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Abstract
This thesis focus on the magnetic behavior, from single atoms to bulk materials.
The materials considered in this thesis have been studied by computational methods
based on ab initio theory, density functional theory (DFT), including treatment of
the spin-orbit coupling, non-collinear magnetism, and methods capable of treating
disorded systems. Furthermore strongly correlated materials have been investigated
using the dynamical mean field theory (DMFT). The uniaxial magnetic anisotropy
energy (MAE) of the Fe2P was investigated using the full-potential linear muffin tin
orbital (FP-LMTO) method. Based on a band structure analysis, the microscopi-
cal origin of the large magnetic anisotropy found for this system is explained. It is
also shown that by straining the crystal structure, the MAE can be enhanced fur-
ther. This opens up for the possibility of obtaining a room temperature permanent
magnet based on the Fe2P . The spectral properties of Fe impurities in a Cs host
have been investigated, for both surface and bulk systems, by means of combination
of density-functional theory in the local density approximation and the dynamical
mean-field theory (LDA+DMFT), using two different impurity solvers, the Hubbard
I approximation (HIA) and the Exact Diagonalization (ED) method. It is shown that
noticeable differences can be seen in the unoccupied part of the spectrum for different
positions of Fe atoms inside the host. The calculations show good agreement with the
experimental photoemission spectra. The stability of the 12-fold metal-phosphorous
coordination, existing in the meteorite mineral melliniite has been investigated trough
total energy calculations using the coherent potential approximation (CPA) combined
with an analysis of the chemical bonds, performed by balanced crystal overlap popula-
tion (BCOOP). It was shown that its uniquely high metal-phosphorous coordination
is due to a balance between covalent Fe-P binding, configurational entropy and a
weaker nickel-phosphorus binding. Supported clusters have drawn a lot of attention
as possible building blocks for future data storage applications. This topic was in-
vestigated using a real space noncollinear formalism where the exchange interactions
between Co atoms were shown to be tuned by varying the substrate surface composi-
tion. Furthermore the spin dynamics of small Co clusters an a Cu(111) surface have
been investigated and a new kind of dynamics, where magnetization switching can be
accelerated by decreasing the switching field, has been found. A method for calcu-
lating the electronic structure for both ordered and disordered alloys, the augmented
space recursion (ASR) method, have been extended to treat non-collinear magnetic
order. The method has been used to investigate the energy stability of non-collinear
arrangements of MnPt and Mn3Rh alloys.



In memory of my grandmother Maria.
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1. Introduction

This thesis deals with a more less sparse subjects from bulk (3D) material
to adatoms (1D) passing through surfaces (2D) objects. Nevertheless all
the work done here is linked by two fields, the quantum mechanical
theory of matter and magnetism. The quantum mechanical theory is a
very powerful toll to understand nature and one of the most successful
theories ever produced. Nevertheless, often when working with Quantum
Mechanics one stumbles into situations which are counterintuitive and
difficult to have any parallel with classical thinking. In situations like this
the mathematical framework gives the support necessary to overcome
our reluctance in accepting these new concepts. Unfortunately these
quantum mechanical equations are, in most of the cases, impossible to
solve. Approximations are unavoidable if one want to solve them.

In this work the density functional theory (DFT) was used. The DFT
is a so called Ab initio method, and in principle one can calculate the
most stable arrangement of Fe atoms by only taking information from
the Periodic Table. In practice this it is not so simple, DFT does not
work for all possible systems and is important to know the theory and
it’s applicability. The Quantum Mechanics and DFT will be discussed
in chapter 2.

One of the most exciting discoveries from the last century is the tran-
sistor, which was conceived and invented in Bell’s Laboratory in the
late 40’s. The transistor is based on a semiconductor, which can be
described by the Quantum Mechanics. The invention of the transistor
simply changed the modern society and it is responsible for all the elec-
tronics gadgets that we use every day, including the computers used to
perform the calculations and to write this thesis.

Permanent magnets are fundamental for all modern applications, from
wind turbines to computer hard drives. The market of permanent mag-
nets are dominated by the rare-earth based materials and the ferrites.
In the beginning of the year 2000 the price of the rare-earth materials
was very low. This low price combined with environmental pressure lead
to the closure of many mining sites in United States and many other
countries, the exception was China, as showed in figure 1.1. Which is
a bit contradictory since some of the green energy technologies need
rare-earth materials. Such as wind energy, since the more efficient wind
turbines uses rare-earth permeant magnets, also electrical cars need an
considerable amount of rare-earth compounds. In the last 30 year China
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increased the production and now controls something around 97% of
the mining. And the price of these commodities skyrocketed in the last
few year, due to a combination of demand and exports control done by
China.

Figure 1.1. The Chinese market share increase, particularly since 2002, when
the US mine was closed due to environmental problems and low competitiveness
because of low Chinese prices. Adapted from [1]

With this scenario much effort is being done to find a solution to
the rare-earth problem, not only in the permanent magnet area. In
chapter 7 we investigate the microscopical origin of the large magneto
anisotropy energy (MAE), which is one the characteristics of hard per-
manent magnets, of the di-iron phosphide (Fe2P ). We also show how
one can influence the MAE, in a related topic to the iron-pnictides. In
chapter 8, we investigate the origin of an unusual twelve-fold coordina-
tion phosphourus-metal bond. This was observed in a meteorite named
melliniite, found in North-west Africa. The problem was addressed by
total energy calculations and also by analysis of the chemical bonds in
this compound.

In chapter 6 the DFT failure to treat strong correlated materials is
discussed. As will be mentioned a couple of times in this thesis, the
DFT is a very successful theory. The failure is not on the DFT itself but
on the approximations to include the exchange and correlation effects as
the local density approximation (LDA). There are several initiatives to
correct this problem in this work we use the so called dynamical mean-
field theory (DMFT). The LDA+DMFT scheme is used to investigate
the spectral properties of Fe impurities in a Cs host.
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We also investigate the magnetization dynamics of small Co clusters
( 100 atoms) supported on a Cu surface. This is an interesting subject
since this could be the next technology for data storage.

Sometimes is necessary to address the disorder that can arise in solid
sate systems. For example it is not uncommon to see chemical disorder
in binary alloys. We assisted in the implementation of a method to treat
these chemical disorders in the presence of noncollinear magnetism, the
so called augmented space recursion.
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2. Theoretical Background

In the next few lines we will follow some of the facts that contributed to
the creation of Quantum Mechanics. In 1905 Albert Einstein published
a paper on the photoelectric effect [2], where he proposed the quanti-
zation of light waves. This is the so called light particle-wave paradox.
In atomic physics the theories to explain the atom stability had many
problems. In particular the collapse of electronic orbits predicted by
Maxwell’s electromagnetic theory. The enigma could be solved (by Niels
Bohr) only by postulating the "stationary orbits". Following Einstein’s
work, in 1924 Louis de Broglie proposed that any moving particle, i.e.
electrons, neutrons, etc, is associated with a wave [3], speculating about
the existence of an analogous light particle-wave paradox. In 1926 a
major breakthrough was achieved by Erwin Schrödinger, proposing an
equation, named after him, to describe the behavior of matter waves: [4]

HΨ = EΨ (2.1)
Despite the success of the Schrödinger’s equation for simple systems,
solving it for more complex systems, like molecules, solids, etc, was a
difficult task and still is, even today. When P. M. Dirac declared that
chemistry would have ended, if one was able to solve the Schrödinger
equation for a generic system, he surely knew the difficulties of such a
problem. The difficulty remains on the many-body nature of the prob-
lem, in principle the movement of one electron is affected by all the other
electrons and vice-versa.

2.1 The Fully Relativistic Quantum Mechanics
When the Schrödinger equation was proposed, Einstein’s relativity was
already accepted. It was natural to try to connect these two theories
in one framework. One of the first attempt was made by Klein and
Gordon [5], by using the relativistic energy dispersion relation E2 =
p2c2 + m2c4 directly into the Schrödinger equation. However their de-
scription was a second order differential equation both in time and space,
therefore leading to negative probabilities. Nevertheless their equation
successfully describes spinless particles. In 1928 P. A. Dirac proposed his
famous equation which accounted for the magnetism (spin) and relativis-
tic effects [6], and also made the astonishing prediction of the existence
of antiparticles. This famous equation reads
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i~
∂

∂t
Ψ = HDΨ, (2.2)

where HD is given by

HD = cααα · ppp+ βmc2 + V (2.3)

and c is the velocity of light in the vacuum, p is the momentum operator,
m is the mass of the particle, V is the potential acting on the particle,
ααα and β are 4x4 matrices which can be written in terms of the Pauli
matrices. The time dependence is left aside and only spacial dependency
is treated. The solution of Eq.(2.2) is a four-component spinor

ψ =

(
φ
χ

)
(2.4)

with |χ〉 and |φ〉 state vectors in the Hilbert space of the spin. A matrix
representation of the time independent Dirac equation takes the form(

mc2 + V (~r) ~σ · ~p
~σ · ~p −mc2 + V (~r)

)(
φ
χ

)
= ε

(
φ
χ

)
, (2.5)

so one obtains coupled equations for φ and χ. We do not intend to
obtain the formal solution of Eq.(2.5), as one can find it in several ref-
erences [7; 8]. However it is interesting to look for conserved quantities
of the Hamiltonian HD, particularly the orbital angular momentum ~L
and spin operator ~S. Using Einstein’s notation the ~L, ~S and HD can be
written as

Li = −iεijkrj∂k (2.6)

Si =
1

2
γ5αi (2.7)

HD = −icαl∂l + βmc2 + V (~r) (2.8)

where εijk is the Levi-civita symbol1 and γ5 is a 4x4 matrix. We assumed
that V is a central potential. Noether’s theorems assures that a given
operator is a constant of motion, if the operator does not change the
action, e.g. [Â, Ĥ] = 0. So let us compute the commutator of the orbital
angular momentum and the spin operators with the Dirac Hamiltonian,
where one can write

[Li, HD] = [−iεijkrj∂k,−icαl∂l]. (2.9)

1εijk = −1(1) for an even (odd) permutation of (123) and zero if (i = j, i = k, j = k)
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From Eq.(2.8) the only nontrivial commutator will come from the first
term of the right hand side. The other two will commute trivially, and
therefore

[−iεijkrj∂k,−iαl∂l] = − εijkrjαl∂k∂l︸ ︷︷ ︸
=0

+αl∂lεijkr
j∂k︸ ︷︷ ︸

=αlεijkδlj∂k

(2.10)

[Li, HD] = εijkαj∂k. (2.11)

Also for Si the last two terms of Eq.(2.8) commute trivially, leading to

[Si, HD] =− i

2
[γ5αi, αl]∂l

=− i

2
γ5 [αi, αl]︸ ︷︷ ︸

=2iεijkαk

∂l + [γ5, αl]︸ ︷︷ ︸
=0

αi∂l

=− εiklαk∂l.

(2.12)

As a result neither ~L or ~S are good "quantum states". Nevertheless the
total angular momentum ~J = ~S + ~L is a good "quantum state".

[J i, HD] =[Si, HD] + [Li, HD]

=− εiklαk∂l + εijkαj∂k

=0.

(2.13)

Before proceeding, let us define a rotation operator. Infinitesimal rota-
tions of an angle δθ around an axis ê in a three dimensional space are
defined as

UR = 1− i

~
δθê · ~J (2.14)

where Jx, Jy and Jz are the components of ~J and are called generators
of infinitesimal rotations. Their commutations relations are given by

[Ji,Jj ] = i~εijkJk, (2.15)

which correspond to the commutations relations of an angular momen-
tum, so one can construct the spin rotational operator by making ~J = ~S
in Eq.(2.14) and integrating over the infinitesimal angular variations one
obtains

US = exp

(
− i

~
θê · ~S

)
. (2.16)

The commutator between the spin rotation operator and the Dirac Hamil-
tonian [US , HD] would be equal to the commutator [~S,HD], which was
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shown to be not zero. This implies that in the Dirac equation the spin
rotational symmetry is broken, only the total angular momentum is ro-
tationally invariant. Taking the nonrelativistic limit, the Dirac Hamil-
tonian can be written as [7]

H =
p2

2m
+ V − p4

8m3c2
+

~2

8m2c2
∇2V − ~

4m2c2
~σ · ~p× ~∇V (2.17)

where the last term of Eq.(2.17) is the so called spin-orbit coupling. For
a spherical potential it can be rewritten as

Hls =
1

2m2c2
ξ~L.~S, (2.18)

where ξ is named the spin-orbit coupling constant. In general, for 3d
compounds it is common to introduce Hls as a perturbation, since the
band energies are, generally orders of magnitude larger than ξ. Typical
values of ξ for the late 3d metals are 0.05 eV. The spin-orbit interaction
is responsible for the symmetry breaking discussed above and therefore
is of central importance for permanent magnets. We will continue this
discussion in chapter 7, where the magnetocrystalline anisotropy the
Fe2P bulk is calculated.

2.2 The Many-Body Problem
Let us elaborate more on the Hamiltonian describing a solid. A solid
can be described by the following Hamiltonian. Including both electrons
and nuclei, we can write down

Ĥ = −
∑
i

~2

2Mi
∇2
~Ri

+
1

2

∑
i6=j

ZiZje
2

| ~Ri − ~Rj |
−
∑
i,j

e2Zj

|~ri − ~Rj |

−
∑
i

~2

2me
∇2
~ri

+
1

2

∑
i 6=j

e2

|~ri − ~rj |

(2.19)

where the ~ri are the positions of the electrons, ~Ri and Zi are the positions
and atomic number of the nuclei, ~ is Planck’s constant and e, me are
electron’s mass and charge respectively. The first approximation to be
made is to decouple the electronic and ionic degrees of freedom, this
is called the Born-Oppenheimer Approximation [9; 10]. The Physical
justification behind it is that the nuclei are much heavier than electrons,
so their kinetic energy can be neglected. One can rewrite Eq.(2.19) as:

Ĥ = T̂e + V̂ee + V̂ext + ENN (2.20)
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where T̂e is the kinetic energy of the electrons, V̂ee is the electron-electron
interaction, V̂ext is electron-nuclei interaction and the last term ENN is
the nuclei-nuclei coulomb interaction, which enters as a fixed energy in
this frozen nuclei approximation. Already at the first stages of Quantum
Mechanics it was realized that solving Eq.(2.19) was a difficult task,
mainly due to its many-body nature; consider that even in classical
physics a many-body problem has no analytical solution. The term Vee
represents the major difficulty, due to its many-body nature. Decoupling
the electronic movement, similarly to what was done for the electronic
and nuclear degrees of freedom, would lead to a poor description of the
cohesive energies, bond distances, etc.

2.3 Density Functional Theory
To solve the Schrödinger or Dirac equations one needs, in principle, to
calculate the many body wave function Ψ. The number of constituents in
real solids are in the order of 1023, and solving the previous equations for
such a big system is in fact an impossible task. The density functional
theory (DFT) changes the perspective from the wave function to the
electron density. The DFT has proven very successful and nowadays is
a well established theory, used in many fields from physics to chemistry
passing throughout the material engineering. Several reviews on the
theoretical framework and applications of DFT are available [8; 11; 12?
]. In the following we will discuss some of these fundamental ideas.

2.3.1 Hartree-Fock Method
We start with discussing the Hartee-Fock (HF) method as some of its
basic ideas are used to construct the DFT formalism. The HF method
consists of approximating the many-body wave function (Ψ) by an ap-
propriate product of single particle wave function (φ). By appropriate we
mean, that the product of φ must satisfy certain rules, i.e. for fermionic
particles the wave function must be anti-symmetric. The way to con-
struct such a product is to use the so called Slater determinant:

Φ(x1, . . . ,xN) =
1

(N !)1/2

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) . . . φ1(xN)
φ2(x1) φ2(x2) . . . φ2(xN)

...
...

...
...

φN (x1) φN (x2) . . . φN (xN)

∣∣∣∣∣∣∣∣∣ (2.21)

where xi denotes the spin (σi) and position (ri) coordinates and φi(xi) =
ψ(ri)α(σi). Using the Dirac notation one can write the energy of a given
system as
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E = 〈Ψ|H|Ψ〉 (2.22)

where H is given by Eq.(2.20), disregarding the nucleus-nucleus interac-
tion. The energy minimum (Egs) would only be obtained for the many-
body ground state wave function (Ψgs), any other choice for the wave
function will produce a higher energy. The HF strategy is to substitute
Ψgs by Φ in Eq.(2.22) and minimize the energy using the Euler-Lagrange
procedure. With respect to variations in ψ∗(r) one obtains

(
− ~2

2m
∇2 + Vext(r)

)
ψi(r) +

N∑
j=1

∫
ψ∗j (r′)ψj(r

′)
e2

|r− r′|
dr′ψi(r)

−
N∑
j=1

∫
ψ∗j (r′)ψi(r

′)
e2

|r− r′|
dr′ψj(r)δsisj = εiψi(r).

(2.23)

One can define the Hartree V iH(r) and the exchange V iX(r) potentials for
the i-th particle as

V iH(r) =
∑
j

∫
|ψ(r′)|2 e2

|r− r′|
dr′ (2.24)

V iX(r) = −
∑
j

∫
ψ∗j (r′)ψi(r

′)
e2

|r− r′|
dr′δsisj . (2.25)

Some comments here are necessary: the Hartree potential is local and is
equal to the Coulomb potential due to the charge distribution of all other
electrons than i, whereas the exchange potential is non-local and acts on
parallel spins. The exchange potential arises from anti-symmetrization
of the wave function, and has an intimate relation to the Pauli exclusion
principle. Furthermore it is the source of ferromagnetic behavior, since
it can break the symmetry (spontaneously) for different spin directions.
With this definition one can recast the eigenvalue problem as[

− ~2

2m
∇2 + V ieff (r)

]
φi(r) = εiφi(r) (2.26)

where V ieff (r) is given by

V ieff (r) = V iext(r) + V iH(r) + V iX(r, r′). (2.27)

The HF method is simpler than the original problem, but still cumber-
some to solve, as the size of the Slater determinant increases very fast
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with the number of electrons. Even with modern computational algo-
rithms, the HF method is mostly used only for small systems. Another
drawback of the method is the absence of electronic correlation.

2.3.2 Hohenberg-Kohn Theorems
The first attempt to formulate a theory based on the density, rather
than the wave function, was done by Thomas and Fermi [13; 14] in
1927. In their approach both the electronic exchange and correlations
are completely missing. This crude approximation leads to the failure in
calculating the cohesive energy of molecules, bond distances and so on.
Nevertheless the possibility of using the electronic density as the funda-
mental quantity is very attractive. The usual thinking is: from a poten-
tial (V̂ ) a Hamiltonian (Ĥ) can be defined and used in a Schrödinger
equation to obtain a wave function (Ψ) which finally leads to a density
(n). This way of thinking is schematically represented in Eq.(2.28):

V̂ → Ĥ → Ψ→ n (2.28)

In 1964 Hohenberg and Kohn [15] announced two theorems that rig-
orously define the basis for the DFT. The first theorem asserts that the
density univocally defines the external potential, apart from a trivial
constant:

Theorem 1 For any system of interacting particles subjected to an ex-
ternal potential Vext(~r), the ground state density n0(~r) univocally deter-
mines Vext(~r), except for a trivial constant.

Proof The proof will be done by Reductio ad absurdum. Suppose two
external potentials V̂ 1

ext and V̂ 2
ext, which differ by more than a constant,

and result in two different Hamiltonians Ĥ1 and Ĥ2 with ground state
wave functions given by Ψ1 and Ψ2, respectively. Let us suppose that
Ψ1 and Ψ2 lead to an equal density n0(~r). We are assuming that these
states are non-degenerate, for the degenerate case see Ref. [16]. From
the definition of the ground state we have that

E1 = 〈Ψ1|H1|Ψ1〉 < 〈Ψ2|H1|Ψ2〉 (2.29)

with some algebra we have that

E1 = 〈Ψ1|H1|Ψ1〉 < 〈Ψ2|H1|Ψ2〉+ 〈Ψ2|H2 −H2|Ψ2〉 (2.30)

E1 < 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|H1 −H2|Ψ2〉 (2.31)
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E1 < E2 +

∫
d3r[V 1

ext(~r)− V 2
ext(~r)]n0(~r). (2.32)

Analogously for E2 we have

E2 < E1 +

∫
d3r[V 2

ext(~r)− V 1
ext(~r)]n0(~r) (2.33)

Summing Eq.(2.32) and Eq.(2.33) one gets,

E1 + E2 < E1 + E2 (2.34)

which leads to a contradiction, therefore denying the proposition and
prooving the theorem.

The second theorem asserts the existence of a total energy functional
of the density E[n] which is minimized, globally, by the ground state
density:

EHK [n] = FHK [n] + Vext[n] (2.35)

where FHK [n] is the Hohenberg-Kohn functional and is the sum of kinetic
and internal energies (electron-electron interaction): it is important to
notice that FHK [n] functional is independent on the external potential,
e.g. is material independent.

FHK [n] = T [n] + Vint[n] (2.36)

Theorem 2 For a particular potential Vext an universal energy func-
tional E[n] can be defined. The ground state energy is the global mini-
mum of this functional, with the particle number constrained. The den-
sity that minimizes this functional is the exact ground state density n0(~r).

Proof Consider a Hamiltonian H , which has ground state wave func-
tion Ψgs and a ground stated density ngs. The total energy for H is
given by

Egs[ngs] = 〈Ψgs|H|Ψgs〉. (2.37)

The expectation value of H with respect to any trial function Ψ, which is
univocally determined by a density n, will produce a higher energy value
than a ground state wave function Ψgs, for a non-degenerate ground
state:

Egs[ngs] = 〈Ψgs|H|Ψgs〉 ≤ 〈Ψ|H|Ψ〉. (2.38)

Applying a minimization procedure to the energy functional Eq.(2.38)
one will obtain the ground state density ngs.

The two Hohhenberg-Kohn theorems allow for a new schematic rep-
resentation, where the density is the basic quantity:
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n→ V̂ → Ĥ → Ψ. (2.39)

Notice that the exact form of FHK [n] is unknown, implying that one
must make approximations in order to determine the electronic density
through the Euler-Lagrange minimization procedure

δ

[
E[n(~r)]− µ

∫
n(~r)d3r

]
= 0 (2.40)

under the constraint

N =

∫
n(~r)d3r = constant (2.41)

2.3.3 Kohn-Sham Equations
In 1965 Kohn and Sham [17] used the two Hohenberg-Kohn theorems
in order to propose a practical approach for the minimization procedure
in Eq.(2.40). They suggested to explicitly write the known terms of the
energy functional FKS [n]:

E[n] = Vext[n] + T [n] + U [n] (2.42)

with
Vext[n] =

∫
Vext(~r)n(~r)d3r. (2.43)

Now one can substitute the sum of the true kinetic energy T [n] and
Coulomb interaction U [n] by its non-interacting electronic version TS [n]
and UH [n] plus an unknown term Exc(n), called exchange and correlation
functional. We can rewrite

E[n] = Vext[n] + TS [n] + UH [n] + Exc[n] (2.44)

where Exc[n] contains all the energetic contributions beyond the non-
interacting system. Substituting Eq.(2.44) into Eq.(2.40). We get∫

δn(~r)

[
δVext
δn

+
δTS
δn

+
δUH
δn

+
δExc
δn
− µ

]
d3r = 0 (2.45)

and with some algebra∫
δn(~r)

[
Vext(~r) +

δTS
δn

+

∫
n(~r′)d3r′

|~r − ~r′|
+
δExc
δn
− µ

]
d3r = 0. (2.46)

vKS(~r) = Vext(~r) +

∫
n(~r′)d3r′

|~r − ~r′|
+ vxc(~r) (2.47)
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defining vxc(~r) = δExc/δn, the minimization condition is

vKS(~r) +
δTS
δn

= µ (2.48)

which is the condition for non-interacting particles under the action of the
potential vKS , called Kohn-Sham potential. A Schrödinger like equation
can be written as [

−1

2
∇2 + vKS(n)

]
φi(~r) = εiφi(~r) (2.49)

where the φ(~r) are the single particle orbitals and the electron density is
given by

n(~r) =

N∑
i

|φi(~r)|2. (2.50)

The Eq.(2.49) is the famous Kohn-Sham equations. Notice that the inter-
dependence of vKS and n(~r) calls for a self-consistent solution. From an
initial density ni(~r) one computes the Kohn-Sham potential and solves
the KS equation, obtaining the single particle orbitals φi(~r) and then a
new density ni+1(~r). This process goes on until the difference between
two consecutive densities is smaller than a given convergence criterion
(λ), i.e. |ni(~r)− ni+1(~r)| < λ.

2.3.4 Exchange and Correlation Functional
As far as the solution to the Hamiltonian of Eq.(2.20) is concerned,
no approximations have been performed. We simply sum up all the
unknown interactions in an energy functional of the density Exc[n]. In
practice one needs either to know the exact form of the exchange and
correlational functional or find suitable approximations. For suitable
we mean accurate, computationally feasible and physically transparent.
Notice that even if one knew the exact form of Exc[n] the Kohn-Sham
equations would end up to have the same complexity level of the original
problem. In the following section we will discuss the two most popular
approximations for Exc[n].

2.3.5 Local Density Approximation
The Local Density Approximation (LDA) was proposed by Kohn and
Sham in their original paper. It is defined as

Exc[n] =

∫
n(~r)εxc(n)d3r (2.51)
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where εxc(n) is the exchange and correlation density of the homogeneous
electrons gas. The XC functional for a given density, in a volume V, is
approximate by the integrated XC density of the homogeneous electrons
gas with the same density. This seems to be a very crude approximation
but as pointed out by Kohn and Sham solids are close to the limit of
the homogeneous electron gas. In that limit a local approximation as
Eq.(2.51) is valid. One can write the XC density εxc(n) as a sum of
exchange εx(n) and correlation εc(n)

εxc(n) = εx(n) + εc(n). (2.52)

For the homogeneous electron gas one can obtain an analytical solution
for the exchange term. The more complicated correlation term can be
computed by quantum Monte-Carlo (QMC) calculations and reacted in
a parametrized form [18; 19]. One would expected that LDA should not
work for systems where the density is rapidly varying, but even in this
regime LDA has often proven to give very good results. One can easily
extend the above treatment for spin polarized systems, and obtain the
Local Spin Density approximation (LSDA).

2.3.6 Generalized Gradient Approximation
Another approach is the so called generalized gradient approximation
(GGA) where one includes non-local (semi-local) terms to take into ac-
count the inhomogeneity in the electronic density, the functional form of
the GGA is

Exc[n, ~∇n] =

∫
n(~r)fxc(n, |~∇n|)d3r. (2.53)

The generalized form of the functional is constructed in order to repro-
duce some of the LDA properties that was known to be the reason for
its success. There are various forms to construct such a functional. A
very used one is due to Perdew et. al. [20]. In general GGA improves
the chemical bond over LDA, as for the spin and orbital moment they
give very similar results.
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3. Computational Aspects

In this chapter the computational aspects of the solution of the Kohn-
Sham equations are treated in more details.

3.1 Basis Set
A straightforward way of solving differential equations, such as the Kohn-
Sham equations, is to expand their solution in a given basis, leading to
the following equation:

ĤKS
∑
j

cj |ψj〉 − εi
∑
j

cj |ψj〉 = 0 (3.1)

where the KS wave functions, Ψi are expanded in terms of basis functions
ψj , and εi are the corresponding eigenvalues. In principle an infinite
number of basis functions would be necessary to span the whole Hilbert
space formed by the solutions of the KS equation. In practice one needs
to truncate the series at some point and the number of basis states
necessary to properly describe the problem is, obviously, related to how
the ψj are constructed. Before going into the details of the basis set, we
notice that the Eq.(3.1) can be written in a more convenient form, by
multiplying the equation from the left by 〈ψl|:∑

j

cj [〈ψl|ĤKS |ψj〉 − εi〈ψl|ψj〉] = 0. (3.2)

If Hlj = 〈ψl|ĤKS |ψj〉 and Olj = 〈ψl|ψj〉 are the hamiltonian and the
overlap matrix elements, respectively, then Eq.(3.2) becomes∑

j

cj(Hlj − εiOlj) = 0. (3.3)

The above equation defines a secular equation, where the eigenvalues can
be determined by

det |Hlj − εiOlj | = 0. (3.4)

The procedure to obtain the eigenvalues stated in this format is well
suited for modern computational algorithms, using linear algebra pack-
ages such as LAPACK or BLAS. Once the εi’s are determined the coef-
ficients cj can be obtained, i.e the wave function Ψi can be constructed.

26



There are several choices for the basis functions such as linear combi-
nation of atomic orbitals (LCAO) and linear combination of augmented
plane waves (LAPW)[8]. Our main focus will be on the so called muffin-
tin orbital (MTO) basis.

3.1.1 Linear Muffin-tin Orbital
A solid can be viewed as an array of atoms. A natural choice to describe
the action of an ionic electrostatic potential is to divide the space into two
regions: a spherical region centered on the ions, called muffin-tin sphere
(MT) and an interstitial region, between the MT. Inside the MT an
electron is subjected to an atomic-like potential, in DFT the Kohn-Sham
potential (VKS), while in the interstitial region a constant potential (V0)
is defined. The assumption of a flat potential in the interstitial region is
quite reasonable, since the Coulomb potential due to the ions is screened
by the charge inside the MT, and also partially by the interstitial charge
itself. Therefore we have

V (r) =

VKS(r) r < S

V0 r > S
(3.5)

where S is the radius of the sphere centered at the site R, as defined
in Fig.(3.1). This approximation is called atomic sphere approximation
(ASA) and is very successful in describing closed packed system, where
the sum of the muffin-tin volumes is almost equal to the solid volume.
We are considering only non-overlapping muffin-tin spheres. Neverthe-
less the muffin-tin approach does not imply any structural limitation. For
open structures or depending on the level accuracy desired one should
take a step further and consider a non-constant potential in the intersti-
tial region, which lead to the so called Full Potential (FP) approach.

Figure 3.1. Representation of the muffin-tin sphere of radius S, centered at the
atoms. The interstitial region is the space between the muffin-tin spheres. The
lower panel shows the potential inside the muffin-tin (VKS) and the constant
potential in the interstitial region (V0).
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The basis set in the two approaches differs only in the interstitial
region, as their definition is exactly the same, within the two muffin-tin
spheres.

3.1.2 Muffin-tin Basis Set
The strategy is to construct a basis function able to describe the electron
density inside the MT and interstitial region. A natural choice inside the
muffin-tin is to take solutions of the radial Schrödinger equation[

~2

2m

(
d2

dr2
− l(l + 1)

r2
+ VKS(r)− ε

)]
rφl(r, ε) = 0 (3.6)

multiplied by spherical harmonics. In the interstitial region the elec-
trons can be seen as "free electrons" under a constant potential V0, and
therefore we can use solutions to the Helmholtz equation[(

d2

dr2
− l(l + 1)

r2
+ κ2

)]
rf(r) = 0, (3.7)

where κ2 is given by

κ2 =
2m

~2
(ε− V0). (3.8)

The solutions to Eq.(3.7) are spherical Bessel jl(κr) and Neumann nl(κr)
functions times spherical harmonics. If κ2 < 0 the spherical Neumann
functions should be substituted by spherical Henkel functions hl(κr) of
first kind (hl = nl − ijl), as Neumann functions does not form bound
states. A solution can be constructed as

ψL(ε, κ, r) = Ylm(r̂)

 φl(ε, r) r < S

Kl(κ, r) + Jl(κ, r) r > S
(3.9)

the capital index L stands for {l,m} quantum numbers. Following An-
dersen’s [21] original formulation we define a modified version of the
spherical harmonics, Bessel and Neumann (or Henkel) functions

Ylm(r̂) = ilYlm(r̂) (3.10)

Jl(κ, r) = κ−ljl(κr) (3.11)

Kl(κ, r) = κl+1

nl(κr) κ2 > 0

hl(κr) κ2 < 0.
(3.12)
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Imposing continuity and differentiability of Eq.(3.9) everywhere and par-
ticularly at the boundary (r = S) one obtains:

ψL(ε, κ, r) = Ylm(r̂)

 φl(ε, r) r ≤ S

Kl(κ, r)− cot[nl(ε)]Jl(κ, r) r ≥ S
(3.13)

where the cot[nl(ε)] is defined as

cot[nl(ε)] =
nl(κr)

jl(κr)

Dl(ε)− κDnl(κ)

Dl(ε)− κDjl(κ)
(3.14)

and Dl are the logarithmic derivatives at the sphere boundary. The
function ψL is not suited to form a basis as for negative energies as it
is not normalizable. In fact Bessel functions jl(κ, r) do not form bound
states, except for the eigenvalues of the spherical well (ε = V0), where
cot[nl(ε)] vanishes. Andersen proposed to remove the Bessel function
contribution from the partial waves ψL:

χL(ε, κ, r) = Ylm(r̂)

φl(ε, r) + cot[nl(ε)]Jl(κ, r) r ≤ S

Kl(κ, r) r ≥ S.
(3.15)

From this physical picture it is clear that the solutions inside a given
muffin-tin, so called "head", is modified by the "tails" of the other atomic
sites. Using the expansion theorem one can expand the tail of a given
MT centered at site R around another MT centered at R′, or any other
site:

NL(κ, r−R) =
∑
L′

BR′R
L′L (κ) JL′(κ, r−R´) (3.16)

whereKL(κ, r) and JL(κ, r) are the Neumann and Bessel functions times
the modified spherical harmonics, respectively. A similar expression can
be obtained for the Henkel functions. The BR′R

L′L (κ) are called structure
constants, and are defined as

BR′R
LL′ (κ) = 4π

∑
L′′

GLL′L′′ N
∗
L′(κ,R−R′), (3.17)

where GLL′L′′ are the Gaunt coefficients. The MTO χL is no longer
an eigenstate of the Hamiltonian inside a single muffin-tin, as the wave
function is modified by the atoms in its vicinity. This is expected since
we are dealing with a many-site problem and information about the
structure must be taken into account in some way. By this construction
the muffin-tin orbitals are normalizable, continuous and differentiable
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inside, outside and at the boundaries of the MT. Nevertheless χL(ε, κ, r)
is energy dependent and this lead to a non-linearity in Eq.(3.2), e.g.
increasing the complexity. Moreover the structural constants BR′R

L′L (κ)
are not really constant since they are energy dependent. These non-linear
equations are known as KKR equations. The first step to construct an
energy-independent basis is to fix κ, i.e. κ becomes a parameter and
ε and κ are not interdependent variables anymore. This procedure will
introduce errors and will be discussed later. Still the heads of the MTO
are energy dependent, so Andersen proposed a Taylor expansion for the
solution of the radial Schrödinger equation at an arbitrary energy εν :

φl(r, ε) = φl(r, εν) + (ε− εν)φ̇l(r, εν) (3.18)

where φ̇l = ∂φ/∂ε at a given energy εν . This linearization procedure is
very convenient since φl(r, εν) and φ̇l(r, εν) are mutually orthogonal, and
also orthogonal to the core states of their own muffin-tin sphere [22]. A
independent energy basis must have χ̇L = 0, to first order in (ε − εν).
Substituting Eq.(3.18) in Eq.(3.20) and imposing continuity and differen-
tiability at the boundaries of the muffin-tin, one obtains the augmented
Bessel functions (J augL )

J augl (κ, r) =


−φ̇l(εν ,r)

κ ˙cot(nl(εν))
r ≤ S

Jl(κ, r) r ≥ S.
(3.19)

Augmented Henkel and Neumann functions can be computed in an anal-
ogous way and one can finally define an energy independent basis:

χL(εν , κ, r) = Ylm(r̂)

φl(ε, r) + cot[nl(ε)]J augl (κ, r) r ≤ S

Kaugl (κ, r) r ≥ S.
(3.20)

The simplest choice of εν , for example the center of the band, already
gives good results for most problems. On the other hand tail energies κ
should be choosen more carefully, especially if subtle structural proper-
ties are under focus.

3.2 Bloch’s Theorem
This is one of the most important theorems in solid state physics and
it was stated by Bloch in 1929. A crystal can be seen as an ordered
arrangement of atoms. Due to the periodicity one can construct vectors
(~ai) that can generate the entire crystal, starting from a primitive unit
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cell. These vectors are called Bravais lattice vectors. In a 3-dimensional
crystal one can write

~Rj = nj~a1 +mj~a2 + lj~a3, (3.21)

where nj , mj and lj are integers that determine the translation index.
If an electron is under the action of a potential V at a point ~r it will feel
the same potential at ~r+ ~Rj . The periodicity of the crystal is shared by
its potential

V (~r + ~Rj) = V (~r). (3.22)

The Bloch’s theorem states that with a potential given by Eq.(3.22),
the wave function will show the same periodicity of the potential with a
proper phase

ψnk(~r + ~Rj) = ei
~k· ~Rjψnk(~r) (3.23)

with that one can define the so called reciprocal lattice as

~K = g1
~b1 + g2

~b2 + g3
~b3, (3.24)

where g1, g2 and g3 are integers and one can obtain the reciprocal vectors
~bi by

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)
, (3.25)

~b2 = 2π
~a3 × ~a1

~a1 · (~a2 × ~a3)
, (3.26)

~b3 = 2π
~a1 × ~a2

~a1 · (~a2 × ~a3)
. (3.27)

With the above construction one can simplify an impossible problem,
that is to solve the Schrödinger equation in an infinite periodic lattice.
In this way the problem can be solved in a section called the Brillouin
zone. Unfortunately one can not assume translational symmetry for all
systems, e.g. for surfaces and embedded impurities the translational
symmetry is broken. In such cases the most common approach in the
DFT community is to impose an artificial translational symmetry by cre-
ating a large unit cell an repeating it, which is called supercell approach.
One must be careful because this artificial periodic boundary condition
can introduce spurious interactions, and therefore the supercell must be
large enough to minimize them. Another approach is to solve the DFT
problem in real-space and this method will be introduced in the next
chapter.
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4. Green Functions

The Green function can be defined as

[z − L(r)]G(r, r′, z) = δ(r− r′) (4.1)

where z is a complex variable, L(r) is a linear, time independent and
hermitian operator. Assuming that has a complete set of solutions such
as

L(r)ψn(r) = λnψn(r) (4.2)

and ∑
n

ψn(r)ψn(r′) = δ(r− r′) (4.3)

4.1 Green Functions in Real Space
4.1.1 The Chain Model
In this section we will introduce the Haydock recursion method, used in
the RS-LMTO-ASA code [23]. The main idea of this method is to write
a Hamiltonian (H) in a given orthonormal basis {ui}, where in this new
basis H has a tridiagonal form (Jacobi form). Initially we choose a given
orbital |un〉 that represents the atomic site we want to calculate the local
density of states, and construct recursion relations as

H|un〉 = an|un〉 − bn+1|un+1〉+ bn−1|un−1〉 (4.4)

assuming the orthonormality of the basis 〈un|um〉 = δnm and that
|u−1〉 = 0. Applying it recursively one can obtain |u0〉, |u1〉, ..., |un〉.
In this basis the Hamiltonian H becomes tridiagonal.

H =


a0 b1 0 0 . . .
b1 a1 b2 0 . . .
0 b2 a2 b3 . . .
0 0 b3 a3 . . .
...

...
...

...
. . .

 (4.5)
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The recursion parameters an and bn can be interpreted as the on site
energy and the hopping parameter respectively. One can interpret this
model as the electron at a site (n = 0) propagates throughout the system
by hopping to it’s nearest neighbors. So is expected that at one point the
bn parameters will become not so important. To calculate the recursion
parameters one can take n = 0

H|u0〉 = a0|u0〉 − b1|u1〉 (4.6)

and multiply the Eq.(4.4) from the left by 〈u0|

a0 = 〈u0|H|u0〉 (4.7)

and the b1 is given by

b1|u1〉 = (H− a0)|u0〉 (4.8)

squaring Eq.(4.8) the b21 is obtained

b21 = 〈u0|(H− a0)†(H− a0)|u0〉. (4.9)

With the a0 and b1 parameters the |u1〉 can be calculated as

|u1〉 =
(H− a0)

b1
|u0〉 (4.10)

applying the above set procedure recursively the an, bn and |un〉 can be
written as

an = 〈un|H|un〉 (4.11)

b2n+1 = [〈un(H− an)† − 〈un−1|b†n][(H− an)|un〉 − bn|un−1〉] (4.12)

|un+1〉 =
(H− an)|un〉 − bn|un−1〉

bn+1
(4.13)

the above set of equations 4.11-4.13 one can construct the tridiagonal
Hamiltonian. Using Hamiltonian one can construct the Green function
of a differential linear operator, as the Kohn-Sham Hamiltonian (H) is
defined as:

G = [E + iε−H]−1 (4.14)

where E is the energy and iε is a complex (ε is real and positive) energy
used to avoid the singularities at the real axis. In principle one should
diagonalize [E + iε - H]−1, to obtain the full Green function (G). In
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general such operation is very computational demanding due to the size
of this matrix, containing several thousand of elements for a solid state
system (bulk, surfaces, etc.). Fortunately one can relate the diagonal
terms of G to local properties. An element of G is defined as

GUV = 〈U|[E −H]−1|V〉 (4.15)

which gives the propagator between sites U and V. Particulary if U=V=U0

(represents the orbital of the chain’s central atom). The term GU0 U0
(G00) is related to the local density of states as

ρ(E) = − 1

π
lim
ε→0

Im[G00(E + iε)] (4.16)

G(E) =


E − a0 −b1 0 0 . . .
−b1 E − a1 −b2 0 . . .

0 −b2 E − a2 −b3 . . .
0 0 −b3 E − a3 . . .
...

...
...

...
. . .


−1

(4.17)

Defining Dn(E) as the determinant of the matrix (E-H) with the first
n rows and columns deleted one can write G00 as

C00(E) =
D1(E)

D0(E)
(4.18)

using the cofactor expansion (Laplace expansion) D0(E) can be written
as

D0(E) = (E − a0)D1(E)− b21D2(E) (4.19)

as H is tridiagonal the only nonzero cofactors are the C00 and C01, so
G00 becomes

G00(E) =
1

E − a0 − b21
D2(E)
D1(E)

(4.20)

repeating this process a continued fraction is obtained

G00(E) =
1

E − a0 −
b21

E − a1 −
b22

E − a2 −
b23

E − a3−...

(4.21)

In principle the continued fraction is infinite, in practice it is limited by
the finite cluster size. Each term included is a new hopping site and it is
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expected that at some point sufficiently distant from the central site the
coefficients ai and bi will converge. So one needs to truncate the infinite
continuated fraction with a terminator t(E).

G00(E) =
1

E − a0 −
b21

E − a1 −
b22

E − an−1 −
b2n

E − an + t(E).

(4.22)

In this work the so called Beer-Pettifor terminator t(E) is used where

t(E) =
b2N

E − aN − t(E)
(4.23)

Assuming that after N terms of the continued fraction the coefficients ai
and bi are constants, for any n > N . After some algebraic manipulation

t(E) =
1

2

[
(E − aN )±

√
(E − aN − 2bN )(E − aN + 2bN )

]
(4.24)

this terminator will produce an continuous spectrum for the density of
states, in the interval:

aN − 2bN ≤ E ≤ aN + 2bN (4.25)

This terminator is constructed for metallic systems, there are other ter-
minator choice better suited to treat systems with gaps and highly lo-
calized systems.

t
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5. Formation, interaction and ordering of local
magnetic moments

In the itinerant picture one assumes that the electrons move nearly freely
trough the crystal, one can wonder about the conditions to the formation
of a ferromagnetic order in such system. As pointed out by Wigner [24],
in a free electrons gas the formation of a ferromagnetic state is suppressed
by the electron-electron correlation. This implies that, the formation of
a ferromagnetic state must be related with the some degree of electronic
localization around the atomic sites.

5.1 Stoner Criteria
The magnetic moment of free atoms can be obtained from the Hund’s
rule, and is given by the sum of the spin (S) and angular (L) momenta.
In general for transition metals solids, the orbital moment is almost com-
pletely suppressed and L is not a good quantum number. Extrapolating
the spin moment given by the Hund’s rule to a solid, would lead to a
completely failure. A value of 4 µb is predicted from the Hund’s rule for
the Fe ion spin moment. The Fe bcc magnetic moment is experimentally
determined as 2.2 µb per Fe atom. In 1939 Stoner proposed a model to
explain, and predict, the formation of a ferromagnetic state, e.g. local
magnetic moments in solids, in the same spirit of the Weiss model Stoner
introduced a molecular field,

Hstoner = IM (5.1)

where I is the so called Stoner parameter and M is the magnetization
(which is computed as the difference between the spin up and down
occupation), the Stoner molecular field breaks the symmetry of the spin
up and down bands, and takes into account the electronic interaction. A
model of a non-magnetic density of states (DOS) is showed at Fig 5.1 a).
Applying an external magnetic field (H), electrons from the spin down
band are promoted to the spin up bands as showed in Fig 5.1 b). The
total energy in the presence of an external magnetic field (H) can be
written as:
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Figure 5.1. Splitting of the spin up and down bands due to an external field
H.

E =

∫ εf

0

ερ(ε)dε+

∫ ε+

εf

ερ(ε)dε+

∫ εf

0

ερ(ε)dε−
∫ εf

ε−

ερ(ε)dε− 1

2
IM2

(5.2)
Where ρ(ε) is the density of sates, εf is the non magnetic Fermi en-

ergy and ε+ (ε−) is the Fermi energy for the spin up (down) bands,
these are proportional to the H as ε± = (εf ± µβH). The second (last)
term of Eq. 5.2 are the energy gain (lost) by the spin up (down) bands.
Considering a rectangular DOS and integrating Eq. 5.2 one obtains:

E(H,M) = EP + µ2
bρ(εF )H2 − 1

2
IM2 (5.3)

where EP is the paramagnetic contribution to the total energy. From
Eq. 5.3 in the absence of interactions, i.e. no molecular field, the Pauli
paramagnetic susceptibility (χ−1 = ∂2E/∂H2) is obtained : χP =
2µ2

bρ(εF ). Using this to write H in terms of the magnetization one obtain

E(M) = EP +
M2

2χP
− 1

2
IM2, (5.4)

since M = χPH. Computing the new susceptibility, in the presence of
the a molecular field.

χ =
χP

1− χPI
(5.5)

For the nonmagnetic state to be unstable is necessary that χ < 0. From
Eq.(5.5) is clear that the instability condition is given by

2µ2
bρ(εF )I > 1 (5.6)

37



this is the Stoner criteria. Where I is the Stoner parameter and it is
nearly an atomic property. Although the Stoner criteria works quite well
in predicting the formation of local moments at 0 K, it does not work for
finite temperatures given TC values order of magnitudes higher than the
experimental values. Is important to stress that this criteria is obtained
in the itinerant electron picture. As will be shown in the chapter 9 this
criteria does not work in strongly localized systems.

5.2 Exchange Interactions
To calculate the exchange parameter one needs to determine the en-
ergy variation due to a small rotation of the magnetic moments, for the
Heisenberg model and in the LDA. Later one can compare these two
equations in order to obtain a expression to the Jij . Consider two local
spins at sites i and j. In the Heisenberg model

H = −
∑
ij

Jij~ei · ~ej (5.7)

the energy variation due to a rotation, on opposite angles ±θ/2 is given
by

δEij = Jij(1− cos(θ)) ≈
1

4
Jijθ

2. (5.8)

Now one need to compute the energy variation in the LSDA approach,
which is rather complicated. As we are interested only in small devia-
tions from the ground state the "local force theorem" can be used. This
was proposed by Liechtenstein et. al. [25]. This calculation is better
evaluated in the multiple scattering framework, for a review on this sub-
ject see [26]. One can relate the multiple scattering parameters to the
orthogonal LMTO basis used in the RS-LMTO-ASA code [27]. So the
energy variation is written as

δEij '
1

π

∫ εF

−∞
dεImTrl[δi(ε)G

↑↑
ij δj(ε)G

↓↓
ij ]
θ2

4
(5.9)

where l is the orbital index, Gσσij is the propagator for the electron with
spin σ between the sites i and j and δi is given by

δli(ε) =
C↓li∆

↑
li − C

↑
li∆
↓
li + (∆↓li −∆↑li)ε

(∆↓li∆
↑
li)

1
2

(5.10)

and Cσli, ∆σ
li are the potential parameters in the orthogonal LMTO basis.

Comparing equations 5.8 and 5.9 one obtains
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Jij = − 1

4π
ImTrl

∫ εF

−∞
dεδi(ε)G

↑↑
ij δj(ε)G

↓↓
ij . (5.11)

One should always calculate the Jij from a ferromagnetic state, as the
above expression is only valid for small deviations from the ferromagnetic
ground state. A negative Jij value indicates an instability of this state,
e.g. and anti-ferromagnetic configuration is favored.

5.3 Noncollinear Ordering
When we introduced the Kohn-Sham equations in chapter 2, for sim-
plicity, it was done using the charge density n(~r), one can generalize the
charge density to treat magnetic systems as

ρ(~r) =

N∑
i=1

(
ρφφ ρφχ
ρχφ ρχχ

)
. (5.12)

Using the spinor structure of Eq.(2.4) and the Eq.(2.50) one can rewrite
ρ(~r) as

ρ(~r) =

N∑
i=1

(
|φi(~r)|2 〈φi(~r)|χi(~r)〉

〈χi(~r)|φi(~r)〉 |χi(~r)|2
)
. (5.13)

one can recast the charge density n(~r) and write the generalized charge
density as

ρ(~r) =
1

2
[n(~r) + ~m(~r) · ~σ] (5.14)

Using Eq.(4.16) one can write the magnetization in terms of the local
Green’s function (G) and the Pauli matrices (σ)

~m(ε) = − 1

π
ImTr[σG(ε)]. (5.15)

For a collinear magnetic state only one spin quantization axis is allowed
and the Eq.(5.15) is reduced to

m(ε) = − 1

π
ImTr[σzG(ε)]. (5.16)

the choice of σz is arbitrary, could have used any of the other two Pauli
matrices. For the noncollinear case in principle one should compute the
full Green’s function with all the off diagonal terms. This can be done
but is more computationally costly. The approach used here is to rotate
the spin density matrix so that the local and global spin axis coincides.
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With such a rotated spin matrix the recursion scheme can be applied
and one would obtain a magnetization density mx(ε), my(ε) and mz(ε).
This approach is necessary only due to the recursion method. For most
other methods it is usually mostly about doubling the dimensions of the
Hamiltonian when you go to a spinor formalism. For certain systems
the noncollinear arrangement is the ground state, due to band effects,
frustration and competition interactions. In chapter 10, this effects will
be explored.
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6. Dynamical Mean Field Theory

The DFT approach is a mean field like theory that incorporates part
of the many-body effects through the potential V LDA (or GGA). De-
spite its success LDA can not describe all the different energy scales of
the solid state, and this leads to failure for many physical systems. For
example the insulating behavior of some transition metal oxides (Mott
insulators), rare-earth compounds, high-Tc superconductors and systems
with localized impurities in general are poorly described in the LDA ap-
proach. The inability of the LDA to describe these systems is related
to the localized character of d and f electrons, which enhances corre-
lations between them. It should be noted that it is not only the mean
field nature to be responsible for the failure in describing strongly corre-
lated systems, since mean field solutions to model Hamiltonians usually
give a much better description of their physics. Moreover it is intrigu-
ing that some of these models are constructed using DFT parameters.
It was pointed out by Lopez-Aguilar et al. [28] that the lack of a Hub-
bard type term in the DFT Hamiltonian is the cause of the failure in
describing strongly correlated systems. A different view on the problem
is related to the self-interaction. When the Hartree energy is calculated,
the electrostatic interaction of a given electron with itself is included.
In principle this should be canceled out by the exchange potential, as it
occurs for the Hartree-Fock method. In the HF equations the entire spu-
rious self-interaction energy is compensated by the exchange interaction,
but unfortunately this compensation is only partial in the basic LDA
potential. For localized systems the contribution of this self interaction
can become very large. Some approaches were proposed to correct this
deficiency, one of the most successful one being the Self Interaction Cor-
rection (SIC) method [29]. However, as we will see in the next section
this problem is automatically solved by introducing a Hubbard type term
in the DFT Hamiltonian, and that is why we are going to focus on this
kind of approach.

6.1 LDA + U
Despite the fact that we do not use the LDA + U approach in this
work it is worth to spend a few words on one of the first successful
methods to incorporate the Hubbard physics into the DFT framework.
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Anisimov and coworkers [30] corrected the LDA Hamiltonian (ĤLDA),
with an explicitly term for the Coulomb repulsion between the localized
electrons. The obtained equations can be easily extended to LSDA and
GGA functionals. The general strategy is to choose the set of orbitals
which the Hubbard term will act on, i.e. the so called correlated orbitals
(|R, ξi〉). In general these are atomic-like d or f but other choices are
possible on the basis of physical guidelines. The LDA + U Hamiltonian
can be written as

ĤLDA+U = ĤLDA +
1

2

∑
R

∑
ξ1ξ2ξ3ξ4

Uξ1ξ2ξ4ξ3c
†
R,ξ1c

†
R,ξ2cR,ξ4cR,ξ3 (6.1)

where HLDA is given by Eq.(2.49), ξi denotes the orbital and spin index
and the U -matrix is defined in similar way as the Hartree energy in the
HF equations Eq.(2.23), but instead of the full Coulomb interaction one
should use a screened Coulomb interaction US(r− r′):

Uξ1ξ2ξ3ξ4 = δσ1σ3
δσ2σ4

∫
drdr′χ∗L1

(r)χ∗L2
(r′)US(r− r′)χL3

(r)χL4
(r′)

(6.2)
This choice is due to the fact that only the Coulomb interaction on the
subspace of the correlated orbitals is considered explicitly, and therefore
all other electrons, e.g. s and p, should be integrated out. In principle
one can be as Ab Initio as possible by calculating the U -matrix through
the constrained LDA or RPA [31; 32; 33] schemes, although it is more
usual to use U as a free parameter. Needless to say that the U value
must be chosen wisely otherwise one can end up with meaningless results.
Another drawback of the method is the so called double-counting (DC)
problem. The V XC potential calculated within the LDA takes wrongly
into account the Coulomb interaction for the correlated orbitals, and
therefore this wrong contribution must be subtracted in the LDA+U
scheme. This results into a major difficulty, since LDA gives a spherical
V XC and thus it is not possible to track the orbital resolved contributions
from the Coulomb interaction. There are several schemes to deal with
such a problem and they will be discussed later.

6.2 Hubbard Model and The Self-energy
This section will introduce the concept of self-energy, deriving the equa-
tions from the famous Hubbard model. This model was proposed by
Hubbard in 1963 [34; 35; 36] and, even being one of the most studied
models, no analytical solution can in general be found for dimensions
higher than one. The Hubbard model in real space can be written as:

42



H =
∑
ijσ

tijc
†
iσcjσ +

1

2
U
∑
iσ

niσniσ̄ − µ
∑
iσ

c†iσciσ (6.3)

where i and j label the lattice sites, σ (σ̄ = −σ) the spin degrees of
freedom, the kinetic energy term (hopping term) is described by tij and
c†iσ (ciσ) is the creation (annihilation) operator. Given that we assume a
single orbital in this model, the Hubbard parameter U is approximated
as a single number instead of the matrix Eq.(6.2). The particle number
operator and the chemical potential are labeled by n and µ respectively.
The last one is introduced to fix the number of particles. All the op-
erators are written in the Heisenberg picture. So far we have defined
the strong correlation in a handwaving way; with the Hubbard model
one can give a better definition of what is meant by strongly or weakly
correlated system. The hopping (tij) can be defined as

tij = −
∫
drχ∗L(r− ri)

(
~2∇2

2m

)
χL′(r− rj) (6.4)

where χL(r− ri) is a MTO (or Wannier-like orbital) centered at ri and
L denotes the l,m quantum numbers. So the hopping integral is propor-
tional to the overlap. The regimes of strong and weak correlations are
defined by the relation between t and the U . The strong and weak cor-
relation regimes are characterized by t << U and t >> U , respectively.
Despite the aim of this work is not the Hubbard model itself, it is very
instructive, and simpler, to work with this system, as the conclusions
can be extrapolated to other systems as well. The Green’s function can
be written as

Gσij(t− t′) = 〈〈ciσ(t); c†jσ(t′)〉〉 = −i〈T{ciσ(t); c†jσ(t′)}〉. (6.5)

Here {Â, B̂} is the anti-commutator, and T can be the normal, advanced
or retarded ordering operator. Instead of computing directly the Green’s
function, let us focus on its time evolution. We can take the time deriva-
tive of Eq.(6.5)

i
d

dt
Gσij(t, t

′) = δ(t−t′)〈{ciσ(t); c†jσ(t′)}〉+
〈〈

d

dt
ciσ(t); c†jσ(t′)

〉〉
. (6.6)

The time evolution of a Heisenberg operator is given by,

i
d

dt
Â(t) = [Â(t), Ĥ]. (6.7)

If Ĥ does not explicitly depend on time, one can write [Â(t), Ĥ] =

[Â, Ĥ](t), so Eq. (6.6) is rewritten as
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i
d

dt
Gσij(t, t

′) = δ(t− t′)〈{ciσ(t); c†jσ(t′)}〉+
〈〈

[ciσ,H](t); c†jσ(t′)
〉〉

(6.8)

To solve the above equation of motion one needs to calculate the com-
mutator:

[ciσ,H] = [ciσ,
∑
lmσ′

tlmc
†
lσ′cmσ′ ] + [ciσ, U/2

∑
lσ′

nlσ′nlσ̄′ ]− µ[ciσ,
∑
lσ′

c†lσ′clσ′ ]

=
∑
lmσ′

tlmδilδσσ′cmσ′ + U
∑
lσ′

nlσ̄δilδσσ′clσ − µ
∑
lσ′

δilδσσ′clσ

(6.9)

substituting Eq. (6.9) back in Eq. (6.8),

i
d

dt
Gσij(t, t

′) = δ(t− t′)〈{ciσ(t); c†jσ(t′)}〉+
∑
m

tim

〈〈
cmσ(t); c†jσ(t′)

〉〉
+

+ U
〈〈
niσ̄ciσ(t); c†jσ(t′)

〉〉
− µ

〈〈
ciσ(t); c†jσ(t′)

〉〉
.

(6.10)

Rearranging the above equation and defining the two particle Green’s
function as

Gσ̄σij (t, t′) =
〈〈
niσ̄ciσ(t); c†jσ(t′)

〉〉
(6.11)

one obtains,

i
d

dt
Gσij(t, t

′) = δ(t− t′)δij +
∑
m

timG
σ
mj(t, t

′)− µGσij(t, t′) + UGσ̄σij (t, t′).

(6.12)

Eq. (6.12) involves a higher order (two particle) Green’s functionGσ̄σij (t, t′).
Calculating the time evolution of Gσ̄σij (t, t′) would produce a even higher
order Green’s function, leading an infinite set of coupled equations.
Obviously infinite terms can not be computed. Before introducing a
new approach to this problem let us take the Fourier transformation of
Eq. (6.12) with respect to the time and lattice variables.

ωGσ(ω, k) = 1 + ε(k)Gσ(ω, k)− µGσ(ω, k) + UGσ̄σ(ω, k) (6.13)

rearranging Eq. (6.13),
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Gσ(ω, k) =
1 + UGσ̄σ(ω, k)

ω − ε(k) + µ
. (6.14)

Here and in the following we did not add the limit to avoid the disconti-
nuity on the real energy axis [37]. This hierarchy of equations, e.g. the
explicit dependence of the one particle GF on the two particle GF and
so on, is due to the interaction term niσniσ̄. In principle all n particle
processes should contribute to the GF, but in practice this series must
be truncated. One can identify the non-interacting Green’s function by
setting U=0 in Eq. (6.14):

gσ(ω, k) = [ω − ε(k) + µ]−1. (6.15)

Our approach is then constructed on the validity of the following de-
composition:

UGσ̄σ(ω, k) = Σσ(ω, k)Gσ(ω, k) (6.16)

where all processes involving more than one particle are contained in
Σσ(ω, k). This quantity is called self-energy. Using Eq.(6.15) and Eq.(6.16)
into Eq.(6.14), and after some algebraic manipulation, the so called
Dyson equation is obtained;

G−1(ω, k) = g−1(ω, k)− Σ(ω, k), (6.17)

where from now on the spin index will be suppressed. The self-energy
corrects the non-interacting GF to obtain the one particle GF. The self-
energy obtained here is a non-local (k dependent) and energy dependent
operator. If one knew the exact form of the self-energy operator the
theory would be exact, in the same spirit of the exchange-correlation
potential in the Kohn-Sham equations. Unfortunately the full knowl-
edge of Σ(ω, k) for lattice models is not possible and approximations are
unavoidable.

6.2.1 Local Limit of The Self-energy
Calculating the full non-local self-energy of a system of interacting elec-
trons is a daunting task. The most used method to calculate Σ(ω, k)
in materials is the GW approximation [38; 39]. It is based on a gener-
alized Hartree-Fock method. The electrons effectively interact through
the screened Coulomb interaction, where the screening is calculated from
the inverse dielectric function ε(r, r′;ω), obtained with the random phase
approximation. Some comments on the GW method are important here.
The frequency dependence of the dielectric function will impose a fre-
quency dependence on the screened Coulomb potential as well. This
is natural since the response of the system to a charge excitation is
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expected to be energy (frequency) dependent. This implies that any
modeling of the relevant processes should be based on a U -matrix, see
Eq.(6.2), which is frequency dependent as well. In spite of that, most
applications of DMFT treat U as frequency independent. Recently the
first treatment of the frequency dependency of U was reported [40]. The
GW approach is a very computationally demanding method and is in
general used for small systems. Moreover the GW approximation breaks
down for strongly correlated systems, as in the case of NiO. While the
GW equations make the method fully self-consistent, most of the GW
calculations are performed in a perturbative fashion on top of DFT. If
DFT gives unphysical results GW will not show much improvement.
An alternative solution to the problem was presented by Metzner and
Vollhardt [41] in what is considered as the "kick off" of the DMFT for-
mulation. They showed that in the limit of infinite dimension (d→∞)
the Hubbard Model off-site self-energy (Σij) with i 6= j is much smaller
then the on-site (δijΣij)

Σij(ω)→ δijΣ(ω), (6.18)

i.e. the self energy is purely local. As a result the Fourier transform
in Eq.(6.18) becomes momentum-independent. This is similar to the
infinite dimension limit of the Heisenberg model on a lattice.

6.3 DMFT Equations
The DMFT [42; 43; 44] approach maps the electronic problem in a lattice
to the problem of a single impurity coupled to an effective bath. The
focus is on the on site (local) Green’s function, which is the conserved
observable. The Gii plays the role of the electron density (ρ(r)) in the
DFT where the system is mapped into a effective potential (vxc). The
local Green’s function is given by

Gσii(τ − τ ′) ≡ 〈TCiσ(τ)C†iσ(τ ′)〉, (6.19)

where τ and τ ′ are imaginary time in the Matsubara’s formalism for finite
temperature. The problem of a single impurity in an effective bath, is
know as the Anderson impurity model [45] and can be described through
the following Hamiltonian

HAIM = Uc†↑c↑c
†
↓c↓ +

∑
kσ

εkc
†
kσckσ +

∑
kσ

Vkσ(a†kσckσ + c†kσakσ). (6.20)

The first term is the onsite Coulomb interaction, the second term de-
scribes the bath degrees of freedom and the last term is the coupling
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between the impurity and the bath. In the effective action formalism
one can integrate out the the bath degrees of freedom:

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†σ(τ)G−1
0 (τ−τ ′)cσ(τ ′)+U

∫ β

0

dτn↑(τ)n↓(τ
′)

(6.21)
where the bares Green’s function G−1

0 is given by

G−1
0 (iωn) = iωn + µ−∆(iωn) (6.22)

and ∆(iωn) is called hybridization function and µ is the chemical poten-
tial and iωn are imaginary Matsubara frequencies [37]. The hybridization
function connects the impurity to the bath and is defined as

∆(iωn) =
∑
k

|Vk|2

iωn − εk
. (6.23)

One can write a Dyson equation for the single impurity problem, sim-
ilarly to what was done for the Hubbard Model on a lattice. However
in this case a purely local impurity self energy Σimp(iωn) is obtained,
giving:

Gσimp(iωn)−1 = Gσ0 (iωn)−1 − Σσimp(iωn). (6.24)

All these equations are subjected to conservation of the local Green’s
function imposed in the DMFT:

Gσii(iωn) = Gσimp(iωn). (6.25)

In principle the self energy from the original lattice problem is k-dependent,
but we approximate it by a local, k-independent self energy Σii. As
previously showed in the limit of infinite coordination number this ap-
proximation is exact.

Summarizing the procedure we have:
1. guess the initial self energy Σii(iωn), in general zero;
2. project the global Green’s function into the correlated orbitals of

the impurity site to get Gii(iωn) and adjust the chemical potential
µ to get the corrected number of electrons;

3. compute the bath Green’s function (G0) from the inverse Dyson
equation

Gii(iωn)−1 = G0(iωn)−1 − Σ(iωn); (6.26)

4. calculate Gimp(iωn) using an impurity solver to solve the Anderson
impurity model.

5. compute the new self energy from the Dyson equation (6.17);
6. run the cycle until the self-energy is converged.
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Figure 6.1. LDA+DMFT schematic representation. Adapted from [46]

The Fig.6.1 shows the schematic merger between DMFT and LDA.
The Anderson impurity model has been studied extensively. Never-

theless still is a very complicated problem and several impurity solvers
have been proposed. The choice of the impurity solver is related to the
problem to be studied and will be discussed approprietly for each system.
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7. Permanet Magnetic Materials

The present chapter is based on the following publication:
1. M. Costa, O. Grånäs, A. Bergman, P. Venezuela, P. Nordblad, M.

Klintenberg and O. Eriksson. "On the large magnetocrystalline
anisotropy of Fe2P". Phys. Rev. B 86, 085125 (2012).

Magnetic materials with large magnetic anisotropy (MAE) have been
used in many applications. Until recently the dominating class of ma-
terials used for such applications, apart from hard ferrites, were rare-
earth based magnets, e.g. Nd2Fe14B [47], in which the large magnetic
anisotropy energy is provided by the rare-earth atoms, and the large sat-
uration moment (Ms) at finite temperature is due to the Fe atoms. It
has however been pointed out that other permanent magnets should be
investigated, from an application point of view, since a general access to
rare-earth elements is far from guaranteed [48]. Among such materials
the iron-phosphide Fe2P stands out as a particularly interesting mate-
rial, due to its known large MAE and sufficient large value of saturation
moment. In addition Fe2P is composed by cheap and widely available
elements.

Transition metal pnictides and chalcogenides are not the only large
MAE materials that have been investigated so far. For instance, a large
saturation moment was suggested in a nano-laminate of a 3d metal (Fe)
and a rare earth metal (Gd) in Ref.[49]. Also, a large magnetic anisotropy
in FePt was verified experimentally as well as from first principles the-
ory [50; 51; 52; 53; 54]. Furthermore, the predicted large MAE of a
tetragonally strained FeCo-alloy [55] was verified experimentally [56].
The focus on Fe2P, is due to it’s unexpected large MAE and hitherto
unexplained. And the aim of this study is to find a microscopic descrip-
tion for it’s MAE.

7.1 Magnetic Anisotropy
In an ideal isotropic single domain ferromagnetic material the sponta-
neous magnetization (Ms) can be reoriented, by an external field, at no
energy cost. The magnetic anisotropy implies an energy penalty to the
reorientations of Ms. The magnetic anisotropy energy (MAE) is defined
as the internal energy variation, of a ferromagnetic material, with respect
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Figure 7.1. Magnetization in spherical coordinates.

to the spontaneous magnetization direction [57]. The magnetization ( ~M)
of a given material can be written in spherical coordinates as,

~M = Ms[sin(θ) sin(φ) êx + sin(θ) cos(φ) êy + cos(θ) êz] (7.1)

where θ and φ are the polar and azimuthal spherical coordinates re-
spectively and êi is the unitary vector in cartesian coordinates, i=x,y,z.
Before investigating the origin of such anisotropy, one can parametrize
the relation of the magnetization direction with the energy. Historically
the parametrization was done as a power series of the cosine directions
(α) of the magnetization. Consider a single magnetic domain, where
all the spins are aligned, with a volume V. The energy density can be
written as,

E

V
= E0 +

∑
ij

bijαiαj +
∑
ijkl

bijklαiαjαkαl. (7.2)

Considering (some) symmetry properties only few terms need to be con-
sidered. Due to time-reversal symmetry any odd power of α must be
zero, i.e. E( ~M) = E(- ~M). If we consider an uniaxial anisotropy where
the in-plane anisotropy can be neglected, this is the case for hcp Co. The
anisotropy energy becomes

E

V
= K0 +K1 sin

2(θ) +K2 sin
4(θ) +K3 sin

6(θ) (7.3)

where Km are called anisotropy constants. In general only a few terms
of equation (7.3) need to be considered. One can also formulate the
expansion in Eq.(7.2) in terms of spherical harmonics, which posses the
advantage of forming a complete set of orthonormal functions [58].
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7.2 Physical Origin
There are several processes contributing to the magnetic anisotropy. One
of them is magnetic dipole-dipole interactions. Assuming the existence
of local magnetic moments (mi) in a lattice, representing the integrated
magnetization density within each atomic cell, around the lattice ions.
The energy interaction of localized magnetic dipoles is given by,

Edipole =
µ2
β

2

∑
ij

mimj

r3
ij

(1− cos2θij) (7.4)

where rij is the distance between the dipoles and θij is the angle be-
tween the line connecting the spins i and j and the magnetization di-
rection (êM ). This clearly gives rise to a structure dependent energy
term, however in general it contributes with a very small value [59]. In
order to be the only responsible mechanism. When dealing with small
particles, where the surface is large relatively to the volume, the so called
shape anisotropy plays a role. The mechanism for the shape anisotropy
is the dipole-dipole interactions. In a cubic symmetry only second order
terms of Eq.(7.4) contributes, but that is not the case for small parti-
cles with spherical shapes. It was first suggested by Van Vleck et. al.
that spin-orbit interactions was the responsible for the MAE, latter Van
Vleck showed that indeed this was the case, this interaction is called
magnetocrystalline anisotropy.

7.2.1 Magnetocrystalline Anisotropy
The magnetocrystalline anisotropy arises from the interaction of the elec-
tronic spin with the magnetic orbital moment, as the latter is localized
at the lattice ions this interaction couples the electronic spin degrees of
freedom to the lattice. The orbital moment arises from unfilled d and
f shells, and due to the crystal field effect the orbital moment is sup-
pressed. This is called quenching of the orbital moment. The Fig. 7.2.1
a) shows the spherical charge distribution of a free atom. As ions move
towards the atom, forming an octahedral environment, the charge will
be redistributed to avoid the ions, as in Fig. 7.2.1. As a consequence
the atomic energy levels will change. For d-states the octahedral crys-
tal field will raise the free atom ten-fold degenerated levels to a six and
four-fold degenerated levels, moreover the spin-orbit coupling will split
these states even further.

In a free atom the orbital moment is given by the Hund’s rule. The
Fe free atom in a d6 configuration has a orbital moment of 2.0 µb and
full rotational symmetry, e.g. MAE is zero. The bcc Fe has a orbital
moment of 0.085 µb [60] and a MAE of 2.4 µeV/atom. The new gener-
ation of permanent magnets, rare-earth based materials, posses a large
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Figure 7.2. Crystal field spliting of the atomic energy levels of a d-shell.

orbital moment as the f-states are very localized and less sensitive to the
crystal field splitting. As showed in chapter 2 the spin-orbit coupling
Hamiltonian is given by HSOC = ξ~L · ~S and can be introduced as a
perturbation.

HSOC = ξ~L · ~S = ξ(LxSx + LySy + LzSz). (7.5)

In second order perturbation theory the energy correction due to the
spin-orbit is,

∆E = −ξ2
∑
u,o

|〈o|HSOC |u〉|2

δεuo
(7.6)

where u and o label the unoccupied and occupied states respectively
and δεuo is the energy difference between the occupied and unoccupied
eigenvalues. To better understand the theory one can define the so called
ladder operators: L± and S±.

L± = Lx ± iLy (7.7)

S± = Sx ± iSy (7.8)

the action of the ladder operators is given by,

L±|lms〉 = ~
√
l(l + 1)−ml(ml ± 1) |l (ml ± 1) ms〉 (7.9)

S±|lms〉 = ~
√

3/4−ms(ms ± 1) |l ml (ms ± 1)〉 (7.10)

where l, ml and ms stands for the orbital, azimuthal and spin quantum
numbers respectively and |lmlms〉 from an orthonormal basis. The spin-
orbit Hamiltonian can be written as
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HSOC = ξ

[
1

2
(L+S− + L−S+) + LzSz

]
(7.11)

Substituting Eq.(7.11) into Eq.(7.6) one obtains:

∆E = −ξ2
∑
u,o

1

2

[
|〈o|L+S−|u〉|2

δεuo
+
|〈o|L−S+|u〉|2

δεuo

]
+
|〈o|LzSz|u〉|2

δεuo

(7.12)
From Eq.(7.12) due to the orthonormality of the basis |lms〉 some

selection rules. If the unoccupied and occupied states have the same l,m
and s quantum numbers, the only non-zero contribution comes from the
last term of Eq.(7.12), favoring an magnetization along the z-axis.

7.3 Di-iron Phosphide (Fe2P) Crystal Structure
The di-iron phosphide (Fe2P) crystal structure is Hexagonal C22 with
space group P62m, No. 189. It was first determined in 1959 by Rundqvist
et. al. [61] and refined by Carlsson et al. in 1975 [62]. Fujii et al.[63] de-
termined the unit cell parameters at 295 K as: a= 5.868 Å and c=3.455
Å. The Fig. (7.3) shows the Fe2P crystal structure, the unit cell is

Figure 7.3. Fe2P crystal structure (Hexagonal C22, P62m, No. 189)
FeItetrahedral-sites (red), FeII Pyramidal-sites (green) and P atoms (yellow).

composed of three Fe atoms occupying 3f sites (FeI), three Fe atoms oc-
cupying 3g sites(FeII), two P atoms at the 2c sites (PI) and one P atom
occupying 1c sites (PII), 3 formula units (f.u.) in the unit cell. The
two inequivalent Fe atoms have different environment. The FeI atom is
surrounded by four P atoms, with bonding distances ranging from 2.22
to 2.28 Å, as the P atoms form a tetrahedron structure, the FeIsite is
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called tetrahedron site. The FeII atom is coordinated by six P atoms,
with bond lengths from 2.37 to 3.50 Å. The FeII site is called pyramidal
site due to the arrangement of the P atoms.

The Fig. (7.4) shows the total energy as a function of the c/a ratio
for the LDA, GGA and LDA + DMFT calculations. The LDA severely
underestimates the c/a ratio, e.g. also underestimate the equilibrium
volume (V0) by 90 % see table 7.1. For GGA one obtains a better
agreement withe the experimental value. The LDA+DMFT calculations
show a general trend, as the U parameter increases the bulk modulus
(equilibrium volume) decreases (increases).
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DMFT U = 3.0 eV
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Figure 7.4. Total Energy versus c/a ratio for the Fe2P LDA, GGA and
LDA+DMFT for different Hubbard parameters U= 2.0 eV , 2.3 eV and 3.0
eV. The intratomic exchange parameter (J) is fixed at 0.9 eV.

Table 7.1. Fe2P bulk modulus (GPa) and equilibrium volume V0 (Å3).

U (eV) Bulk Modullus (GPa) V0(Å3)

GGA - 201.4 100.78
LDA - 258.6 92.21
exp. - 174a,165b -
exp. - - 103.32c

aParamagnetic, room temperature Ref.[64].
bParamagnetic, room termperature Ref.[65].
cParamagnetic, room termperature Ref.[63].
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7.4 Magnetic Properties
There are several experimental studies concerning the ordering tem-
perature, MAE, saturation moment, hyperfine field and isomer-shift of
Fe2P [66; 67; 68; 69]. In addition, a theoretical analysis was made ear-
lier by Wohlfarth [70; 71], and a subsequent theoretical work addressed
the magnetism of Fe2P using electronic structure calculations [72; 73].
An excellent overview of the magnetic properties of Fe2P and similar
transition metal pnictides and chalcogenides can be found in Ref.[74].

Fe2P is mainly ferromagnetic with a Curie temperature (Tc = 216
K) [74], at this temperature a first-order ferro-paramagnetic transition
is observed, with a decrease of the a-axis and an increase of the c-axis [75],
see Fig. (7.5). Small changes in the stoichiometry, by dopping or defects,
can change the magnetic properties of Fe2P. For 20% of As dopping,
on the phosphorus site, the a (c) parameter increases (decreases) 1.85
% (0.96%), in a hexagonal structure. The altered structure leads to
an increasing of the Curie temperature by 89% (Tc=411 K) and the
total magnetic moment changes to 3.03 µb, an enhancement of almost
3%. A Tc of 450 K (370 K) is obtained by Si dopping with 8% (10%)
concentration also in the P site [74].

Figure 7.5. Lattice expansion of Fe2P as a function of the temperature.
adapted [75]

Table 7.2 shows LDA, GGA and LDA+DMFT total and site resolved
magnetic moments, the calculations were performed at the experimental
volume. The LDA+DMFT calculations were performed using the so
called spin-polarized T-matrix fluctuation exchange solver (SPTF) [77]
which is appropriate for moderate correlated systems. Furthermore the
double counting problem was addressed using the so called sigma zero
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Table 7.2. Fe2P total and site resolved spin moment, in µb.

Total FeI FeII PI PII
Ref.[76]? 2.94 0.69 2.31 - -

Ref.[69]? 2.92 1.14 1.78 - -

Ref.[72]† 2.94 0.96 2.04 - -
GGA 3.03 0.84 2.24 -0.06 -0.05
LDA 2.96 0.84 2.14 -0.05 -0.04

U(eV) LDA+DMFT

2.0 2.98 0.83 2.17 -0.05 -0.05

2.3 2.98 0.83 2.18 -0.05 -0.05

3.0 2.99 0.82 2.20 -0.05 -0.05

* GGA † LDA ? experimental

double counting [78], where we consider that LDA describes the well the
orbital average zero frequency self energy (static self- energy).

All approximations give similar results for the FeI spin moment ad
for the FeII LDA gives better results than GGA and DMFT. As the
Hubbard parameter increases from 2.0 to 3.0 eV a slight increase in the
total moment is observed. The agreement for site resolved spin moments
is not so good, but the experimental value also have scattered data.
Comparing the spin moment for different Fe sites one sees that FeII has
a much bigger spin moment then FeI . For the FeI (tetrahedron) the
proximity to the P atoms increases the hybridization, eg. the hopping,
and the electrons can be seen as less spatially localized. Despite the
fact that FeII is more localized, the difference in GGA and LDA spin
moments is small the LDA + DMFT results are the middle way between
the LDA and GGA results.

We investigated how the spin moment changes with the volume. Fig.
(7.6) shows the total spin moment as a function of the volume. For
smaller volumes the LDA, GGA and LDA+DMFT total spin moments
approach the same value, due to the increasing Fe-P hybridization. In
this regime electronic correlations are less pronounced and LDA, GGA
and LDA + DMFT are expected to give similar results. In the opposite
limit, large volumes, a similar behavior is observed, but in this case
due to a saturation of the moments. The FeI and FeII site resolved
spin moments are showed in the inset of Fig. (7.6). For the two sites
a transition from a low to high spin state is observed. For the FeI a
maximum value is observed and then a monotonically decrease. The
maximum is different for the LDA, GGA and LDA + DMFT but the
trend is the same. The FeII site a monotonical increase of the spin
moment is observed for c/a ratio bigger then 11.0. The FeI and FeII
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Figure 7.6. Total spin moment for LDA (blue) , GGA (brown) and
LDA+DMFT for different Hubbard parameters U= 2.0 eV (black), 2.3 eV (red)
and 3.0 eV (green). The insets show projected spin moment, for the Fe tetra-
hedral and pyramidal sites. The intratomic exchange parameter (J) is fixed at
0.9 eV.

GGA d-states projected density of states are showed in Fig. (7.7) for the
smallest and largest volume. For both sites a narrowing of the d-band is
observed as one goes from small to larger volume as expected.
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Figure 7.7. Site projected density of states (pdos) a) FeI and b) FeII . For the
smallest (largest) volume shaded (red) area (lines).

7.5 First Principle MAE
The MAE was calculated by the magnetic force theorem [79]. Using
Eq.(7) whereas n̂1 = 001 (c-axis) and n̂2 = 100. As Fe2P shows an
uniaxial magnetic anisotropy any choice of spin quantization axis in the
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basal plane (ab-plane) will produce the same value of the MAE. On a
simple model level, the uniaxial MAE can be treated in second-order
perturbation theory, and computed as the difference of the second order
correction to the energy (Ess

′

q [n̂]) between two magnetization directions
as in Eq.(7.13), with a sum over the sites q, over occupied (s) and unoc-
cupied (s’) spin characters, respectively; [80]

∆ESO =
∑
qss′

∆Ess
′

q =
∑
qss′

{Ess
′

q (n̂1)− Ess
′

q (n̂2)}, (7.13)

where the energy correction is given by,

Ess
′

q (n̂) = −
∑
kij

∑
q′

∑
{m}

nkis,qm,q′m′nkjs′,q′m′′,q′m′′′×

〈qms|ĤSOC(n̂)|qm′′′s′〉〈q′m′′s′|ĤSOC(n̂)|q′m′s〉
εkj − εki

.

(7.14)

In Eq.(7.14) there is a sum over k points in the Brillouin zone, i and
j label the occupied and unoccupied states, s and s’ run over the spin
character of the states and m, m′, m′′, m′′′ run over the magnetic quan-
tum numbers. The basis functions |qlms〉 are characterized by the site
q, azimuthal (l), magnetic (m) and spin (s) quantum numbers and εki
(εkj) are the electronic eigenvalues for the occupied (unoccupied) states.
The hybridization is considered in the band character nkis,qm,qm, which
allows mixing of basis functions on different sites. The ĤSOC stands for
the spin-orbit Hamiltonian.

The Fe environment plays a crucial role on the magnetic properties of
Fe2P, specially for the MAE. The MAE is mainly due to spin-orbit cou-
pling (see 7.2). The material has an observed MAE of 500 µeV/f.u. [75]
at T=4K, with the crystallographic c-axis being the magnetization easy
axis. In general a large number of k-points is necessary to guarantee the
convergence of the calculated MAE. Fig 7.8 shows the MAE as function
of the k-point number, for T=295 K structural parameters. A value
of 36002 k-points , in irreducible part of BZ, was considered converged
as the MAE deviates only 0.1 % in comparison with a 50626 k-points
calculation.

The main result is shown in Fig. 7.9, where the calculated MAE is
displayed as a function of the strain. Note that here was used the room
temperature lattice constant as reference level, having room temperature
applications in mind. It is clear from the figure that theory reproduces
the observed easy axis (0001) and that the calculated MAE is of the same
order of magnitude as the experimental one. The theory overestimates
the value of the MAE by 32 %, when a comparison is made between the
experimental low temperature value (red square, taken at 4 K) and the
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Figure 7.8. MAE as function of the k-points for the T=295 K structural
parameters..

lattice parameters corresponding to this temperature (which in Fig. (7.9)
corresponds to a - 0.55 %). The strain state of the low temperature lattice
constant is calculated from the work of Fujii et. al. [68] who reported
measurements for the thermal expansion of the Fe2P in the temperature
range of 60 to 550 K, see Fig (7.5). Using this thermal expansion data
the 4 K lattice parameters were estimated. The agreement between
calculated and measured MAE obtained here is typical, when compared
to other calculations [51; 52; 81], and primarily reflects the extremely
delicate nature of the MAE in general. A very important result shown
in Fig. 7.9, however, is that with an applied strain to the lattice it is
possible to influence the MAE quite substantially.

In these calculations, strain was applied, keeping a constant volume.
Increasing the c value by 1% enhances the MAE by ∼ 15 %, which is the
maximum value of the calculated MAE. For strain values higher than
1%, Fig. 7.9 shows that the MAE decreases almost linearly. Reducing
the c-axis is not favorable for the MAE, here a monotonically decreasing
trend is noticed, with a minimum observed at -8%. Unfortunately most
dopings on the P site, e.g. with Si or B, results in a reduced c/a ratio [62;
63; 68; 75].

The magnetic moment of Fe2P changes much less with strain when
compared to the MAE, as the inset of Fig. 7.9 shows. At 1% strain the
calculated moment is 3.03 µB/f.u., which is -0.4 % of the zero strained
system. The magnetic moment increases however slightly for negative
values of strain. Overall our calculated moments agree well with the
observed number of 2.94 µB/f.u. [68].
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Figure 7.9. Calculated MAE as function of the strain. Positive values of the
strain correspond to an increased c/a ratio (at constant volume). Positive
values of the MAE correspond to the c-axis being the easy axis. The inset
shows the calculated magnetic moment as a function of strain. The square
(red) is the MAE value for the estimated 4 K lattice parameters.

The Fig. 7.9 shows data for a volume conserving strain (except the red
square which corresponds to a volume which is minutely smaller than the
volume used for the other data points). For comparison we also show in
Fig. 7.10 the MAE as function of strain in two non-volume conserving
regimes.

This involves strain of the c-axis while a and b are fixed as well as
strain of the ab-axis while c axis is fixed. For c-axis (ab-axis) strain a
maximum MAE value of 800 µeV (807 µeV) is obtained for 2% (-1%)
strain. Experimental doping on the P site with B results in a reduced c/a
axis (negative strain) and a reduced volume [62; 63; 68; 75], in this case
a predicted MAE with doping is best evaluated by inspection of the non-
volume conserving curve in Fig. 7.10. Doping with Si keeps the volume
essentially constant while reducing the c/a ratio, and for this doping el-
ement the predicted MAE is best evaluated from the volume conserving
curve, which shows a decreased MAE. The MAE was actually calculated
using the structural cell parameters for 10 % Si doping [74], and 593 µeV
MAE was obtained, showing the expected reduction. For 10% Si doping
the experimental Curie temperature (Tc) is 370 K (an increase of 70 %
when compared with the undoped case), which is promising for stabi-
lizing a material which at room temperature has a large MAE. Further
investigations are necessary to consider the chemical effect impact on the
MAE.
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Both these predicted changes of the MAE with doping rely on the ap-
plicability of the rigid band approximation. They have not been evalu-
ated experimentally, and a verification or refutal of this prediction would
be interesting.
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Figure 7.10. Calculated MAE as function of the strain of the c-axis with a and
b fixed (red squares) and strain on the ab-axis with c fixed (black circles).

Since the electronic eigenvalues (εki) appear in Eq.(7.14), it is relevant
to inspect the band structure along the high symmetry lines of the hexag-
onal lattice. Hence, the calculated energy bands is showed in Fig. 7.11,
where the thickness of the bands represents the weight of the Fe-II, l=2
and m=-2 state. The bands that contribute the most to the MAE are
highlighted by the arrows 1 to 5. At 1

4(K-M), arrow 1, the occupied and
unoccupied bands have mainly character from l=2 and m=±2 quantum
numbers, and these bands interact through the lzsz term of the spin-orbit
coupling (SOC) Hamiltonian, resulting in a large negative contribution.
A similar mechanism is observed at 3

4(Γ-A), arrow 4. This is illustrated
further using a calculation with spin-orbit coupling included, in Fig. 7.12
a), in a region zoomed in around the Fermi level, see the highlighted ar-
eas. One can see the splitting of the bands when the spin quantization
axis is along the 0001 crystallographic direction. The splitting of these
bands is not observed for the 100 axis, as can be seen in Fig. 7.12 b). At
arrows 2, 3 and 5 the occupied and unoccupied bands have different m
quantum numbers, m=±2 and m=0 (m=±1) for the occupied (unoccu-
pied) bands, the SOC interaction via the terms : l+s−+ l−s+, give large
positive contributions. As a general rule if the occupied and unoccupied
bands have the same (different) m quantum number, the magnetization
is favored to lie along the 001 (100) axis [82].
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Figure 7.11. Band structure of Fe2P calculated without spin-orbit coupling
(the band thickness represents the weight of Fe-II, l=2 and m=-2 state). Red
(solid) is the spin up character and blue (striped) is the spin down. The Fermi
level (EF ) is placed at E=0.

To understand the enhancement of the MAE under uniaxial strain,
the bandstructure was calculated for the 1 % volume conserving strain
(Fig 7.13 a). The overall bandstructure is not changed, due to the strain,
only a rigid shift is observed. Without SOC the flat bands around the A
point lies on the Fermi level. As pointed out before these bands are split
due to SOC for a magnetization along the 001 axis. One of the bands
become fully occupied and the other fully unoccupied and given that
these bands are very close in energy a large contribution to the MAE is
expected. Indeed this is confirmed in Fig 7.13 b) (upper panel) where
the MAE for each k-point (EMAE [k]) along the high symmetry lines of
the hexagonal cell is showed, for the zero and 1% (volume conserving)
strained system. For the zero strain one can see a sharp negative peak
for the MAE (negative values favors the 001 axis) around arrows 1 and
4. For 1% strain the peak at arrow 4 gets broadened explaining the
increasing of the MAE.
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7.6 Conclusion
In conclusion the uniaxial MAE of Fe2P was studied by Ab Initio calcula-
tions. The theory reproduces the observed 0001-easy axis with a MAE of
664 µeV/f.u. This should be compared to an experimental value of ∼ 500
µeV/f.u. (2.32 MJ/m3) This is an acceptable agreement between theory
and experiment, when having in mind the extremely delicate nature of
the MAE and the typical low energy differences associated with it. The
size of the MAE of Fe2P should be compared to other hard magnetic
materials like FePt 1.2 meV/f.u. (6.6 MJ/m3) [54] and Nd2Fe12B 6.7
meV/f.u. (4.9 MJ/m3) [83]. As to the magnetic moments our calcula-
tions give a value of 3.04 µB/f.u., which agrees well with the experimental
moment of 2.94 µB/f.u.

The MAE origin was analyzed by a detailed band and k-point re-
solved property, and show that the positions of the different energy bands
around the Fermi level critically determine that MAE. Since these bands
can be moved up or down in energy with an applied strain, it seems that
this is an important avenue with which to influence the MAE of Fe2P
and Fe2P-based alloys. Consequently we find from our MAE calculations
that it is possible to influence the MAE quite strongly with an applied
strain, both in a volume conserving and a non-volume conserving mode.
We showed that reducing the c value (in a volume conserving mode) by
1% enhances the MAE by ∼ 15 %. This opens up possibilities to use
Fe2P and alloys of this material, as a platform for searching for new
permanent magnetic materials that don’t contain rare-earth elements.
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Figure 7.12. Zero strain band structure of Fe2P calculated with spin-orbit
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Fermi level (EF ) is placed at E=0.
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8. On the icosahedral metal-phosphorus
coordination in melliniite

The present chapter is based on the following publication:
1. K. Kadas, M. Costa, L. Vitos, Y. Andersson, A. Bergman and O.

Eriksson. "On the icosahedral metal-phosphorus coordination in
melliniite: a gift from the sky for materials chemistry". J. Mater.
Chem. 22, 14741 (2012).

8.1 Melliniite Properties and Crystal Structure
Recently a new mineral, melliniite, was reported in a meteorite from the
Northwest Africa 1054 acapulcoite,[84] which belongs to the Collection
of Meteorites of the Museo di Scienze Planetarie della Provincia di Prato.
This mineral, which is unique in being found only in a meteorite sample,
has ideally a chemical composition (Ni,Fe)4P, with approximately 58 %
Ni and 42 % Fe on the metal site (there is a very small amount of Co also
on this site) [85]. The compound is reported to be opaque with a metallic
luster, and the crystal structure was found to be cubic, space group P213,
in the AlAu4 structure type. In this structure the metal atoms occupy
the 12b site which are effectively coordinated with fourteen neighboring
atoms. Metal atoms are also found on the 4a site which is coordinated by
three P atoms and nine metal atoms. The phosphorus atoms are located
on the 4a site, and unlike other minerals on Earth, they are coordinated
by twelve nearest neighboring metal atoms (the coordination is shown in
Fig. 8.1). No other phosphide has been reported to have such high metal
coordination. Generally phosphorus has nine metal neighbors, mostly in
a tricapped triangular prismatic coordination [86]. In some very rare
cases it can be ten-fold coordinated, e.g. in Co2P [87].

Extraterrestrial iron-nickel phosphides have recently drawn significant
attention due in part to the fact that it has been pointed out they are
a possible source of phosphorus essential for the biomolecular building
blocks of life [88] as well as being potential reservoirs of light elements
in the Earth’s core [85].

Until recently, five naturally occurring phosphides were known; schreiber-
site [88] (chemical formula (Ni,Fe)3P), nickelphosphide [89] (chemical for-
mula (Ni,Fe)3P), barringerite [90](chemical formula (Fe,Ni)2P), allabog-
danite [86] (chemical formula (Fe,Ni)2P) and florenskyite [91](chemical
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formula FeTiP). Of these, schreibersite is the most commonly occur-
ring mineral, and it is the most likely phase by which phosphorus was
originally incorporated in deep planetary interiors [85]. The sixth nat-
urally occurring phosphide is the recently reported melliniite [85]. The
phase stability and in particular the crystal structure, as signalled by
the phosphorous-metal coordination, of this newly discovered mineral is
different from all known transition metal phosphides on Earth or syn-
thesized in a laboratory, and is the focus of the present investigation.

The chemical binding between transition metals and elements with an
open p-shell (e.g. pnictides) results in general in a strong covalent bond
built up from d orbitals centered on the transition metal atoms and p or-
bitals centered on the element of the p-shell element [92; 93; 94; 95; 96].
This results in a directional bonding with a coordination lying between
six (e.g. in TiC) and nine (e.g. in Fe2P). It has been shown that a
weaker, less directional metallic binding, primarily between the transi-
tion metal atoms, overlaps the covalent d− p bond [97]. The dominance
of the covalent d − p bond is expected in transition metal phosphides,
which is consistent with typical coordination numbers between six and
nine. As mentioned, no compound have been found with a coordina-
tion exceeding ten [87]. In light of this paradigm, the recent discovery
of a metal - phosphorous coordination of twelve in melliniite stands our
as a chemical puzzle for this class of materials. An understanding of
this seemingly new situation of the chemical bonding between transi-
tion metal atoms and pnictides, has relevance not only for geology and
research on minerals. It could shine light on phenomena observed in
physics, e.g. the superconductivity in magnetic Fe-pnictides,[98] as well
as on engineering aspects of materials science, e.g. the potential of Fe2P
based materials as magneto-caloric cooling media [99]. We address this
issue here, by first principles theoretical calculations, which are known
to accurately describe the phase and structural stability, and in addition
shine light on the nature of the chemical binding.

8.2 Balanced Crystal Overlap Orbital Poplulation
In order to investigate the nature of the chemical bonding between Fe-P
(Ni-P) in Fe4P (Ni4P) compounds, we calculated the balanced crystal
orbital overlap population BCOOP [100], which is a generalization of the
crystal orbital overlap population (COOP) [101]. Consider the eigenval-
ues εn and eigenvectors |n〉 of the Kohn-Sham hamiltonian. As showed
in chapter 3 the eigenvector can be expanded as

|n〉 =
∑
i

ci|i〉 (8.1)
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Figure 8.1. The structure of melliniite. P and metal atoms are displayed by vi-
olet and blue, respectively. The right panel shows the icosahedral environment
of the P atoms.

where the basis function |i〉 are atomic-like orbitals, in our particular
case a muffin-tin orbital (MTO). The overlap between two basis states
is

OPij = c∗i cjSij (8.2)

where the Sij is the overlap between the state |i〉 and |j〉. The covalent
bond is due to the overlap of wave function, so the OPij gives eigenvector
contribution to the covalent bond between |i〉 and |j〉. For a solid one
should take into account the k-dependence. So the COOP is defined as

COOPij(ε) =
∑
nk

δ(ε− εn(k))c∗i cjSij (8.3)

where the COOP is positive for bonding contributions and negative for
anti-bonding. In our case the full potential LMTO basis is used. Using
such a basis the COOP for anti-bonding states shows a divergence, due
to the non orthogonality. A more appropriate approach is the so called
Balanced COOP (BCOOP). Before proceeding let us redefine the Kohn-
Sham eigenvalues εn(k) and eigenvectors |n,k〉 as

|α〉 =
∑

i∈A(α)

ci(n,k)|i〉, |n,k〉 =
∑
α

|α〉 (8.4)
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where α stands for the type, azimuthal quantum number (l) and spin
character. The BCOOP is defined as,

BCOOPα1α2
(ε) =

∑
nk

δ(ε− εn(k))
〈α1|α2〉∑
α〈α|α〉

, (8.5)

the denominator
∑
α〈α|α〉 is introduced in order to avoid the diverg-

ing due to non-orthogonality of the basis. The BCOOP follows the sign
convention, as the COOP, positive (negative) values for bonding (anti-
bonding) contributions.

8.3 Results and Discussion
The phase stability and electronic structure calculations were done by
means of density functional theory using the PBEsol exchange-correlation
functional.[102] The Kohn-Sham equations were solved using the Exact
Muffin-tin Orbitals (EMTO) method.[103; 104; 105] The substitutional
disorder of the metal atoms was taken into account using the Coher-
ent Potential Approximation (CPA) [106; 107] as implemented in the
EMTO-CPA method.[108] This scheme was proved to be an accurate ap-
proach in the theoretical description of the disordered solid solutions. In
the self-consistent calculations, the one-electron equations were treated
within the scalar relativistic and soft core approximations. The Green’s
function was calculated for 16 energy points. In the basis set s, p and d
orbitals were included. All the EMTO calculations were spin polarized.

In addition to the EMTO calculations we performed calculations based
on a full-potential linear muffin-tin orbitals method. These additional
calculations we done primarily to analyze the chemical binding, by evalu-
ation of the BCOOP. These calculations used 568 points in the irreducible
part of the BZ, and involved an double spd-basis set for the transition
metal atoms and a double sp-basis for the P atoms.

8.3.1 Phase Stability - NixFe1−xP
According to the measurements, (Ni2.30Fe1.64Co0.01)∑=3.95P1.05 is the
chemical formula of melliniite, ideally (Ni,Fe)4P.[85] Here, metal atoms
occupy 12b and 4a sites, but the distribution of Ni and Fe atoms over
these sites are not known. Therefore, first, we examine the metal site
preference in (Ni,Fe)4P. In our calculations we considered Ni and Fe
metallic components in the same ratio as in melliniite: (Ni2.336Fe1.664)P.
We considered three different structures. In the first structure, STR-I,
Ni and Fe atoms are homogeneously distributed over the 12b and 4a
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sites. In STR-II, only Ni atoms occupy metal 4a sites, and the remain-
ing Ni atoms, as well as the Fe atoms are homogeneously distributed
over the 12b sites. In STR-III, only Fe occupy metal 4a sites, and Ni
and Fe atoms are homogeneously distributed over the 12b sites. Table
8.1 shows that STR-II is the most stable structure of these three, in-
dicating that the metal 4a sites are preferably occupied by Ni atoms.
The energy differences are rather small: 0.283 mRy/site for STR-I, and
1.059 mRy/site for STR-III. We calculate slightly different equilibrium
volumes for these three structures, the differences being less than 2%.
Within the present error bars, the theoretical bulk moduli are about the
same. In the following, we consider STR-II as the ground state structure
of (Ni,Fe)4P.

Table 8.1. Equilibrium volumes, total energies (with respect to the lowest
configuration), and bulk moduli calculated for different structures of (Ni,Fe)4P.
Structure Veq (Å3/atom) Eeq (mRy/atom) B (GPa)
STR-I 11.083 0.283 191.8
STR-II 11.158 0.000 191.4
STR-III 10.963 1.059 192.0

Next, we investigate the phase stability. First, we examine whether
(Ni,Fe)4P is stable with respect to Ni4P and Fe4P standard states, i.e.
the following reaction:

xNi4P + (1− x)Fe4P→ NiyFe4−yP, (8.6)

where x=0.584, and y=2.336. Here, Ni4P and Fe4P are calculated in the
same structure as (Ni,Fe)4P, i.e. cubic P213 structure.[85] We obtain
for T=0 K a positive formation energy for reaction (8.6) with STR-II,
∆E1=5.236 mRy/f.u., which means that at zero temperature (Ni,Fe)4P
is not stable. However, at higher temperature, in fact already at room
temperature, STR-II of (Ni,Fe)4P becomes stable, as it has negative free
energy of formation (∆F ). For reaction (8.6), we calculate ∆F1=∆E1-
TS=-0.096 mRy/f.u. at T=310 K temperature, where the temperature
effect is taken into account via the configurational entropy S.[109]

As a next step, we investigate the stability of the pure metal phos-
phides, Fe4P and Ni4P. To this end we calculate the formation energies
of the following reactions:

Fe3P + Fe→ Fe4P, (8.7)

Ni3P + Ni→ Ni4P. (8.8)

Here, Fe3P has I-4 structure with experimental lattice constants a=b=9.107
Å and c=4.460 Å.[110] Keeping the structure fixed, we determined the
equilibrium volume, and obtained Veq,Fe3P=11.276 Å3/atom for the equi-
librium volume. We considered ferromagnetic Fe in body-centered cubic
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(bcc) structure, and calculated Veq,Fe=11.151 Å3/atom. Ni3P is also
of I-4 structure, with experimental lattice constants a=b=8.9499 Å and
c=4.385 Å,[111] and we obtained Veq,Ni3P=11.210 Å3/atom for its equi-
librium volume. Pure Ni was calculated in face-centered cubic (fcc) struc-
ture, with a theoretical volume of Veq,Ni=10.658 Å3/atom.

We obtain at T=0 K a positive formation energy for reaction (8.7),
∆E2=29.601 mRy/f.u., i.e. Fe4P is not a stable compound. This is in
line with the experimental Fe-P phase diagram,[112] according to which
Fe3P is the stable phase between 0 and 25 at.% P content.

For reaction (8.8), however, we calculate at T=0 K a negative for-
mation energy, ∆E3=-14.171 mRy/f.u. This means that Ni4P is stable
compared to Ni3P and fcc Ni standard states. Nevertheless, in the exper-
imental Ni-P phase diagrams [113; 114] Ni3P is the stable phase between
0 and 25 at.% P content. Therefore our calculations predict a new phase
in the Ni-P system, Ni4P.

Finally, we examine whether (Ni,Fe)4P is stable with respect to Ni3P
and fcc Ni, as well as Fe3P and bcc Fe standard states, i.e. the following
reaction:

x(Ni3P + Ni) + (1− x)(Fe3P + Fe)→ NiyFe4−yP, (8.9)

where x=0.584, and y=2.336. At zero temperature, the formation energy
of reaction (8.9) is ∆E4=9.274 mRy/f.u. for STR-II, indicating that
(Ni,Fe)4P is not stable. At elevated temperature, however, (Ni,Fe)4P
becomes stable: we calculate a negative ∆F4 at temperatures larger
than 540 K. The present phase stability calculations hence suggest that
the stability of (Ni,Fe)4P is due to its Ni content in combination with
elevated temperatures and the configurational entropy, above 540 K. At
room temperature this phase is meta-stable.

In Fig. 8.2 the calculated electronic density of states is shown for STR-
II of (Ni,Fe)4P. Here the spin-up and spin-down channels are displayed
by black and red lines, respectively.The DOS is smoother than that of
Fig. 8.3, due to alloying effects. We also note that no sharp peaks of
the DOS curve are found at EF, which is a pre-requisite for a material
to be stable.[115] Furthermore, (Ni,Fe)4P is magnetic: we calculate a
magnetic moment of 2.24 µB for Fe atoms at 12b sites, and smaller
magnetic moments for Ni atoms, 0.45 µB for Ni at 12b sites, and 0.21
µB for Ni at 4a sites.

8.3.2 Chemical Bond Analysis
A non spin-polarized BCOOP was calculated, and is analyzed below,
with α1= Fe 3d (Ni 3d) and α2= P 2p. Fig. 8.3a (8.3b) shows the
Fe4P (Ni4P) total density of states (DOS) and the Fe 3d (Ni 3d), P

71



-20

0

20

D
O

S

-20

0

20
D

O
S

-20

0

20

D
O

S

-20

0

20

D
O

S

-15 -10 -5 0
E-E

F 
(eV)

-20

-10

0

10

20

D
O

S

(Ni,Fe)
4
P, total DOS

Ni 12b

Fe 12b

Ni 4a

P 4a

Figure 8.2. Electronic density of states calculated for structure STR-II (for
details see text) of (Ni,Fe)4P. Top: total DOS; lower panels: partial DOSs (in
arbitrary units). EF is denoted by a vertical dashed line.

2p projected density of states (PDOS). The Fe 3d (Ni 3d) states are
located primarily around the Fermi level (EF), starting from ∼ -5 eV
and extending to a few electron volts above EF. The P 2p states are
located primarily between ∼ -8 and -5 eV. The hybridization (mixing
of orbital characters) between the transition metal states and the P 2p
states shows up in Fig. 8.3a (8.3b) as a tail of the P 2p PDOS that
extends to higher energies and overlaps with the PDOS of Fe 3d states.
This hybridization gives rise to a covalent bond, and one can from Figs.
8.3a and 8.3b note that the hybridization is stronger between Fe 3d and
P 2p compared to that between Ni 3d and P 2p. As a matter of fact, the
hybridization between Ni 3d and P 2p is very weak, as Fig. 8.3b shows,
suggesting a weaker covalent bonding in this situation.
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Figure 8.3. Total and projected density of states and BCOOP of Fe4P and
Ni4P.(A) Fe4P total density of states, Fe 3d and P 2p projected density of
states and (B) Ni4P total density of states, Ni 3d and P 2p projected density
of states. The inset of A) (B) shows the total BCOOP between P 2p and Fe
3d (Ni 3d) states (nearest-neighbors). The Fermi level is placed at E=0.

The inset of Fig. 8.3a (8.3b) shows the BCOOP curves between P
2p - Fe 3d (Ni 3d) nearest-neighbors. Positive regions of the BCOOP
curve represent bonding states whereas negative regions correspond to
anti-bonding covalent states. The Fe4P BCOOP curve shows that all
bonding states and a fraction of the anti-bonding states are filled. In
the Ni4P BCOOP curve a similar picture is found, however with an
important difference that the intensity of the binding states is smaller,
and that a higher fraction of the anti-bonding states are filled, which is
expected as Ni has two extra d electrons compared to Fe. The BCOOP
analysis hence demonstrates that the Fe-P bond is a stronger covalent
bond in comparison with the Ni-P bond, which is consistent with the
analysis of the PDOS curves.
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Figure 8.4. Total metal-metal BCOOP between the d-states of Fe (A) and Ni
(B) (nearest-neighbors). The Fermi Level is placed at E=0.

Fig. 8.4 shows the Fe 3d (Ni 3d) BCOOP curves, for the nearest-
neighbors. A noticeable difference from the metal-phosphorus BCOOP
(Fig. 8.3) is the intensity of the metal-metal BCOOP is higher in the
last case. This difference is expected since the largest contributions for
the PDOS, specially around the Fermi level, are mainly due to the Fe
(Ni) 3d states. The Fe4P BCOOP curve presents a similar picture to
the Fe 3d - P 2p case, with all the bonding and a fraction of the anti-
bonding states filled, showing a partially covalent character of the Fe-Fe
bond. The Ni4P BCOOP curve is quite different, with all bonding and
anti-bonding states filled, only a small tail remains unoccupied, showing
that the Ni-Ni bond has a less covalent character.
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8.4 Conclusions
We have studied phase stability and chemical bonding in a recently dis-
covered new mineral, melliniite, (Ni,Fe)4P, using first princciples theory.
In light of the PDOS and BCOOP analysis presented above, the twelve-
fold coordination of the metal-phosphorous bond in (Ni,Fe)4P can be
explained by the weak covalent nature of the Ni-P binding. The typical
nine-fold coordination of the metal-phosphorous bond is found in sta-
ble compounds, with strong covalent binding. (Ni,Fe)4P is meta-stable
at room temperature, due to the weakened strength of the Ni-P bond.
The binding between Fe and P, in combination with finite temperature
effects and configurational entropy, stabilizes the material above 540 K.
The weakened nickel-phosphorous binding, however, allows for the ob-
served, unique twelve-fold coordination of the phosphorous atom.
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9. Strong Correlation of Fe Impurities on a Cs
host

The magnetic properties of most elements can be drastically modified
by combining them to form compounds. An example of this is the ferro-
magnetic compound ZrZn2, which is formed by two elements that in pure
form do not display any ordered magnetism [116; 117]. Another example
is YCo2, a non-magnetic compound (with a metamagnetic phase transi-
tion) [118] containing an element that in pure form is a ferromagnet with
significant saturation moment and ordering temperature. Another way
to influence the magnetic properties of a material is to form inclusions
of one element in a host material. An example that stands out here is
Fe impurities in a Pd host, where the normally non-magnetic Pd host
becomes strongly spin-polarized due to the proximity to the magnetic
Fe atom [119; 120; 121]. In this case a large number of Pd atoms be-
come spin-polarized, causing every Fe atom to be associated with a large
moment of 9-12 µB.

Recently much attention has been devoted to Fe impurities in Cs and
other alkali metals. The reason for this interest is that Cs, according to
the analysis of Wigner [122] and Overhauser [123], is close to a magnetic
state, since it has a very small electron concentration (the rs value is
6.6). Hence one may speculate that the inclusion of small amounts of
magnetic elements in Cs, e.g. Fe or Co, could provide an exchange field
that would push the host material to a magnetic ground state. More-
over, similarly to what happens for Pd, magnetic inclusions in Cs could
generate a cloud of spin-polarized atoms around the magnetic impurities.
This idea was indeed tested experimentally in a series of experiments of
Fe and Co in Cs [124; 125; 126; 127], and large moments were reported.
It was however argued that these large moments were not due to a po-
larization of the Cs host but more to the fact that the 3d shell of the Fe
and Co impurities could assume an atomic-like electronic configuration,
with atomic moments of 6 µB/atom [128; 129]. In fact first principles
calculations, based on the density-functional theory in the local density
approximation (DFT-LDA), support the fact that the polarization of the
Cs host atoms is very small [129; 130]. Nevertheless, experiments for Fe
and Co doped Rb and K [127] point to measured moments that are too
large to be explained by atomic theory.
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Figure 9.1. Different positions of the Fe impurity in Cs(001) host.

9.1 Breakdown of the Band Picture
These materials have also been subjected to spectroscopical studies in
the form of Fe atoms adsorbed on the different alkali surfaces [131]. The
investigations involved both an experimental part and a theoretical part,
the latter being based on the combination of DFT-LDA and dynamical
mean field theory, a computational scheme that is usually addresses as
LDA+DMFT.

In this way the authors could investigate the correlated electronic
structure with the inclusion of proper many-body effects. From this
work it was concluded that Fe in Cs is a rather weakly hybridizing sys-
tem, in which the 3d states form essentially a localized/atomic electronic
configuration, a conclusion which is in line with the suggestions of Refs.
[128] and [129].

In this chapter we provide a comprehensive LDA+DMFT study of the
correlated electronic structure of Fe in Cs, focusing on the different posi-
tions that the Fe atoms can assume in the host: substitutional impurity
in the bulk Cs, adsorbed on top of a Cs(001) surface and absorbed in an
interstitial sub-surface site. The Cs bulk was considered in the bcc crys-
tal structure [132]. The Cs(001) surface was modeled with 7 slabs and
the Fe adsorbed was arbitrary relaxed to 60 % of the bulk value in the z
direction, see Fig. 9.1. The smallest distance allowed between an impu-
rity and its image was considered to be about 12 Å. A Monkhorst-Pack
mesh of 7x7x7 (7x7x1) was used for the bulk (surface) calculations.
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9.2 Hubbard I and Exact Diagonalization
We have performed simulations by means of a Full-Potential Linear
Muffin-Tin Orbital (FP-LMTO) code [133; 134], whose LDA+DMFT
implementation has been thoroughly described elsewhere [135; 136; 137;
138; 139]. In the LDA+DMFT scheme the lattice problem is mapped
onto the problem of an impurity embedded in a fermionic bath, which re-
duces the complexity of the problem by freezing the spatial fluctuations
but including all the dynamical quantum fluctuations. As a result of the
mapping into an effective single impurity model, the DMFT solution is
local in character, and becomes exact in the limit of infinite coordination
number.

The effective impurity problem can be solved through different tech-
niques. The choice of the solver is dependent on the system under consid-
eration, and on the properties one wants to calculate, and on the desired
accuracy. In this work the Hubbard-I approximation (HIA) and the
Exact Diagonalization (ED) solver were used, and are briefly described
in the following. The HIA is suited for very localized systems, where
the hybridization of the atomic impurity with the fermionic bath can
be totally neglected. This assumption is generally true for f-states, and
sometimes also for d-states, usually in compounds like complex oxides.
The ED solver can be considered as the natural extension of the HIA:
the hybridization with the fermionic bath is not completely neglected
but approximated by means of a few fictitious bath orbitals [139]. The
Hamiltonian that describes the local problem becomes:

Ĥ =
∑
ij

(ĤLDA
ij − ĤDC

ij )ĉ†i ĉj +
∑
m

εmĉ
†ĉ

+
1

2

∑
ijkl

Uijklĉ
†
i ĉ
†
j ĉkĉl +

∑
im

(Vimĉ
†
i ĉm +H.c.)

(9.1)

The indices i,j,k and l label the impurity correlated orbitals, e.g. the
Fe d-states, while m labels the bath orbitals, e.g. the fictitious states
derived from the Cs sp-states. The HLDAij is obtained from the full LDA
Hamiltonian projected on the correlated orbitals. The third term of
Eq. (9.1) describes the local electron-electron interaction, and the Uijkl
matrix can be written in terms of the Slater integrals (Fn, n=0,2,4 for d
electrons) times the Gaunt coefficients [8]. The parameters εm represent
the energy positions of the bath orbitals, while Vim are the hybridization
strengths. In the HIA the hybridization is totally neglected, therefore εm
and Vim become trivially zero. In this case bath and localized states are
decoupled, and the problem is atomic-like [138]. In ED the parameters
defining the bath orbitals are chosen by means of a numerical fitting,
described in detail in Ref. [139]. Once the Hamiltonian in Eq. (9.1) has
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been set up, the problem can be solved exactly by calculating the ground-
state many-body wavefunction. From the latter, one can finally obtain
the local Green’s function (and related properties) through the Lehmann
representation [139]. Before describing the computational details, the
double counting term HDCij must be specified. This term is used to
remove the contributions of the local Coulomb interaction Uijkl already
contained in the LDA Hamiltonian. For the HIA and the ED solver we
find it convenient to use the photoemission data to set HDCij manually,
in order to fix the main occupied peak at the correct position.

The method described above has been used for LDA+DMFT simu-
lations of Fe impurities in Cs, using both the HIA and the ED solver.
Concerning the construction of the correlated d-orbitals, only one ki-
netic energy tail was used, similarly to what done in Ref. [139] for the
transition metals monoxides. The Slater parameters describing the Uijkl
matrix were constructed by following the prescription of Ref. [131]. The
Hubbard parameter U (F0) is very sensitive to the environment, and in
a free atom can be as high as 30 eV. In a solid, due to the screening
effect, U ranges from 2-8 eV. As the aforementioned studies point to
that Fe is in a atomic-like environment, U=8.0 eV was used. The in-
tratomic exchange parameter J was used to construct F2 and F4 as in
Ref. [42; 43; 44].
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Figure 9.2. PDOS for the Fe d-states in LDA for different positions: substitu-
tional position in the Cs bulk (solid black line), interstitial position in the first
sub-layer of the Cs(001) surface (dashed red line), adsorbed position on top of
the Cs(001) surface (dotted-dashed blue line). The experimental photoemission
spectrum (full black circles) from Ref. [131] is also shown.
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9.3 Results and Discussion
9.3.1 Spectral Properties
In Fig. 9.2 the projected density of states (PDOS) of the Fe d-states in
LDA is reported, for the substitutional, interstitial and adsorbed impu-
rities, together with experimental data from photoemission spectroscopy
[131]. The aforementioned large Fe magnetic moments seems incom-
patible with the experimental spectrum and the Stoner criteria. As the
Stoner parameter I is nearly independent of the environment, one should
expect a large density of states at the Fermi level in order to explain the
large spin moment. This apparently contradiction is a reflection of the
band picture breakdown. The Stoner criteria was derived considering
electrons as waves propagating through the crystal, which is not valid
anymore. Nevertheless LDA shows a large value of the density of sates.
It is clear that LDA does not capture the correct physics. The experi-
mental spectrum exhibits multiplet-like features, while the LDA PDOS
has only one peak just on top of the Fermi level. It is evident that the
predicted spectral properties do not show any correspondence with the
experimental data. To use the LDA+DMFT scheme its important to
know the correct occupation of the correlated orbitals, in this case the d
orbitals. Depending on the characteristic of the host, the Fe atoms can
assume different electronic configurations. In the Ref.[131] the authors
considered a d7 configuration for the Fe impurity. Our LDA calcula-
tions gave an occupation of six electrons we decided to investigate both
configurations.

9.3.2 Hubbard I - d7

In Fig. 9.3 top panel, the experimental spectrum of Fig 9.2 is compared
to the PDOS for the Fe d-states calculated with the LDA+DMFT scheme
with the HIA. It is possible to recognize the multiplet features. The first
peak (at -0.35 eV) is used to set the double counting term, as explained
above, and by construction should be on top of the experimental one.
The second experimental peak is at around -2.3 eV, and is visible also
in the calculations. Despite its position is correctly predicted by the
theory, its intensity is highly overestimated. The third peak, at -2.8 eV,
shows a reasonable agreement correspondence between experiment and
theory. Finally the position of the fourth peak is well reproduced by the
theory, at around -3.2 eV, but its intensity is strongly underestimated.
The intratomic exchange parameter J was seted to 0.9 eV.
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Figure 9.3. PDOS for the Fe d-states, in d7 (top panel) and d6 (bottom panel)
configuration using HIA for different positions: substitutional position in the
Cs bulk (solid black line), interstitial position in the first sub-layer of the
Cs(001) surface (dashed red line), adsorbed position on top of the Cs(001)
surface (dotted-dashed blue line). The experimental photoemission spectrum
(full black circles) from Ref. [131] is also shown.

9.3.3 Hubbard I - d6

Now we compare the experimental spectrum with the PDOS for a d6

configuration, as showed in Fig. 9.3 bottom panel. The agreement is
much better, in comparison with the d7. The distance between the first
and third peaks is in perfect agreement, nevertheless the second peak is
absent in this configuration. The third peak is slight shifted to higher
energies (at -3.4 eV). The intratomic exchange parameter J was seted to
0.75 eV. We should stress that the distances between the calculated peaks
are in a good agreement with experiment. Probably a better agreement
can be obtained for this atomic-like simulation by tweaking the exact
values of the Slater parameters F2 and F4, but this (tedious) procedure
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would not lead to any additional significant information, and therefore
was not done.

Table 9.1. Energies εm (eV) and hybridization strengths Vm (10−2 Ry) of
the fictitious bath orbitals used in the ED solver. The last column contains
the degeneracy of each orbital, this being related to the symmetry of the local
Hamiltonian in the absence of spin-orbit coupling and spin-polarization.[139].

εm(eV) Vm(10−2 Ry) DEG
Substitutional 3.373 0.529 6

6.582 0.541 4
Interstitial 4.732 1.080 2

4.459 0.886 4
4.947 0.811 2
4.721 0.491 2

Adsorbed 4.266 0.754 2
5.489 0.617 2
3.144 0.391 4
2.201 0.353 2
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Figure 9.4. Hybridization strength of the Fe d-states in LDA for different
positions: substitutional position in the Cs bulk (solid black line), interstitial
position in the first sub-layer of the Cs(001) surface (dashed red line), adsorbed
position on top of the Cs(001) surface (dotted-dashed blue line).

More interesting is the analysis of the effects due to the hybridization
of the atomic impurity with the surrounding electrons. In Fig. 9.4 we
show the strength of the hybridization of the Fe d-states, obtained from
the absolute value of the trace of the imaginary part of the hybridization
function ∆(E) [139] over all orbitals. As expected, the hybridization is
very small for all the possible positions of the impurity, especially in the
occupied part of the spectrum. In the unoccupied part, the Fe at the
interstitial position shows the strongest hybridization, while the Fe at
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the adsorbed position has the weakest one. The effects of the hybridiza-
tion on the spectrum become clear when LDA+DMFT simulations are
performed with the ED solver. The hybridization function was fitted
by using 10 fictitious bath states, which are obtained through the al-
ready mentioned fitting algorithm of Ref. [139]. These orbitals are fully
specified by the parameters εm and Vm, which are reported in Table 9.1.
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Figure 9.5. Occupied part of the PDOS for the Fe d-states in a d7 (top panel)
and d6 (bottom panel) configuration using ED for different positions: substitu-
tional position in the Cs bulk (solid black line), interstitial position in the first
sub-layer of the Cs(001) surface (dashed red line), adsorbed position on top of
the Cs(001) surface (dotted-dashed blue line). The experimental photoemission
spectrum (full black circles) from Ref. [131] is also shown.

9.3.4 Exact Diagonalization
The occupied part of the ED spectrum for the three considered impurity
positions for the d7 (d6) configuration is shown in Fig. 9.5 top panel
(bottom panel). The ED spectrum is very similar to the HIA spectrum,
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except for some rigid shift for the d7 configuration. An additional thing
to notice, in relation to the previous considerations, is that for ED the
double-counting correction does not fix the position of the peak exactly,
but the latter one can adjust with respect to the hybridization effects.

Finally we have also investigated the unoccupied part of the spectrum,
as reported in Fig. 9.6. This was motivated by the fact that in this re-
gion the hybridizations in Fig. 9.4 exhibit the largest contributions. In
the inset of Fig. 9.6 the HIA results are reported. As expected no major
differences can be seen, due to that the hybridization is not considered in
this method. Instead, for the ED spectrum, the hybridization causes the
atomic-like peaks to spread into broader structures. Significant differ-
ences appear, in particular between the adsorbed and the substitutional
(or interstitial) impurities in the case of the d7 configuration. As for
the d6 configuration the substitutional and interstitial impurities unoc-
cupied spectrum are very similar as the adsorbed is broaded. This result
is very interesting, since it offers the possibility of determining the ef-
fective position of the impurities in the host by performing an inverse
photoemission experiment.

9.4 Conclusion
We performed LDA+DMFT calculations to investigate the spectral prop-
erties of Fe impurities in Cs, for both bulk and surface hosts. It was
shown that pure LDA calculations lead to a very poor description of
the spectral properties with respect to the experimental photoemission
data. The Hubbard-I approximation is very successful in reproducing
the experimental spectra, but our calculations do not show any signifi-
cant difference among the impurity densities of states at the three ana-
lyzed positions within the Cs host for both configurations. These results
are confirmed also in the LDA+DMFT simulations with the ED solver,
where the hybridization between impurity and host is considered explic-
itly. Despited the better agreement of the d6 spectrum, there are some
features not captured, as the small second peak in the experimental
spectrum. We speculate that the experimental spectrum could be ex-
plained by a mixed of impurities in the d6 and d7 configurations, further
investigations are necessary. Finally we have shown that the most dif-
ferences between the theoretical spectra for the different positions lay in
the unoccupied part. This suggests that one can use inverse photoemis-
sion spectroscopy, which probes the unoccupied electronic excitations, to
identify in which site the impurity is located.
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Figure 9.6. Unoccupied part of the PDOS for the Fe d-states in a d7 (top
panel) and d6 (bottom panel) configuration using ED for different positions:
substitutional position in the Cs bulk (solid black line), interstitial position in
the first sub-layer of the Cs(001) surface (dashed red line), adsorbed position
on top of the Cs(001) surface (dotted-dashed blue line). The inset shows the
corresponding curves for the HIA in different positions.
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10. Magnetism of supported clusters

Imagine the possibility of building a device atom-by-atom, with a kind of
Fordism of the atomic world, one can call it molecular manufacturing or
the bottom-up approach. At this point this is still a dream, despite some
attempts. Nevertheless since the invention of the scanning tunneling mi-
croscope (STM), this partially became feasible. With the STM one can
probe and manipulate atoms, at an extend that in 1989 researchers at
IBM who manage to write the logo of the company using Xe atoms on
a surface. Using the STM one can build from adatoms to elliptic cor-
rals supported on surfaces and several other geometries. This supported
clusters also draw attention from the information storage point of view,
as a possible candidate for the next generation of hard drives.

In this work we investigate the magnetic configurations of supported
Mn adatoms, dimers and triangular trimers. The aim of the work is to
understand the role of the substrate in the final magnetic configuration.
The substrates considered are non-magnetic Cu(111) or ferromagnetic
Cu/Co/Cu(111) and Co/Cu(111). We considered an out-of-plane mag-
netization for both Co thin films [140]. We used the real space linear
muffin-tin code [23], all calculations were perform with spin-orbit, e.g.
the magnetic configurations are coupled to the lattice.

10.1 Adatom
We considered two magnetic configurations: Ferromagnetic (FM) and
antiferromagnetic (AFM) coupling between the adatoms and the sub-
strate. For an Mn adatom on the Cu(111) surface, states with FM and
AFM coupling are degenerated. This is expected as the induced mag-
netic moment of the Cu atoms, in the surface, are almost zero (=0.01µβ)

Figure 10.1. The surfaces considered a) Cu(111), b) Co/Cu(111) and
Cu/Co/Cu(111).
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Table 10.1. Spin and Orbital Moments (µβ) and Jij (meV / atom) for Mn
adatom. The value in parenthesis are the distance (Å) between the Mn and Co.

Spin Orbital JMn−Co
ij

Cu(111) 4.37 0.04 -
Cu/Co/Cu(111) 4.37 0.04 -1.10(5.11)
Co/Cu(111) 4.28 0.02 -17.54(2.56)
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Figure 10.2. Local density of states for the Mn adatom in, AFM configuration,
on a Cu(111), Cu/Co/Cu(111) and Co/Cu(111) surfaces

as the orbital moments. Table 10.1 shows the values of the magnetic mo-
ment, orbital moment and the exchange coupling (Jij) between the Mn
and Co, the minus sign indicates an AFM coupling.

In the case of the Cu/Co/Cu(111) the Mn couples AFM to the surface.
The magnetic and orbital moments have the same value of the Cu(111)
surface, showing that the hybridization is most due to the Cu atoms,
despite an nonzero exchange coupling to the Co layer. The same AFM
coupling is observed for the Co/Cu(111) surface, but now the magnetic
and orbital moment decreases, this is expected due to a higher hybridiza-
tion with the Co atoms.

The local density of states (LDOS) for a Mn adatom is showed in
Fig. 10.2 a). One can see a larger broadening in the d-resonance for the
Co/Cu(111) surface. This can be explained by the d-d hybridization of
the Mn and Co atoms in the first layer. The hopping between the full
occupied majority Mn d-band (spin down character) and the half-filled
minority Co d-band, of the same spin character, showed at Fig. 10.3 is
increased as the bands have the same spin character. In principle one
should have expected lower the spin moment for the adatoms but as the
bands of Mn and Co have the same spin character a level repulsion will
appear, pushing these bands to lower energies not allowing them to cross
the Fermi level [141].
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Figure 10.3. Local density of states for one Co atom of the Co/Cu(111) surface.

Table 10.2. Spin and Orbital Moments (µβ) and Jij (meV / atom) for Mn
dimer. The value in parenthesis are the distance (Å) between the Mn and Co.

Spin Orbital JMn−Mn
ij JMn−Co

ij

Cu(111) 4.33 0.04 -41.82 -
Cu/Co/Cu(111) 4.33 0.04 -41.89 -2.26(4.43)
Co/Cu(111) 4.22 0.05 -40.43 -23.34(2.56)

10.2 Dimers
We performed collinear and noncollinear calculations for Mn dimers,
since it was recently reported by S. Lounis et. al. an noncollinear state
for Mn dimers on Ni(111) surfaces [142]. For the collinear calculations
three magnetic configurations were considered: FM were the adatoms
couples ferromagnetic between each other and with the surface, AFM
where the adatoms couples ferromagnetic between each other and anti-
ferromagnetic with the surface and a ferri where the adatoms couples
antiferromagnetic between each other.

For an Mn dimer the ferri state was found to be more stable for the
Cu(111) and Co/Cu(111). As for the Co/Cu(111) surface the AFM
collinear states is obtained. In the case of Cu(111) and Cu/Co/Cu(111)
two degenerate states were found, with the spins parallel and perpendic-
ular to the plane. In all cases collinear solutions was found.

10.3 Triangular Trimers
For triangular trimers the picture changes, as in general Mn nearest
neighbors atoms couples AFM , an phenomenon known as magnetic frus-
tration [143; 144; 145] will play a role, in this triangular shape it is not
possible for the Mn atoms been AFM with its neighbors, so the mini-
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Table 10.3. Spin and Orbital Moments (µβ) and Jij (meV / atom) for Mn
timer in a triangular shape. The value in parenthesis are the distance (Å)
between the Mn and Co.

Spin Orbital JMn−Mn
ij JMn−Co

ij

Cu(111) 4.26 0.045 -47.45 -
Cu/Co/Cu(111) 4.33 0.04 -45.02 -2.22 (4.43)
Co/Cu(111) 4.28 0.02 -40.26 -19.65 (2.56)

mum energy is a solution with the magnetic moments forming and 120 ◦

for each pair of atoms, this is the case for Mn on the Cu(111) surface
as showed in Fig. 10.4 a). Such noncollinear states was reported for an
monolayer (ML) of Mn on Ag(111) using an spin-polarized scanning tun-
neling microscopy (Sp-STM) [146]. An frustrated state is also observed
for the Cu/Co/Cu(111) surface, in this case there is a competition be-
tween the intra-cluster exchange coupling (Jintra) and the coupling of
the atoms cluster with the Co monolayer JCo. The Table 10.3 shows the
values for the Jij for the Mn trimers, the intra-cluster exchange coupling
is much higher for the Cu/Co/Cu(111), this is reflected in final magnetic
configuration being very similar to the Cu(111), see Fig 10.4 b).

For the Co/Cu(111) the situation gets more interesting, an magnetic
profile where the moments are forming an angle of ∼ 10.6 ◦, between
the Mn atoms, pointing into the surface Fig 10.4 c). Once again the
magnetic frustration plays a role, only now the exchange coupling with
the Co ML is relevant, the JCo is about half of Jintra and this competition
gives rise to such configuration.

10.4 Conclusion
We showed that the well known magnetic frustration in Mn triangular
trimers is suppressed when these trimers are direct contact with the
Co monolayer. The competition between the Mn-Mn and Mn-Co AFM
coupling is the responsible for the magnetic profile showed at Fig. 10.4
b). The LDOS of the Mn adatoms shows a very narrow band, for the
Cu(111) and Co/Cu(111) surfaces. It would be interesting to investigate
how a proper treatment of the strong correlations, associated with these
narrow bands, would change the above results.
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Figure 10.4. Magnetic ordering for an Mn trimer on a) Cu(111), b)
Cu/Co/Cu(111) and c) Co/Cu(111) surfaces.
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11. Magnetic Structure of Mn3Rh Alloys

The present chapter is based on the following publication:
1. S. Ganguly, M. Costa, A. B. Klautau, A. Bergman, B. Sanyal, A.

Mookerjee and O. Eriksson. "Augmented space recursion formula-
tion of the study of disordered alloys with noncollinear magnetism
and spin-orbit coupling: Application to MnPt and Mn3Rh". Phys.
Rev. B 83, 094407 (2011).

11.1 Introduction
Anti-ferromagnetic materials have attracted attention because of their
potential candidature for giant magneto-resistance (GMR) devices. From
a microscopic viewpoint, it is interesting to examine how lattice struc-
ture, composition, long-ranged disorder and short-range ordering de-
termine the magnetic structure of anti-ferromagnetic alloys. In many
random alloys with closed packed lattice configurations, magnetic struc-
tures can become quite complex as compared to the simple collinear
anti-ferromagnetic picture usually assumed. Atomic arrangement and
randomness may introduce frustration effects in such alloys. Neutron
diffraction experiments have often suggested complex magnetic align-
ments in mostly Mn-based disordered alloys like FeMn, MnPt, Mn3Pt
and Mn3Rh due to the presence of almost half-filled Mn 3d orbitals.
Non-collinear magnetism has been studied within the density functional
theory in formalisms, where the energies are functionals not of charge
density but density matrices in spinor space. This has been done for
ordered alloys [7; 147], amorphous materials [148; 149] and disordered
alloys [150; 151] based on both the Korringa-Kohn-Rostocker (KKR) and
linear muffin-tin orbitals (LMTO) methods, coupled with the single-site
coherent potential approximation (CPA) to deal with disorder.

In this work we propose to generalize the augmented space recursion[152]
(ASR) based on the tight-binding version of the LMTO (TB-LMTO) so
that it is capable of describing non-collinear magnetism. It was shown
earlier [153; 154] that the CPA appears as a specific approximation within
the augmented space formalism, so that in usual cases the ASR will sub-
sume the CPA. However, wherever effects of statistical clustering[155],

91



Figure 11.1. (Left) The T1 structure of L12 Mn3Rh. (Center) The T2 structure
of L12 Mn3Rh. (Right) The collinear AFM structure of L12 Mn3Rh. Red (dark
gray) atoms are Mn and blue (light gray) atoms are Rh.

short-ranged order [156; 157], partial disorder [158] and local lattice dis-
tortions due to large size mismatch of constituent atoms in the alloy [159]
become important, the ASR provides an analyticity and symmetry pre-
serving generalization to the CPA capable of addressing these situations
accurately.

11.2 Results and discussion
The magnetic structure of ordered L12 Mn3Rh is a complex triangular
(T1) type shown in the left panel of Fig. 11.1. The structure was shown
to be a stable structure of ordered Mn3Rh by Kübler et. al. [160]. The
central panel shows another coenergetic structure T2 while the right
panel shows a collinear antiferromagnetic like structure. Like the earlier
work of Kübler et. al., it was found that the T1 and T2 structures have
the same DOS, total energies, and magnetic moments.

As stated in that earlier work, this is expected since our theory does
not couple magnetic moments to the underlying crystal lattice. What
we focus on is the relative orientation of the moments. In this sense
the T1 and T2 structures are identical. A similar argument was put
forward by Bertaut and Fruchart [161] based on Heisenberg models for
the T1 and the T2 structures. These are identical in the absence of
anisotropy. We have therefore reported only the results for the T1 struc-
ture in what follows. The top panel of Fig. 11.2 shows the variation of
the total energy with respect to the lattice constant. The figure shows
that the T1 structure with a = 3.62 Åis the stable ordered structure
for Mn3Rh. This is in consonance with the earlier work of Kübler et.
al. The bottom panel of Fig. 11.2 shows the PDOS for Mn and Rh in
the T1/T2 and collinear AFM structures. Both (particularly T1) indi-
cate a pseudo-gap just above the Fermi level. Otherwise the two PDOS
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Figure 11.2. (Top) Total energy vs lattice constant for T1 and AFM structures
for Mn3Rh. (Bottom) PDOS for Mn and Rh for T1/T2 and collinear AFM
Mn3Rh.

are not very different from each other. Figure 11.3 shows the variation
of magnetic moment with lattice constant for the T1/T2 and collinear
AFM structures. The decrease of magnetic moment with lattice con-
stant agrees with the Stoner criterion (since the closer the atoms, more
is the overlap of electronic wave functions leading to a wider band and
a lower DOS at the Fermi level). This indicates that these alloys ex-
hibit itinerant magnetism. The estimate of the magnetic moment of T1
at equilibrium lattice constant is not far from Sakuma et al., [162] but
smaller than that of Kübler et al. Figure 11.5 shows a rather interesting
fact: The exchange energy changes sign on lattice expansion, going from
antiferromagnetic to a ferromagnetic transition. The T1 arrangement
at equilibrium lattice constant (3.62 Å) sits almost at the edge of this
transition. Figure 11.6 shows the PDOS for Mn and Rh in Mn3R in the
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Figure 11.3. Magnetic moment variation with lattice constant for T1/T2 and
collinear AFM Mn3Rh.

Spin M b
Mn Mp

Mn M b
Rh Mp

Rh

Structure (µB) (µB) (µB) (µB)
1Q 2.57 2.54 0.04 -0.01
2Q 2.62 2.74 0.07 0.02
3Q 2.66 2.83 0.08 0.04

Table 11.1. Magnetic moments obtained from TB-LMTO-CPA and TB-
LMTO-ASR. b and p refer to the TB-LMTO-CPA work by Sakuma et.al. [163]
and the present work respectively.

1Q, 2Q, and 3Q arrangements. The PDOS were calculated from the TB-
LMTO-ASR using six nearest-neighbor shells in augmented space. The
recursions were carried out exactly till 11 steps after which the Beer-
Pettifor terminator was used to terminate the continued fraction. We
show in Fig. 11.4 the convergence of the first four PDOS moments for
Mn in 1Q Mn3R. Those for 2Q and 3Q magnetic structures are qual-
itatively similar. In this alloy system the convergence is good after 11
recursion steps and the fluctuation in moments is of the order of 5%.
A glance at Fig. 11.6 indicates that in all the three disordered alloys,
there is no vestige of a pseudogap near the Fermi level. Again, random
substitution of Mn with Rh disrupts the L12 arrangement in the ordered
structures and hence disrupting the effect of the staggered field.

Table 11.1 shows the results for magnetic moments from our work
and compares them with the CPA. The magnetic moments from the
ASR agree well with the CPA results. Rh, unlike Pt, now carries a small
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Figure 11.4. Variation of the first four moments of the partial DOS of Mn in
Mn3Rh in the (top,left) 1Q (top,right) 2Q and (bottom) 3Q magnetic struc-
tures. The variation is with the number of recursion steps after which the
asymptotic part of the continued fraction expression for the Green function is
replaced by a Beer-Pettifor Terminator. The units for the moments Mn are
(Ry)n.
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Figure 11.5. Exchange energy as a function of the lattice constant in T1 Mn3R.

induced moment. However, while the CPA predicts stability in the order
3Q, 2Q, and 1Q, the ASR predicts stability in the order 1Q, 2Q, and 3Q.
As we discussed earlier, these small energy differences between different
magnetic structures are in the limits of our accuracy. Again, although
we are confident that the ASR with recursion carried up to 11 steps
before termination is more accurate than the single-site CPA, it would
be useful to have definitive and transparent experimental results before
we can make reliable statements.

11.3 Conclusion
We have set up a computational framework for the study of noncollinear
magnetic phases in disordered alloys based on the marriage of three dis-
tinct techniques: the TB-LMTO, the recursion method, and the aug-
mented space formalism. The ASR allows us to go beyond the single-site
CPA and include effects of disorder in the local environment accurately.
This is important, since the immediate environment of a magnetic atom
in a solid has a significant impact on its local magnetic moment.

We have used our formalism to study disordered Mn3R alloys. Our
ASR results are different from the earlier CPA, specially in the energy
ordering of different noncollinear states. The very small energy differ-
ences between different noncollinear phases means that our error win-
dow should be very narrow. The augmented space formalism is formally
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Figure 11.6. PDOS for the disordered Mn3Rh alloy (top) 1Q structure (middle)
2Q structure and (bottom) 3Q structure.

exact; therefore, the error arises in the recursion method and the TB-
LMTO. Errors in the former are controlled and can be estimated. The
main source of error is in the TB-LMTO. A way out is either to replace
TB-LMTO with the more accurate TB-KKR. This would lead to energy-
dependent potential parameters and hence energy-dependent recursion.
This was developed by Mookerjee et. al. [164]. Alternatively, we can
use the full-potential LMTO. However, in that case, the Hamiltonian is
not sparse and we have to have a relook at the errors in the recursion
method.
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12. Non-Newtonian Magnetization Dynamics,
a Way to Accelerate the Switching of
Logical Units

The present chapter is based on the following publication:
1. C. Etz, M. Costa, O. Eriksson and A. Bergman."Non-Newtonian

magnetization dynamics, a way to accelerate the switching of logical
units" Submited to Nature Nanotechnology.

12.1 Introduction
Magnetic nanoclusters deposited on surfaces present intriguing prop-
erties, especially when probing their response to an external magnetic
field, by following their magnetization dynamics. We use in this work,
an atomistic description of magnetization dynamics of such clusters, in
which density functional theory is used to determine the parameters for
the atomistic spin dynamics simulations. The magnetization dynam-
ics of clusters supported on non-magnetic substrates is demonstrated to
exhibit an unprecedented complex response when subjected to external
magnetic fields. We demonstrate that, provided the energy landscape
of the magnetic interactions of the cluster is sufficiently complex, the
well established dependency between the applied force and the resulting
speed seem not to apply. We find for these clusters that a stronger driv-
ing force in the form of an increased applied field strength, will only slow
down the magnetization dynamics. This non-Newtonian magnetization
dynamics is analysed in detail and proposed as an enabler in technolog-
ical applications, since much faster switching of magnetic units can be
obtained with weaker force, whether it is in form of an applied magnetic
field or provided by a spin-transfer torque.

Magnetization dynamics has recently been the focus of several theo-
retical and experimental investigations, both for bulk-like systems [165;
166; 167; 168; 169; 170; 171; 172; 173; 174] as well as nano-sized ob-
jects [175; 176; 177; 178; 179]. From a technological point of view it is
the switching of magnetic logical units that is of interest, since storing
binary code information in a magnetic medium as fast and reliably as
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Figure 12.1. high-symmetry anisotropy landscape

Figure 12.2. low-symmetry anisotropy landscape

top layer bottom layer

Figure 12.3. Atom-projected uniaxial anisotropy axes: Illustrative representa-
tion for the different orientations of the easy magnetization axes in the high-
symmetry (top figure) and low-symmetry scenarios (bottom figure), for both
top and bottom layers of the Co nanoisland.

possible stands out as being crucial. In many of the investigations pub-
lished so far, fundamental new knowledge of magnetization dynamics
and the magnetism of nano-sized objects have been discovered. An ex-
ample of this is the possibility of magnetization reversal on femtosecond
time-scales, as reported in Ref.[165], the breakdown of the macrospin
model [180] as well as the possibility to achieve all-spin-based logic op-
erations on an atomic level [181].

Typically, one observes one of the two known types of magnetization
reversal: mono-domain switching or domain wall motion [182]. In both
cases, the time it takes for the magnetization to reverse its direction,
i.e. the switching time, is reduced when the strength of the applied field
is increased. This is natural since a stronger field provides a stronger
driving force to reverse the magnetization direction.

We present here magnetization dynamics in nano-sized clusters, which
under special conditions deviate from well established connections be-
tween force and speed, thus seemingly disobeying classical laws of physics.
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Our findings have no previous counterpart in the field of magnetism, but
analogies can be drawn to so called non-Newtonian fluids [183] (e.g. of
colloids in suspension) which demonstrate a highly non-linear response
to an external stimulus.

Discrepancies between the properties of nano-sized materials com-
pared to their bulk counterpart are known for some time. There are
several reasons why nano-sized objects can behave so differently com-
pared to the bulk materials, e.g. due to quantum confinement effects and
the fact that the surface to volume ratio is very large. A good example of
this are metallic nano-particles which can have a completely different op-
tical response compared to the corresponding bulk or thin-film systems.
This is also illustrated by the famous Lycurgus cup from the Roman era,
where gold nano-particles included in glass create a unique luster [184].

In the present study we have investigated theoretically the magneti-
zation dynamics of nano-islands supported on a non-magnetic substrate.
We are in particular interested in the switching behavior of the magneti-
zation direction of such nano-particles, under the influence of an external
magnetic field. The magnetic islands are composed of 16 up to 111 Co
atoms deposited on a Cu substrate. We have investigated the switching
behavior of these islands in the presence of a static external magnetic
field. The Cu substrate is a very suitable choice for the study of magnetic
nanostructures supported on its surface, since it is rather inert to polar-
ization effects due to its completely filled d -shell and its weak spin-orbit
coupling. Hence, in a spin-Hamiltonian only the Co nano-particle has to
be considered, albeit with appropriate parameters that come from a first
principles theory which includes also effects of the substrate.

12.2 Theory
The systems we study consist of two atomic-layers high Co islands (in
fcc-stacking) deposited on a Cu(111) substrate. The nanostructures are
triangularly-shaped. The fact that the system is finite and has a low
symmetry is reflected in the electronic structure and magnetic proper-
ties, fact that has already been proven in a previous work [185]. As
a consequence, the spin and orbital moments as well as the exchange
interactions and the magnetocrystalline anisotropy have a non-uniform
spatial distribution within the nanostructures. Since it is well known
that the magnetic properties depend strongly on the individual atoms’
local environment [186], we take into account the edge effects, which have
an increasing weight the smaller the system is.

As a first step, we performed a thorough ab initio investigation of
the islands’ electronic and magnetic structure, using a Green’s function
formalism within relativistic density functional theory (DFT), as im-
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plemented in SKKR (screened Korringa-Kohn-Rostocker) [26] and RS-
LMTO-ASA (real-space linear muffin-tin orbitals within atomic sphere
approximation) [23]. After having obtained the ab initio site-resolved
quantities, such as magnetic moments, interatomic exchange parameters
and magnetic anisotropies, we continue with the investigation of the spin
dynamics in these nanostructures by means of the atomistic spin dynam-
ics package UppASD [187]. As discussed above we do not consider the
Cu substrate in the spin dynamics simulations, since the spin and or-
bital polarization is negligibly small (of the order of 0.005 µB/atom).
Hence the tiny induced moments in the Cu substrate and the very weak
exchange coupling with the Co atoms do not influence in any way the
dynamics of the Co system.

Using all site-resolved quantities determined from first-principles as
initial parameters, we investigate the magnetization dynamics of the sys-
tem under the influence of external magnetic fields. The time evolution
of the magnetization, as described by the Landau-Lifshitz-Gilbert (LLG)
equation:

∂m

∂t
= −γm×B +

α

m
m× ∂m

∂t
(12.1)

where the first term is the so called precession term and the second is the
damping term. The damping torque is perpendicular to the precession
torque. Since the damping parameter α entering the LLG equation was
not obtained from first-principles, its value has been varied within rea-
sonable limits without noticeable effects on the behavior of the switching
process. The presented results were obtained for a damping α=0.1.

12.3 Results and Discussion
As will be shown later on, the most important quantities that determine
the switching behavior are in fact the atom-projected magnetocrystalline
anisotropy energies (MAE). From the ab initio calculations results we
find that the direction of the easy axes and the anisotropy strengths de-
pend on the atoms positions in the cluster. It is possible to map the ab
initio calculated anisotropy energies to an effective Hamiltonian where
each atom has a unique uniaxial anisotropy. Combined, the local uniaxial
anisotropies yield a complex anisotropy energy landscape of the cluster,
which has a net out-of-plane easy axis. A depiction for the directions
of the site-projected easy magnetization axes for the low-symmetry case
can be seen in Fig. 12.3. In addition to the direct fit from the ab-inito
results (Fig. 12.1), where each easy axis direction points toward the cor-
responding global minima of the anisotropy energy for each specific atom,
we have also considered a slightly altered anisotropy energy configura-
tion (Fig. 12.2). In the second scenario (Fig. 12.2), we have taken for the
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Figure 12.4. Switching time dependence on the strength of the external mag-
netic fields for the low-symmetry anisotropy landscape of Fig. 12.2 (empty cir-
cles), illustrating a non-monotonous relationship between switching time and
field strength. Same behaviour for two test cases with random directions of the
easy axes (empty triangles). Filled symbols represent the monotonous depen-
dence of the switching times w.r.t field strengths, for an anisotropy landscape
that reflects a higher symmetry of the island (Fig. 12.1).

atoms situated on one of the edges, the easy magnetization axes pointing
along local minima directions in the three-dimensional (3D) anisotropy
energy landscape. In this case the symmetry is lower than what was
obtained from the ab-inito calculations. This latter configuration that
will be called the low-symmetry case in the discussion below, can be seen
as an effort to make a realistic emulation of symmetry-breaking effects
that might occur for these supported nano-islands, i.e. geometrical dis-
tortions or chemical intermixing. Before performing the magnetization
dynamics simulations, the equilibrium magnetic structure is obtained by
allowing the magnetic moments to relax in this anisotropy landscape.
This results in an essentially collinear magnetic ordering pointing out
of plane. For the low-symmetry case a small deviation from the surface
normal, up to 6◦ in terms of the polar angle θ was found.
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We investigate next the reversal mechanism of the magnetization, un-
der the influence of an applied magnetic field, in these magnetic nanois-
lands. In the following we will focus our attention only on small islands
(16 and 111 Co atoms) since the behavior they exhibit is analogous to
all sufficiently small island sizes, i.e. where edge effects are large and
the size of the cluster does not allow domain formation. We study the
switching dynamics of the magnetic system under the driving force of
external magnetic fields ~Bext of different intensities, pointing along the
surface normal and having an opposite direction to the magnetic mo-
ments’ orientation, ~Bext =

(
0, 0, −Bz

)
.

During the application of the magnetic field, we follow the time evo-
lution of the average magnetization. We let the system evolve for 180 ps
and we probe the changes in the magnetization’s orientation each 100 at-
toseconds. Following the change in the orientation of the average mag-
netization’s z-component we determine the switching times (tsw) cor-
responding to different field intensities (the switching is achieved when
the z-component of the average magnetization is flipped by 180◦ with
respect to its initial orientation). Despite the fact that the values of
the magnetic moments, anisotropies and exchange interactions are not
homogeneously distributed over the island, a coherent magnetization re-
versal takes place for all systems studied. The nanoislands behave and
switch essentially as a mono-domain as long as the temperature is low
enough. Even though the magnitude of the spin moments differ within
the island, since they remain parallel during the whole dynamical pro-
cess, one may regard them as a collection and, for simplicity, we refer to
all these collinear spins as macro-spin in the following.

First we perform the switching simulations for the high-symmetry case
(shown in Fig. 12.1) and find that as the applied field increases, the ob-
served switching times decrease in a monotonic fashion for these clusters
(shown as filled squares in Fig. 12.2). This is an expected result [182],
as the driving force for the switching is stronger when the field strength
increases.

Next we consider the clusters where the symmetry of the magnetic
anisotropy landscape has been reduced (Fig. 12.2). For the 16 atoms is-
land, the switching occurs only for a field larger than ∼ 1.1 T and it takes
roughly 120 ps after its application, before the magnetization is reversed
(Fig. 12.2). This is considerably faster compared to the switching time
of clusters with a symmetric magnetic anisotropy landscape (Fig. 12.2).
When increasing the strength of the external field, the torque driving the
switching increases, which is expected to lead to shorter switching times.
In a certain range, we find however that the switching times actually
become longer the stronger the magnetic field is. For example, for a field
of 2 T, the switching time is roughly 30 ps longer than for Bext =1.5 T.
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Figure 12.5. Trajectories of the 16 Co atoms macro-spin, in the magnetocrys-
talline anisotropy energy landscape, under the influence of a 1 T (yellow line),
1.5 T (black line) and 2 T (red line) external field, respectively. The color scale
indicates the strength of the anisotropy energy (mRyd), showing that θ=90◦
represents the hard magnetization plane (i.e. the island’s plane).

When increasing the applied field further ( above 2 T), the switching
times get shorter the stronger the field is. We probed the magnetization
dynamics up to very strong magnetic fields (up to Bext=10 T, Fig. 12.2).
The non-monotonous dependence of the switching times on the external
magnetic fields is quite pronounced for Bext 6 2 T for 16 Co atoms
and for Bext 6 3 T for 111 Co atoms (see Fig. 12.2). Comparing the
switching times of islands with high-symmetric energy landscape with
those of low-symmetric landscapes (Fig. 12.2) one notices that the latter
reverse their magnetization direction faster. For low external fields, the
difference is very large.

The fact that we observe an increase in switching times with increas-
ing field strength, i.e. a process analogous to non-Newtonian dynam-
ics of colloids in suspension, only when the symmetry of the magnetic
anisotropy energy is low, gives strong evidence that it is in fact the com-
plex anisotropy landscape that causes this non-monotonous behavior (see
Fig. 12.2). In order to elucidate this phenomenon, we now proceed with
a detailed analysis of the magnetization reversal process for clusters with
a low-symmetry magnetic anisotropy. Since there is a coherent magne-
tization reversal present, all the spins in the nano-isalnd remain parallel
(within very small deviations) during the switching process. In Fig. 12.5,
the spin trajectories for all the atoms within an island would overlap, but
for clarity we chose to represent only one spin-trajectory for each case.
We start by investigating the change in the trajectory of the macro-spin,
projected onto the anisotropy energy landscape (Fig. 12.5). We plot (in a
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map view) in Fig. 12.5, the three dimensional (3D) magnetic anisotropy
landscape in polar coordinates, together with the paths taken by the
magnetization vector for different field strengths. Note that Fig. 12.5
shows the 3D energy landscape in a top-view projection, as a function
of polar angles, θ and φ, and that higher magnetic anisotropy regions
are shown in yellow/bright color and lower anisotropy energy regions are
shown in purple/dark color. The changes in the polar angle θ represent
a variation in the out-of-plane component of the magnetization, while
changes in φ show variations in the in-plane component.

The energy landscape shows a maximum in the anisotropy energy
at coordinates θ=90◦ and φ=0◦ and 180◦, which represents the hard-
magnetization region. The fine contour lines mark equi-energy lines in
the anisotropy energy landscape. Fig. 12.5 clearly shows that the energy
landscape is not independent of the azimuthal angle φ which would be
the case for a single uniaxial anisotropy of the nano-island. The largest
energy barrier to overcome is in the surface plane, which is the hard-
magnetization plane. Fig. 12.5 shows an important result, namely the
marked difference in the paths that the nanoisland’s macro-spin takes,
under the influence of different strengths of the applied external magnetic
field (illustrated for three field strengths: 1.0 T yellow line, 1.5 T black
line, 2 T red line).

In Fig. 12.5, it can be seen that the reason for the faster switching in
the 1.5 T field is that this trajectory "skips" a precession and approaches
much faster the hard magnetization plane. Translated in terms of the 3D
anisotropy energy profile, this means that the resulting effective field act-
ing on the macro-spin moves it to a region of the MAE landscape where
the energy has its maximum value. Under the stronger field (e.g. 2 T),
on the other hand, the spins follow the expected precessional movement
around the resulting effective field’s axis.

The question why the macro-spin approaches the magnetically hard
plane of the energy landscape quicker for the 1.5 T case compared to
the 2 T field, can be explained from the trajectories shown in Fig. 12.5.
For comparison, we start by describing the well-known case of coherent
switching of a macro-spin in a single uniaxial anisotropy [188] environ-
ment, under the influence of an antiparallel external field. In that case,
the resulting effective field acting on the macro-spin, will always have a
constant direction along the easy magnetization axis. Thus, the switch-
ing will be determined solely by the damping torque from the effective
field and the switching time will decrease with increasing field strengths.
If the external field is weak, the torques generated by it will be counter-
balanced by torques induced by the anisotropy field and the magnetiza-
tion reversal will not occur. In this case, the equilibrium direction of the
macro-spin will still be along the easy axis.
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In our system with a low symmetry of the MAE landscape (Fig. 12.2),
the picture is more complicated. The applied field will still give rise
to precessional and damping torques, but the contribution from the
anisotropy field is significantly more complex. Due to the competition
between the different site-projected magnetic anisotropies in the clus-
ter, the anisotropy fields will cause precessional and damping torques
albeit not in the same directions as the torques derived exclusively from
the applied field. This can be seen very clearly in the trajectory for the
Bext=1.0 T (yellow/light-coloured line in Fig. 12.5) where themacro-spin
makes only a small curled movement to a new static equilibrium posi-
tion, without a magnetization reversal. For an intermediate field, such
as Bext=1.5 T, there is a delicate balance between the different torques.
The precessional torque from the anisotropy field becomes parallel to the
damping torque of the applied field. This results in the sharp turn of the
trajectory for this macro-spin towards the magnetically hard region of
the anisotropy landscape. If the applied field is increased even more (see
Bext=2.0 T in Fig. 12.5), the precessional torque from the applied field
dominates over all other torques. The macro-spin will, in this case, es-
sentially be driven by the torque originating from the applied field, which
dictates a precession movement. Instead of being rapidly forced by the
anisotropy torque towards the magnetically hard region, the macro-spin
makes an additional revolution around the z-axis.

Even inside the high anisotropy energy region (i.e. for values of θ
close to 90◦), the ratio between the applied field and the anisotropy field
differs between the Bext=1.5 T and 2.0 T cases, even though the dif-
ference is not as drastic as in the early stage of the switching process.
Both trajectories follow here roughly parallel paths (see Fig. 12.5) but
we find that the trajectory under the stronger field is delayed further in
this region due to the fact that it actually crosses over the highest peak
of the anisotropy energy landscape. On the other hand, the torque ex-
erted by the lower field on the moments is not strong enough to overcome
the highest anisotropy barrier. Once the moments have passed the mag-
netically hard region, they proceed with their precessional and damped
motion towards the z-direction without significant differences between
the two paths.

The shorter switching time with a weaker field is found for islands
of different size (the largest island we took into consideration for our
study contains 111 Co atoms) and for several choices of the anisotropy
energy landscape. Hence we investigated also other cases besides the
one depicted in Fig. 12.2 and obtained similar results (these are shown
in Fig 12.2). All simulations show an increase of the switching time with
increasing field up to a certain field strength, after which the switching
time decreases with increasing fields. The only pre-requisite for this to
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happen, is the presence of a sufficiently low-symmetry distribution of the
anisotropy over the island.

So far, we have not discussed the effect of the exchange interactions
on the complex magnetization dynamics shown in Fig. 12.2. We note
however, that the exchange interactions obtained from our first princi-
ples calculations are strong enough to maintain a collinear arrangement,
forming a macro-spin, during the studied switching scenarios and thus
their relative strengths are not as important for the switching as the in-
dividual anisotropy energies. However, the complex connection between
switching time and strength of the external magnetic field is present even
when reducing the exchange interaction strength by a factor of 100 (data
not shown here). Although, in this case, the island does not switch as
a macro-spin anymore, but exhibits in fact an even more complicated
dynamical response to the applied field. Finally, we note that at suffi-
ciently high temperature both the macro-spin picture and the reported
switching behavior breaks down into a more stochastic behavior (data
not shown), but the effect reported here is stable up to 1 K. On general
grounds larger magnetic units, with a similar energy landscape as the
cluster in Fig.1b, are expected to exhibit a non-Newtonian magnetisa-
tion dynamics up to even higher temperatures.

12.4 Conclusion
The dynamics of the magnetic clusters with a low symmetric energy
landscape have, for a certain range of parameters, a dynamical response
that suggests that well established relations between speed and force,
which are common knowledge under the laws of physics, seem not to
apply. Stronger driving forces will in certain cases only slow down the
dynamics. The possibility to use this fact in technological applications
is obvious, since faster switching of magnetic units can be obtained with
weaker applied fields, whether it is a magnetic field or a torque provided
by a spin-transfer torque.

We have illustrated a highly complex (and fast) switching behavior for
several selected cases of supported nano-clusters and we argue that this
behavior should be present in a wide range of systems, even large systems
containing thousands of atoms. Since the driving force is the individual
atom’s contribution to the total magnetic anisotropy landscape, which
is known to be very sensitive to the local environment [186], this effect is
likely to be enhanced even further by tailoring specific clusters with re-
spect to both geometry and chemical alloying. This can be achieved, for
example, by considering clusters of mixed chemical composition, where
local anisotropy axes are expected to cause an even more asymmetric
total energy landscape of the magnetic anisotropy. An alternative would
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be to grow clusters on random alloy substrates, e.g. CuxAg(1−x). It is
known that ligand states from nearest neighboring atoms influence the
local anisotropy [189], hence a Co atom neighboring a Ag atom will have
different easy axis direction than a Co neighboring a Cu atom. Finally,
we point out that the non-Newtonian magnetization dynamics can also
be realized by using a spin-transfer torque as the driving force of the
switching.
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13. Outlook and Future Perspectives

The DFT framework has proven to be accurate and flexible to be ap-
plied in several different systems. Several improvements on DFT has
been proposed, including LDA+U, the GW method, hybrid functionals
and LDA+DMFT. We have investigated the magnetic anisotropy energy
(MAE) of the compound Fe2P. It has been proposed that alloying these
material with Si could give the possibility to stabilize the magnetic or-
der and the MAE up to room temperature. The next step would be to
calculate the MAE for these alloys, using a method like the augmented
recursion space (ASR) or the coherent potential approximation (CPA) to
get a proper treatment of the chemical disorder. It would also be inter-
esting to see an experimental confirmation of our findings. The magnetic
anisotropy is very difficulty property to calculate. In this work we ob-
tained a good agreement with the experimental value. Nevertheless this
is not the case in general. When the MAE is very small, as is the case
with Ni, then not even the correct easy axis can be obtained. Also for
compounds with rare-earth f-shells the agreement is not good in general.
The cause of this failure is that LDA does not treat localized systems
properly. A proper treatment of the f-shells can be achieved by using
LDA+DMFT, nevertheless calculating the MAE in this scheme is both
computationally and conceptual challenging, since the double counting
term in the DMFT part is poses a problem. So work on this direction
would be very interesting. Also we should continue the implementation
of the DMFT scheme in the RS-LMTO-ASA code, where we need to solve
some problems regarding the continued fraction terminator to obtain a
correct DOS. With this implementation one could calculate magnetic
exchange parameters for systems showing strong correlations. With the
exchange parameters one can estimate the Curie temperature. The in-
vestigation of the spin dynamics for Co islands should be extended to
other transition metals with complex compositions. I think we are in a
good position to continue studying the effects of strong correlation using
the LDA+DMFT implementation in the FP-LMTO.
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14. Svensk Sammanfattning

Vetenskapsmän söker efter teorier som kan förklara och förutsäga hur
naturens lagar beter sig. En av de mest framgångsrika teorier som
mänskligheten lyckats frambringa är Kvantmekaniken, som startade med
Plancks energikvantisering, som infördes för att lösa den så kallade ultra-
violetta katastrofen för svartkroppsstrålning. Kärnan av kvantmekaniken
beskrivs av Schrödingerekvationen som föreslogs 1926 och som beskriver
hur vågfunktioner beter sig i tid och rum. Eftersom kvantmekaniken
framgångsrikt kunde förklara flera tidigare oförklarliga mikroskopiska
fenomen så blev den accepterad av det vetenskapliga samhället trots sin
icke-deterministiska natur. Trots att teorin tillämpades framgångsrikt
på flera system var den också väldigt komplex så att det största system
som kunde lösas exakt var väteatomen. På grund av denna komplexitet
begränsades teorin till små system, även om många försök till att lösa de
komplicerade ekvationerna har gjorts genom historien. Med upptäckten
av transistorn, som gjordes av Bardeen och hans medarbetare utifrån
en kvantmekanisk formalism så kom också utvecklingen av moderna da-
torer igång. Datorernas ständigt ökande beräkningskraft möjligjorde att
större problem kunde angripas. Men med de förenklingar av teorin som
på den tiden behövdes för att kunna begränsa komplexiteten på ekva-
tionerna så höll bara teorin för kvalitativa beskrivningar. En vågfunktion
har 3N frihetsgrader och dessa frihetsgrader är dessutom kopplade till
varandra vilket ger vågfunktionen sin mångkropparsnatur. Knappt 40 år
efter Schrödingers prestation så kunde Hohenberg och Kohn presentera
två teorem som satte grunden för den så kallade täthetsfunktionalte-
orin, förkortat DFT. DFT formulerar om problemet från Schrödingers
ekvation från att söka efter vågfunktionen för ett givet system till att
ta fram tätheten rho, vilket är ett mycket enklare problem då antalet
frihetsgrader minskas till 3. Deras teorem visade rigoröst på en formell
ekvivalens mellan de två olika tillvägagångssätten. även om DFT var
formellt exakt så var teorin inte speciellt tillämpbar men 1965 föreslog
Kohn och Sham ett mer praktiskt tillvägagångssätt och lade fram de så
kallade Kohn-Sham ekvationerna som är giltiga för vilken kvantmekanisk
entitet som helst, som elektroner, neutroner osv. Egenskaperna hos ett
material bestäms främst av dess elektroniska struktur, därför kommer
uttrycket täthet framöver hänvisa till elektrontäthet. En av de vikti-
gaste egenskaperna hos elektronerna i ett material är att de är korreler-
ade, vilket betyder att rörelsen för varje enskild elektron påverkar, och

110



påverkas av, alla andra elektroner. Det är viktigt att poängtera att
DFT är en enpartikelteori där mångkropparseffekter endast kommer in
som en medelfältseffekt i teorin genom Exc. Denna egenskap återspe-
glas i formalismen för DFT genom en funktional innehållande energin
för elektronernas korrelation kombinerat med en energi för elektroner-
nas utbytesväxelverkan som är den energi som krävs för byta plats på
två elektroner. Denna utbytes- och korrelationsfunktional är orsaken
till den största approximationen inom DFT. Om funktionalen vore ex-
akt känd skulle även teorin vara exakt. Det finns två dominerande ap-
proximationen till denna funktional, dels lokala täthetsapproximationen
(LDA) och den generaliserade gradientapproximationen (GGA). Trots
sin framgång så har DFT inte förmåga att behandla alla system. Ett av
de mest framstående problemen är att kunna beskriva starkt korrelerade
system. Stark korrelation är en effekt av rumslig lokalisering av elektron-
tillstånd d.v.s. elektronerna är begränsade till vissa regioner runt atom-
ernas kärnor, ett fenomen som oftast uppkommer hos elektroner med 3d
och f tillstånd. Orenheter bestående av övergångsmetaller begravda i en
alkalimetall uppvisar sådan stark korrelation, t.ex. hos Fe orenheter i
Cs. Gitterparametern för Cs är ca. två gånger större än för Fe. När en
Fe atom sitter som en orenhet i Cs så blir överlappet mellan vågfunk-
tionerna för elektronerna hos Fe atomen och angränsande Ce atomerna
väldigt litet, d.v.s. sannolikheten att en elektron på Fe atomen ska hoppa
till en Cs atom är väldigt låg. Det leder till att elektronerna blir väldigt
lokaliserade på Fe atomen. För detta system så misslyckas DFT-LDA
med att beskriva de experimentellt uppmätta spektrala egenskaperna.
Vi har dock visat att man kan introducera korrektioner till teorin för
att förbättra överensstämmelsen med experimenten. Det gjordes genom
att använda den så kallade dynamiska medelfältsteorin (DMFT). För
att kunna studera kemiskt oordnade system med komplex magnetisk
ordning har vi vidareutvecklat en avancerad formalism, augmenterad
rymdrekursion (ASR), som kan studera just kemiskt oordning på ett
kraftfullt sätt, så att godtyckliga icke-kolinjära magnetiska ordningar kan
behandlas inom detta ramverk. Metoden har sedan använts för att stud-
era magnetismens inverkan på stabiliteten hos oordnade och ordnade
Mn-baserade legeringar, MnPt och Mn3Rh. Ett ämne som studerats
flitigt är permanentmagneter fria från sällsynta jordartsmetaller. I in-
dustrin finns det gott om användningsområden för permanentmagneter,
från vindkraftturbiner till hårddiskar, och de flesta av dessa permanent-
magneter innehåller i dag sällsynta jordartsmetaller. De senaste åren
har dock priset på de metaller som behövs i magneterna skjutit i höj-
den. Det har dels berott på den ökade efterfrågan men beror även på
att Kina har ett monopol på tillgångarna av dessa sällsynta jordartsmet-
aller. Mycket uppmärksamhet har inom detta område ägnats åt fosfider.
En av nyckelegenskaperna hos permanentmagneter är den starka magne-
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tokristallina anisotropin, vilket ger en föredragen riktning hos de mag-
netiska momenten i ett material jämfört med materialets kristallstruktur.
Vi har undersökt orsaken till den starka magnetokristallina anisotropi-
energin (MAE) hos dijärnfosfid Fe2P. Fe2P har en experimentellt upmätt
MAE på 500 mueV per formelenhet. Den beräknade MAEn är 664 mueV
per formelenhet vilket avviker circa 30% från det uppmätta värdet. En
sådan avvikelse är inte oväntad då MAEn är en väldigt subtil och svår-
beräknad effekt. Vi har också visat att det går att öka MAEn med upp
till 15% genom att sträcka ut materialet. Dessutom har vi föreslagit att
genom att legera Fe2P med 10% Si på fosforpositionen i materialet så kan
det kanske bli möjligt att realisera att materialets magnetiska tillstånd
kan överleva i rumstemperatur. Vi har även studerat andra, besläktade
Fe-P system där vi kunnat förklara den ovanliga ikosahedriska metal-
fosfor koordineringen i ett nytt mineral melliniite, som påträffats i en
meteorit från nordvästafrika, 1054 Acapulcoite. Mineralet har en ideal
kemisk sammansättning (Ni,Fe)4P med uppskattningsvis 58% Ni och
42% Fe på metallpositionen. Det oväntade med detta mineral var att
fosforatomerna uppvisade en tolvfaldig koordinering, hittills har maxi-
malt tiofaldig koordinering hos fosfor observerats, i Co2P. Genom att
använda den så kallade Koherenta potentialapproximationen (CPA) och
den balanserade kristallorbitalöverlappspopulationen (BCOOP) kunde
vi visa att bindningen mellan Fe och P, i kombination med tempera-
tureffekter och konfigurationell entropi, stabiliserar materialet vid tem-
peraturer över 540 K. Den försvagade Ni-P bindningen bidrar däremot
till den observerade tolvfaldiga koordinationen av fosforatomerna. Vi
har vidare studerat system bestående av kluster på magnetiska metal-
lytor. De senaste åren har sådana kluster pekats ut som intressanta
dels för att de ofta har magnetiska egenskaper som inte kan återskapas
i större bulkmaterial och dels för att de har potential för att användas
som extremt små informationsbärare i framtida magnetisk datalagring-
stekniker så som morgondagens hårddiskar. Främst har de magnetiska
växelverkningrna mellan de magnetiska momenten i dessa kluster och i
de underliggande ytlagren studerats. Här har vi undersökt små Co klus-
ter på kopparbaserade ytor i form av Co/Cu(111), Cu/Co/Cu(111) och
Cu(111). Här användes en icke-kollinjär DFT formalism och vi visade att
den förväntade magnetiska frustrationen hos triangulära Mn kluster kan
undertryckas genom växelverkningar med Co atomer på Co/Cu(111)-
ytan. Dessa resultat öppnar up för möjligheten att kunna skräddarsy de
magnetiska egenskaperna för sådana kluster. I ett närliggande arbete har
vi påvisat ett oväntat beteende för spinndynamiken hos Co kluster lig-
gandes på en Cu(111) yta, nämligen att för vissa intervall av styrkan på
ett pålagt magnetisk fält kan magnetiseringen hos klustret ändra riktning
snabbare om det magnetiska fältet minskar i intensitet. Det strider helt
mot den gängse uppfattningen att starkare drivkraft ger större respons.

112



Vi benämner denna magnetiseringsdynamik för icke-Newtonsk då feno-
mentet påminner om hur icke-Newtonska vätskor som blir trögare vid
högre tryck beter sig.
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15. Resumo em Português

Em geral cientistas procuram por teorias que possam explicar e prever
a natureza. A mecânica quântica é uma das teorias mais bem suce-
didas já produzidas. Planck introduziu a quantização da energia para
resolver o problema da catástrofe do ultravioleta, e 1926 Schrödinger
porpôs a sua famosa equação. Devido a sua natureza contra intuitiva a
mecânica quântica sofreu de uma certa resistência da comunidade cien-
tífica. Porém devido a o sucesso da teoria em explicar a estabilidade
atômica e outros fenômenos esta acabou sendo aceita. Um dos pontos
que encontrou mais resitência é a sua interpretação probabilística. Ape-
sar do sucesso, as equações envolvidas são de uma enorme complexidade,
somente sendo possível encontrar soluções pra problemas simples, como
o átomo de hidrogêneo. Com o advento dos computadores modernos,
soluções numéricas para sistemas grandes começaram a ser possíveis.
Porém ainda assim obter uma função de onda Ψ(~r1, ..., ~rN ), com 3N
graus de liberdade é uma tarefa impossível. A maior dificuldade na
solução da equação de Schrödinger é devido ao efeito de muitos corpos.
Em 1964 Hohenberg e Kohn propuseram dois teoremas que fundamen-
taram a teoria do funcional da densidade (DFT em inglês), esta teoria
que é utilizada nesta tese.

Na teoria do funcional da densidade ao invés de calcularmos a função
de onda, o observável fundamental envolvido é a densidade ρ(~r), que é
uma função de 3 variáveis, muito mais simples que a função de onda.
Estes teoremas mostram a equivalência entre os dois métodos, e em 1965
Kohn e Sham propuseram as chamadas equações Kohn-Sham e o fun-
cional de correlação e troca (EXC [~r]). Este último contém todas as
informações sobre os efeitos de muitos corpos, com o conhecimento da
forma exata do funcional de correlação e troca a DFT seria uma teoria
exata. Naturalmente isto não é possível e aproximações são inevitáveis.
A primeira aproximação proposta, foi a cahmada aproximação da densi-
dade local (LDA em inglês). A LDA introduz os efeitos de correlação e
troca através do mapeamento da correlação e troca de um gás de eletrons
homogêneo. Apesar do sucesso obtido pela LDA, esta aproximação falha
para alguns sistemas, chamados de fortemente correlacionados. Em geral
estes sistemas estão relacionados a funções de onda espacialmente local-
izadas, estados 3d e f . Neste trabalho investigamos o caráter fortemente
correlacionado de impurezas de Fe em Cs. O Cs tem um parâmetro de
rede 2 vezes maior que o do Fe, com isso a sobreposição das funções
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de onda do Fe e Cs é pequena. E isto leva a a localização espacial dos
eletrons da impureza de Fe. A LDA é incapaz de reproduzir as pro-
priedades espectrais do Fe. Neste trabalho utilizamos a chamada teoria
dinâmica de campo médio (DMFT em inglês) para introduzir correções
a LDA.

Investigamos também a possibilidade de se obter um magneto perma-
nente duro não baseado em terras raras. Inúmeras aplicações industriais
utilizam magnetos permanentes duros de tubinas eólicas a discos rígidos.
E muitos destes dispositivos utilizam magnetos baseados em terras raras
como Nd e Sm. Porém nos últimos anos o preço destas commodities tem
aumentado vertiginosamente. Este aumento é devio ao crescimento da
demanda e, em maior parte, devido ao "monopólio" Chines na miner-
ação destes materiais. Atualmente a China produz 97 % das terras raras
consumidas no mundo. Existem minas de terras raras em diversas partes
do mundo, porém no início dos anos 2000 estas foram fechadas devido
aos baixos preços e a pressões dos ambientalistas. O que é um tanto
quanto contraditório, tendo em vista que a maioria das tecnologias para
a geração de energia limpa se utiliza de terras raras. Uma das carac-
terísticas necessárias para se obter um magneto permanente duro é que
este possua um alto valor da energia de anisotropia magnética (MAE em
inglês). A MAE do composto Fe2P determinada experimentalmente é
de 500 µeV/f.u., o que é muito incomum para materias a base de Fe.
Em nosso cálculo obtemos um valor de 664 µeV/f.u., uma diferença de
32 %. Um acordo aceitável entre teoria e experimento, tendo em vista a
delicada natureza da MAE. Mostramos também como é possível aumen-
tar a MAE aplicando tensão ao material. Obtemos um aumento de até
15 % no valor da MAE.

Em um tópico relacionado, investigamos um meteorito melliniite, que
foi encontrado no norte da Africa. Neste meteorito foi encontrado átomos
de fósforo coordenados por 12 átomos metálicos (Fe,Ni), na forma de um
icosaedro. Antes desta descoberta a máxima coordenação encontrada
para o P era de 10 átomos em um composto Co2P . A composição do
melliniite é (Ni,Fe)4P, com 58% de Ni e 42% de Fe. Calculamos a energia
de formação deste composto, utilizando a aproximação do potencial co-
erente (CPA em inglês) para tratar a desordem. Fizemos uma analise das
ligações metal-fósforo através do método balanced crystal overlap popula-
tion (BCOOP). Mostramos que o composto é estável para temperaturas
acima de 540K.

Investigamos clusters (aglomerados) adsorvidos em superfícies metáli-
cas e magnéticas. Nos últimos anos estas estruturas tem sido alvo de
intensas pesquisas. Uma das possíveis aplicações é sua utilização como
base da próxima geração de discos rígidos. Mostramos que a competição
entre exchange inter-atômico entre átomos de Mn no clusters e os áto-
mos da superfície leva a supressão do fenômeno chamado frustração mag-
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nética. Em um trabalho relacionado, revelamos um comportamento in-
esperado da dinâmica de spin de clusters de Co sobre uma superfície
de Cu(111). Para certas valores do campo magnético aplicado, a mag-
netização do clusters muda de direção mais rapidamente se o campo
magnético diminui em intensidade. Denominado um comportamento
Não-Newtoniano.

Para estudarmos sistemas com desordem e um perfil magnético com-
plexo, desenvolvemos um avançado formalismo, chamado augmented space
recursion (ASR). Este método foi aplica no estudo de ligas de Mn como
MnPt e Mn3Rh.
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