Fellows^1$ [76]	$26,\!403$	$11,\!57$	4,3	$0,\!85$
$Fellows^2$ [76]	$26,\!377$	$11,\!62$	4,3	$0,\!84$
$\mathrm{Fellows}^3$ [76]	$26,\!241$	$11,\!66$	$4,\!4$	$0,\!85$

Tabela 4.12: Comparando os coeficientes da expansão multipolar. Fellows¹ foram obtidos pelo ajuste da Equação (4.1), Fellows² adicionando-se a Equação (4.1) uma representação analítica para a energia de troca e Fellows³ adicionando a Equação (4.1) uma representação analítica para a energia de troca e funções de amortecimento.

O valor da constante espectroscópica B_e foi obtida a partir da expressão

$$B_e = \frac{\hbar^2}{2\mu R_e^2},$$

que determina o valor da constante em primeira aproximação. Utilizando-se o valor da distância internuclear de equilíbrio R_e determinada a partir da curva de energia potencial do ajuste encontramos o valor indicado na Tabela 4.11. O resultado obtido encontra-se em perfeito acordo com os determinados experimentalmente e apresenta o melhor resultado entre os valores teóricos. A discrepância entre o nosso resultado e os experimentais se confunde com a própria incerteza na determinação do nosso resultado.

Apresentamos na Tabela 4.12 os valores dos coeficientes da expansão multipolar utilizados no potencial com o intuito de melhorar a descrição do potencial na região assintótica. Como pode ser visto na Figura 4.7, a descrição da região assintótica é excelente comparado com a curva IPA. Como pode ser visto na expressão da função analítica da CEP, os coeficientes da expansão multipolar são parâmetros livres para o ajuste. Nossos resultados diferem de outros teóricos numa faixa de 10% a 15%, porém estão mais próximos dos resultados experimentais obtidos por Fellows, diferindo destes por menos de 10% do valor dos coeficientes.

Vale ressaltar que os vários valores determinados por Fellows são do ajuste da Eq. (4.1) e variações dela para o potencial IPA determinado no mesmo trabalho. Um outro resultado interessante com respeito a determinação dos coeficientes da expansão multipolar é o valor encontrado para uma estimativa experimental de $\chi_4 = C_6 C_{10}/C_8^2$ sugerida por LeRoy [96] baseado na observação dos coeficientes para estados eletrônicos de simetria Σ .

Em particular, o estudo foi feito para o estado fundamental de moléculas diatômicas de gases inertes e estado fundamental e excitados da molécula de H₂. O sugerido por Le Roy foi que o valor para χ_4 seria próximo a 4/3. Em trabalhos mais recentes que o de Le Roy e baseados em uma análise *ab initio*, Thakkar [97] e Mulder [98] sugerem que o valor para χ_4 seja maior que 1,2. O nosso resultado está muito próximo da margem estimada para este valor de χ_4 , onde os resultados teóricos são semelhantes aos que obtivemos e melhores do que os coeficientes experimentais encontrados.

Por fim, apresentamos na Tabela 4.13 os valores dos níveis vibracionais téoricos cálculados a partir da solução da equação de Schrödinger radial, onde empregamos o método DVR (ver Apêndice B) para determinação dos autovalores, e os valores experimentais determinados por Fellows. Estes resultados podem ser encontrados na referência [59]. Como pode ser visto, os valores para os níveis vibracionais diferem por menos que uma unidade de energia dos valores experimetais, exceto pelos níveis de energia mais altos, nos quais as diferenças chegam a duas unidades de cm^{-1} . Vale ressaltar que os 6 últimos níveis experimentais não foram determinados experimentalmente e sim a partir de uma extrapolação dos resultados determinados a partir do espectro. A CEP calculada neste trabalho está sendo utilizada em um trabalho de doutorado desenvolvido pelo estudante Marcílio Nunes Guimarães e o professor Frederico Vasconcellos Prudente na Universidade Federal da Bahia e os resultados estão sendo preparados para publicação em breve. Neste trabalho estão sendo desenvolvidas algumas metodologias para o estudo de espalhamento em sistemas moleculares.

6	0
~	~

\overline{v}	$G_v(teo)$	$G_v(exp)$	v	$G_v(teo)$	$G_v(exp)$	v	$G_v(teo)$	$G_v(exp)$
0	24,883	24,970	42	1913,757	1913,741	84	3284,115	3284,288
1	$74,\!588$	74,761	43	$1953,\!206$	$1953,\!187$	85	$3308,\!356$	$3308,\!468$
2	$124,\!084$	$124,\!337$	44	$1992,\!365$	$1992,\!346$	86	$3332,\!129$	$3332,\!175$
3	173,369	$173,\!695$	45	$2031,\!232$	$2031,\!215$	87	$3355,\!428$	$3355,\!402$
4	$222,\!441$	$222,\!830$	46	$2069,\!805$	$2069,\!792$	88	$3378,\!245$	$3378,\!144$
5	$271,\!300$	$271,\!742$	47	$2108,\!080$	$2108,\!074$	89	$3400,\!575$	$3400,\!393$
6	$319,\!944$	$320,\!429$	48	$2146,\!055$	$2146,\!057$	90	$3422,\!409$	$3422,\!144$
7	$368,\!371$	$368,\!890$	49	$2183,\!727$	$2183,\!740$	91	$3443,\!740$	$3443,\!389$
8	$416,\!580$	$417,\!125$	50	$2221,\!093$	$2221,\!118$	92	$3464,\!560$	$3464,\!122$
9	$464,\!569$	$465,\!132$	51	$2258,\!150$	$2258,\!191$	93	$3484,\!861$	$3484,\!335$
10	$512,\!337$	$512,\!912$	52	$2294,\!895$	$2294,\!953$	94	$3504,\!636$	$3504,\!024$
11	$559,\!883$	$560,\!462$	53	$2331,\!326$	$2331,\!402$	95	$3523,\!875$	$3523,\!180$
12	$607,\!204$	$607,\!784$	54	$2367,\!438$	$2367{,}535$	96	$3542,\!572$	$3541,\!796$
13	$654,\!300$	$654,\!876$	55	$2403,\!229$	$2403,\!349$	97	$3560,\!717$	$3559,\!867$
14	$701,\!168$	$701,\!736$	56	$2438,\!695$	$2438,\!839$	98	$3578,\!301$	$3577,\!384$
15	$747,\!807$	$748,\!364$	57	$2473,\!833$	$2474,\!003$	99	$3595,\!318$	$3594,\!341$
16	794.215	$794,\!758$	58	$2508,\!640$	$2508,\!836$	100	$3611,\!757$	$3610,\!731$
17	$840,\!390$	$840,\!917$	59	$2543,\!112$	$2543,\!335$	101	$3627,\!610$	$3626,\!546$
18	$886,\!332$	$886,\!840$	60	$2577,\!246$	$2577,\!496$	102	$3642,\!870$	$3641,\!781$
19	$932,\!038$	$932,\!524$	61	$2611,\!038$	$2611,\!315$	103	$3657,\!528$	$3656,\!429$
20	$977{,}506$	$977,\!968$	62	$2644,\!484$	2644,788	104	$3671,\!576$	$3670,\!484$
21	$1022,\!734$	$1023,\!172$	63	$2677,\!581$	$2677,\!911$	105	$3685,\!007$	$3683,\!940$
22	1067,722	$1068,\!132$	64	$2710,\!324$	$2710,\!679$	106	$3697,\!814$	$3696,\!792$
23	$1112,\!466$	$1112,\!848$	65	2742,710	$2743,\!088$	107	$3709,\!993$	$3709,\!036$
24	$1156,\!966$	$1157,\!318$	66	2774,734	$2775,\!134$	108	$3721,\!537$	$3720,\!668$
25	1201,218	$1201,\!541$	67	2806, 393	$2806,\!812$	109	$3732,\!443$	$3731,\!687$
26	$1245,\!222$	$1245,\!515$	68	$2837,\!682$	$2838,\!118$	110	3742,711	$3742,\!090$
27	1288,975	1289,238	69	2868,597	2869,047	111	3752,339	3751,877
28	1332,476	1332,708	70	2899,134	2899,595	112	3761,331	3761,049
29	1375,721	1375,925	71	2929,287	2929,756	113	3769,692	3769,606
30	1418,710	1418,886	72	2959,052	2959,526	114	3777,429	3777,554
31	1461,440	1461,589	73	2988,425	2988,900	115	3784,555	3784,896
32	1503,910	1504,033		3017,400	3017,872	116	3791,083	3791,640
33	1546,116	1546,216	75	3045,973	3046,438	117	3797,033	3797,796
34	1588,056	1588,135	76	3074,138	3074,591	118	3802,424	3803,381
35	1629,730	1629,789		3101,890	3102,327	119	3807,281	3808,412
36	1671,133	1071,175	78	3129,224	3129,639	120	3811,630	3812,914
37	1712,264	1712,291	79	3156,133	3156,522	121	3815,499	3816,907
<u>ა</u> გ	1753,121	1753,135	80	3182,013	3182,970	122	3818,915	3820,413
39 40	1793,702	1793,705	81	3208,057	3208,977	123	3821,908	3823,408
40	1834,003	1833,997	82	3234,260	3234,536	124	3824,506	3820,132
41	1874,022	1874,010	83	3259,415	3259,642	125	3826,739	3828,667

Tabela 4.13: Comparação entre os níveis vibracionais teóricos e experimentais. Os últimos seis níveis experimentais foram extrapolados por Fellows [76]. Unidades em cm^{-1}

Capítulo 5

Conclusões

Neste trabalho propusemos um procedimento de ajuste direto utilizando um Algoritmo Genético Híbrido para obtenção de curvas de energia potencial com precisão espectroscópica. O método foi aplicado as moléculas diatômicas de NaLi, a heteronuclear alcalina mais leve, e RbCs, a heteronuclear mais pesada. Este último caso representa um sistema complicado de tratar por metodologias *ab initio* devido ao enorme número de elétrons na sua configuração. Esta grande quantidade de elétrons introduz uma complexa correlação eletrônica, o que torna cálculos de energia eletrônica muito custosos do ponto de vista computacional. Especificamente, nós ajustamos uma forma funcional de CEP aos dados espectroscópicos. O ajuste realizado por este método mostrou-se preciso na busca dos melhores parâmetros que ajustam a informação do espectro e estável no que diz respeito a convergência da solução.

Esta metodologia pode ser estendida para outros potenciais analíticos, resultando em melhores ajustes do que os apresentados aqui. A utilização da função de Rydberg estendida para o ajuste do estado fundamental da molécula de NaLi, apesar da utilização de quase todos os níveis vibracionais que o estado fundamental possui, não foi capaz de descrever adequadamente a região assintótica do potencial. Para contornar este problema precisamos introduzir a CEP téorica baseada na metodologia MCQDPT. A informação da região assintótica contida na CEP MCQDPT permitiu melhorar o ajuste da função de Rydberg estendida para o estado fundamental da molécula de NaLi

Já a forma funcional utilizada para o ajuste da molécula de RbCs apresenta um comportamento mais satisfatório na descrição da região de dissociação, isto deve-se a introdução dos coeficientes da expansão multipolar do sistema molecular diatômico. A introdução destes coeficientes no potencial torna a descrição da CEP nesta região mais próxima das interações físicas relevantes para este domínio de separação interatômica. Um estudo sobre as formas analíticas que melhor se adaptam ao ajuste das curvas de energia potencial é um passo importante na obtenção de melhores resultados. Um compromisso entre a exatidão e a simplicidade das curvas deve ser levada em conta neste estudo por questões de facilidade na implementação destas curvas em pesquisas futuras.

Além disto, a aplicação do método do AG para ajustar as CEP's diretamente das posições das linhas espectrais resultante das transições entre os níveis rovibracionais do estado eletrônico excitado e os níveis correspondentes ao estado eletrônico fundamental é direta, permitindo-nos fazer um ajuste direto da informação espectral primária, sem a ajuda de outras quantidades obtidas do espectro, como os potenciais RKR ou níveis de energia rovibracionais obtidos pelo ajuste de Dunham. A importância disto vem do fato de outras informações derivadas do espectro ou de cálculos *ab initio* já contêm alguma espécie de aproximação que pode atrapalhar na determinação das curvas com a maior precisão que o método permite.

A perspectiva de ajustar ambos os estados eletrônicos analizados do sistema de bandas aqui é um tarefa desafiadora e os resultados deste trabalho nos encoraja na sua busca. Porém, a realização desta tarefa necessita de um estudo do estado eletrônico excitado para a atribuição dos níveis vibracionais do estado superior. A análise para a atribuição não é trivial, visto que o estado eletrônico superior pode ser formado por um estado ${}^{1}\Sigma^{+}$ acoplado com um estado ${}^{3}\Pi$ e cujo os efeitos desta perturbação dificulta enormemente a determinação das transições associadas a linha espectral devido a deslocamento destas posições e variações das suas intensidade.

Apêndice A

Hamiltoniano no sistema de referência do centro de massa

Dado o operador energia cinética para uma molécula diatômica com n elétrons por

$$-\frac{\hbar^2}{2M_1}\nabla_{\overline{\mathbf{R}}_1}^2 - \frac{\hbar^2}{2M_2}\nabla_{\overline{\mathbf{R}}_2}^2 - \frac{\hbar^2}{2m}\sum_{i=1}^n \nabla_{\overline{\mathbf{r}}_i}^2,\tag{A.1}$$

onde M_1 é a massa do núcleo 1, M_2 é a massa do núcleo 2 e m a massa eletrônica, e os índices $\overline{\mathbf{R}}_1$, $\overline{\mathbf{R}}_2$ e $\overline{\mathbf{r}}_i$ sob os laplacianos dizem que as derivadas são tomadas respectivamente com respeito as coordenadas espaciais do núcleo 1, do núcleo 2 e do *i*-ésimo elétron.

Podemos escrever as posicões nucleares em função de dois outros vetores linearmente independentes dados por

$$\mathbf{R}_{CM} = \frac{M_1 \overline{\mathbf{R}}_1 + M_2 \overline{\mathbf{R}}_2}{M} \in \mathbf{R}_{rel} = \overline{\mathbf{R}}_1 - \overline{\mathbf{R}}_2, \qquad (A.2)$$

e as coordenadas eletrônicas pelos vetores

$$\mathbf{r}_i = \bar{\mathbf{r}}_i - \mathbf{R}_{CM}.\tag{A.3}$$

Escrevendo a derivada primeira da coordenada \overline{X}_1 do vetor $\overline{\mathbf{R}}_1$, encontramos

$$\frac{\partial}{\partial \bar{X}_{1}} = \frac{\partial X_{CM}}{\partial \bar{X}_{1}} \frac{\partial}{\partial X_{CM}} + \frac{\partial X_{rel}}{\partial \bar{X}_{1}} \frac{\partial}{\partial X_{rel}} + \sum_{i=1}^{n} \frac{\partial x_{i}}{\partial \bar{X}_{1}} \frac{\partial}{\partial x_{i}} = \frac{M_{1}}{M} \frac{\partial}{\partial X_{CM}} + \frac{\partial}{\partial X_{rel}} - \frac{M_{1}}{M} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}$$

Tomando a derivada segunda com relação a coordenada \bar{X}_1 encontramos

$$\frac{\partial^2}{\partial \bar{X}_1^2} = \frac{M_1}{M} \left(\frac{\partial X_{CM}}{\partial \bar{X}_1} \frac{\partial^2}{\partial X_{CM}^2} + \frac{\partial X_{rel}}{\partial \bar{X}_1} \frac{\partial^2}{\partial X_{CM} \partial X_{rel}} + \sum_{i=1}^n \frac{\partial x_i}{\partial \bar{X}_1} \frac{\partial^2}{\partial X_{CM} \partial x_i} \right) + \\ + \left(\frac{\partial X_{CM}}{\partial \bar{X}_1} \frac{\partial^2}{\partial X_{CM} \partial X_{rel}} + \frac{\partial X_{rel}}{\partial \bar{X}_1} \frac{\partial^2}{\partial X_{rel}^2} + \sum_{i=1}^n \frac{\partial x_i}{\partial \bar{X}_1} \frac{\partial^2}{\partial X_{rel} \partial x_i} \right) - \\ - \frac{M_1}{M} \left(\sum_{i=1}^n \frac{\partial X_{CM}}{\partial \bar{X}_1} \frac{\partial^2}{\partial X_{CM} \partial x_i} + \sum_{i=1}^n \frac{\partial X_{rel}}{\partial \bar{X}_1} \frac{\partial^2}{\partial X_{rel} \partial x_i} + \sum_{i=1}^n \sum_{j=1}^n \frac{\partial x_j}{\partial \bar{X}_1} \frac{\partial^2}{\partial x_j \partial x_i} \right) \right)$$

Rearrumando os termos, obtemos a expressão

$$\begin{aligned} \frac{\partial^2}{\partial \bar{X}_1^2} &= \frac{M_1^2}{M^2} \frac{\partial^2}{\partial X_{CM}^2} + 2\frac{M_1}{M} \frac{\partial^2}{\partial X_{CM} \partial X_{rel}} - 2\frac{M_1^2}{M^2} \sum_{i=1}^n \frac{\partial^2}{\partial X_{CM} \partial x_i} + \frac{\partial^2}{\partial X_{rel}^2} - \\ &- 2\frac{M_1}{M} \sum_{i=1}^n \frac{\partial^2}{\partial X_{rel} \partial x_i} + \sum_{i=1}^n \sum_{j=1}^n \frac{M_1^2}{M^2} \frac{\partial^2}{\partial x_i \partial x_j} \end{aligned}$$

Fazendo o mesmo para as variáveis \bar{X}_2 e \bar{x}_i encontramos que suas derivadas segunda em função das novas variáveis são dadas por

$$\begin{aligned} \frac{\partial^2}{\partial \bar{X}_2^2} &= \frac{M_2^2}{M^2} \frac{\partial^2}{\partial X_{CM}^2} - 2\frac{M_2}{M} \frac{\partial^2}{\partial X_{CM} \partial X_{rel}} - 2\frac{M_2^2}{M^2} \sum_{i=1}^n \frac{\partial^2}{\partial X_{CM} \partial x_i} + \frac{\partial^2}{\partial X_{rel}^2} + \\ &+ 2\frac{M_2}{M} \sum_{i=1}^n \frac{\partial^2}{\partial X_{rel} \partial x_i} + \sum_{i=1}^n \sum_{j=1}^n \frac{M_2^2}{M^2} \frac{\partial^2}{\partial x_i \partial x_j} e \\ \frac{\partial^2}{\partial \bar{x}_i^2} &= \frac{\partial^2}{\partial x_i^2} \end{aligned}$$

Reescrevendo o operador hamiltoniano apartir dos resultados acima temos

$$-\frac{\hbar^2}{2M}\nabla_{CM}^2 - \frac{\hbar^2}{2\mu}\nabla_{rel}^2 + \frac{\hbar^2}{M}\vec{\nabla}_{CM} \cdot \sum_{i=1}^n \vec{\nabla}_i - \frac{\hbar^2}{2M}\sum_{i=1}^n \sum_{j=1}^n \vec{\nabla}_i \cdot \vec{\nabla}_j + V(\mathbf{R}_{rel}, \mathbf{r}_i), \qquad (A.4)$$

onde a quarta parcela do operador é conhecida como termo de "polarização de massa".

Apêndice B

Método da Representação da Variável Discreta

O método da Representação da Variável Discreta (ou o acrônimo em inglês DVR) foi originalmente proposto por Harris *et al.* [87] para calcular elementos de matriz do operador energia potencial em problemas unidimensionais, especificamente de potenciais de osciladores anarmônicos. Mais tarde, Dickinson e Certain [99] mostraram que o método proposto por Harris *et al.* é equivalente a uma quadratura gaussiana quando o conjunto de funções de base é construída por polinômios ortogonais.

A idéia principal deste método é transformar um espaço das coordenadas infinito e contínuo em um finito e discreto. Com este proprosito é útil limitar a expansão infinita de funções de estado em um conjunto de funções de base finito. O erro introduzido pelo truncamento pode ser feito pequeno por uma boa escolha de funções de base. Para calcular os elementos de matriz do operador energia potencial, Harris transformou o conjunto de vetores base primitivos $|g\rangle$ em um conjunto de vetores base $|f\rangle$ cujo a matriz energia potencial é diagonal.

Em 1985, Light e colaboradores [88] generalizaram este método para calcular os elementos de matrizes do operador hamiltoniano de problemas unidimensionais, além disso eles discutiram a extensão deste método para problemas multidimensionais.

B.1 Metodologia

O estado de um sistema é definido pelo vetor $|\psi\rangle$ que pode ser descrito como uma combinação linear de um conjuto de vetores base $|f\rangle$ do espaço de Hilbert. Para propósitos

de cálculo, nós podemos limitar este conjunto e, desta forma, introduzir um erro na descrição do estado, que pode ser pequeno.

Seja este estado definido agora por

$$|\psi
angle = \sum_{lpha=1}^N c_lpha |f_lpha
angle \; .$$

Neste representação finita, os operadores são representados por matrizes $N\times N$ e seus elementos são dados por

$$O_{\alpha\beta} = \langle f_{\alpha} | \hat{O} | f_{\beta} \rangle ,$$

onde \hat{O} pode ser qualquer operador.

No método DVR, o conjunto de funções de base $\{|f\rangle\}$ deve diagonalizar o operador energia potencial $\hat{V}(\hat{X})$, de modo que os vetores base $|f_{\alpha}\rangle$ dever ser múltiplos de um autovetor $|x_{\alpha}\rangle$ do operador coordenada \hat{X} :

$$|f_{\alpha}\rangle = a_{\alpha}|x_{\alpha}\rangle$$
.

Esta conjunto de funções de base é chamado de conjunto de funções de base DVR.

O conjunto de funções de base $|f\rangle$ é descrito por um conjunto de vetores de base primitivo DVR $|g\rangle$:

$$|f_{lpha}
angle = \sum_{i=1}^N U_{lpha i} |g_i
angle \;,$$

onde \hat{U} é uma matriz hermiteana que transforma as funções de base. Os dois conjuntos serão ortonormalizados e o operador \hat{U} é unitário.

Porque nós estamos descrevendo os estados de um sistema por um conjunto de funções de base finito, o operador posição será representado por uma matriz finita e seus autovalores agora serão finitos e discretos. Seus autovetores obedecerão a estas relações de ortogonalidade e completeza, respectivamente:

$$\langle x_{\beta} | x_{\alpha} \rangle = \frac{\langle x_{\beta} | x_{\alpha} \rangle}{a_{\alpha} a_{\beta}^{*}} = \frac{\delta_{\alpha\beta}}{w_{\alpha}}$$
 and (B.1)

$$\hat{1} = \sum_{\alpha}^{N} |f_{\alpha}\rangle \langle f_{\alpha}| = \sum_{\alpha}^{N} w_{\alpha} |x_{\alpha}\rangle \langle x_{\alpha}| , \qquad (B.2)$$

onde $w_{\alpha} = |a_{\alpha}|^2$.

As constantes positivas $\{w_{\alpha}\}$ são chamados pesos e podem ser descritos por vetores de base primitivos DVR:

$$w_{\alpha} = \left(\langle x_{\alpha} | x_{\alpha} \rangle\right)^{-1} = \sum_{i=1}^{N} \left(\langle x_{\alpha} | g_i \rangle \langle g_i | x_{\alpha} \rangle\right)^{-1} = \left(\sum_{i=1}^{N} g_i^*(x_{\alpha}) g_i(x_{\alpha})\right)^{-1}$$
(B.3)

E finalmente, para calcular os elementos da matriz hamiltoniana, nós precisamos descrobrir os elementos da matriz transformação $U_{\alpha i}$ entre os conjuntos de funções de base ortonormalizados $|g\rangle \in |f\rangle$:

$$U_{\alpha i} = \langle g_i | f_{\alpha} \rangle = \sum_{\beta}^{N} w_{\alpha} \langle g_i | x_{\beta} \rangle \langle x_{\beta} | f_{\alpha} \rangle$$
$$= \sum_{\beta}^{N} w_{\alpha} g_i(x_{\beta}) w_{\beta}^{-1/2} \delta_{\beta \alpha} = w_{\alpha}^{1/2} g_i(x_{\alpha})$$

Então os elementos das matrizes energia cinética e potencial são, respectivamente:

$$T_{\alpha\beta} = \sqrt{w_{\alpha}w_{\beta}} \sum_{k,l}^{N} g_{k}^{*}(x_{\alpha})g_{l}(x_{\beta})\langle g_{k}|\hat{T}|g_{l}\rangle \quad e \tag{B.4}$$

$$V_{\alpha\beta} = V(x_{\alpha}) \langle f_{\alpha} | f_{\beta} \rangle = V(x_{\alpha}) \delta_{\alpha\beta} .$$
(B.5)

B.2 DVR igualmente espaçada

Na prática, os autovalores do operador coordenada não são usados no cálculo dos elementos de matriz como pontos da quadratura. Em substituição são usados as raízes das N + 1 funções de base DVR primitivas. Em um trabalho [100], o uso das funções de base DVR primitivas abaixo:

$$g_i(x) = \left(\frac{2}{b-a}\right)^{1/2} \sin\left[\frac{i\pi(x-a)}{b-a}\right], \ i = 1, ..., N$$

sendo (a, b) o intervalo onde a partícula esta limitada. Estas funções de base são ortonormalizadas na região de integração e além diso cada uma satisfaz as condições que são desejadas a uma função de estado $\Psi(x)$, eles se anulam sobre os limites do intervalo.

Como os pontos usados na quadratura são as raízes da função $g_{N+1}(r)$, nós temos que eles são dados por

$$x_{\alpha}=a+\alpha \frac{b-a}{N+1}, \ \alpha=1,...,N.$$

Porque os pontos da quadratura formam uma quadratura onde os pontos são uniformemente distribuídos dentro de um intervalo, este procedimento de integração é chamado de DVR igualmente espaçada.

Usando a Eq. (B.3), os pesos são dados por

$$w_{\alpha} \equiv w = \frac{b-a}{N+1}$$

Com esta escolha, os elementos da matriz energia cinética da Eq. $({\rm B.5})$ tornam-se

$$T_{\alpha\beta} = -\frac{w}{2\mu} \sum_{k,l}^{N} g_k^*(x_\alpha) g_l(x_\beta) \frac{2}{b-a} \int_a^b \mathrm{d}x \sin\left[\frac{k\pi(x-a)}{b-a}\right] \frac{d^2}{dx^2} \sin\left[\frac{l\pi(x-a)}{b-a}\right]$$
$$= \frac{w}{2\mu} \left(\frac{k\pi}{b-a}\right)^2 \sum_k^{N} g_k^*(x_\alpha) g_k(x_\beta) ,$$

onde nós usamos o fato de

$$\frac{2}{b-a} \int_{a}^{b} \mathrm{d}x \sin\left[\frac{k\pi(x-a)}{b-a}\right] \sin\left[\frac{l\pi(x-a)}{b-a}\right] = \delta_{kl} \; .$$

Apêndice C

Tabelas

para a	$1^a v$	"-progressão	, com um J''	= 4
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
26	25	$43,\!970$	44,002	-0,032
26	24	$88,\!189$	88,253	-0,064
26	21	$222,\!324$	$222,\!471$	-0,147
26	20	$267,\!523$	$267,\!693$	-0,170
26	19	312,963	$313,\!154$	-0,191
26	18	$358,\!643$	$358,\!851$	-0,208
26	17	404,561	404,784	-0,223
26	15	$497,\!105$	$497,\!346$	-0,241
26	14	543,732	$543,\!972$	-0,240
26	13	590,589	$590,\!826$	-0,237
26	11	685,001	$685,\!213$	-0,212
26	10	732,551	732,741	-0,190
26	9	780,331	780,491	-0,160
26	8	828,336	$828,\!461$	-0,125
26	6	925,028	$925,\!055$	-0,027
26	5	973,715	$973,\!676$	0,039
26	4	$1022,\!620$	$1022,\!511$	$0,\!109$
26	3	$1071,\!749$	$1071,\!558$	0,191
26	2	$1121,\!100$	1120,816	0,284

Quantas de energia experimentais e teóricos

Quantas de energia experimentais e teóricos

para a $2^a v''$ -progressão, com um $J'' = 4$							
\mathbf{v}_{s}	\mathbf{v}_i	$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ			
20	19	45,441	45,461	-0,020			
20	18	$91,\!123$	$91,\!158$	-0,035			
20	17	$137,\!043$	$137,\!090$	-0,047			
20	16	$183,\!200$	$183,\!256$	-0,056			
20	15	$229{,}592$	$229,\!652$	-0,060			
20	13	$323,\!078$	$323,\!133$	-0,055			
20	12	$370,\!169$	370,214	-0,045			
20	11	$417,\!491$	$417,\!519$	-0,028			
20	10	$465,\!043$	$465,\!048$	-0,005			
20	7	609,066	$608,\!957$	0,109			
20	6	$657,\!527$	657,362	0,165			
20	5	706,210	705,983	0,227			

para a $3^a v''$ -progressão, com um $J'' = 24$									
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ					
36	34	$82,\!979$	83,026	-0,047					
36	33	124,866	$124,\!941$	-0,075					
36	18	783,813	$784,\!275$	-0,462					

Quantas de energia experimentais e teóricos

para a $4^a v''$ -progressão, com um $J'' = 24$							
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ			
114	107	$67,\!560$	66,433	1,127			
114	106	$79,\!677$	78,476	1,201			
114	105	$92,\!409$	$91,\!152$	1,257			
114	103	119,686	$118,\!378$	1,308			
114	102	134,222	$132,\!915$	1,307			
114	101	149,347	$148,\!058$	1,289			
114	100	165,055	163,799	1,256			
114	99	181,341	$180,\!129$	1,212			
114	98	198, 197	$197,\!040$	1,157			
114	96	233,592	$232,\!570$	1,022			
114	95	252,117	$251,\!172$	0,945			
114	94	271,188	$270,\!321$	0,867			

Quantas de energia experimentais e teóricos

para a $6^a v''$ -progressão, com um $J'' = 39$							
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ			
119	118	4,626	$4,\!473$	0,153			
119	117	9,794	9,478	0,316			
119	114	$28,\!881$	27,920	0,961			
119	110	$62,\!867$	61,127	1,740			
119	109	$72,\!939$	71,032	1,907			
119	78	$667,\!660$	$666,\!836$	0,824			
119	76	$722,\!375$	$721,\!630$	0,745			
119	55	1390,789	1390, 130	0,659			
119	53	$1462,\!516$	$1461,\!847$	0,669			
119	52	$1498,\!857$	$1498,\!186$	0,671			
119	50	$1572,\!482$	1571,809	0,673			
119	48	$1647,\!349$	$1646,\!673$	0,676			
119	46	$1723,\!416$	1722,752	0,664			
119	45	$1761,\!908$	$1761,\!240$	0,668			
119	44	$1800,\!677$	1800,024	0,653			
119	43	1839,742	1839,101	0,641			
119	41	1918,738	1918, 121	0,617			
119	39	$1998,\!862$	1998,281	0,581			
119	36	$2121,\!132$	$2120,\!612$	0,520			
119	34	$2204,\!001$	$2203,\!532$	0,469			
119	32	$2287,\!940$	$2287,\!523$	0,417			
119	30	$2372,\!931$	2372,568	0,363			
119	29	$2415,\!816$	$2415,\!480$	0,336			
119	27	$2502,\!345$	$2502,\!073$	0,272			
119	25	$2589,\!891$	2589,677	0,214			
119	23	$2678,\!438$	$2678,\!275$	0,163			
119	21	$2767,\!969$	$2767,\!854$	0,115			
119	20	$2813,\!101$	2813,005	0,096			
119	18	$2904,\!085$	2904,025	0,060			
119	16	$2996,\!031$	2995,987	0,044			
119	14	$3088,\!918$	3088,878	0,040			
119	12	3182,739	$3182,\!684$	0,055			

Quantas de energia experimentais e teóricos

para a $5^a v''$ -progressão, com um $J'' = 24$								
\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ				
19	18	$45,\!654$	45,671	-0,017				
19	17	$91,\!549$	91,578	-0,029				
19	16	$137,\!682$	137,718	-0,036				
19	15	184,049	$184,\!090$	-0,041				
19	12	324,555	$324,\!578$	-0,023				
19	11	371,852	$371,\!860$	-0,008				
19	5	660, 431	$660,\!186$	0,245				

Quantas de energia experimentais e teóricos

Quantas de energia experimentais e teóricos

para a 7 ^{<i>a</i>} v'' -progressão, com um $J'' = 39$								
\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ				
37	36	41,028	41,053	-0,025				
37	35	$82,\!328$	82,378	-0,050				
37	34	$123,\!897$	$123,\!973$	-0,076				
37	30	292,829	$293,\!009$	-0,180				
37	22	642,980	$643,\!384$	-0,404				
37	20	732,995	$733,\!446$	-0,451				
37	17	869,833	$870,\!330$	-0,497				
37	13	$1055,\!607$	$1056,\!109$	-0,502				
37	11	$1149,\!893$	$1150,\!368$	-0,475				
37	10	$1197,\!381$	$1197,\!834$	-0,453				
37	3	$1536,\!164$	$1536,\!234$	-0,070				
37	2	$1585,\!456$	1585,435	0,021				

para a	$8^a v''$	-progressão,	$\mathrm{com}\ \mathrm{um}\ J''$	= 44
Vs	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
118	114	$23,\!816$	23,011	0,805
118	113	$31,\!283$	30,258	1,025
118	112	39,359	38,134	1,225
118	110	$57,\!419$	55,806	1,613
118	106	$101,\!031$	98,925	2,106
118	102	$154,\!524$	$152,\!269$	2,255
118	100	184,875	$182,\!650$	2,225
118	99	200,919	198,739	2,180
118	97	234,738	$232,\!670$	2,068
118	96	252,492	$250,\!495$	1,997
118	94	289,675	$287,\!819$	1,856
118	91	349,460	$347,\!860$	1,600
118	89	$391,\!932$	$390,\!495$	1,437
118	87	436,414	$435,\!141$	1,273
118	86	459,391	$458,\!199$	1,192
118	84	506,797	505,750	1,047
118	82	556,084	$555,\!166$	0,918
118	78	660,118	$659,\!388$	0,730
118	76	714,748	$714,\!094$	0,654
118	74	771,064	770,469	0,595
118	72	829,020	$828,\!471$	0,549
118	70	888,580	$888,\!058$	0,522
118	68	$949,\!695$	$949,\!191$	0,504
118	66	$1012,\!341$	1011,833	0,508
118	64	$1076,\!457$	1075,949	0,508
118	62	$1142,\!023$	1141,504	0,519
118	60	$1209,\!001$	1208,468	0,533
118	58	$1277,\!360$	1276,809	0,551
118	56	$1347,\!054$	1346,497	0,557
118	55	$1382,\!403$	$1381,\!837$	0,566
118	54	$1418,\!077$	$1417,\!504$	0,573
118	53	$1454,\!075$	$1453,\!494$	0,581
118	51	$1527,\!012$	$1526,\!430$	0,582

Continuação	da	tabela	associada	a	8^a	<i>v</i> ′′-	$\operatorname{Quantas}$	de	energia	experimentais	е	teóricos

progre	ssão			
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
118	49	$1601,\!206$	$1600,\!620$	0,586
118	47	$1676,\!619$	$1676,\!039$	0,580
118	45	$1753,\!237$	$1752,\!665$	0,572
118	44	$1791,\!991$	$1791,\!422$	0,569
118	43	$1831,\!020$	$1830,\!473$	0,547
118	42	$1870,\!354$	$1869,\!814$	0,540
118	41	$1909,\!970$	$1909,\!442$	0,528
118	40	$1949,\!873$	$1949,\!356$	0,517
118	38	$2030{,}505$	$2030,\!029$	0,476
118	36	$2112,\!243$	$2111,\!812$	0,431
118	34	$2195,\!072$	$2194,\!685$	0,387
118	33	$2236,\!885$	$2236{,}526$	0,359
118	32	$2278,\!966$	$2278,\!632$	0,334
118	31	$2321,\!308$	$2321,\!002$	0,306
118	30	$2363,\!911$	$2363,\!633$	0,278
118	29	2406,775	$2406{,}523$	0,252
118	27	$2493,\!266$	$2493,\!073$	0,193
118	25	2580,774	$2580,\!636$	0,138
118	23	$2669,\!279$	$2669,\!194$	0,085
118	21	2758,778	2758,733	0,045
118	20	$2803,\!874$	$2803,\!866$	0,008
118	19	$2849{,}238$	$2849,\!238$	0,000
118	18	$2894,\!834$	$2894,\!847$	-0,013
118	17	$2940,\!664$	$2940,\!693$	-0,029
118	16	2986,735	2986,773	-0,038
118	15	$3033,\!047$	$3033,\!085$	-0,038
118	14	$3079,\!589$	$3079,\!627$	-0,038
118	13	$3126,\!366$	$3126,\!399$	-0,033
118	12	$3173,\!381$	$3173,\!398$	-0,017
118	11	$3220,\!617$	$3220,\!623$	-0,006
118	9	3315,784	3315,744	0,040
118	7	$3411,\!871$	$3411,\!748$	0,123
118	5	$3508,\!864$	$3508,\!623$	0,241
118	4	$3557,\!694$	$3557,\!384$	0,310
118	1	$3705{,}530$	$3704,\!941$	0,589
118	0	$3755,\!247$	$3754{,}547$	0,700

para a	$a 9^a v'$	"-progressão	, com um J''	= 44
V _s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
36	35	$41,\!279$	41,302	-0,023
36	34	$82,\!827$	82,874	-0,047
36	33	$124,\!642$	124,714	-0,072
36	30	$251,\!665$	$251,\!821$	-0,156
36	29	$294{,}528$	294,712	-0,184
36	25	$468,\!527$	$468,\!824$	-0,297
36	23	$557,\!033$	$557,\!383$	-0,350
36	22	$601,\!657$	$602,\!031$	-0,374
36	21	$646,\!525$	$646,\!922$	-0,397
36	20	$691,\!637$	$692,\!054$	-0,417
36	18	$782,\!588$	$783,\!036$	-0,448
36	17	$828,\!420$	828,881	-0,461
36	16	$874,\!491$	$874,\!961$	-0,470
36	14	$967,\!344$	$967,\!816$	-0,472
36	13	$1014,\!120$	1014,588	-0,468
36	11	$1108,\!373$	1108,812	-0,439
36	7	$1299,\!633$	1299,936	-0,303
36	6	$1348,\!020$	$1348,\!266$	-0,246
36	4	$1445,\!456$	$1445,\!573$	-0,117
36	3	$1494{,}511$	$1494,\!547$	-0,036
36	2	$1543,\!790$	1543,733	$0,\!057$
36	1	$1593,\!293$	$1593,\!130$	0,163

Quantas de energia experimentais e teóricos

Quantas de energia experimentais e teóricos

para a $10^a v''$ -progressão, com um $J'' = 52$				
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
54	53	$35,\!939$	35,935	0,004
54	52	$72,\!200$	72,190	$0,\!010$
54	51	108,774	108,763	$0,\!011$
54	48	220,365	$220,\!355$	$0,\!010$
54	47	258,182	$258,\!166$	0,016
54	44	373, 397	$373,\!401$	-0,004
54	38	$611,\!653$	611,729	-0,076
54	37	652,338	$652,\!439$	-0,101

para a $11^a v''$ -progressão, com um $J'' = 52$				
\mathbf{v}_{s}	\mathbf{v}_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
115	114	6,651	6,431	0,220
115	111	$30,\!352$	29,485	0,867
115	110	$39{,}512$	38,458	$1,\!054$
115	103	121,209	119,473	1,736
115	102	135,342	$133,\!598$	1,744
115	99	181,323	$179,\!644$	$1,\!679$
115	97	214,895	$213,\!312$	$1,\!583$
115	94	269,459	$268,\!092$	$1,\!367$
115	89	371,161	370,212	$0,\!949$
115	87	415,454	$414,\!654$	$0,\!800$
115	85	$461,\!695$	$461,\!056$	$0,\!639$
115	83	509,859	509,359	$0,\!500$
115	81	559,903	$559{,}510$	0,393
115	76	692,793	$692,\!628$	$0,\!165$
115	72	806,762	806,699	0,063
115	61	$1152,\!342$	1152,298	0,044
115	59	$1219,\!892$	1219,832	0,060
115	57	$1288,\!806$	1288,733	$0,\!073$
115	55	$1359,\!056$	1358,970	0,086
115	54	$1394,\!685$	1394,581	$0,\!104$
115	53	$1430,\!616$	1430,516	$0,\!100$
115	51	$1503,\!452$	1503,344	$0,\!108$
115	50	$1540,\!334$	1540,231	$0,\!103$
115	48	$1615,\!049$	1614,936	$0,\!113$
115	46	1690,973	1690,860	$0,\!113$
115	44	$1768,\!077$	1767,982	0,095
115	42	$1846,\!350$	1846,278	0,072
115	41	$1885,\!926$	1885,860	0,066
115	40	1925,778	1925,728	$0,\!050$
115	39	$1965,\!915$	1965,879	0,036
115	37	$2047,\!017$	2047,020	-0,003
115	35	$2129,\!219$	2129,264	-0,045
115	33	$2212,\!499$	2212,592	-0,093
115	31	$2296,\!837$	2296,985	-0,148
115	28	$2425,\!303$	$2425,\!534$	-0,231
115	26	$2512,\!218$	2512,515	-0,297
115	24	$2600,\!164$	2600,502	-0,338
115	23	$2644,\!503$	2644,868	-0,365
115	22	$2689,\!089$	2689,479	-0,390
115	21	$2733,\!926$	2734,334	-0,408

Continuação da tabela associada a $11^a\ v^{\prime\prime}\text{-}$

progressão					
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ	
115	20	2779,001	$2779,\!431$	-0,430	
115	19	$2824,\!323$	2824,767	-0,444	
115	18	2869,976	$2870,\!342$	-0,366	
115	17	$2915,\!679$	$2916,\!153$	-0,474	
115	15	3007,993	$3008,\!478$	-0,485	
115	13	$3101,\!248$	3101,726	-0,478	
115	11	$3195,\!436$	$3195,\!886$	-0,450	
115	9	$3290{,}537$	$3290,\!943$	-0,406	
115	7	3386,563	$3386,\!886$	-0,323	
115	5	$3483,\!503$	3483,702	-0,199	
115	4	$3532,\!297$	$3532,\!433$	-0,136	
115	2	$3630,\!570$	$3630,\!536$	0,034	
115	1	$3680,\!040$	$3679,\!904$	0,136	

Quantas de energia experimentais e teóricos

para a $12^a v''$ -progressão, com um $J'' = 68$				
\mathbf{v}_{s}	v_i	$\operatorname{Quanta}_{exp}$	$Quanta_{teo}$	Δ
43	42	$39,\!160$	39,175	-0,015
43	41	$78,\!615$	78,641	-0,026
43	40	$118,\!354$	$118,\!393$	-0,039
43	39	$158,\!379$	$158,\!430$	-0,051
43	38	$198,\!675$	198,750	-0,075
43	37	$239,\!263$	$239,\!348$	-0,085
43	36	$280,\!120$	$280,\!224$	-0,104
43	34	$362,\!652$	362,798	-0,146
43	33	$404,\!324$	$404,\!491$	-0,167
43	32	$446,\!265$	$446,\!452$	-0,187
43	31	488,474	$488,\!678$	-0,204
43	29	$573,\!652$	$573,\!918$	-0,266
43	28	$616,\!633$	$616,\!928$	-0,295
43	25	$747,\!119$	747,488	-0,369
43	24	$791,\!121$	$791,\!513$	-0,392
43	22	$879,\!868$	880,305	-0,437
43	21	$924,\!612$	$925,\!070$	-0,458
43	19	$1014,\!821$	1015, 325	-0,504
43	18	$1060,\!302$	1060,813	-0,511
43	15	$1198,\!154$	1198,693	-0,539
43	12	$1338,\!146$	1338,662	-0,516
43	7	$1576,\!100$	1576,465	-0,365
43	4	$1721,\!607$	1721,788	-0,181
43	1	$1869{,}138$	1869,044	$0,\!094$
43	0	1918,750	1918,552	0,198

Quantas de ener	rgia exp	periment	ais e	teóricos
-----------------	----------	----------	-------	----------

Quantas de energia experimentais e teóricos

para a 13 ^{<i>a</i>} v'' -progressão, com um $J'' = 68$				
\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
90	89	21,114	21,200	-0,086
90	88	42,748	42,912	-0,164
90	87	64,885	65,127	-0,242
90	86	87,518	87,838	-0,320
90	85	$110,\!644$	$111,\!038$	-0,394
90	84	134,254	134,717	-0,463
90	83	158,341	$158,\!871$	-0,530
90	82	182,899	$183,\!491$	-0,592
90	79	259,331	260,083	-0,752
90	78	285,707	$286{,}503$	-0,796
90	76	339,768	$340,\!640$	-0,872
90	75	367,443	$368,\!345$	-0,902
90	74	395,530	396,468	-0,938
90	72	452,970	$453,\!941$	-0,971
90	70	512,014	$513,\!018$	-1,004
90	67	603,536	$604,\!553$	-1,017
90	66	634,807	$635,\!824$	-1,017
90	64	698,468	699,479	-1,011
90	61	$796,\!682$	797,679	-0,997
90	59	863,936	864,910	-0,974
90	57	932,557	$933,\!515$	-0,958
90	56	967, 376	$968,\!324$	-0,948
90	55	$1002,\!528$	$1003,\!466$	-0,938
90	54	1038,006	$1038,\!937$	-0,931
90	52	1109,937	$1110,\!854$	-0,917
90	51	$1146,\!383$	$1147,\!293$	-0,910
90	50	1183,141	1184,048	-0,907
90	45	$1371,\!550$	$1372,\!455$	-0,905
90	42	$1488,\!176$	1489,101	-0,925
90	40	$1567,\!371$	$1568,\!319$	-0,948
90	39	$1607,\!393$	$1608,\!356$	-0,963
90	37	1688,280	1689,274	-0,994

para a	$14^a v$	"-progressão	b, com um J'	' = 68
v_s	\mathbf{v}_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
108	107	$10,\!636$	10,493	$0,\!143$
108	106	$21,\!906$	$21,\!648$	$0,\!258$
108	104	$46,\!342$	45,926	0,416
108	103	$59,\!495$	59,036	$0,\!459$
108	102	$73,\!265$	72,782	$0,\!483$
108	100	$102,\!624$	$102,\!150$	$0,\!474$
108	99	118,205	117,754	$0,\!451$
108	98	134,371	$133,\!960$	0,411
108	96	168,437	$168,\!136$	$0,\!301$
108	95	186,323	186,087	$0,\!236$
108	93	223,758	$223,\!673$	0,085
108	91	263,363	$263,\!441$	-0,078
108	89	305,080	305,322	-0,242
108	88	326,711	$327,\!034$	-0,323
108	87	348,846	$349,\!249$	-0,403
108	86	371,482	$371,\!960$	-0,478
108	84	418,217	$418,\!839$	-0,622
108	83	442,305	442,992	-0,687
108	82	466,863	467,613	-0,750
108	81	491,884	$492,\!692$	-0,808
108	79	$543,\!288$	$544,\!205$	-0,917
108	76	623,732	624,762	-1,030
108	74	679,504	$680,\!589$	-1,085
108	73	708,012	$709,\!123$	-1,111
108	71	766,257	767,403	-1,146
108	70	795,983	$797,\!139$	-1,156
108	67	887,501	888,674	-1,173
108	65	950,420	$951,\!589$	-1,169
108	64	982,431	$983,\!601$	-1,170
108	63	$1014,\!812$	1015,976	-1,164
108	62	$1047,\!553$	1048,711	-1,158
108	60	$1114,\!100$	1115,242	-1,142
108	59	$1147,\!899$	1149,031	-1,132
108	57	$1216,\!522$	$1217,\!637$	-1,115
108	56	$1251,\!340$	1252,446	-1,106
108	55	$1286,\!491$	1287,588	-1,097
108	54	$1321,\!971$	$1323,\!059$	-1,088
108	52	$1393,\!903$	1394,975	-1,072
108	51	$1430,\!346$	1431,414	-1,068
108	50	$1467,\!106$	1468, 169	-1,063

Continuação da tabela associada a $14^a \ v^{\prime\prime}\text{-}$

progre	progressão					
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ		
108	49	$1504,\!176$	$1505,\!237$	-1,061		
108	48	$1541,\!557$	$1542,\!615$	-1,058		
108	46	$1617,\!228$	$1618,\!287$	-1,059		
108	44	$1694,\!096$	$1695,\!164$	-1,068		
108	43	$1732,\!972$	$1734,\!047$	-1,075		
108	42	$1772,\!142$	$1773,\!222$	-1,080		
108	41	$1811,\!593$	$1812,\!688$	-1,095		
108	39	$1891,\!358$	$1892,\!477$	$-1,\!119$		
108	38	$1931,\!659$	$1932,\!797$	$-1,\!138$		
108	36	$2013,\!100$	$2014,\!271$	$-1,\!171$		

Quantas de energia experimentais e teóricos

para a	para a $15^a v''$ -progressão, com um $J'' = 71$				
V_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ	
116	115	5,393	$5,\!188$	0,205	
116	114	$11,\!430$	10,988	0,442	
116	112	$25,\!406$	24,490	0,916	
116	111	$33,\!364$	32,218	1,146	
116	109	$51,\!219$	49,668	1,551	
116	105	$94,\!652$	92,574	2,078	
116	102	$133,\!855$	$131,\!636$	2,219	
116	99	$178,\!564$	$176,\!373$	2,191	
116	98	$194,\!656$	$192,\!504$	$2,\!152$	
116	96	$228,\!587$	$226{,}537$	2,050	
116	93	283,715	$281,\!876$	1,839	
116	90	343,732	$342,\!140$	1,592	
116	88	386,363	$384,\!937$	1,426	
116	85	$454,\!099$	$452,\!899$	1,200	
116	83	$501,\!692$	$500,\!630$	1,062	
116	81	$551,\!186$	$550,\!231$	0,955	
116	77	$655,\!592$	$654,\!833$	0,759	
116	75	710,424	709,734	0,690	
116	73	$766,\!952$	766,305	0,647	
116	71	$825,\!116$	$824{,}505$	0,611	
116	65	$1009,\!041$	1008,465	0,576	
116	63	$1073,\!369$	1072,781	0,588	
116	62	$1106,\!071$	1105,481	0,590	
116	61	$1139,\!139$	$1138,\!537$	0,602	
116	59	$1206,\!325$	1205,701	0,624	
116	57	$1274,\!885$	$1274,\!243$	0,642	
116	55	1344,789	1344, 131	0,658	
116	53	$1416,\!013$	$1415,\!339$	$0,\!674$	
116	51	$1488,\!527$	$1487,\!838$	0,689	
116	49	$1562,\!302$	$1561,\!604$	0,698	
116	48	$1599,\!652$	1598,954	0,698	
116	47	$1637,\!310$	1636, 611	0,699	
116	46	$1675,\!273$	1674,572	0,701	
116	45	$1713,\!521$	1712,835	0,686	
116	42	$1830,\!080$	1829,402	0,678	
116	40	$1909,\!225$	1908,569	0,656	
116	38	$1989,\!505$	1988,876	0,629	
116	37	$2030,\!063$	2029,451	0,612	
116	36	$2070,\!897$	2070,303	0,594	
116	35	$2112,\!004$	2111,431	0,573	
116	34	$2153,\!383$	$2152,\!830$	0,553	

	- 2		-	
progre	ssão			
Vs	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
116	33	$2195,\!031$	2194,501	0,530
116	31	$2279{,}123$	$2278,\!643$	$0,\!480$
116	29	$2364,\!272$	2363,839	$0,\!433$
116	27	$2450,\!456$	2450,072	0,384
116	25	$2537,\!654$	2537, 325	0,329
116	24	$2581,\!630$	2581,329	$0,\!301$
116	23	$2625,\!864$	2625,581	0,283
116	21	$2715,\!067$	2714,826	$0,\!241$
116	19	$2805,\!251$	2805,043	$0,\!208$
116	17	$2896,\!392$	2896,218	$0,\!174$
116	13	$3081,\!560$	3081,384	$0,\!176$
116	11	$3175,\!559$	3175,347	0,212
116	7	3366, 299	3365,969	$0,\!330$
116	5	$3463,\!046$	$3462,\!602$	$0,\!444$
116	4	3511,755	3511,244	0,511
116	2	$3609,\!851$	3609,171	$0,\!680$

Continuação da tabela associada a $15^a v''$ - Quantas de energia experimentais e teóricos

_	para a	16^{a}	v''-progressã	o, com um J	'' = 71
	\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
_	58	57	$34,\!450$	34,441	0,009
	58	56	$69,\!238$	69,218	$0,\!020$
	58	55	$104,\!358$	$104,\!329$	0,029
	58	54	$139,\!808$	139,770	0,038
	58	53	$175,\!581$	$175{,}537$	$0,\!044$
	58	52	$211,\!680$	$211,\!627$	$0,\!053$
	58	50	$284,\!826$	284,763	0,063
	58	49	$321,\!869$	$321,\!802$	0,067
	58	47	396,879	$396,\!809$	$0,\!070$
	58	45	$473,\!099$	$473,\!033$	0,066
	58	44	$511,\!658$	$511,\!594$	0,064
	58	43	$550,\!506$	$550,\!450$	$0,\!056$
	58	42	$589,\!648$	$589,\!600$	0,048
	58	41	629,077	$629,\!040$	$0,\!037$
	58	39	708,792	708,780	0,012
	58	37	$789,\!630$	$789,\!649$	-0,019
=	58	36	830,464	$830{,}502$	-0,038
	58	35	$871,\!571$	$871,\!629$	-0,058
	58	34	$912,\!950$	$913,\!029$	-0,079
	58	32	$996,\!514$	$996,\!637$	-0,123
	58	31	$1038,\!694$	1038,841	-0,147
	58	30	$1081,\!136$	1081,308	-0,172
	58	29	$1123,\!840$	$1124,\!037$	-0,197
	58	28	$1166,\!802$	1167,025	-0,223
	58	27	$1210,\!021$	$1210,\!270$	-0,249
	58	25	$1297,\!224$	$1297,\!523$	-0,299
	58	23	$1385,\!433$	1385,780	-0,347
	58	21	$1474,\!634$	1475,024	-0,390
	58	20	$1519,\!605$	1520,012	-0,407
	58	19	$1564,\!817$	$1565,\!241$	-0,424
	58	18	$1610,\!273$	1610,710	-0,437
	58	17	$1655,\!969$	1656,416	-0,447
	58	16	$1701,\!903$	1702,358	-0,455
	58	15	$1748,\!076$	$1748,\!534$	-0,458
	58	14	$1794,\!487$	$1794,\!943$	-0,456
	58	12	1888,010	1888,450	-0,440

Quantas	de	energia	experimentais	е	teóricos
		,,	~	- 11	

Continuação	da	tabela	associada	\mathbf{a}	17^a	v''-

para a $17^a v''$ -progressão, com um $J'' = 79$				
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
113	111	$14,\!645$	$14,\!161$	$0,\!484$
113	110	$22,\!957$	22,244	0,713
113	109	$31,\!912$	31,002	$0,\!910$
113	105	$74,\!283$	72,791	$1,\!492$
113	98	$172,\!692$	$171,\!066$	$1,\!626$
113	93	260,770	259,448	$1,\!322$
113	91	299,889	298,732	$1,\!157$
113	88	362,561	$361,\!642$	$0,\!919$
113	86	406,906	$406,\!140$	0,766
113	83	477,124	$476,\!567$	$0,\!557$
113	77	630,203	$629,\!951$	$0,\!252$
113	75	684,785	$684,\!599$	$0,\!186$
113	73	741,060	740,929	$0,\!131$
113	69	$858,\!534$	$858,\!454$	0,080
113	67	$919,\!634$	919,569	0,065
113	65	982,275	982,201	$0,\!074$
113	63	$1046,\!393$	$1046,\!313$	$0,\!080$
113	61	$1111,\!976$	$1111,\!873$	$0,\!103$
113	59	$1178,\!958$	1178,846	$0,\!112$
113	57	$1247,\!341$	$1247,\!202$	$0,\!139$
113	56	$1282,\!039$	$1281,\!889$	$0,\!150$
113	54	$1352,\!433$	$1352,\!263$	$0,\!170$
113	52	$1424,\!135$	$1423,\!948$	$0,\!187$
113	48	$1571,\!353$	$1571,\!144$	$0,\!209$
113	46	$1646,\!817$	$1646,\!604$	$0,\!213$
113	45	$1684,\!995$	1684,789	$0,\!206$
113	44	$1723,\!474$	$1723,\!274$	$0,\!200$
113	43	$1762,\!255$	$1762,\!056$	$0,\!199$
113	41	$1840,\!686$	1840,498	$0,\!188$
113	39	$1920,\!257$	$1920,\!094$	$0,\!163$
113	37	2000,960	2000,824	$0,\!136$
113	36	$2041,\!726$	$2041,\!607$	$0,\!119$
113	34	$2124,\!080$	2124,000	0,080
113	33	$2165,\!666$	$2165,\!604$	0,062
113	32	$2207{,}516$	2207,477	0,039
113	30	$2292,\!013$	2292,021	-0,008

progressão					
\mathbf{v}_s	v_i	$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ	
113	28	$2377,\!556$	$2377,\!613$	-0,057	
113	26	$2464,\!129$	$2464,\!236$	-0,107	
113	25	2507,798	$2507,\!930$	-0,132	
113	24	2551,720	$2551,\!875$	-0,155	
113	23	$2595,\!892$	2596,069	-0,177	
113	22	2640, 311	$2640,\!512$	-0,201	
113	21	2684,983	$2685,\!200$	-0,217	
113	19	$2775,\!053$	$2775,\!305$	-0,252	
113	15	2958,101	$2958,\!384$	-0,283	
113	13	$3051,\!051$	$3051,\!328$	-0,277	
113	11	3144,943	$3145,\!190$	-0,247	
113	9	3239,755	3239,958	-0,203	
113	7	3335,495	$3335,\!618$	-0,123	
113	5	$3432,\!145$	$3432,\!157$	-0,012	
113	4	3480,807	3480,753	0,054	
113	2	3578,811	$3578,\!589$	0,222	
113	1	$3628,\!145$	3627,827	0,318	

Quantas de chergia experimentais e teorieo.						
para a	para a $18^a v''$ -progressão, com um $J'' = 79$					
\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ		
63	61	$65,\!574$	65,559	0,015		
63	60	98,895	98,871	0,024		
63	59	132,566	$132,\!532$	0,034		
63	58	166,583	$166{,}539$	0,044		
63	56	$235,\!641$	$235,\!575$	0,066		
63	55	$270,\!673$	$270{,}597$	0,076		
63	54	306,035	$305,\!950$	0,085		
63	53	341,725	$341,\!630$	$0,\!095$		
63	52	377,738	$377,\!635$	$0,\!103$		
63	51	414,070	$413,\!960$	$0,\!110$		
63	49	$487,\!682$	$487,\!561$	$0,\!121$		
63	47	562,534	$562,\!408$	$0,\!126$		
63	46	600,417	$600,\!291$	$0,\!126$		
63	45	638,601	$638,\!476$	$0,\!125$		
63	44	677,084	$676,\!961$	$0,\!123$		
63	43	715,859	715,742	$0,\!117$		
63	42	754,929	$754,\!818$	$0,\!111$		
63	40	833,932	$833,\!839$	0,093		
63	38	914,072	$914,\!005$	0,067		
63	36	995,328	$995,\!294$	0,034		
63	33	$1119,\!267$	$1119,\!291$	-0,024		
63	31	$1203,\!235$	$1203,\!303$	-0,068		
63	29	$1288,\!258$	$1288,\!374$	-0,116		
63	27	$1374,\!318$	$1374,\!484$	-0,166		
63	25	$1461,\!402$	$1461,\!616$	-0,214		

Quantas de energia experimentais e teóricos

Quantas de energia experimentais e teóricos

para a	19^a	v''-progressã	o, com um J	'' = 79
V_s	v_i	$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ
50	49	36,962	36,958	0,004
50	48	74,234	$74,\!227$	0,007
50	47	111,814	111,804	0,010
50	46	$149,\!697$	$149,\!687$	0,010
50	45	187,881	187,872	0,009
50	44	226,362	226,357	0,005
50	43	$265,\!139$	$265,\!139$	0,000
50	42	$304,\!208$	304,214	-0,006
50	41	$343,\!566$	$343,\!581$	-0,015
50	39	$423,\!141$	$423,\!177$	-0,036
50	38	463,352	463,401	-0,049
50	37	503,841	503,907	-0,066
50	36	544,608	$544,\!690$	-0,082
50	34	626,963	627,083	-0,120
50	33	$668,\!547$	668,687	-0,140
50	31	$752,\!515$	752,700	-0,185
50	30	794,896	795,104	-0,208
50	29	837,537	837,770	-0,233
50	28	880,438	880,696	-0,258
50	27	$923,\!598$	923,880	-0,282
50	26	967,014	967, 319	-0,305
50	25	1010,682	$1011,\!013$	-0,331
50	24	$1054,\!603$	$1054,\!958$	-0,355
50	23	1098,775	$1099,\!152$	-0,377
50	22	1143,196	$1143,\!595$	-0,399
50	20	1232,779	$1233,\!214$	-0,435
50	19	1277,939	$1278,\!388$	-0,449
50	18	1323,332	$1323,\!802$	-0,470
50	15	1460,984	$1461,\!467$	-0,483
50	13	1553,937	$1554,\!411$	-0,474
50	12	1600,764	$1601,\!228$	-0,464
50	9	1742,646	$1743,\!041$	-0,395
50	8	1790,405	1790,760	-0,355
50	7	1838,384	1838,701	-0,317
50	5	1935,033	$1935,\!240$	-0,207

Quantas de energia experimentais e teóricos

Quantas de energia experimentais e teóricos

para a	para a 20 ^{<i>a</i>} v'' -progressão, com um $J'' = 79$				
\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ	
44	43	38,777	38,781	-0,004	
44	42	$77,\!846$	77,857	-0,011	
44	41	117,205	$117,\!223$	-0,018	
44	40	156,849	$156,\!879$	-0,030	
44	39	196,779	$196,\!820$	-0,041	
44	38	236,990	$237,\!044$	-0,054	
44	37	277,480	$277,\!549$	-0,069	
44	36	$318,\!247$	$318,\!333$	-0,086	
44	35	359,287	$359,\!393$	-0,106	
44	34	400,608	400,726	-0,118	
44	33	442,182	$442,\!330$	-0,148	
44	32	484,036	$484,\!203$	-0,167	
44	29	611,174	$611,\!413$	-0,239	
44	28	654,076	$654,\!339$	-0,263	
44	26	740,652	740,962	-0,310	
44	25	784,320	$784,\!656$	-0,336	
44	24	$828,\!243$	$828,\!601$	-0,358	
44	22	916,834	$917,\!237$	-0,403	
44	21	961,501	$961,\!925$	-0,424	
44	19	$1051,\!576$	$1052,\!031$	-0,455	
44	18	$1096,\!975$	$1097,\!445$	-0,470	
44	16	1188,499	$1188,\!986$	-0,487	
44	15	$1234,\!622$	$1235,\!110$	-0,488	
44	13	1327,574	1328,054	-0,480	

para a $21^a v''$ -progressão, com um $J'' = 83$				
Vs	\mathbf{v}_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
58	57	34,308	$34,\!299$	0,009
58	54	$139,\!256$	$139,\!216$	0,040
58	53	$174,\!904$	$174,\!849$	0,055
58	51	$247,\!157$	$247,\!088$	0,069
58	49	$320,\!680$	$320,\!600$	0,080
58	47	$395,\!455$	$395,\!360$	0,095
58	42	$587,\!638$	$587,\!563$	0,075
58	40	666, 565	$666,\!506$	0,059
58	38	$746{,}630$	$746,\!595$	0,035
58	37	787,086	787,063	0,023
58	35	868,818	$868,\!832$	-0,014
58	33	$951,\!648$	$951,\!698$	-0,050
58	31	$1035,\!545$	$1035{,}640$	-0,095
58	30	1077,891	$1078,\!010$	-0,119
58	29	1120,501	$1120,\!642$	-0,141
58	28	1163,370	$1163,\!535$	-0,165
58	26	1249,878	$1250,\!093$	-0,215
58	22	$1425,\!940$	$1426,\!241$	-0,301
58	20	$1515,\!457$	$1515,\!800$	-0,343
58	18	1605,961	$1606,\!328$	-0,367
58	14	1789,850	$1790,\!234$	-0,384
58	12	1883,216	1883,584	-0,368

Quantas de energia experimentais e teóricos

Quantas de energia experimentais e teóricos

para a	a 22^a	v"-progressã	o, com um J	'' = 83
Vs	v_i	\mathbf{Quanta}_{exp}	$Quanta_{teo}$	Δ
81	79	$50,\!893$	50,997	-0,104
81	78	$77,\!020$	77,168	-0,148
81	77	103,587	103,777	-0,190
81	76	130,597	$130,\!820$	-0,223
81	75	158,033	$158,\!289$	-0,256
81	73	214,181	214,487	-0,306
81	72	242,878	243,204	-0,326
81	71	$271,\!986$	$272,\!326$	-0,340
81	70	301,496	$301,\!848$	-0,352
81	69	331,404	331,764	-0,360
81	67	392, 392	392,761	-0,369
81	66	423,462	423,832	-0,370
81	65	454,910	$455,\!278$	-0,368
81	64	486,734	487,096	-0,362
81	63	518,921	$519,\!281$	-0,360
81	62	551,478	$551,\!828$	-0,350
81	60	$617,\!662$	$617,\!993$	-0,331
81	58	685,250	$685,\!559$	-0,309
81	57	719,560	719,858	-0,298
81	56	754,209	754,497	-0,288
81	55	789,194	789,470	-0,276
81	54	824,509	824,775	-0,266
81	53	860,153	860,409	-0,256
81	52	896, 117	896, 367	-0,250
81	51	932,408	$932,\!647$	-0,239
81	49	$1005,\!932$	$1006,\!159$	-0,227
81	47	$1080,\!699$	1080,919	-0,220
81	45	$1156,\!682$	$1156,\!903$	-0,221
81	44	$1195,\!124$	$1195,\!346$	-0,222
81	43	$1233,\!861$	$1234,\!087$	-0,226
81	42	$1272,\!891$	$1273,\!122$	-0,231
81	41	$1312,\!209$	$1312,\!449$	-0,240
81	40	$1351,\!817$	$1352,\!065$	-0,248
81	39	$1391,\!707$	1391,968	-0,261
81	38	$1431,\!881$	$1432,\!154$	-0,273
81	36	$1513,\!066$	$1513,\!368$	-0,302
81	35	$1554,\!071$	$1554,\!391$	-0,320
81	34	$1595,\!349$	$1595,\!688$	-0,339
81	33	$1636,\!898$	$1637,\!257$	-0,359
81	32	1678,713	$1679,\!095$	-0,382
81	31	1720,796	$1721,\!200$	-0,404
81	29	$1805,\!752$	1806,201	-0,449
81	27	$1891,\!748$	1892,245	-0,497

para a $23^a v''$ -progressão, com um $J'' = 97$				
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
111	110	7,487	$7,\!228$	0,259
111	109	$15,\!656$	$15,\!157$	0,499
111	106	$44,\!222$	43,154	1,068
111	99	$133,\!854$	$132,\!325$	1,529
111	98	149,168	$147,\!658$	1,510
111	96	$181,\!608$	$180,\!164$	1,444
111	93	$234,\!628$	$233,\!370$	1,258
111	90	292,706	$291,\!668$	1,038
111	88	334,109	$333,\!235$	0,874
111	87	355,600	$354,\!802$	0,798
111	78	571,206	$570,\!963$	0,243
111	77	597,494	$597,\!297$	0,197
111	74	679,017	$678,\!905$	0,112
111	70	$793,\!615$	$793,\!581$	0,034
111	68	853, 355	$853,\!333$	0,022
111	62	$1041,\!819$	1041,775	0,044
111	60	$1107,\!600$	$1107,\!529$	0,071
111	58	1174,793	$1174,\!697$	0,096
111	56	$1243,\!366$	$1243,\!249$	0,117
111	55	$1278,\!166$	1278,034	0,132
111	54	$1313,\!298$	$1313,\!153$	0,145
111	53	1348,766	$1348,\!603$	0,163
111	52	$1384{,}547$	1384, 382	0,165
111	51	$1420,\!662$	1420,484	0,178
111	49	$1493,\!854$	$1493,\!648$	0,206
111	47	$1568,\!278$	1568,069	0,209
111	45	$1643,\!940$	1643,724	0,216
111	43	$1720,\!802$	1720,588	0,214
111	42	$1759,\!673$	1759,467	0,206
111	41	$1798,\!844$	$1798,\!639$	0,205
111	40	$1838,\!304$	1838,103	0,201
111	39	$1878,\!053$	1877,855	0,198
111	38	$1918,\!074$	$1917,\!892$	0,182
111	36	$1998,\!975$	1998,815	0,160
111	34	$2080,\!979$	2080,851	0,128
111	32	$2164,\!074$	$2163,\!981$	0,093
111	30	$2248,\!238$	$2248,\!186$	0,052

Continuação da tabela associada a $23^a \ v^{\prime\prime}\text{-}$

progressão						
\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ		
111	29	2290,715	$2290,\!686$	0,029		
111	28	$2333,\!454$	$2333,\!448$	0,006		
111	27	$2376,\!460$	$2376,\!470$	-0,010		
111	25	$2463,\!232$	$2463,\!285$	-0,053		
111	23	$2551,\!021$	$2551,\!114$	-0,093		
111	21	$2639{,}810$	$2639,\!942$	-0,132		
111	19	$2729{,}591$	2729,752	-0,161		
111	17	$2820,\!349$	$2820,\!531$	-0,182		
111	15	$2912,\!075$	$2912,\!262$	-0,187		
111	13	3004,756	$3004,\!932$	-0,176		
111	11	$3098,\!372$	$3098,\!526$	-0,154		
111	9	$3192,\!925$	$3193,\!033$	-0,108		
111	7	$3288,\!406$	$3288,\!438$	-0,032		
111	5	$3384,\!803$	3384,728	0,075		
111	4	$3433,\!345$	$3433,\!202$	0,143		
111	2	$3531,\!100$	3530,798	0,302		
111	1	3580,316	$3579,\!918$	0,398		

Quantas de energia experimentais e teóricos

para	a 24^a	v''-progressã	o, com um J	'' = 97
Vs	v_i	$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ
98	97	15,916	$15,\!950$	-0,034
98	94	67,207	67,398	-0,191
98	91	$123,\!621$	$124,\!027$	-0,406
98	87	206,427	$207,\!144$	-0,717
98	84	$273,\!943$	$274,\!880$	-0,937
98	82	$321,\!419$	$322,\!485$	-1,066
98	81	$345,\!872$	$346,\!999$	-1,127
98	80	370,799	$371,\!979$	-1,180
98	79	$396,\!186$	397,416	-1,230
98	70	$644,\!443$	$645,\!923$	-1,480
98	68	704,180	$705,\!675$	-1,495
98	63	860,301	861,780	-1,479
98	61	$925,\!358$	$926,\!815$	-1,457
98	60	958,421	959,871	-1,450
98	58	$1025,\!615$	$1027,\!040$	-1,425
98	55	1128,991	$1130,\!376$	-1,385
98	53	1199,585	$1200,\!946$	-1,361
98	52	1235,376	1236,724	-1,348
98	50	1307,920	$1309,\!249$	-1,329
98	47	1419,103	1420,411	-1,308
98	45	1494,763	$1496,\!066$	-1,303
98	42	1610,504	$1611,\!809$	-1,305

Quantas de energia experimentais e teóricos

Quantas de energia experimentais e teóricos

para a	a 25^a	v''-progressã	o, com um J	'' = 97
\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
56	55	34,789	34,785	0,004
56	54	69,930	69,904	0,026
56	53	105,387	$105,\!355$	0,032
56	51	177,287	$177,\!235$	$0,\!052$
56	50	213,723	$213,\!658$	0,065
56	48	287,534	$287,\!454$	0,080
56	46	362,586	362,495	0,091
56	43	477,430	477,340	0,090
56	41	555,477	$555,\!390$	0,087
56	40	$594,\!930$	$594,\!854$	0,076
56	38	674,704	674,644	0,060
56	36	755,602	$755,\!567$	0,035
56	35	796,467	796,447	0,020
56	34	837,607	837,603	0,004
56	33	879,021	879,032	-0,011
56	32	920,704	920,732	-0,028
56	31	$962,\!651$	962,702	-0,051
56	30	$1004,\!868$	1004,937	-0,069
56	29	$1047,\!344$	1047,437	-0,093
56	28	1090,085	1090, 199	-0,114
56	26	$1176,\!344$	1176,501	-0,157
56	24	$1263,\!626$	$1263,\!825$	-0,199
56	22	$1351,\!920$	$1352,\!155$	-0,235
56	21	$1396,\!437$	$1396,\!693$	-0,256
56	19	$1486,\!219$	1486,504	-0,285
56	17	1576,976	1577,282	-0,306
56	15	1668,703	1669,013	-0,310
56	13	1761,380	1761,683	-0,303

para a	para a 26 ^a v'' -progressão, com um $J'' = 101$					
v_s	v_i	$\operatorname{Quanta}_{exp}$	$\operatorname{Quanta}_{teo}$	Δ		
104	103	12,007	$11,\!913$	0,094		
104	102	$24,\!662$	$24,\!501$	0,161		
104	100	51,889	$51,\!660$	0,229		
104	99	66,444	66,211	0,233		
104	96	113,769	$113,\!615$	0,154		
104	95	130,735	$130,\!632$	0,103		
104	93	166,402	166,424	-0,022		
104	92	$185,\!087$	185, 179	-0,092		
104	91	$204,\!327$	204,494	-0,167		
104	90	$224,\!114$	224,358	-0,244		
104	88	$265,\!299$	$265,\!698$	-0,399		
104	87	$286,\!680$	$287,\!155$	-0,475		
104	86	$308,\!578$	309,127	-0,549		
104	85	$330,\!979$	$331,\!604$	-0,625		
104	84	$353,\!883$	$354,\!578$	-0,695		
104	83	$377,\!280$	378,041	-0,761		
104	82	$401,\!162$	401,986	-0,824		
104	81	$425{,}522$	426,406	-0,884		
104	80	$450,\!354$	$451,\!292$	-0,938		
104	78	$501,\!404$	502,438	-1,034		
104	77	$527,\!610$	$528,\!685$	-1,075		
104	74	$608,\!871$	610,041	-1,170		
104	72	$665,\!187$	666,400	-1,213		
104	71	$693,\!971$	695, 199	-1,228		
104	69	752,760	754,007	-1,247		
104	68	782,755	784,007	-1,252		
104	66	$843,\!919$	$845,\!172$	-1,253		
104	64	$906,\!614$	907,859	-1,245		
104	62	$970,\!805$	972,032	-1,227		
104	61	1003,448	$1004,\!665$	-1,217		
104	59	1069,808	$1071,\!003$	$-1,\!195$		
104	57	1137,561	1138,743	-1,182		
104	56	1171,976	$1173,\!129$	$-1,\!153$		
104	55	1206,716	$1207,\!854$	$-1,\!138$		
104	54	1241,790	$1242,\!915$	$-1,\!125$		
104	51	1348,985	$1350,\!075$	-1,090		
104	49	1422,060	$1423,\!129$	-1,069		
104	48	1459,068	$1460,\!130$	-1,062		
104	46	$1534,\!016$	$1535,\!066$	-1,050		
104	43	1648,712	1649,758	-1,046		
104	41	$1726,\!659$	1727,710	-1,051		
104	40	1766,069	$1767,\!126$	-1,057		

Quantas de energia experimentais e teóricos

Quantas de energia experimentais e teóricos

para a	para a 27 ^{<i>a</i>} v'' -progressão, com um $J'' = 101$					
\mathbf{v}_s	\mathbf{v}_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ		
42	41	39,119	39,124	-0,005		
42	40	$78,\!529$	78,539	-0,010		
42	39	118,228	$118,\!243$	-0,015		
42	37	198,473	$198,\!509$	-0,036		
42	36	239,019	239,065	-0,046		
42	35	279,842	$279,\!900$	-0,058		
42	33	362,305	$362,\!397$	-0,092		
42	32	403,946	$404,\!054$	-0,108		
42	31	445,853	$445,\!981$	-0,128		
42	30	488,026	$488,\!174$	-0,148		
42	28	573,163	$573,\!353$	-0,190		
42	27	616, 125	$616,\!334$	-0,209		
42	26	659,344	$659{,}574$	-0,230		
42	25	702,818	703,069	-0,251		
42	24	746,548	$746,\!819$	-0,271		
42	23	790,530	790,821	-0,291		
42	22	834,765	$835,\!073$	-0,308		
42	21	879,247	$879{,}573$	-0,326		
42	20	923,979	$924,\!319$	-0,340		
42	19	968,955	969,309	-0,354		
42	18	$1014,\!177$	$1014,\!542$	-0,365		
42	17	$1059,\!642$	$1060,\!015$	-0,373		
42	16	$1105,\!348$	1105,727	-0,379		
42	15	$1151,\!296$	$1151,\!676$	-0,380		
42	14	$1197,\!480$	$1197,\!860$	-0,380		
42	13	$1243,\!904$	$1244,\!277$	-0,373		
42	12	$1290,\!565$	$1290,\!926$	-0,361		
42	10	$1384{,}589$	$1384,\!912$	-0,323		
42	9	$1431,\!950$	$1432,\!245$	-0,295		
42	7	$1527,\!368$	$1527,\!586$	-0,218		
42	6	$1575,\!424$	$1575,\!590$	-0,166		
42	5	1623,701	1623,814	-0,113		
42	4	$1672,\!210$	$1672,\!257$	-0,047		
42	2	$1769,\!903$	1769,794	$0,\!109$		
42	1	$1819,\!091$	1818,884	$0,\!207$		
42	0	1868,497	1868,187	0,310		

para a 28 ^{<i>a</i>} v'' -progressão, com um $J'' = 104$				
V_S	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
54	53	35,361	35,348	0,013
54	52	$71,\!051$	71,024	0,027
54	51	$107,\!065$	$107,\!027$	0,038
54	50	$143,\!401$	$143,\!352$	0,049
54	48	$217,\!021$	$216,\!955$	0,066
54	47	$254,\!302$	$254,\!227$	$0,\!075$
54	46	$291,\!889$	$291,\!809$	$0,\!080$
54	45	329,780	$329,\!698$	0,082
54	44	$367,\!974$	$367,\!890$	0,084
54	43	406,469	$406,\!382$	0,087
54	42	$445,\!259$	$445,\!173$	0,086
54	40	523,714	$523,\!636$	0,078
54	39	$563,\!375$	$563,\!304$	$0,\!071$
54	38	603,321	$603,\!258$	0,063
54	37	$643,\!552$	$643,\!497$	$0,\!055$
54	36	684,061	684,018	0,043
54	35	$724,\!845$	724,818	0,027
54	34	$765,\!909$	$765,\!895$	0,014
54	33	$807,\!246$	807,246	0,000
54	32	$848,\!853$	$848,\!869$	-0,016
54	30	$932,\!869$	$932,\!923$	-0,054
54	29	$975,\!274$	$975,\!349$	-0,075
54	27	$1060,\!873$	1060,987	-0,114
54	26	$1104,\!064$	1104, 195	-0,131
54	25	$1147{,}505$	$1147,\!660$	-0,155
54	24	$1191,\!205$	1191,379	-0,174
54	22	1279,363	$1279,\!573$	-0,210
54	21	$1323,\!817$	$1324,\!044$	-0,227
54	19	$1413,\!467$	1413,723	-0,256
54	18	$1458,\!661$	1458,927	-0,266
54	16	1549,778	1550,057	-0,279
54	14	$1641,\!858$	$1642,\!135$	-0,277
54	13	$1688,\!254$	1688,526	-0,272
54	11	1781,757	1782,001	-0,244
54	10	$1828,\!854$	1829,083	-0,229
54	9	$1876,\!197$	1876, 391	-0,194
54	8	1923,766	$1923,\!925$	-0,159
54	6	$2019,\!591$	2019,662	-0,071
54	4	$2116,\!333$	2116,281	0,052
54	3	$2165,\!047$	2164,918	$0,\!129$
54	2	$2213,\!980$	2213,770	$0,\!210$

-		1 0	<i>'</i>	
\mathbf{v}_s \mathbf{v}_i		$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ
44	43	38,490	38,493	-0,003
44	42	$77,\!282$	77,283	-0,001
44	41	116,363	116,369	-0,006
44	40	155,737	155,747	-0,010
44	39	195, 397	$195,\!414$	-0,017
44	37	$275,\!572$	$275,\!608$	-0,036
44	36	316,080	$316,\!128$	-0,048
44	35	356,870	$356,\!928$	-0,058
44	34	$397,\!930$	398,005	-0,075
44	33	439,267	439,356	-0,089
44	32	480,874	480,980	-0,106
44	31	522,748	$522,\!873$	-0,125
44	30	$564,\!890$	$565,\!033$	-0,143
44	28	649,966	$650,\!148$	-0,182
44	27	692,894	$693,\!097$	-0,203
44	26	736,083	736,306	-0,223
44	25	779,527	779,771	-0,244
44	24	$823,\!227$	$823,\!490$	-0,263
44	23	$867,\!181$	867,462	-0,281
44	22	911,383	$911,\!684$	-0,301
44	21	955,838	$956,\!154$	-0,316
44	20	1000,541	1000,871	-0,330
44	19	1045,488	$1045,\!833$	-0,345
44	18	$1090,\!685$	$1091,\!038$	-0,353
44	17	1136, 120	1136,483	-0,363
44	16	1181,798	1182,167	-0,369
44	15	1227,720	$1228,\!089$	-0,369
44	14	$1273,\!877$	$1274,\!246$	-0,369
44	13	$1320,\!276$	$1320,\!636$	-0,360
44	12	1366,910	$1367,\!259$	-0,349
44	10	1460,881	$1461,\!193$	-0,312
44	9	1508,219	$1508,\!502$	-0,283
44	7	$1603,\!585$	1603,793	-0,208
44	6	$1651,\!615$	1651,772	-0,157
44	5	1699,869	1699,972	-0,103
44	4	$1748,\!354$	1748,392	-0,038
44	2	1846,004	1845,881	0,123
44	1	1895, 162	1894,948	0,214
44	0	$1944,\!547$	1944,228	0,319

Quantas de energia experimentais e teóricos para a 29^a v''-progressão, com um J'' = 104

Quantas de energia experimentais e teóricos para a $30^a v''$ -progressão, com um J'' = 104

v_s	\mathbf{v}_i	$\mathbf{Q}\mathbf{u}\mathbf{a}\mathbf{n}\mathbf{t}\mathbf{a}_{exp}$	$Quanta_{teo}$	Δ
109	108	8,492	$8,\!257$	0,235
109	105	38,083	37,298	0,785
109	104	$49,\!297$	48,383	0,914
109	103	$61,\!170$	60,158	$1,\!012$
109	100	100,681	99,517	$1,\!164$
109	99	115,118	$113,\!947$	$1,\!171$
109	97	145,843	144,705	$1,\!138$
109	96	162,113	$161,\!012$	$1,\!101$
109	95	178,974	$177,\!922$	$1,\!052$
109	94	196,419	$195,\!425$	$0,\!994$
109	93	214,442	$213{,}510$	$0,\!932$
109	91	$252,\!174$	$251,\!387$	0,787
109	90	271,871	$271,\!159$	0,712
109	88	312,879	$312,\!321$	$0,\!558$
109	87	334,175	$333,\!694$	$0,\!481$
109	86	355,988	$355,\!582$	0,406
109	85	378,305	$377,\!978$	$0,\!327$
109	83	424,454	$424,\!258$	$0,\!196$
109	82	448,260	$448,\!127$	$0,\!133$
109	81	472,547	$472,\!472$	0,075
109	80	497,306	$497,\!286$	0,020
109	79	$522,\!532$	$522,\!562$	-0,030
109	77	$574,\!353$	$574,\!470$	-0,117
109	76	600,934	$601,\!090$	-0,156
109	75	627,960	$628,\!146$	-0,186
109	73	683,297	$683{,}539$	-0,242
109	63	984,441	984,719	-0,278
109	58	$1149,\!184$	1149,405	-0,221
109	55	$1252,\!240$	1252,419	-0,179
109	50	$1430,\!671$	1430,786	-0,115
109	44	$1655,\!248$	1655, 324	-0,076

\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
65	64	31,430	31,423	0,007
65	62	95,407	$95,\!384$	0,023
65	61	127,948	$127,\!914$	0,034
65	60	160,851	160,803	0,048
65	58	227,722	$227,\!647$	0,075
65	56	295,988	$295,\!884$	0,104
65	55	$330,\!634$	$330,\!515$	0,119
65	54	365, 615	$365,\!483$	0,132
65	53	400,931	400,784	0,147
65	52	436,575	436,415	0,160
65	51	472,545	$472,\!373$	0,172
65	50	508,837	$508,\!653$	0,184
65	49	545,447	$545,\!253$	0,194
65	47	619,610	619,400	0,210
65	45	695,009	694,787	0,222
65	43	771,617	$771,\!390$	0,227
65	42	810,367	810,141	0,226
65	41	849,412	$849,\!188$	0,224
65	40	888,747	888,527	0,220
65	38	968,278	$968,\!073$	0,205
65	36	1048,947	1048,759	0,188
65	34	1130,726	$1130,\!564$	0,162
65	32	$1213,\!599$	$1213,\!469$	0,130
65	30	$1297,\!549$	1297,454	0,095
65	28	1382,560	$1382,\!502$	0,058
65	24	$1555,\!695$	1555,716	-0,021
65	22	1643,791	$1643,\!849$	-0,058
65	20	1732,888	1732,976	-0,088

Quantas de energia experimentais e teóricos para a 31^a $v^{\prime\prime}-{\rm progressão},$ com um $J^{\prime\prime}=107$

Quantas de energia experimentais e teóricos para a 32^a v''-progressão, com um J'' = 107

			1	
\mathbf{v}_s	v_i	$Quanta_{exp}$	Quanta _{teo}	Δ
46	45	$37,\!854$	37,847	0,007
46	44	76,007	75,998	0,009
46	43	114,462	$114,\!451$	0,011
46	41	192,255	$192,\!248$	0,007
46	40	231,591	$231,\!587$	0,004
46	39	271,213	$271,\!217$	-0,004
46	37	351, 317	$351,\!336$	-0,019
46	36	391,792	$391,\!820$	-0,028
46	34	473,570	$473,\!625$	-0,055
46	32	556,444	$556,\!529$	-0,085
46	30	640, 394	$640,\!515$	-0,121
46	29	682,767	682,907	-0,140
46	28	725,404	$725,\!563$	-0,159
46	27	768,301	768,480	-0,179
46	26	811,457	$811,\!656$	-0,199
46	25	854,873	$855,\!089$	-0,216
46	24	898,539	898,777	-0,238
46	23	942,462	942,718	-0,256
46	21	$1031,\!060$	$1031,\!350$	-0,290
46	20	1075,733	$1076,\!037$	-0,304
46	19	$1120,\!652$	1120,969	-0,317
46	18	$1165,\!817$	1166,144	-0,327
46	17	$1211,\!228$	$1211,\!561$	-0,333
46	16	$1256,\!877$	$1257,\!217$	-0,340
46	15	1302,769	$1303,\!110$	-0,341
46	13	$1395,\!270$	$1395,\!603$	-0,333
46	12	$1441,\!877$	$1442,\!198$	-0,321
46	11	1488,723	1489,024	-0,301
46	10	$1535,\!797$	$1536,\!079$	-0,282
46	8	$1630,\!649$	1630,869	-0,220
46	7	$1678,\!422$	1678,601	-0,179
46	6	$1726,\!424$	$1726,\!556$	-0,132
46	5	$1774,\!655$	1774,731	-0,076
46	3	$1871,\!802$	1871,738	0,064

\mathbf{v}_{s}	\mathbf{v}_i Quanta _{exp}		$\operatorname{Quanta}_{teo}$	Δ
81	79	49,847	49,941	-0,094
81	77	101,525	101,708	-0,183
81	75	$154,\!996$	$155,\!247$	-0,251
81	74	182,387	$182,\!665$	-0,278
81	73	210,207	$210,\!509$	-0,302
81	72	238,450	238,771	-0,321
81	71	$267,\!110$	$267,\!446$	-0,336
81	70	$296,\!182$	$296{,}530$	-0,348
81	68	$355,\!538$	$355,\!898$	-0,360
81	67	385,813	$386,\!174$	-0,361
81	65	$447,\!525$	447,881	-0,356
81	63	510,758	$511,\!100$	-0,342
81	62	$542,\!934$	$543,\!265$	-0,331
81	61	575,474	575,795	-0,321
81	60	608,376	$608,\!685$	-0,309
81	59	$641,\!635$	$641,\!931$	-0,296
81	58	$675,\!247$	$675,\!529$	-0,282
81	56	$743,\!514$	743,765	-0,251
81	55	778,159	778,396	-0,237
81	54	$813,\!143$	$813,\!364$	-0,221
81	53	848,456	$848,\!666$	-0,210
81	52	884,102	$884,\!297$	-0,195
81	51	920,071	$920,\!254$	-0,183
81	50	956, 363	$956,\!535$	-0,172
81	49	992,974	$993,\!135$	-0,161
81	47	1067, 137	1067,281	-0,144
81	46	$1104,\!683$	1104,821	-0,138
81	45	$1142,\!535$	$1142,\!668$	-0,133
81	44	$1180,\!686$	$1180,\!819$	-0,133
81	43	$1219,\!144$	$1219,\!272$	-0,128
81	42	$1257,\!894$	$1258,\!023$	-0,129
81	41	1296,938	1297,069	-0,131
81	40	$1336,\!274$	$1336,\!408$	-0,134
81	38	$1415,\!807$	$1415,\!955$	-0,148
81	37	1456,000	$1456,\!156$	-0,156
81	36	$1496,\!473$	$1496,\!640$	-0,167
81	35	$1537,\!225$	$1537,\!404$	-0,179

Quantas de energia experimentais e teóricos para a 33^a v''-progressão, com um J'' = 107

Continuação	da	tabela	associada	a	33^a	v''-
progressão						

v_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
81	34	$1578,\!252$	1578,445	-0,193
81	33	$1619{,}553$	1619,761	-0,208
81	31	$1702,\!967$	$1703,\!209$	-0,242
81	30	$1745,\!115$	$1745,\!336$	-0,221
81	29	$1787,\!449$	1787,728	-0,279
81	28	$1830,\!086$	1830,384	-0,298
81	26	$1916,\!140$	1916,477	-0,337
81	25	$1959{,}553$	1959,910	-0,357
81	24	$2003,\!222$	2003,598	-0,376
81	23	$2047,\!145$	$2047{,}538$	-0,393
81	22	$2091,\!322$	2091,730	-0,408
81	21	2135,742	$2136,\!170$	-0,428
81	20	$2180,\!415$	2180,858	-0,443
81	19	$2225,\!334$	2225,790	-0,456
81	18	$2270{,}500$	2270,965	-0,465
81	16	$2361,\!560$	$2362,\!037$	-0,477
81	15	$2407,\!451$	$2407,\!931$	-0,480
81	13	$2499,\!953$	2500,423	-0,470
81	12	$2546{,}560$	$2547,\!019$	-0,459
81	11	$2593,\!382$	$2593,\!845$	-0,463
81	10	$2640,\!479$	2640,900	-0,421
81	9	2687,789	2688, 182	-0,393
81	7	$2783,\!105$	2783,422	-0,317
81	6	$2831,\!107$	$2831,\!377$	-0,270
81	4	$2927,\!797$	$2927,\!946$	-0,149
81	3	$2976,\!483$	$2976,\!559$	-0,076
81	2	$3025,\!395$	3025,388	0,007

V _s	v_i	$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ
46	45	$37,\!853$	37,847	0,006
46	44	76,007	$75,\!998$	0,009
46	43	114,461	$114,\!451$	0,010
46	42	153,212	$153,\!202$	0,010
46	41	192,256	$192,\!248$	0,008
46	40	$231,\!592$	$231,\!587$	0,005
46	39	271,215	$271,\!217$	-0,002
46	37	351,318	$351,\!336$	-0,018
46	36	391,791	$391,\!820$	-0,029
46	35	432,543	$432,\!583$	-0,040
46	34	$473,\!570$	$473,\!625$	-0,055
46	33	514,872	$514,\!941$	-0,069
46	32	556,444	$556,\!529$	-0,085
46	31	$598,\!287$	$598,\!388$	-0,101
46	30	640,394	$640,\!515$	-0,121
46	29	682,768	$682,\!907$	-0,139
46	28	725,404	$725,\!563$	-0,159
46	27	768,301	768,480	-0,179
46	26	811,458	$811,\!656$	-0,198
46	25	854,871	$855,\!089$	-0,218
46	24	898,540	898,777	-0,237
46	23	942,462	942,718	-0,256
46	22	986,636	$986,\!909$	-0,273
46	21	1031,060	$1031,\!350$	-0,290
46	20	1075,733	$1076,\!037$	-0,304
46	19	$1120,\!653$	$1120,\!969$	-0,316
46	18	1165,818	$1166,\!144$	-0,326
46	17	1211,227	$1211,\!561$	-0,334
46	16	1256,877	$1257,\!217$	-0,340
46	15	1302,769	$1303,\!110$	-0,341
46	14	1348,902	$1349,\!239$	-0,337
46	13	1395,271	$1395,\!603$	-0,332
46	12	1441,877	$1442,\!198$	-0,321
46	10	1535,796	$1536,\!079$	-0,283
46	9	1583,107	$1583,\!362$	-0,255
46	8	$1630,\!649$	$1630,\!869$	-0,220
46	7	1678,422	$1678,\!601$	-0,179
46	6	1726,425	$1726,\!556$	-0,131
46	5	$1774,\!657$	1774,731	-0,074
46	4	$1823,\!116$	$1823,\!126$	-0,010
46	3	$1871,\!802$	1871,738	0,064
46	2	1920,714	$1920,\!567$	0,147
46	1	1969,850	$1969,\!610$	0,240
46	0	2019,211	$2018,\!867$	0,344

s Quantas de energia experimentais e teóricos para a $35^a v''$ -progressão, com um J'' = 113

V_c	Vá	Quanta	Quantateo	Δ
	78	50.461	50.556	-0.095
80	76	102.750	102.924	-0.174
80	74	156.816	157.050	-0.234
80	73	184.500	184.757	-0.257
80	72	212 609	212 886	-0.277
80	71	241,000 241,138	241 431	-0 293
80	70	270.081	270 386	-0.305
80	69	299.433	299 745	-0.312
80	68	329 188	329 504	-0.316
80	67	359 341	359 658	-0.317
80	66	389 886	390 201	-0.315
80	64	452 132	452 436	-0 304
80	62	515 886	516171	-0.285
80	61	548 317	548 591	-0.274
80	60	581 112	581 373	-0.261
80	59	614 266	614 512	-0.246
80	58	647 774	648.005	-0.231
80	57	681 634	681.840	-0.251
80	55	750 386	750 569	-0.183
80	50 54	785 270	785 438	-0,165
80	53	820.400	820.642	-0,108
80	50	856 040	856 1 78	0,132
80	51	801 017	802 041	-0,130
80	50	028 117	028 220	-0,124 0.119
80	40	964 637	920,229	-0.100
80	49	1001 474	1001 564	0,100
80	40	1038 625	$1038\ 705$	-0,090
80	46	1076.085	1076 157	-0.072
80	40	1113 852	1113.918	-0.066
80	40	1151 923	1151 984	-0.061
80	49	1228 963	1229 020	-0.057
80	40	1220,503 1307.183	1225,020 1307.243	0,060
80	30	1346 720	1346 703	0.064
80	38	1386 561	1386 631	-0.070
80	37	1426 679	1426 756	-0.077
80	36	1420,073 1467.077	1420,100	-0.086
80	35	1507 755	1507,105	-0.007
80	34	1548 709	1548.818	0.100
80	22	1580.038	1500.061	-0,103
80	ี 21	1009,900 1673.011	1673 364	-0,123 0.153
80	30	1715 250	1715 420	-0,155
80 80	20 20	1757 555	1757 749	
80 80	⊿ສ ງջ	1800 194	1800 320	-0,107
80 80	$\frac{20}{97}$	1842 055	18/2178	-0,200 -0.200
80 80	41 26	1886 045	1886 987	-0,223
80 80	20 94		1073 976	-0,242 0.970
00 80	⊿4 99	2060.067	2061 270	-0,479
80 80	⊿⊿ 91	2000,907	2001,279	-0,312
00	<u>4</u> 1	4100,049	<u></u>	-0,347

Quantas de energia experimentais e teóricos para a 34^a v''-progressão, com um J'' = 107

			1 0	,		1			1 0
	\mathbf{v}_s	Vi	$Quanta_{exp}$	$Quanta_{teo}$	Δ		\mathbf{v}_s	v_i	Quanta
	85	84	22,570	22,640	-0,070		47	46	37,46
	85	82	69,204	69,404	-0,200		47	45	75,22
	85	80	117,779	$118,\!094$	-0,315		47	44	113,2
	85	78	168,239	$168,\!650$	-0,411		47	43	151,6
	85	76	$220,\!528$	$221,\!017$	-0,489		47	41	229,3
	85	74	$274,\!595$	$275,\!144$	-0,549		47	40	268,5
	85	73	302,278	$302,\!851$	-0,573		47	39	308,1
	85	72	330,389	330,980	-0,591		47	37	388,0
	85	71	358,918	359,524	-0,606		47	36	428,4
	85	70	387,861	388,479	-0,618		47	35	469,1
	85	69	417,213	$417,\!839$	-0,626		47	34	510,0
	85	68	446,967	447,598	-0,631		47	32	592,8
	85	66	507,664	508,294	-0,630		47	30	676,6
	85	65	538,598	539,222	-0,624		47	29	718,9
	85	64	569,910	$570,\!529$	-0,619		47	28	761,4
	85	63	601,602	602,212	-0,610		47	27	804,3
	85	62	633, 665	$634,\!265$	-0,600		47	26	847,4
	85	61	666,097	$666,\!685$	-0,588		47	25	890,7
	85	59	732,046	$732,\!606$	-0,560		47	24	934,3
	85	55	868, 165	868,662	-0,497		47	23	978,2
	85	52	973,818	974,271	-0,453		47	21	1066,7
	85	51	1009,695	$1010,\!135$	-0,440		47	20	1111,3
	85	47	1156,404	1156,798	-0,394		47	19	1156,1
	85	46	1193,864	$1194,\!250$	-0,386		47	18	1201,2
	85	45	$1231,\!631$	1232,011	-0,380		47	17	1246,6
	85	44	1269,701	1270,077	-0,376		47	16	1292,2
	85	43	1308,072	1308,446	-0,374		47	15	1338,0
	85	39	1464,509	1464,887	-0,378		47	13	1430,4
	85	38	1504,340	1504,725	-0,385		47	12	1476,9
	85	36	1584,856	1585,257	-0,401		47	11	1523,7
	85	34	1666,488	1666,912	-0,424		47	10	1570,7
	85	32	1749,218	1749,670	-0,452		47	8	1665,5
	85	31	1790,989	1791,457	-0,468		47	6	1761.2
	85	29	1875,334	1875,836	-0,502		47	5	1809.3
-			1 /	1 ,	,		47	9	1006 4

Quantas de energia experimentais e teóricos para a $36^a v''$ -progressão, com um J'' = 113

Quantas de energia experimentais e teóricos para a 37^a $v^{\prime\prime}-{\rm progressão},$ com um $J^{\prime\prime}=113$

\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
47	46	37,460	37,452	0,008
47	45	$75,\!227$	75,213	0,014
47	44	$113,\!297$	$113,\!279$	0,018
47	43	$151,\!670$	$151,\!647$	0,023
47	41	229,302	$229,\!280$	0,022
47	40	268,559	$268,\!539$	0,020
47	39	308,103	308,088	0,015
47	37	388,054	388,051	0,003
47	36	428,455	428,459	-0,004
47	35	469,130	469,147	-0,017
47	34	510,083	$510,\!114$	-0,031
47	32	$592,\!814$	$592,\!872$	-0,058
47	30	$676,\!625$	676,715	-0,090
47	29	718,931	719,038	-0,107
47	28	761,499	$761,\!625$	-0,126
47	27	804,329	804,473	-0,144
47	26	847,419	$847,\!582$	-0,163
47	25	890,768	$890,\!949$	-0,181
47	24	934,372	$934{,}571$	-0,199
47	23	$978,\!230$	978,447	-0,217
47	21	1066,704	1066,952	-0,248
47	20	$1111,\!315$	1111,577	-0,262
47	19	$1156,\!172$	$1156,\!447$	-0,275
47	18	$1201,\!278$	$1201,\!562$	-0,284
47	17	$1246,\!627$	$1246,\!918$	-0,291
47	16	$1292,\!219$	$1292,\!514$	-0,295
47	15	$1338,\!052$	$1338,\!349$	-0,297
47	13	$1430,\!440$	1430,726	-0,286
47	12	$1476,\!991$	$1477,\!265$	-0,274
47	11	1523,776	$1524,\!036$	-0,260
47	10	1570,797	$1571,\!035$	-0,238
47	8	$1665,\!541$	1665,717	-0,176
47	6	$1761,\!209$	$1761,\!298$	-0,089
47	5	$1809,\!388$	1809,421	-0,033
47	3	1906.430	1906.326	0.104

\mathbf{v}_s	\mathbf{v}_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
57	56	$34,\!203$	34,189	0,014
57	55	68,753	68,720	0,033
57	54	$103,\!636$	$103,\!590$	0,046
57	53	138,858	138,794	0,064
57	52	174,405	$174,\!329$	0,076
57	50	246,484	$246,\!380$	0,104
57	49	283,002	$282,\!889$	0,113
57	48	319,841	319,715	0,126
57	47	356,990	$356,\!856$	0,134
57	45	432,217	432,069	0,148
57	43	$508,\!658$	$508,\!503$	0,155
57	42	$547,\!330$	547,171	0,159
57	41	586,292	$586,\!136$	0,156
57	40	$625,\!548$	$625,\!395$	0,153
57	39	665,094	664,945	0,149
57	38	704,929	704,783	0,146
57	37	745,046	$744,\!907$	0,139
57	36	785,442	$785,\!315$	0,127
57	34	867,075	866,970	0,105
57	33	908,304	908,212	0,092
57	32	949,806	949,728	0,078
57	31	$991,\!575$	$991,\!515$	0,060
57	29	1075,922	$1075,\!894$	0,028
57	27	1161, 319	$1161,\!329$	-0,010
57	25	1247,759	$1247,\!805$	-0,046
57	24	1291,361	$1291,\!427$	-0,066
57	23	1335,221	$1335,\!303$	-0,082
57	22	1379,332	$1379,\!431$	-0,099
57	21	$1423,\!696$	$1423,\!808$	-0,112
57	18	$1558,\!268$	1558,418	-0,150
57	14	1741, 117	$1741,\!276$	-0,159

Quantas de energia experimentais e teóricos para a 38^a v''-progressão, com um $J^{\prime\prime}=113$

Quantas	de	energia	experimentais	е	teóricos
para a 39	a v'	′–progre	essão, com um	J''	= 118

Vs	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
47	46	37,386	37,375	0,011
47	45	$75,\!078$	75,060	0,018
47	44	113,073	$113,\!051$	0,022
47	43	$151,\!374$	$151,\!346$	0,028
47	42	189,989	189,941	0,048
47	41	228,864	$228,\!834$	0,030
47	39	307,527	$307,\!502$	0,025
47	38	$347,\!294$	$347,\!271$	0,023
47	37	387,343	$387,\!327$	0,016
47	36	$427,\!672$	$427,\!668$	$0,\!004$
47	34	509,179	$509,\!191$	-0,012
47	33	550,344	550,369	-0,025
47	32	591,787	$591,\!822$	-0,035
47	30	675,468	$675,\!540$	-0,072
47	29	717,718	$717,\!801$	-0,083
47	28	760,231	760,327	-0,096
47	26	846,032	$846,\!166$	-0,134
47	25	889,322	889,474	-0,152
47	22	1020,714	$1020,\!930$	-0,216
47	19	$1154,\!400$	$1154,\!638$	-0,238
47	18	$1199,\!451$	1199,699	-0,248
47	16	$1290,\!283$	$1290,\!547$	-0,264
47	15	$1336,\!068$	$1336,\!330$	-0,262
47	13	$1428,\!358$	$1428,\!606$	-0,248
47	12	$1474,\!861$	$1475,\!096$	-0,235
47	9	1615,767	$1615,\!948$	-0,181
47	7	$1710,\!888$	1710,987	-0,099
47	6	1758,799	$1758,\!843$	-0,044
47	3	$1903,\!868$	1903,736	$0,\!132$
47	1	2001,728	$2001,\!421$	0,307
47	0	$2050,\!995$	$2050,\!586$	0,409

	10 0	progressa		- 110
\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
64	63	$31,\!593$	$31,\!583$	0,010
64	61	95,895	95,861	0,034
64	60	128,596	$128,\!547$	0,049
64	59	$161,\!656$	$161,\!593$	0,063
64	58	195,073	$194,\!995$	0,078
64	57	228,843	228,747	0,096
64	56	262,959	$262,\!847$	0,112
64	55	297,419	297,290	0,129
64	54	332,219	$332,\!073$	0,146
64	53	367,355	$367,\!192$	0,163
64	52	402,822	$402,\!644$	0,178
64	50	474,738	$474,\!530$	0,208
64	48	547,938	547,706	0,232
64	47	585,012	584,769	0,243
64	46	622,396	$622,\!144$	0,252
64	45	660,088	659,829	0,259
64	44	698,085	697,820	0,265
64	43	736,385	$736,\!115$	0,270
64	42	774,983	774,710	0,273
64	41	813,876	813,603	0,273
64	40	853,063	852,791	0,272
64	39	892,540	892,271	0,269
64	37	972,356	972,096	0,260
64	36	1012,688	1012,437	0,251
64	35	1053,301	$1053,\!059$	0,242
64	34	1094,191	1093,960	0,231
64	33	1135,357	1135,138	0,219
64	32	1176,795	1176,590	0,205
64	31	1218,505	1218,314	0,191
64	30	1260,484	1260,308	0,176
64	29	1302,729	1302,570	0,159
64	28	1345,238	1345,096	0.142
64	27	1388.010	1387.885	0,125
64	26	1431.042	1430,935	0.107
64	25^{-3}	1474.333	1474.243	0.090
64	24^{-3}	1517.881	1517.808	0.073
64	23	1561.684	1561.627	0.057
64	$\frac{-3}{22}$	1605 739	1605 698	0.041
64	21	1650 046	1650.020	0.026
64	$\frac{21}{20}$	1694 604	1694 590	0.014
64	19	1739 409	1739 407	
64	18	1784 461	1784 468	
64	17	1829 758	1829 771	-0.013
64	16	1875 298	1875 316	_0.018
64	15	1921 080	1921 099	_0.010
64	14	1067 105	1067110	
04	14	1907,100	1907,119	-0,014

Quantas de energia experimentais e teóricos para a $40^a v''$ -progressão, com um J'' = 118

Quantas de energia experimentais e teóricos para a 41ª $v^{\prime\prime}-{\rm progress}{\rm \tilde{a}o},$ com um $J^{\prime\prime}=123$

Vs	V _i	Quanta _{exp}	Quanta _{teo}	Δ
78	77	25,649	25,694	-0,045
78	74	105,323	105,461	-0,138
78	72	160,630	160,811	-0,181
78	71	188,923	189,120	-0,197
78	69	246,759	246,975	-0,216
78	66	336,555	336,773	-0,218
78	64	398,382	398,588	-0,206
78	63	429,871	430,066	-0,195
78	61	493,969	494,140	-0,171
78	59	559,535	$559,\!675$	-0,140
78	58	592,856	$592,\!980$	-0,124
78	56	660,552	660,644	-0,092
78	54	729,635	729,688	-0,053
78	52	800,063	800,081	-0,018
78	51	835,774	835,775	-0,001
78	49	908,168	$908,\!140$	0,028
78	48	944,840	$944,\!804$	0,036
78	47	981,838	981,786	0,052
78	46	$1019,\!143$	1019,080	0,063
78	45	1056,758	$1056,\!686$	0,072
78	44	$1094,\!679$	$1094,\!599$	0,080
78	42	$1171,\!425$	$1171,\!335$	0,090
78	41	$1210,\!246$	$1210,\!153$	0,093
78	40	$1249,\!360$	$1249,\!267$	0,093
78	39	1288,765	$1288,\!674$	0,091
78	37	$1368,\!440$	$1368,\!356$	0,084
78	36	1408,704	$1408,\!626$	0,078
78	35	$1449,\!249$	$1449,\!179$	0,070
78	34	$1490,\!073$	1490,012	0,061
78	33	$1531,\!170$	$1531,\!122$	0,048
78	32	$1572,\!545$	1572,508	0,037
78	31	$1614,\!191$	$1614,\!166$	0,025
78	29	$1698,\!288$	$1698,\!292$	-0,004
78	28	1740,735	1740,755	-0,020
78	27	$1783,\!445$	1783,482	-0,037
78	26	$1826,\!417$	1826,470	-0,053
78	24	$1913,\!136$	$1913,\!222$	-0,086
78	23	$1956,\!880$	$1956,\!981$	-0,101
78	22	2000,878	2000,994	-0,116
78	21	$2045,\!128$	$2045,\!258$	-0,130
78	20	$2089,\!628$	2089,771	-0,143

Continuação da tabela associada a 41
 a $v^{\prime\prime}\text{-}$ progressão

7	78	19	2134,382	$2134{,}531$	-0,149
7	78	18	2179,374	$2179{,}536$	-0,162
7	78	17	$2224,\!616$	2224,784	-0,168
7	78	16	2270,103	$2270,\!274$	-0,171
7	78	15	$2315,\!831$	$2316,\!003$	-0,172
7	78	14	$2361,\!802$	$2361,\!971$	-0,169
7	78	13	2408,012	$2408,\!174$	-0,162
7	78	11	$2501,\!147$	$2501,\!281$	-0,134
7	78	10	2548,069	$2548,\!182$	-0,113
7	78	9	$2595,\!226$	$2595,\!312$	-0,086
7	78	8	$2642,\!616$	$2642,\!669$	-0,053
7	78	7	2690,239	$2690,\!252$	-0,013
7	78	6	2738,093	$2738,\!060$	0,033
7	78	4	2834,490	$2834,\!341$	0,149
7	78	3	2883,035	$2882,\!812$	0,223

Quantas de energia experimentais e teóricos para a 42^a v''-progressão, com um $J^{\prime\prime}=123$

Vs	Vi	Quanta _{exp}	Quanta _{teo}	Δ		
- 99	89	169,750	170,146	-0,396		
99	88	189,898	190,367	-0,469		
99	87	210,586	211,128	-0,542		
99	86	231,806	232,421	-0,615		
99	85	$253,\!549$	$254,\!236$	-0,687		
99	83	298,574	299,397	-0,823		
99	82	321,839	322,726	-0,887		
99	81	345,598	346,543	-0,945		
99	80	369,840	370,840	-1,000		
99	77	445,402	446,541	-1,139		
99	75	498,071	499,278	-1,207		
99	74	525,071	$526,\!308$	-1,237		
99	73	552,510	553,770	-1,260		
99	72	580,378	$581,\!658$	-1,280		
99	70	637,378	638,690	-1,312		
99	69	666,509	667,822	-1,313		
99	67	725,973	$727,\!292$	-1,319		
99	66	756,303	757,620	-1,317		
99	65	787,023	788,335	-1,312		
99	64	818, 131	$819,\!435$	-1,304		
99	62	881,483	882,765	-1,282		
99	61	913,716	$914,\!987$	-1,271		
99	60	946, 320	$947,\!574$	-1,254		
99	59	979,283	$980,\!522$	-1,239		
99	58	$1012,\!604$	$1013,\!827$	-1,223		
99	56	$1080,\!304$	$1081,\!491$	-1,187		
99	54	$1149,\!390$	$1150,\!534$	-1,144		
99	53	$1184,\!432$	$1185,\!564$	-1,132		
99	51	$1255,\!522$	$1256,\!622$	-1,100		
99	50	$1291,\!558$	$1292,\!643$	-1,085		
99	48	$1364{,}596$	$1365,\!651$	-1,055		
99	47	$1401,\!586$	$1402,\!632$	-1,046		
99	46	$1438,\!892$	$1439,\!927$	-1,035		
99	45	$1476,\!507$	$1477,\!533$	-1,026		
99	43	$1552,\!650$	$1553,\!663$	-1,013		
99	42	$1591,\!174$	$1592,\!182$	-1,008		
99	40	$1669,\!106$	$1670,\!113$	-1,007		
99	39	$1708,\!513$	$1709,\!520$	-1,007		
99	37	$1788,\!192$	1789,202	-1,010		
v_s	v_i	$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ	_	v_s
-------	-------	----------------	-------------------------------	--------	---	-------
39	38	39,600	39,606	-0,006		68
39	37	79,498	79,502	-0,004		68
39	36	119,676	$119,\!684$	-0,008		68
39	35	160, 135	$160,\!149$	-0,014		68
39	34	200,874	200,896	-0,022		68
39	33	241,891	$241,\!921$	-0,030		68
39	31	324,745	324,799	-0,054		68
39	30	366,581	$366,\!646$	-0,065		68
39	29	408,684	408,762	-0,078		68
39	27	$493,\!686$	493,793	-0,107		68
39	26	536,581	536,704	-0,123		68
39	25	579,738	579,874	-0,136		68
39	24	623,151	623,303	-0,152		68
39	22	710,746	710,927	-0,181		68
39	21	754,924	$755,\!118$	-0,194		68
39	20	799,354	799,559	-0,205		68
39	19	844,032	$844,\!247$	-0,215		68
39	18	888,959	889,182	-0,223		68
39	17	934,133	934,361	-0,228		68
39	16	979,551	979,782	-0,231		68
39	15	1025,213	$1025,\!444$	-0,231		68
39	14	1071,117	$1071,\!344$	-0,227		68
39	13	1117,261	1117,481	-0,220		68
39	12	1163,644	$1163,\!853$	-0,209		68
39	11	1210,267	$1210,\!459$	-0,192		68
39	10	1257,124	$1257,\!296$	-0,172		68
39	9	1304,217	1304,363	-0,146		68
39	7	1399,106	$1399,\!180$	-0,074		68
39	6	1446,898	$1446,\!926$	-0,028		68
39	5	1494,921	$1494,\!896$	0,025		68
39	4	$1543,\!174$	$1543,\!088$	0,086		68
39	3	1591,656	$1591,\!500$	0,156		68
39	2	1640,365	$1640,\!131$	0,234		68
39	1	1689,300	1688,979	0,321		68
39	0	1738,462	$1738,\!043$	0,419		68
					:	68

Quantas de energia experimentais e teóricos para a 43^a v''-progressão, com um J'' = 129

Quantas de energia experimentais e teóricos para a 44^a v''-progressão, com um J'' = 129

\mathbf{v}_s	Vi	$Quanta_{exp}$	$Quanta_{teo}$	Δ
68	67	29,793	29,793	$0,\!000$
68	65	90,567	$90,\!560$	$0,\!007$
68	64	$121,\!541$	$121,\!525$	0,016
68	62	$184,\!633$	184,594	0,039
68	61	216,740	$216,\!688$	$0,\!052$
68	60	$249,\!218$	249,149	0,069
68	59	$282,\!058$	281,974	$0,\!084$
68	58	$315,\!260$	315, 157	$0,\!103$
68	57	$348,\!816$	$348,\!695$	$0,\!121$
68	56	382,724	382,584	$0,\!140$
68	54	$451,\!576$	$451,\!397$	$0,\!179$
68	53	$486{,}515$	486,315	$0,\!200$
68	52	521,784	521,568	0,216
68	51	$557,\!388$	$557,\!153$	$0,\!235$
68	50	$593,\!317$	593,066	$0,\!251$
68	49	$629{,}571$	629,304	$0,\!267$
68	48	$666,\!146$	665,864	$0,\!282$
68	47	$703,\!038$	702,742	$0,\!296$
68	46	$740,\!244$	739,936	$0,\!308$
68	44	$815{,}583$	$815,\!256$	$0,\!327$
68	42	$892,\!140$	891,799	$0,\!341$
68	40	969,890	969,543	$0,\!347$
68	39	$1009,\!206$	1008,857	$0,\!349$
68	38	$1048,\!810$	1048,464	$0,\!346$
68	37	1088,703	1088,359	$0,\!344$
68	36	$1128,\!881$	1128,541	$0,\!340$
68	35	$1169,\!340$	1169,006	$0,\!334$
68	34	$1210,\!079$	1209,753	$0,\!326$
68	33	$1251,\!096$	1250,779	$0,\!317$
68	32	$1292,\!388$	1292,080	$0,\!308$
68	31	$1333,\!951$	$1333,\!656$	$0,\!295$
68	30	1375,786	1375,503	$0,\!283$
68	29	$1417,\!889$	$1417,\!620$	0,269
68	28	$1460,\!258$	1460,003	$0,\!255$
68	27	$1502,\!890$	$1502,\!651$	$0,\!239$
68	26	1545,786	$1545,\!561$	$0,\!225$
68	25	$1588,\!941$	1588,732	$0,\!209$

Continuação da tabela associada a 44
 a $v^{\prime\prime}\text{-}$ progressão

\mathbf{v}_{s}	v_i	$\operatorname{Quanta}_{exp}$	$Quanta_{teo}$	Δ
68	24	$1632,\!355$	1632,161	0,194
68	23	$1676,\!026$	$1675,\!845$	0,181
68	22	$1719,\!951$	1719,784	0,167
68	21	$1764,\!130$	1763,975	0,155
68	20	$1808,\!558$	1808,416	0,142
68	19	$1853,\!238$	$1853,\!105$	0,133
68	18	$1898,\!164$	1898,039	0,125
68	17	$1943,\!338$	$1943,\!218$	0,120
68	16	1988,756	$1988,\!640$	0,116
68	15	$2034,\!417$	2034,301	0,116
68	14	$2080,\!321$	2080,202	0,119
68	12	$2172,\!849$	2172,711	0,138

Quantas de energia experimentais e teóricos para a 45^a v''-progressão, com um $J^{\prime\prime}=135$

Vs	Vi	Quanta _{exp}	Quanta _{teo}	Δ
53	52	35,166	35,136	0,030
53	51	$70,\!648$	70,606	0,042
53	50	106,466	106,407	0,059
53	49	$142,\!611$	$142,\!533$	0,078
53	48	179,079	178,984	0,095
53	46	252,966	$252,\!840$	0,126
53	45	290,375	$290,\!240$	$0,\!135$
53	44	328,102	$327,\!951$	0,151
53	42	404,454	404,291	0,163
53	41	443,088	$442,\!915$	$0,\!173$
53	39	$521,\!235$	$521,\!055$	0,180
53	38	560,748	$560,\!566$	0,182
53	35	681,000	680,830	0,170
53	33	762,579	762,422	$0,\!157$
53	32	803,785	803,636	0,149
53	30	887,020	886,885	$0,\!135$
53	27	$1013,\!874$	1013,782	0,092
53	25	1099,769	1099,700	0,069
53	22	$1230{,}542$	$1230{,}517$	0,025
53	19	$1363,\!600$	$1363,\!610$	-0,010
53	17	$1453,\!560$	$1453,\!577$	-0,017
53	15	$1544,\!494$	$1544,\!516$	-0,022
53	10	$1776,\!069$	1776,025	0,044
53	8	$1870,\!349$	$1870,\!256$	0,093
53	4	$2061,\!728$	$2061,\!432$	0,296
53	2	2158,793	$2158,\!353$	0,440
53	0	2256,769	$2256,\!145$	0,624

	10 (P10810004	o, com ani o	100
\mathbf{v}_s	Vi	$Quanta_{exp}$	$Quanta_{teo}$	Δ
85	84	21,842	21,910	-0,068
85	83	44,206	44,336	-0,130
85	82	67,070	67,267	-0,197
85	80	114,302	114,614	-0,312
85	78	163,477	163,887	-0,410
85	76	$214,\!535$	$215,\!025$	-0,490
85	75	240,754	$241,\!276$	-0,522
85	74	267,422	$267,\!973$	-0,551
85	73	$294{,}533$	$295,\!109$	-0,576
85	70	378,467	$379,\!087$	-0,620
85	68	436,526	$437,\!157$	-0,631
85	67	466,169	466,800	-0,631
85	66	496,214	496,842	$-0,\!628$
85	65	$526,\!655$	527,277	$-0,\!622$
85	63	588,705	589,307	-0,602
85	62	620,304	620,893	-0,589
85	61	652,278	$652,\!853$	-0,575
85	60	684,624	$685,\!182$	-0,558
85	58	750,411	750,932	-0,521
85	57	783,843	$784,\!344$	-0,501
85	56	817,628	818,108	-0,480
85	55	851,762	$852,\!222$	-0,460
85	53	921,060	$921,\!479$	-0,419
85	51	991,706	$992,\!085$	-0,379
85	49	$1063,\!670$	$1064,\!012$	-0,342
85	48	1100, 136	1100,463	-0,327
85	46	1174,023	$1174,\!319$	-0,296
85	44	$1249,\!158$	$1249,\!430$	-0,272
85	43	1287, 185	$1287,\!448$	-0,263
85	42	$1325,\!515$	1325,770	-0,255
85	41	1364, 145	$1364,\!394$	-0,249
85	40	1403,071	1403,316	-0,245
85	39	$1442,\!291$	$1442,\!534$	-0,243
85	37	$1521,\!604$	$1521,\!846$	-0,242
85	36	1561,690	$1561,\!935$	-0,245
85	35	1602,060	$1602,\!309$	-0,249
85	34	1642,710	$1642,\!965$	-0,255
85	32	1724,844	$1725,\!115$	-0,271
85	31	1766,321	1766,603	-0,282
85	30	1808,072	1808,364	-0,292
85	29	1850,091	$1850,\!396$	-0,305
85	27	1934,931	$1935,\!261$	-0,330
85	25	2020,821	2021,179	-0,358
85	24	2064,158	2064,528	-0,370

Quantas de energia experimentais e teóricos para a $46^a v''$ -progressão, com um J'' = 135

Quantas de energia experimentais e teóricos para a 47^a v''-progressão, com um J'' = 143

v _s	\mathbf{v}_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
58	57	33,255	33,234	0,021
58	56	66,867	66,824	0,043
58	54	$135,\!142$	135,053	0,089
58	53	169,796	169,685	$0,\!111$
58	52	204,790	$204,\!657$	$0,\!133$
58	51	$240,\!121$	239,964	$0,\!157$
58	49	311,770	$311,\!574$	$0,\!196$
58	47	384,719	384,487	$0,\!232$
58	46	$421,\!673$	421,423	$0,\!250$
58	45	$458,\!939$	$458,\!674$	$0,\!265$
58	43	$534,\!403$	$534,\!112$	$0,\!291$
58	41	$611,\!085$	610,775	$0,\!310$
58	39	688,963	$688,\!640$	0,323
58	37	$768,\!013$	$767,\!685$	0,328
58	36	$807,\!970$	$807,\!642$	0,328
58	35	$848,\!213$	847,887	0,326
58	34	888,739	888,415	0,324
58	33	$929{,}542$	929,225	$0,\!317$
58	32	$970,\!626$	970,314	0,312
58	30	$1053,\!617$	1053, 320	$0,\!297$
58	28	$1137,\!690$	1137,413	$0,\!277$
58	27	$1180,\!127$	1179,862	$0,\!265$
58	26	$1222,\!829$	$1222,\!575$	$0,\!254$
58	25	1265,793	$1265,\!552$	$0,\!241$
58	24	$1309,\!019$	1308,789	$0,\!230$
58	23	$1352,\!502$	$1352,\!284$	0,218
58	22	$1396{,}244$	1396,036	$0,\!208$
58	21	$1440,\!239$	1440,042	$0,\!197$
58	20	$1484,\!489$	1484,300	$0,\!189$
58	19	$1528,\!989$	1528,808	$0,\!181$
58	18	1573,740	1573,565	$0,\!175$
58	17	1618,739	1618,568	$0,\!171$
58	16	$1663,\!985$	$1663,\!816$	$0,\!169$
58	15	$1709,\!476$	1709,306	$0,\!170$
58	14	$1755,\!210$	$1755,\!036$	$0,\!174$
58	13	$1801,\!187$	1801,006	$0,\!181$
58	12	$1847,\!406$	$1847,\!213$	$0,\!193$
58	11	$1893,\!864$	$1893,\!655$	$0,\!209$
58	10	$1940,\!559$	1940, 330	$0,\!229$
58	8	$2034,\!662$	2034,375	0,287

\mathbf{v}_s	v_i	$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ
75	73	$53,\!299$	$53,\!352$	-0,053
75	72	$80,\!614$	80,687	-0,073
75	71	108,366	108,454	-0,088
75	69	$165,\!152$	$165,\!256$	-0,104
75	68	$194,\!172$	$194,\!280$	-0,108
75	65	$283,\!681$	283,778	-0,097
75	64	314, 313	314,401	-0,088
75	63	345, 334	$345,\!411$	-0,077
75	61	408,527	408,572	-0,045
75	59	$473,\!218$	$473,\!225$	-0,007
75	57	539,368	539,333	0,035
75	56	572,981	$572,\!923$	0,058
75	55	606,943	606,864	0,079
75	54	$641,\!254$	$641,\!152$	0,102
75	53	675,908	675,784	0,124
75	52	710,902	710,756	0,146
75	51	746,233	746,064	0,169
75	50	781,894	781,704	0,190
75	49	817,883	817,674	0,209
75	48	854, 197	853,969	0,228
75	46	927,786	$927,\!522$	0,264
75	45	$965,\!052$	964,774	0,278
75	44	$1002,\!630$	1002,338	0,292
75	43	1040,518	1040,211	0,307
75	42	1078,706	1078,391	0,315
75	40	1155,989	$1155,\!658$	0,331
75	38	1234,455	$1234,\!116$	0,339
75	36	1314,084	1313,742	0,342
75	34	1394,852	$1394,\!515$	0,337
75	33	$1435,\!656$	$1435,\!325$	0,331
75	32	1476,734	1476,414	0,320
75	31	1518,098	1517,780	0,318
75	29	$1601,\!632$	1601,331	0,301
75	27	1686,240	1685,961	0,279
75	25	1771,906	1771,651	0,255

Quantas de energia experimentais e teóricos para a 48^a v''-progressão, com um $J^{\prime\prime}=143$

Quantas	de	energia	experimentais	е	teóricos
para a 49	a v'	″–progre	essão, com um .	J″	= 148

Vs	v_i	$Quanta_{exp}$	Quanta _{teo}	Δ
48	47	$36,\!536$	36,517	0,019
48	46	$73,\!391$	73,354	0,037
48	45	110,562	$110,\!508$	0,054
48	44	148,046	$147,\!976$	0,070
48	43	185,839	185,754	0,085
48	41	262,339	$262,\!232$	0,107
48	40	$301,\!040$	300,924	0,116
48	39	340,039	339,916	0,123
48	38	379,332	$379,\!203$	0,129
48	37	418,916	418,784	0,132
48	36	458,789	$458,\!656$	0,133
48	35	498,949	$498,\!815$	0,134
48	34	539,391	$539,\!260$	0,131
48	32	621, 119	$620,\!994$	0,125
48	31	662, 397	$662,\!279$	0,118
48	30	703,951	703,840	0,111
48	29	745,777	$745,\!673$	0,104
48	28	787,871	787,776	0,095
48	27	830,233	830,148	0,085
48	26	872,861	872,786	0,075
48	25	915,752	$915,\!688$	0,064
48	24	958,905	$958,\!851$	0,054
48	23	$1002,\!316$	$1002,\!273$	0,043
48	22	$1045,\!986$	$1045,\!953$	0,033
48	21	1089, 913	1089,888	0,025
48	20	$1134,\!091$	$1134,\!076$	0,015
48	18	$1223,\!207$	$1223,\!204$	0,003
48	17	$1268,\!139$	$1268,\!139$	0,000
48	16	$1313,\!318$	$1313,\!320$	-0,002
48	15	1358,744	1358,744	0,000
48	13	$1450,\!327$	$1450,\!315$	0,012
48	12	$1496,\!481$	$1496,\!458$	0,023
48	11	$1542,\!877$	$1542,\!837$	0,040
48	10	$1589{,}510$	$1589,\!451$	0,059
48	8	$1683,\!489$	$1683,\!374$	0,115
48	7	$1730,\!832$	$1730,\!680$	0,152
48	6	$1778,\!409$	1778,214	0,195
48	5	$1826,\!219$	$1825,\!974$	0,245
48	3	$1922,\!531$	$1922,\!165$	0,366
48	2	$1971,\!033$	$1970,\!593$	0,440
48	0	2068,719	2068,107	0,612

s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
35	84	$21,\!333$	$21,\!401$	-0,068
35	83	$43,\!198$	43,329	-0,131
35	81	$88,\!480$	88,733	-0,253
35	80	111,882	$112,\!190$	-0,308
35	79	135,780	$136,\!140$	-0,360
35	77	185,034	$185,\!483$	-0,449
85	76	$210,\!374$	$210,\!861$	-0,487
35	75	236,181	236,701	-0,520
35	74	262,445	$262,\!994$	-0,549
85	72	316, 325	$316,\!917$	-0,592
85	71	$343,\!924$	$344,\!533$	-0,609
85	69	400,418	401,043	$-0,\!625$
35	67	$458,\!589$	459,217	-0,628
85	66	488,289	488,914	$-0,\!625$
35	64	548,896	$549{,}502$	-0,606
35	62	611,069	611,647	-0,578
35	61	642,730	643,291	-0,561
35	59	707, 178	707,700	-0,522
35	57	773,094	$773,\!572$	-0,478
35	56	806,591	807,046	-0,455
35	55	840,443	840,873	-0,430
35	54	$874,\!643$	875,050	-0,407
35	53	909,188	909,572	-0,384
35	52	944,077	$944,\!435$	-0,358
35	51	979,300	979,636	-0,336
35	50	1014,858	$1015,\!172$	-0,314
35	49	1050,747	1051,038	-0,291
35	47	1123,494	1123,747	-0,253
35	46	1160,351	1160,584	-0,233
35	45	1197,522	1197,738	-0,216
35	44	1235,006	1235,206	-0,200
35	42	1310,897	1311,071	-0,174
35	41	1349,299	1349,462	-0,163
35	40	1388,000	1388,155	-0,155
35	39	1427,000	1427,147	-0,147
35	37	1505, 876	1506,015	-0,139
35	36	1545,750	1545,886	-0,136
35	35	1585,909	1586,046	-0,137
35	34	1626,352	1626,490	-0.138
35	32	1708,080	1708,225	-0.145
35	31	1749,359	1749,510	-0,151
85	29	1832,737	1832,903	-0.166

Quantas de energia experimentais e teóricos para a $50^a v''$ -progressão, com um J'' = 148

Quantas de energia experimentais e teóricos para a 51^a v''-progressão, com um J'' = 152

Vs	v_i	Quanta _{exp}	Quanta _{teo}	Δ
71	69	56,250	56,267	-0,017
71	67	114,188	114,207	-0,019
71	66	143,777	143,791	-0,014
71	64	204,162	204,158	0,004
71	63	234.948	234.931	0.017
71	61	297.681	297.630	0.051
71	60	329.617	329.547	0.070
71	59	361.928	361.836	0.092
71	57	427.650	427.512	0.138
71	55	494 811	494 624	0.187
71	53	563 376	563 139	0.237
71	51	633 312	633.025	0.287
71	50	668 784	668 474	0,201
71	70 70	704588	704 254	0,310
71	48	704,500 740,717	740 362	0,354
71	40	777 179	776 706	0,355
71	±1 16	813 047	813 551	0,370
71	40	813,947	850.624	0,390
71	40	891,039	890,024	0,410
(1 71	44	000,444	000,012	0,452
(1 71	40	920,139	920,712	0,447
(1 71	42	904,181	903,721	0,400
(1 71	41	1002,508	1002,030	0,472
(1	40	1041,136	1040,653	0,483
(1	39	1080,061	1079,570	0,491
/1 =1	37	1158,796	1158,293	0,503
71	30 97	1198,599	1198,093	0,506
71	35	1238,690	1238,182	0,508
71	34	1279,065	1278,557	0,508
71	33	1319,722	1319,216	0,506
71	32	1360,659	1360,156	0,503
71	31	1401,873	1401,374	0,499
71	30	$1443,\!361$	1442,869	0,492
71	29	$1485,\!123$	1484,637	0,486
71	28	$1527,\!154$	1526,676	0,478
71	27	1569,455	1568,985	0,470
71	26	$1612,\!020$	1611,560	0,460
71	25	$1654,\!851$	1654,400	0,451
71	24	$1697,\!944$	1697,502	0,442
71	23	$1741,\!296$	1740,864	$0,\!432$
71	22	$1784,\!908$	1784,484	0,424
71	20	$1872,\!898$	1872,491	0,407
71	18	$1961,\!900$	$1961,\!504$	0,396
71	17	2006,773	2006,384	0,389
71	16	$2051,\!901$	$2051,\!509$	0,392
71	15	$2097,\!273$	2096,879	0,394
71	14	$2142,\!890$	2142,491	0,399
71	13	2188,749	2188,343	0,406

Vs	Vi	$Quanta_{exp}$	$Quanta_{teo}$	Δ
47	46	36,773	36,755	0,018
47	45	$73,\!865$	73,828	0,037
47	44	$111,\!270$	$111,\!216$	0,054
47	43	$148,\!986$	$148,\!916$	0,070
47	41	$225,\!334$	$225,\!240$	0,094
47	38	$342,\!110$	$341,\!989$	0,121
47	37	$381,\!618$	381,497	0,121
47	35	$461,\!515$	$461,\!386$	0,129
47	32	$583,\!486$	$583,\!360$	0,126
47	31	$624,\!698$	$624,\!578$	$0,\!120$
47	30	$666,\!186$	666,073	$0,\!113$
47	28	$749,\!981$	749,880	0,101
47	26	$834,\!847$	834,764	0,083
47	25	877,678	877,604	0,074
47	23	$964,\!121$	964,068	0,053
47	21	$1051,\!602$	1051,565	0,037
47	20	1095,724	$1095,\!695$	0,029
47	18	1184,726	1184,708	0,018
47	17	$1229,\!603$	1229,588	0,015
47	16	1274,726	1274,713	0,013
47	15	$1320,\!098$	1320,083	0,015
47	13	$1411,\!575$	$1411,\!547$	0,028
47	12	$1457,\!679$	$1457,\!637$	0,042
47	11	$1504,\!020$	1503,965	0,055
47	10	$1550,\!602$	1550,527	0,075
47	8	$1644,\!480$	1644, 349	$0,\!131$
47	7	1691,772	$1691,\!606$	0,166
47	6	$1739,\!301$	1739,091	0,210
47	5	$1787,\!060$	1786,803	0,257
47	3	$1883,\!276$	1882,899	0,377

Quantas de energia experimentais e teóricos para a 52^a $v^{\prime\prime}-{\rm progressão},$ com um $J^{\prime\prime}=152$

Quantas	de	energia	experimentais	е	teóricos
para a 53	$a^a v'$	′–progre	essão, com um	J''	= 160

v_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
78	76	49,333	49,414	-0,081
78	75	74,716	74,831	-0,115
78	69	236,599	$236,\!818$	-0,219
78	66	323,399	$323,\!614$	-0,215
78	64	383,323	$383,\!518$	-0,195
78	63	413,883	414,065	-0,182
78	61	476, 175	$476,\!325$	-0,150
78	58	572,481	$572,\!557$	-0,076
78	56	638,527	$638,\!552$	-0,025
78	55	672,089	$672,\!088$	0,001
78	54	706,008	$705,\!978$	0,030
78	53	740,276	740,218	0,058
78	51	809,844	809,732	0,112
78	50	$845,\!136$	844,999	$0,\!137$
78	49	880,763	880,600	0,163
78	48	916,719	$916{,}531$	0,188
78	46	989,609	989,374	0,235
78	45	$1026,\!535$	$1026,\!278$	0,257
78	43	$1101,\!331$	$1101,\!036$	0,295
78	41	$1177,\!365$	1177,038	0,327
78	40	$1215,\!838$	$1215,\!497$	0,341
78	38	$1293,\!682$	$1293,\!321$	0,361
78	36	$1372,\!705$	$1372,\!329$	0,376
78	35	$1412,\!651$	$1412,\!271$	0,380
78	32	$1534,\!198$	$1533,\!815$	0,383
78	31	$1575,\!275$	$1574,\!893$	0,382
78	30	$1616,\!628$	$1616,\!250$	0,378
78	28	$1700,\!159$	1699,788	0,371
78	27	$1742,\!328$	1741,964	0,364
78	25	$1827,\!467$	$1827,\!119$	0,348
78	24	$1870,\!435$	1870,094	0,341
78	22	$1957,\!153$	$1956,\!826$	0,327
78	21	$2000,\!900$	$2000,\!580$	0,320
78	19	$2089,\!160$	2088,851	0,309
78	18	$2133,\!670$	$2133,\!364$	0,306
78	16	$2223,\!441$	$2223,\!137$	0,304
78	15	2268,700	$2268,\!393$	0,307
78	13	$2359,\!946$	$2359,\!633$	0,313
78	11	$2452,\!173$	$2451,\!833$	0,340
78	10	$2498,\!657$	2498,288	0,369
78	9	$2545,\!367$	$2544,\!978$	0,389
78	8	$2592,\!319$	$2591,\!900$	0,419
78	7	$2639{,}506$	$2639,\!054$	0,452

		_	_	
Vs	v_i	$Quanta_{exp}$	Quanta _{teo}	Δ
61	60	31,469	31,447	0,022
61	58	$95,\!548$	95,475	0,073
61	57	$128,\!149$	128,048	0,101
61	56	$161,\!116$	160,987	0,129
61	54	$228,\!135$	227,946	0,189
61	53	$262,\!177$	261,958	0,219
61	52	$296,\!569$	296,319	$0,\!250$
61	51	$331,\!305$	331,026	0,279
61	50	366, 383	366,074	0,309
61	49	401,798	401,460	0,338
61	47	$473,\!625$	473,232	0,393
61	45	546,757	546,312	0,445
61	44	$583,\!803$	583,335	0,468
61	43	$621,\!164$	620,674	0,490
61	42	$658,\!838$	658,327	0,511
61	41	696,821	696,291	0,530
61	40	$735,\!110$	734,563	0,547
61	39	773,701	773,140	0,561
61	38	812.592	812,018	0.574
61	37	851.781	851.195	0.586
61	36	891.263	890.667	0.596
61	35	931.037	930,434	0.603
61	34	971.101	970,490	0.611
61	33	1011.449	1010.835	0.614
61	32	1052.082	1051.464	0.618
61	31	1092.995	1092.376	0.619
61	30	1134.189	1133.569	0.620
61	29	1175.658	1175.039	0.619
61	$\frac{-5}{28}$	1217.401	1216.784	0.617
61	$\frac{-0}{27}$	1259.415	1258.802	0.613
61	 26	1301.699	1301.090	0.609
61	-0 25	$1344\ 251$	1343 647	0,604
61	20	1387.070	1386 469	0,601
61	21	1430 150	1429 556	0.594
61	22	1473 499	1472 903	0.589
61	$\frac{22}{21}$	1517 095	1516 510	0.585
61	$\frac{2}{20}$	1560 954	1560 375	0.579
61	19	1605.071	1604 494	0.577
61	18	1649 441	1648 866	0.575
61	17	1694.063	1693 /90	0,573
61	16	1738.038	1738 362	0,575
61	15	1784.060	1783 482	0,570
61	10 17	1890 / 21	1898 847	0,570
61	19 19	1875.047	1874 456	0,004
61	10 19	1020 000	1020 205	0,091
61	14 11	1067.013	1066 305	0,004
01 61	11 10	1907,010 2013 250	1900,999 9019 799	0,010
61	0	2019,999 2050.047	2012,722	0,007
01 61	y o	2003,947	2009,200	0,002
01	0	⊿100,773	⊿100,083	0,090

Quantas de energia experimentais e teóricos para a 54^a v''-progressão, com um J'' = 169

Quantas de energia experimentais e teóricos para a 55^a v''-progressão, com um J'' = 169

	ν.	Quanta	Quanta	Δ
$\frac{v_s}{2c}$	25	20 779	20 766	
30 90		39,773	59,700 70,000	0,007
36	34	79,840	79,823	0,017
36	33	120,186	120,167	0,019
36	30	242,926	242,901	0,025
36	24	495,808	$495,\!802$	0,006
36	23	538,880	$538,\!888$	-0,008
36	22	582,229	$582,\!236$	-0,007
36	21	625,831	$625,\!843$	-0,012
36	20	669,692	669,707	-0,015
36	19	713,807	$713,\!826$	-0,019
36	17	802,801	$802,\!822$	-0,021
36	16	847,671	$847,\!695$	-0,024
36	15	892,797	$892,\!815$	-0,018
36	14	938,167	$938,\!180$	-0,013
36	13	983,784	983,788	-0,004
36	12	$1029,\!645$	$1029,\!638$	0,007
36	10	$1122,\!103$	$1122,\!055$	0,048
36	9	$1168,\!684$	$1168,\!618$	0,066
36	8	$1215,\!509$	$1215,\!416$	0,093
36	7	$1262,\!573$	$1262,\!446$	$0,\!127$
36	6	$1309,\!873$	1309,707	0,166
36	5	$1357,\!409$	$1357,\!198$	0,211
36	3	$1453,\!184$	$1452,\!860$	0,324
36	2	$1501,\!417$	$1501,\!028$	0,389
36	1	$1549,\!885$	$1549,\!419$	0,466
36	0	$1598,\!580$	$1598,\!032$	0,548

\mathbf{v}_s	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
61	60	31,321	31,297	0,024
61	58	$95,\!111$	95,033	0,078
61	57	$127,\!570$	$127,\!463$	0,107
61	56	160,399	$160,\!262$	0,137
61	54	$227,\!147$	$226,\!948$	0,199
61	53	$261,\!057$	$260,\!827$	0,230
61	52	$295,\!320$	$295,\!057$	0,263
61	51	$329,\!929$	$329,\!635$	0,294
61	50	$364,\!881$	$364,\!556$	0,325
61	49	$400,\!173$	$399,\!817$	0,356
61	47	471,760	$471,\!344$	0,416
61	45	$544,\!658$	$544,\!187$	0,471
61	44	$581,\!589$	$581,\!093$	0,496
61	43	$618,\!838$	$618,\!318$	0,520
61	42	656,402	$655,\!858$	0,544
61	41	$694,\!275$	693,711	0,564
61	40	$732,\!456$	$731,\!873$	0,583
61	39	770,942	$770,\!341$	0,601
61	38	809,729	$809,\!113$	0,616
61	37	$848,\!814$	848,184	0,630
61	36	$888,\!195$	$887,\!553$	0,642
61	34	$967,\!833$	$967,\!173$	0,660
61	33	$1008,\!085$	1007,418	0,667
61	32	$1048,\!621$	1047,949	0,672
61	31	$1089,\!439$	1088,764	0,675
61	30	$1130{,}538$	1129,861	0,677
61	29	$1171,\!914$	1171,236	0,678
61	28	$1213,\!566$	1212,888	0,678
61	27	$1255,\!490$	$1254,\!814$	0,676
61	26	$1297,\!685$	1297,011	$0,\!674$
61	25	$1340,\!149$	1339,478	0,671
61	24	$1382,\!879$	1382,212	0,667
61	23	$1425,\!873$	1425,211	0,662
61	22	$1469{,}131$	1468,472	0,659
61	21	$1512,\!649$	1511,994	0,655
61	20	$1556,\!428$	1555,774	0,654
61	19	1600,460	1599,810	0,650
61	18	1644,748	1644,100	0,648
61	17	1689,291	1688, 643	0,648
61	16	$1734,\!085$	1733,435	0,650
61	15	$1779,\!129$	1778,476	0,653
61	14	1824,422	1823,763	0,659
61	13	1869,961	1869,294	0,667
61	12	1915,747	1915,067	0,680
61	11	1961,776	1961,082	0,694
61	10	2008,047	2007,335	0,712
61	9	2054,560	2053,824	0,736
61	8	2101,314	2100,550	0,764

Quantas de energia experimentais e teóricos para a 56^a v''-progressão, com um J'' = 174

\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
37	36	39,377	39,369	0,008
37	35	79,052	79,033	0,019
37	34	$119,\!017$	118,988	$0,\!029$
37	30	281,723	$281,\!676$	$0,\!047$
37	26	$448,\!869$	448,827	$0,\!042$
37	24	$534,\!063$	534,028	$0,\!035$
37	23	$577,\!056$	577,027	$0,\!029$
37	21	$663,\!833$	663,810	$0,\!023$
37	20	$707,\!609$	707,590	$0,\!019$
37	19	$751,\!643$	$751,\!626$	$0,\!017$
37	17	$840,\!474$	840,458	$0,\!016$
37	16	$885,\!268$	885,251	$0,\!017$
37	15	$930,\!313$	930,292	0,021
37	13	$1021,\!145$	$1021,\!110$	$0,\!035$
37	12	$1066,\!930$	1066,883	$0,\!047$
37	10	$1159,\!231$	1159, 150	$0,\!081$
37	9	1205,744	$1205,\!640$	$0,\!104$
37	7	$1299,\!492$	1299,324	$0,\!168$
37	6	1346,717	1346,514	0,203

37

37

37

37

5

3

 $\mathbf{2}$

1

 $1394,\!182$

 $1489,\!814$

 $1537,\!981$

1586,378

1393,935

1489,459

1537,560

1585,884

 $0,\!247$

 $0,\!355$

 $0,\!421$

0,494

Quantas de energia experimentais e teóricos

para a 57° $v^{\prime\prime}-{\rm progress}$ ão, com um $J^{\prime\prime}=174$

101

\mathbf{v}_{s}	v_i	$Quanta_{exp}$	$\operatorname{Quanta}_{teo}$	Δ
73	72	25,766	25,787	-0,021
73	71	$52,\!003$	$52,\!038$	-0,035
73	70	78,700	78,745	-0,045
73	69	105,852	$105,\!902$	-0,050
73	68	133,450	$133,\!501$	-0,051
73	66	189,958	$189,\!999$	-0,041
73	65	$218,\!857$	$218,\!886$	-0,029
73	62	308,049	$308,\!024$	0,025
73	60	369,533	369,458	0,075
73	58	$432,\!584$	$432,\!450$	0,134
73	56	497,161	$496,\!960$	0,201
73	55	530,004	529,772	0,232
73	54	$563,\!220$	$562,\!950$	0,270
73	52	630,728	$630,\!386$	0,342
73	49	$734,\!626$	$734,\!175$	0,451
73	47	805,599	$805,\!080$	0,519
73	45	877,904	$877,\!319$	0,585
73	43	951,512	$950,\!864$	0,648
73	39	1102,512	1101,765	0,747
73	37	1179,856	$1179,\!070$	0,786
73	35	1258,399	$1257,\!579$	0,820
73	33	1338, 115	$1337,\!270$	0,845
73	32	1378,408	$1377,\!552$	0,856
73	31	1418,985	$1418,\!121$	0,864
73	28	1542,404	$1541,\!526$	0,878
73	26	1626,068	$1625,\!185$	0,883
73	24	1710,818	$1709,\!933$	0,885

Quantas de energia experimentais e teóricos para a 58^a v''-progressão, com um $J^{\prime\prime}=186$

Quantas de energia experimentais e teóricos para a 59^a v''-progressão, com um J'' = 206

Vs	Vi	$Quanta_{exp}$	$Quanta_{teo}$	Δ
47	46	35,436	$35,\!392$	0,044
47	45	71,209	$71,\!123$	0,086
47	44	$107,\!315$	107,188	$0,\!127$
47	43	143,750	$143,\!584$	$0,\!166$
47	42	$180,\!512$	180,309	$0,\!203$
47	41	$217,\!596$	$217,\!357$	$0,\!239$
47	40	$254,\!999$	254,726	$0,\!273$
47	39	292,718	292,412	$0,\!306$
47	38	330,750	330,413	$0,\!337$
47	37	369,090	368,725	0,365
47	36	407,736	407,344	$0,\!392$
47	35	$446,\!685$	446,269	$0,\!416$
47	34	$485,\!935$	485,496	$0,\!439$
47	33	$525,\!482$	525,021	0,461
47	32	$565,\!333$	564,843	$0,\!490$
47	31	$605,\!455$	604,958	$0,\!497$
47	30	$645,\!877$	645,364	$0,\!513$
47	29	$686,\!585$	686,058	$0,\!527$
47	28	$727,\!575$	727,037	$0,\!538$
47	26	$810,\!399$	809,842	$0,\!557$
47	24	$894,\!330$	893,758	$0,\!572$
47	23	936,704	936, 126	$0,\!578$
47	20	$1065,\!439$	1064,846	$0,\!593$
47	19	$1108,\!880$	1108,283	$0,\!597$
47	18	$1152,\!583$	1151,982	$0,\!601$
47	17	$1196{,}547$	1195,940	$0,\!607$
47	16	1240,768	$1240,\!156$	$0,\!612$
47	15	$1285,\!245$	$1284,\!627$	$0,\!618$
47	14	1329,980	1329,351	$0,\!629$
47	13	$1374,\!963$	1374,326	$0,\!637$
47	12	$1420,\!199$	1419,551	$0,\!648$
47	11	$1465,\!685$	1465,023	$0,\!662$
47	10	1511,420	1510,740	0,680
47	9	1557,399	1556,701	0,698
47	8	1603,627	1602,904	0,723
47	7	1650,094	1649,346	0,748
47	6 -	1696,810	1696,026	0,784
47	5	1743,765	1742,943	0,822
47	3	1838,387	1837,478	0,909
47	1	$1933,\!957$	1932,937	1,020

Vs	v_i	$Quanta_{exp}$	Quanta _{teo}	Δ
44	43	35,479	35,423	0,056
44	42	$71,\!300$	71,189	0,111
44	41	$107,\!457$	$107,\!294$	0,163
44	40	$143,\!948$	143,733	0,215
44	39	180,768	180,503	0,265
44	38	$217,\!915$	$217,\!601$	0,314
44	37	$255,\!382$	$255,\!024$	0,358
44	36	$293,\!169$	292,767	0,402
44	34	$369,\!685$	369,202	0,483
44	33	408,409	407,887	0,522
44	32	$447,\!436$	$446,\!881$	0,555
44	31	486,767	$486,\!179$	0,588
44	28	$606,\!545$	$605,\!873$	0,672
44	27	$647,\!060$	$646,\!361$	0,699
44	26	$687,\!862$	$687,\!140$	0,722
44	25	$728,\!949$	$728,\!207$	0,742
44	23	$811,\!971$	$811,\!194$	0,777
44	22	$853,\!902$	$853,\!109$	0,793
44	21	$896,\!108$	$895,\!301$	0,807
44	20	$938,\!589$	937,769	0,820
44	19	$981,\!342$	980,509	0,833
44	18	$1024,\!365$	$1023,\!520$	0,845
44	17	$1067,\!655$	1066,799	0,856
44	16	$1111,\!210$	1110,344	0,866
44	14	$1199,\!112$	1198,223	0,889
44	13	$1243,\!453$	$1242,\!553$	0,900
44	12	$1288,\!052$	$1287,\!140$	0,912
44	11	$1332,\!908$	1331,982	0,926
44	8	$1468,\!997$	1468,019	0,978
44	7	$1514,\!861$	1513,862	0,999
44	6	$1560,\!974$	1559,950	1,024
44	5	$1607,\!333$	1606,282	1,051
44	4	$1653,\!938$	$1652,\!855$	1,083
44	3	1700,787	1699,668	1,119
44	1	$1795,\!211$	1794,006	1,205
44	0	$1842,\!784$	1841,528	1,256

Quantas de energia experimentais e teóricos para a 60^a v''-progressão, com um J'' = 237

Quantas de energia experimentais e teóricos para a 61^a v''-progressão, com um J'' = 259

Vs	\mathbf{v}_i	$Quanta_{exp}$	$Quanta_{teo}$	Δ
42	41	35,392	$35,\!325$	0,067
42	40	71,130	$70,\!998$	$0,\!132$
42	39	$107,\!208$	107,013	$0,\!195$
42	38	$143,\!626$	143,368	0,258
42	36	$217,\!458$	217,079	0,379
42	35	$254,\!859$	254,429	$0,\!430$
42	34	$292,\!585$	$292,\!103$	0,482
42	33	$330,\!631$	330,098	0,533
42	32	$368,\!993$	368,411	$0,\!582$
42	30	$446,\!649$	445,978	$0,\!671$
42	29	$485,\!936$	485,225	0,711
42	27	$565,\!422$	$564,\!631$	0,791
42	26	$605,\!603$	604,785	0,818
42	24	$686,\!856$	685,978	0,878
42	23	$727,\!916$	727,012	0,904
42	22	769,262	768,334	0,928
42	21	$810,\!893$	809,942	0,951
42	20	$852,\!803$	$851,\!833$	0,970
42	19	$894,\!994$	894,004	$0,\!990$
42	18	$937,\!459$	936,452	1,007
42	17	$980,\!200$	$979,\!176$	1,024
42	15	$1066,\!495$	1065,441	$1,\!054$
42	14	$1110,\!045$	1108,978	1,067
42	13	$1153,\!860$	1152,780	$1,\!080$
42	12	$1197,\!940$	1196,846	$1,\!094$
42	11	$1242,\!281$	$1241,\!174$	$1,\!107$
42	10	$1286,\!883$	1285,762	$1,\!121$
42	9	$1331,\!742$	$1330,\!606$	$1,\!136$
42	7	$1422,\!230$	1421,060	$1,\!170$
42	6	$1467,\!854$	$1466,\!665$	$1,\!189$
42	5	1513,731	$1512,\!519$	$1,\!212$
42	4	$1559,\!856$	$1558,\!621$	$1,\!235$
42	3	$1606,\!230$	1604,968	1,262
42	2	$1652,\!851$	$1651,\!559$	$1,\!292$
42	1	1699,719	1698, 392	1,327
42	0	$1746,\!830$	$1745,\!465$	1,365

Referências Bibliográficas

- DULIEU, O.; GABBANINI, C. The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics. *Reports on Progress in Physics*, v. 72, n. 8, p. 086401, 2009. Disponível em: .
- [2] CARR, L. D. et al. Cold and ultracold molecules: science, technology and applications. New Journal of Physics, v. 11, n. 5, p. 055049, 2009. Disponível em: http://stacks.iop.org/1367-2630/11/i=5/a=055049>.
- [3] MENEGATTI, C.; MARANGONI, B.; MARCASSA, L. A review on the formation of heteronuclear cold molecules. Laser Physics, MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC., v. 18, p. 1305-1311, 2008. ISSN 1054-660X. 10.1134/S1054660X08110169. Disponível em: http://dx.doi.org/10.1134/S1054660X08110169>.
- [4] COXON, J. A.; HAJIGEORGIOU, P. G. Isotopic dependence of Born-Oppenheimer breakdown effects in diatomic hydrides: The X¹Σ⁺ states of HI/DI and HBr/DBr. Journal of Molecular Spectroscopy, v. 150, n. 1, p. 1–27, 1991. ISSN 0022-2852. Disponível em: http://www.sciencedirect.com/science/article/B6WK8-4CRHG9V-6S/2/4ecd1a7cba1b72fb359a6d55d961cd70>.
- [5] COXON, J. A.; HAJIGEORGIOU, P. G. On the direct determination of analytical diatomic potential energy functions from spectroscopic data: the X¹Σ⁺ electronic states of NaF, LiI, CS, and SiS. *Chemical Physics*, v. 167, n. 3, p. 327–340, 1992. ISSN 0301-0104. Disponível em: http://www.sciencedirect.com/science/article/B6TFM-44GPBR7-H0/2/84207643d5f803bc13876b0afc6a4d35>.
- [6] COXON, J. A.; HAJIGEORGIOU, P. G. Experimental Born-Oppenheimer Potential for the $X^{1}\Sigma^{+}$ Ground State of HeH⁺: Comparison with the Ab Initio Po-

tential. Journal of Molecular Spectroscopy, v. 193, n. 2, p. 306–318, 1999. ISSN 0022-2852. Disponível em: http://www.sciencedirect.com/science/article/B6WK8-45FKSYB-81/2/8f193bda2bb103fb3d4224beecb15c8e.

- [7] BRUHL, R.; KAPETANAKIS, J.; ZIMMERMANN, D. Determination of the Na-Kr interaction potential in the XΣ and AΠ state by laser spectroscopy. The Journal of Chemical Physics, AIP, v. 94, n. 9, p. 5865–5874, 1991. Disponível em: http://link.aip.org/link/?JCP/94/5865/1>.
- [8] HEDDERICH, H. G.; DULICK, M.; BERNATH, P. F. High resolution emission spectroscopy of alcl at 20 mu. The Journal of Chemical Physics, AIP, v. 99, n. 11, p. 8363-8370, 1993. Disponível em: http://link.aip.org/link/?JCP/99/8363/1>.
- [9] GRABOW, J.-U. et al. Rotational spectra and van der waals potentials of ne-ar. The Journal of Chemical Physics, AIP, v. 102, n. 3, p. 1181-1187, 1995. Disponível em: http://link.aip.org/link/?JCP/102/1181/1>.
- [10] SETO, J. Y. et al. Vibration-rotation emission spectra and combined isotopomer analyses for the coinage metal hydrides: Cuh & cud, agh & agd, and auh & aud. The Journal of Chemical Physics, AIP, v. 110, n. 24, p. 11756–11767, 1999. Disponível em: http://link.aip.org/link/?JCP/110/11756/1>.
- [11] SETO, J. Y. et al. Direct potential fit analysis of the x [sup 1] sigma[sub g][sup +] state of rb[sub 2]: Nothing else will do! *The Journal of Chemical Physics*, AIP, v. 113, n. 8, p. 3067–3076, 2000. Disponível em: ">http://link.aip.org/link/?JCP/113/3067/1>.
- [12] HUANG, Y.; ROY, R. J. L. Potential energy, lambda doubling and born-oppenheimer breakdown functions for the b [sup 1] pi[sub u] "barrier" state of li[sub 2]. The Journal of Chemical Physics, AIP, v. 119, n. 14, p. 7398-7416, 2003. Disponível em: http://link.aip.org/link/?JCP/119/7398/1>.
- [13] ROY, R. J. L. Algebraic vs. numerical methods for analysing diatomic spectral data: a resolution of discrepancies. *Journal of Molecular Spectroscopy*, v. 228, n. 1, p. 92 – 104, 2004. ISSN 0022-2852. Disponível em: http://www.sciencedirect.com/science/article/pii/S0022285204002280>.
- [14] ROY, R. J. L. et al. Direct-potential-fit analysis of new infrared and uv/visible a [sup 1] sigma[sup +]-x [sup 1] sigma[sup +] emission spectra of agh and agd. The

Journal of Chemical Physics, AIP, v. 123, n. 20, p. 204304, 2005. Disponível em: http://link.aip.org/link/?JCP/123/204304/1>.

- [15] COXON, J. A.; MELVILLE, T. C. Application of direct potential fitting to line position data for the and states of li2. *Journal of Molecular Spectroscopy*, v. 235, n. 2, p. 235 – 247, 2006. ISSN 0022-2852. Disponível em: http://www.sciencedirect.com/science/article/pii/S0022285205002869>.
- [16] ROY, R. J. L.; HUANG, Y.; JARY, C. An accurate analytic potential function for ground-state n[sub 2] from a direct-potential-fit analysis of spectroscopic data. *The Journal of Chemical Physics*, AIP, v. 125, n. 16, p. 164310, 2006. Disponível em: http://link.aip.org/link/?JCP/125/164310/1>.
- [17] BIZZOCCHI, L. et al. The rotational spectra, potential function, bornoppenheimer breakdown, and magnetic shielding of snse and snte. The Journal of Chemical Physics, AIP, v. 126, n. 11, p. 114305, 2007. Disponível em: http://link.aip.org/link/?JCP/126/114305/1>.
- [18] LI, D. et al. New observation of the ${}^{6}li^{7}li \ 3^{3}\sigma_{g}^{+}$, $1^{3}\delta_{g}$, and $2^{3}\pi_{g}$ states and molecular constants with all ${}^{6}li_{2}$, ${}^{7}li_{2}$, and ${}^{6}li^{7}li$ data. Journal of Molecular Spectroscopy, v. 246, n. 2, p. 180 186, 2007. ISSN 0022-2852. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0022285207002305>.
- [19] OGILVIE, J. Radial functions of lih x¹σ from vibration-rotational spectra. Journal of Molecular Spectroscopy, v. 148, n. 1, p. 243 – 249, 1991. ISSN 0022-2852. Disponível em: http://www.sciencedirect.com/science/article/pii/002228529190050K>.
- arh^+ $x^1 \sigma^+$ [20] OGILVIE, J. Radial functions of the molecular cation Molecular Spectroscopy, from vibration-rotational spectra. Journal of 156. 1, 8 14, 1992. ISSN 0022-2852. v. n. p. — Disponível em: <http://www.sciencedirect.com/science/article/pii/0022285292900886>.
- [21] OGILVIE, J. Spectroscopic energy coefficients for vibration-rotational states dinuclear molecules. **Physics** Communications, of Computer 30,1, p. 101 - 105,1983.ISSN 0010-4655.Disponível em: v. n. http://www.sciencedirect.com/science/article/pii/0010465583901273>.
- [22] OGILVIE, J. An analytic representation of the radial dependence of adiabatic and non-adiabatic corrections from molecular spectra of diatomic molecules. *Chemical Phy-*

sics Letters, v. 140, n. 5, p. 506 – 511, 1987. ISSN 0009-2614. Disponível em: <http://www.sciencedirect.com/science/article/pii/0009261487804773>.

- [23] OGILVIE, J. F. Quantitative analysis of adiabatic and non-adiabatic effects in the vibration-rotational spectra of diatomic molecules. *Journal of Physics B: Atomic, Molecular and Optical Physics*, v. 27, n. 1, p. 47, 1994. Disponível em: http://stacks.iop.org/0953-4075/27/i=1/a=011.
- [24] OGILVIE, J.; LIAO, S. Electric and magnetic molecular properties from analysis of vibration-rotational spectral data of samples measured without applied fields application to gah x¹σ⁺. Chemical Physics Letters, v. 226, n. 3–4, p. 281–288, 1994. ISSN 0009-2614. Disponível em: http://www.sciencedirect.com/science/article/pii/0009261494007322>.
- [25] TIEMANN, E.; OGILVIE, J. Adiabatic and nonadiabatic effects in vibrationrotational spectra of diatomic molecules. Journal of Molecular Spectroscopy, v. 165, n. 2, p. 377 – 392, 1994. ISSN 0022-2852. Disponível em: http://www.sciencedirect.com/science/article/pii/S0022285284711416>.
- [26] OGILVIE, J.; MOLSKI, M. A comparison of approaches for reduction of vibration-rotational spectra of nacl x¹σ⁺ to parameters of radial functions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 55, n. 7–8, p. 1427 – 1437, 1999. ISSN 1386-1425. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1386142598003138>.
- [27] RYDBERG, R. Graphische Darstellung einiger bandenspektroskopischer Ergebnisse. Zeitschrift für Physik A Hadrons and Nuclei, Springer Berlin / Heidelberg, v. 73, p. 376-385, 1932. ISSN 0939-7922. 10.1007/BF01341146. Disponível em: http://dx.doi.org/10.1007/BF01341146>.
- [28] KLEIN, O. Zur Berechnung von Potentialkurven für zweiatomige Moleküle mit Hilfe von Spektraltermen. Zeitschrift für Physik A Hadrons and Nuclei, Springer Berlin / Heidelberg, v. 76, p. 226–235, 1932. ISSN 0939-7922. 10.1007/BF01341814. Disponível em: http://dx.doi.org/10.1007/BF01341814>.
- [29] REES, A. L. G. The calculation of potential-energy curves from band-spectroscopic data. Proceedings of the Physical Society, v. 59, n. 6, p. 998-1008, 1947. Disponível em: http://stacks.iop.org/0959-5309/59/i=6/a=310>.

- [30] KOSMAN, W. HINZE, J. Inverse Im-M.; perturbation analysis: proving $_{\mathrm{the}}$ accuracy ofpotential energy curves. Journal of Molecular n. 1, p. 93–103, 1975.ISSN 0022 - 2852. Disponí-Spectroscopy, v. 56.vel <http://www.sciencedirect.com/science/article/B6WK8-4CRGBY9em: N0/2/cb6dbe5eafd8b6065ccc531798e807c3>.
- [31] VIDAL, C. R.; SCHEINGRABER, H. Determination of diatomic molecular constants using an inverted perturbation approach : Application to the system of Mg₂. Journal of Molecular Spectroscopy, v. 65, n. 1, p. 46-64, 1977. ISSN 0022-2852. Disponível em: http://www.sciencedirect.com/science/article/B6WK8-4CRGDKK-154/2/a2413761f245d1d6689d3e28e94891c8>.
- [32] HARTKE, B. Application of evolutionary algorithms to global cluster geometry optimization. In: JOHNSTON, R. L. (Ed.). Applications of Evolutionary Computation in Chemistry. Springer Berlin / Heidelberg, 2004, (Structure & Bonding, v. 110). p. 33-53. ISBN 978-3-540-40258-9. 10.1007/b13932. Disponível em: http://dx.doi.org/10.1007/b13932>.
- [33] COX, G. A. et al. Development and optimisation of a novel genetic algorithm for studying model protein folding. *Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)*, Springer Berlin / Heidelberg, v. 112, p. 163-178, 2004. ISSN 1432-881X. 10.1007/s00214-004-0601-4. Disponível em: http://dx.doi.org/10.1007/s00214-004-0601-4.
- [34] KOSKOWSKI, F.; HARTKE, B. Towards protein folding with evolutionary techniques. Journal of Computational Chemistry, Wiley Subscription Services, Inc., A Wiley Company, v. 26, n. 11, p. 1169–1179, 2005. ISSN 1096-987X. Disponível em: http://dx.doi.org/10.1002/jcc.20254>.
- [35] DEAVEN, D. M.; HO, K. M. Molecular geometry optimization with a genetic algorithm. *Phys. Rev. Lett.*, American Physical Society, v. 75, p. 288–291, Jul 1995. Disponível em: http://link.aps.org/doi/10.1103/PhysRevLett.75.288>.
- [36] ZEIRI, Y. Prediction of the lowest energy structure of clusters using a genetic algorithm. *Phys. Rev. E*, American Physical Society, v. 51, p. R2769–R2772, Apr 1995. Disponível em: http://link.aps.org/doi/10.1103/PhysRevE.51.R2769>.

- [37] NIESSE, J. A.; MAYNE, H. R. Global optimization of atomic and molecular clusters using the space-fixed modified genetic algorithm method. *Journal of Computational Chemistry*, John Wiley & Sons, Inc., v. 18, n. 9, p. 1233–1244, 1997. ISSN 1096-987X. Disponível em: <a href="http://dx.doi.org/10.1002/(SICI)1096-987X(19970715)18:9<1233::AID-JCC11>3.0.CO;2-6>.
- [38] HARTKE, B. Global cluster geometry optimization by a phenotype algorithm with niches: Location of elusive minima, and low-order scaling with cluster size. *Jour*nal of Computational Chemistry, John Wiley & Sons, Inc., v. 20, n. 16, p. 1752– 1759, 1999. ISSN 1096-987X. Disponível em: <a href="http://dx.doi.org/10.1002/(SICI)1096-987X(199912)20:16<1752::AID-JCC7>3.0.CO;2-0>.
- [39] JOHNSTON, R. L. Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. *Dalton Trans.*, The Royal Society of Chemistry, p. 4193-4207, 2003. Disponível em: http://dx.doi.org/10.1039/B305686D>.
- [40] LLOYD, L. D.; JOHNSTON, R. L.; SALHI, S. Strategies for increasing the efficiency of a genetic algorithm for the structural optimization of nanoalloy clusters. *Journal of Computational Chemistry*, Wiley Subscription Services, Inc., A Wiley Company, v. 26, n. 10, p. 1069–1078, 2005. ISSN 1096-987X. Disponível em: http://dx.doi.org/10.1002/jcc.20247>.
- [41] PEREIRA, F. et al. Analysis of locality in hybrid evolutionary cluster optimization.
 In: Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. [S.l.: s.n.], 2006. p. 2285 -2292.
- [42] PEREIRA, F.; MARQUES, J. A study on diversity for cluster geometry optimization. Evolutionary Intelligence, Springer Berlin / Heidelberg, v. 2, p. 121-140, 2009. ISSN 1864-5909. 10.1007/s12065-009-0020-5. Disponível em: http://dx.doi.org/10.1007/s12065-009-0020-5.
- [43] MARQUES, PEREIRA, F. An evolutionary algorithm J.; for global minimum search of binary atomic clusters. Chemical Physics Letters, v. 485, n. 1–3, p. 211 – 216, 2010. ISSN 0009-2614. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0009261409014985>.
- [44] LLANIO-TRUJILLO, J. L.; MARQUES, J. M. C.; PEREIRA, F. B. An evolutionary algorithm for the global optimization of molecular clusters: Application to water, benzene,

and benzene cation. The Journal of Physical Chemistry A, v. 115, n. 11, p. 2130–2138, 2011. Disponível em: http://pubs.acs.org/doi/abs/10.1021/jp1117695>.

- [45] HENNESSY, M. H.; KELLEY, A. M. Using real-valued multi-objective genetic algorithms to model molecular absorption spectra and raman excitation profiles in solution. *Phys. Chem. Chem. Phys.*, The Royal Society of Chemistry, v. 6, p. 1085–1095, 2004. Disponível em: http://dx.doi.org/10.1039/B315893D>.
- [46] MEERTS. W. L.; SCHMITT, Μ. Application of genetic algorithms in automated assignments of high-resolution spectra. International Reviews in Physical Chemistry, v. 25, n. 3, p. 353-406, 2006. Disponível em: http://www.tandfonline.com/doi/abs/10.1080/01442350600785490>.
- [47] HAGEMAN, J. A. et al. Direct determination of molecular constants from rovibronic spectra with genetic algorithms. *The Journal of Chemical Physics*, AIP, v. 113, n. 18, p. 7955-7962, 2000. Disponível em: http://link.aip.org/link/?JCP/113/7955/1>.
- [48] SZYDłOWSKA, I.; MYSZKIEWICZ, G.; MEERTS, W. L. Structure of tetracene-argon and tetracene-krypton complexes from high resolution laser experiments at 450 nm. *Chemical Physics*, v. 283, n. 1-2, p. 371 – 377, 2002. ISSN 0301-0104. Disponível em: http://www.sciencedirect.com/science/article/pii/S0301010402005025>.
- [49] SCHMITT, M. et al. Structural selection by microsolvation: conformational locking of tryptamine. Journal of the American Chemical Society, v. 127, n. 29, p. 10356–10364, 2005. PMID: 16028948. Disponível em: http://pubs.acs.org/doi/abs/10.1021/ja0522377>.
- [50] MEERTS, W. L.; SCHMITT, M. A new automated assign and analysing method for high-resolution rotationally resolved spectra using genetic algorithms. *Physica Scripta*, v. 73, n. 1, p. 47, 2006. Disponível em: http://stacks.iop.org/1402-4896/73/i=1/a=N09.
- [51] METZGER, G. J.; PATEL, M.; HU, X. Application of genetic algorithms to spectral quantification. Journal of Magnetic Resonance, Series B, v. 110, n. 3, p. 316 – 320, 1996. ISSN 1064-1866. Disponível em: http://www.sciencedirect.com/science/article/pii/S1064186696900503>.
- [52] DODS, J.; GRUNER, D.; BRUMER, P. A genetic algorithm approach to fitting polyatomic spectra via geometry shifts. *Chemical Physics Let*-

ters, v. 261, n. 6, p. 612 – 619, 1996. ISSN 0009-2614. Disponível em: <http://www.sciencedirect.com/science/article/pii/0009261496010093>.

- [53] AHONEN, H.; JúNIOR, P. A. de S.; GARG, V. K. A genetic algorithm for fitting lorentzian line shapes in mössbauer spectra. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 124, n. 4, p. 633 – 638, 1997. ISSN 0168-583X. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0168583X97001079>.
- [54] WELSER, L. et al. Multi-objective spectroscopic analysis of core gradients: Extension from two to three objectives. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 99, n. 1–3, p. 649 – 657, 2006. ISSN 0022-4073. <ce:title>Radiative Properties of Hot Dense Matter</ce:title>. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0022407305001834>.
- [55] ÖZDEMIR, D. of Near infrared spectroscopic determination diesel multivariate fuel parameters using genetic calibration. Petroleum Sciand Technology, v. 26, 1, p. 101 - 113, 2008.Disponível encen. em: <http://www.tandfonline.com/doi/abs/10.1080/10916460600705824>.
- [56] FELLOWS, C. E. The NaLi 1¹Σ⁺ (X) electronic ground-state dissociation limit . The Journal of Chemical Physics, AIP, v. 94, n. 9, p. 5855–5864, 1991. Disponível em: <http://link.aip.org/link/?JCP/94/5855/1>.
- [57] ALMEIDA, M. M. Um estudo teórico da molécula NaLi usando metodologias ab initio. Dissertação (Mestrado) — Universidade Federal da Bahia, 2007. Disponível em: http://www.pgif.ufba.br>.
- [58] MARQUES, J. M. C. et al. A new genetic algorithm to be used in the direct fit of potential energy curves to ab initio and spectroscopic data. *Journal of Physics B: Atomic, Molecular and Optical Physics*, v. 41, n. 8, p. 085103, 2008. Disponível em: http://stacks.iop.org/0953-4075/41/i=8/a=085103>.
- [59] ALMEIDA, M. M. et al. Direct fit of spectroscopic data of diatomic molecules by using genetic algorithms: II. The ground state of RbCs. Journal of Physics B: Atomic, Molecular and Optical Physics, v. 44, n. 22, p. 225102, 2011. Disponível em: http://stacks.iop.org/0953-4075/44/i=22/a=225102>.

- [60] ABREU, P.; MARQUES, J.; PEREIRA, F. Electronic structure calculations on the ar-c6h12 interaction: Application to the microsolvation of the chair conformer. Computational and Theoretical Chemistry, v. 975, n. 1-3, p. 83 - 91, 2011. ISSN 2210-271X. <ce:title>Electronic Structure: Principles and Applications. From basic theory</ce:title> <xocs:full-name>The 7th Congress on Electronic Structure: Principles and Applications (ESPA-2010)</xocs:full-name>. Disponível em: <http://www.sciencedirect.com/science/article/pii/S2210271X11000971>.
- [61] NOGUEIRA, J. J. et al. Intermolecular potentials for simulations of collisions of sincs+ and (ch3)2sincs+ ions with fluorinated self-assembled monolayers. *Chemical Physics*, n. 0, p. -, 2011. ISSN 0301-0104. Disponível em: http://www.sciencedirect.com/science/article/pii/S0301010411000747>.
- [62] MOHALLEM J. R. E PRUDENTE, F. V. Métodos além da aproximação Born-Oppenheimer em Métodos de Química Teórica e Modelagem Molecular. [S.l.]: Editora Livraria da Física, 2007.
- [63] BORN, M.; OPPENHEIMER, R. Zur Quantentheorie der Molekeln. Annalen der Physik, WILEY-VCH Verlag, v. 389, n. 20, p. 457–484, 1927. ISSN 1521-3889. Disponível em: http://dx.doi.org/10.1002/andp.19273892002>.
- [64] BORN, M.; HUANG, K. Dynamical Theory of Cristal Lattices. [S.I.]: Oxford University Press, 1956.
- [65] WENTZEL, G. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Zeits.f. Physik, v. 38, p. 518–519, 1926.
- [66] KRAMERS, H. A. Wellenmechanik und halbzahlige Quantisierung. Zeits. f. Physik, v. 39, p. 828–840, 1926.
- [67] BRILLOUIN, L. La mécanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives. *Computes Rendus*, v. 183, p. 24–26, 1926.
- [68] OLIVEIRA, E. C. Funções Especiais com Aplicações. [S.l.]: Editora Livraria da Física, 2005.
- [69] HERZBERG, G. Molecular Spectra and Molecular Structure: vol. 1- Spectra of Diatomics Molecule. [S.l.]: Van Nostrand Reinhold, 1950.

- [70] DUNHAM, J. L. The Wentzel-Brillouin-Kramers Method of Solving the Wave Equation.
 Phys. Rev., American Physical Society, v. 41, n. 6, p. 713–720, Sep 1932. Disponível em:
 http://prola.aps.org/abstract/PR/v41/i6/p713_1.
- [71] DUNHAM, J. L. The Energy Levels of a Rotating Vibrator. *Phys. Rev.*, American Physical Society, v. 41, n. 6, p. 721–731, Sep 1932. Disponível em: http://prola.aps.org/abstract/PR/v41/i6/p721_1.
- [72] SETO, J. Y. Direct Fitting of Analytical Potential Functions to Diatomic Molecular Spectroscopic. Dissertação (Mestrado) — Waterllo University, 2000.
- [73] VARANDAS, A.; RODRIGUES, S.; BATISTA, V. Direct fit of extended Hartree-Fock approximate correlation energy model to spectroscopic data. *Chemical Physics Letters*, v. 424, n. 4-6, p. 425–431, 2006. ISSN 0009-2614. Disponível em: http://www.sciencedirect.com/science/article/B6TFN-4JV448G-D/2/c88d627357216c5f75babe90fe38ff6f>.
- [74] PATKOWSKI KONRAD, Μ. G. F. C.-M.; SZALEWICZ, Κ. Accuab initio potential for argon dimer including highly repulsive rate region. Molecular Physics, ν. 103,p. 2031 - 2045, 2005.Disponível em: http://www.informaworld.com/10.1080/00268970500130241>.
- [75] BERNATH, P. F. Handbook of Molecular Physics and Quantum Chemistry. [S.I.]: John Wiley & Sons, Ltd, 2002.
- [76] FELLOWS, C. E. et al. The RbCs X¹Σ⁺ Ground Electronic State: New Spectroscopic Study. Journal of Molecular Spectroscopy, v. 197, n. 1, p. 19–27, 1999. ISSN 0022-2852. Disponível em: http://www.sciencedirect.com/science/article/B6WK8-45FKSMH-2Y/2/b3d78ddd96db90505f9ee1beeb8ba966>.
- [77] MIRANDA, B. K. C. Variação do Momento de Transição Eletrônico do sistema A¹Σ⁺-X¹Σ⁺ da Molécula NaLi. Dissertação (Mestrado) — Universidade Federal Fluminense, 2007.
- [78] NOCEDAL, J. Updating quasi-Newton matrices with limited storage. Math. Comp., v. 35, n. 151, p. 773-782, 1980. ISSN 0025-5718. Disponível em: http://dx.doi.org/10.2307/2006193>.

- [79] LIU, D. C.; NOCEDAL, J. On the limited memory BFGS method for large scale optimization. *Mathematical Programming*, Springer Berlin / Heidelberg, v. 45, p. 503-528, 1989. ISSN 0025-5610. 10.1007/BF01589116. Disponível em: http://dx.doi.org/10.1007/BF01589116>.
- [80] HERRERA, F.; LOZANO, VERDEGAY, J. L. М.; Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis. Artificial Intelligence Review, v. 12, p. 265–319, 1998. Disponível em: <http://www.ingentaconnect.com/content/klu/aire/1998/00000012/00000004/00109961>.
- [81] FEYNMAN, R. Ρ. Forces inMolecules. Phys. Rev., American Physical 56, 4, 1939. Society, v. n. p. 340 - 343, Aug Disponível em: <http://prola.aps.org/abstract/PR/v56/i4/p340 1>.
- [82] DEB, K.; AGRAWAL, R. B. Simulated Binary Crossover for Continuous Search Space. Complex Systems, v. 9, n. 2, p. 115–148, 1995. Disponível em: http://www.complex-systems.com/pdf/09-2-2.pdf>.
- [83] DEB, K.; BEYER, H.-G. Self-Adaptive Genetic Algorithms with Simulated Binary Crossover. Evolutionary Computation, v. 9, n. 2, p. 197–221, 2001. Disponível em: http://www.mitpressjournals.org/doi/abs/10.1162/106365601750190406>.
- [84] FELLOWS, C. E.; VERGèS, J.; AMIOT, C. The NaLi electronic ground state studiedby laser induced fluorescence and Fourier transform spectroscopy. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, v. 63, n. 6, p. 1115–1122, 1988. Disponível em: http://www.tandfonline.com/doi/abs/10.1080/00268978800100811>.
- [85] GUSTAVSSON, T.; AMIOT, C.; VERGèS, J. LIF spectroscopy of RbCs using an Ar+ laser. Rotational analysis of the ¹Σ⁺ ground state for ν" up to 66. Chemical Physics Letters, v. 143, n. 1, p. 101–105, 1988. ISSN 0009-2614. Disponível em: http://www.sciencedirect.com/science/article/B6TFN-44KWS17-T0/2/644ef897f38cef46a516bf1d132b0bfd>.
- [86] GUSTAVSSON, T.; AMIOT, C.; VERGèS, J. Spectroscopic investigations of the diatomic molecule RbCs by means of laser-induced fluorescence - I. Rotational analysis of the ¹Σ⁺ ground state up to near dissociation. Molecular Physics: An International Journal

at the Interface Between Chemistry and Physics, v. 64, n. 2, p. 279–292, 1988. Disponível em: http://www.informaworld.com/10.1080/00268978800100223>.

- [87] HARRIS, D. O.; ENGERHOLM, G. G.; GWINN, W. D. Calculation of Matrix Elements for One-Dimensional Quantum-Mechanical Problems and the Application to Anharmonic Oscillators. *The Journal of Chemical Physics*, AIP, v. 43, n. 5, p. 1515–1517, 1965. Disponível em: ">http://link.aip.org/link/?JCP/43/1515/1>.
- [88] LIGHT, J. C.; HAMILTON, I. P.; LILL, J. V. Generalized discrete variable approximation in quantum mechanics. *The Journal of Chemical Physics*, AIP, v. 82, n. 3, p. 1400–1409, 1985. Disponível em: ">http://link.aip.org/link/?JCP/82/1400/1>.
- [89] PAVOLINI, D. et al. Theoretical study of the excited states of the heavier alkali dimers. I. The RbCs molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, v. 22, n. 11, p. 1721–1731, 1989. Disponível em: http://stacks.iop.org/0953-4075/22/i=11/a=007>.
- [90] ALLOUCHE, A. R. et al. Theoretical electronic structure of RbCs revisited. Journal of Physics B: Atomic, Molecular and Optical Physics, v. 33, n. 12, p. 2307-2316, 2000. Disponível em: http://stacks.iop.org/0953-4075/33/i=12/a=312.
- Η. [91] MARGENAU, Van der waals forces. Rev.Mod. Phys.,American Physical Society, v. 11, n. 1, p. 1–35, Jan 1939.Disponível em: <http://rmp.aps.org/abstract/RMP/v11/i1/p1_1>.
- [92] MARINESCU, M.; SADEGHPOUR, H. R. Long-range potentials for two-species alkalimetal atoms. *Phys. Rev. A*, American Physical Society, v. 59, n.1, p. 390–404, Jan 1999. Disponível em: http://pra.aps.org/abstract/PRA/v59/i1/p390_1>.
- [93] PATIL, S. H.; TANG, K. T. Multipolar polarizabilities and two- and threebody dispersion coefficients for alkali isoelectronic sequences. *The Journal of Chemical Physics*, AIP, v. 106, n. 6, p. 2298–2305, 1997. Disponível em: http://link.aip.org/link/?JCP/106/2298/1>.
- [94] BUSSERY, B.; ACHKAR, Y.; AUBERT-FRéCON, M. Long-range molecular states dissociating to the three or four lowest asymptotes for the ten heteronuclear diatomic alkali molecules. *Chemical Physics*, v. 116, n. 3, p. 319 – 338, 1987. ISSN 0301-0104. Disponível em: http://www.sciencedirect.com/science/article/pii/0301010487802021>.

- [95] DALGARNO, A.; DAVISON, W. D. Long-range interactions of alkali metals. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, v. 13, n. 5, p. 479–486, 1967. Disponível em: http://www.informaworld.com/10.1080/00268976700101371>.
- [96] LE ROY, R. J. Long-Range Potential Coefficients From RKR Turning Points: C₆ and C₈ for B(3IIOu+)-State Cl₂, Br₂ and I₂. Canadian Journal of Physics, v. 52, n. 3, p. 246-256, 1974. Disponível em: http://www.nrcresearchpress.com/doi/abs/10.1139/p74-035>.
- [97] THAKKAR, A. J. High dispersion coefficients: Accurate values for hydrogen atoms and simple estimates for other systems. *The Journal of Chemical Physics*, AIP, v. 89, n. 4, p. 2092–2098, 1988. Disponível em: http://link.aip.org/link/?JCP/89/2092/1>.
- [98] MULDER, F.; THOMAS G. F; MEATH W. J. A critical study of some methods for evaluating the C₆, C₈ and C₁₀ isotropic dispersion energy coefficients using the first row hydrides, CO, CO₂ and N₂O as models. *Molecular Physics: An International Journal at the Interface Between Chemistry and Physics*, v. 41, n. 2, p. 249–269, 1980. Disponível em: http://www.tandfonline.com/doi/pdf/10.1080/00268978000102751>.
- [99] DICKINSON, A. S.; CERTAIN, P. R. Calculation of Matrix Elements for One-Dimensional Quantum-Mechanical Problems. TheJournal of Chemical Physics, AIP, v. 49, n. 9, p. 4209-4211, 1968.Disponível em: <http://link.aip.org/link/?JCP/49/4209/1>.
- [100] PRUDENTE, F. V.; RIGANELLI, A.; VARANDAS, A. J. C. The discrete variable representation method for bound state eigenvalues and eigenfunctions. *REVISTA ME-XICANA DE FISICA*, SOCIEDAD MEXICANA DE FISICA, APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO, v. 47, n. 6, p. 568–575, 2001. ISSN 0035-001X.