Seminário de Óptica e Informação Quântica
Data: Sexta-Feira 14/09/2018, Sala A5-01, 11 am.
Palestrante: Allan David Cony Tosta (UFF)
Título: The computing power of anyonic linear optics
Abstract: We generalize the FLO (Fermionic Linear Optics) model for one-dimensional systems of anyons in a linear chain and solve the Heisenberg equations for mode creation and annhilation operators with a number-preserving quadratic Hamiltonian. We define and describe beam-splitter and phase-shifter actions in general pairs of modes and prove that they change by the effect of a one-dimensional analog of the Aharonov-Bohm effect. We construct an entangling two-qubit gate with entanglement power dependent on the statistical parameter and prove that systems with any small deviation from fermionic statistics are universal for quantum computation.
Referências:
Terhal, B. M., & DiVincenzo, D. P. (2002). Classical simulation of noninteracting-fermion quantum circuits. Physical Review A - Atomic, Molecular, and Optical Physics, 65(3), 10. https://doi.org/10.1103/PhysRe
Wu, L. A., & Lidar, D. A. (2002). Qubits as parafermions. Journal of Mathematical Physics, 43(9), 4506–4525. https://doi.org/10.1063/1.1499
Keilmann, T., Lanzmich, S., McCulloch, I., & Roncaglia, M. (2011). Statistically induced phase transitions and anyons in 1D optical lattices. Nature Communications, 2(1), 1–8. https://doi.org/10.1038/ncomms
Meljanac, S., & Milekovic, M. (1996). UNIFIED VIEW OF MULTIMODE ALGEBRAS WITH FOCK-LIKE REPRESENTATIONS. International Journal of Modern Physics A, 11(8), 0–33.
Kempe, J., & Whaley, K. B. (2002). Exact gate sequences for universal quantum computation using the XY interaction alone. Physical Review A, 65(5).https://doi.org/10.1103/
Bremner, M. J., Dawson, C. M., Dodd, J. L., Gilchrist, A., Harrow, A. W., Mortimer, D., … Osborne, T. J. (2002). Practical Scheme for Quantum Computation with Any Two-Qubit Entangling Gate. Physical Review Letters, 89(24), 2–4. https://doi.org/10.1103/PhysRe
EventList powered by schlu.net