Home Seminários Details - Rodolfo Cuerno Rejado (Madrid): Universality in surface kinetic roughening

EMail Imprimir

Seminários

Event 

Title:
Rodolfo Cuerno Rejado (Madrid): Universality in surface kinetic roughening
When:
18.08.2014 11.00 h
Where:
Sala A5-01 - Niteroi
Categoría:
Seminários

Description

Seminário de Mecânica Estatística

 

O seminário de Mecânica Estatística será apresentado na próxima segunda-feira, 18/08/2014, às 11:00h, na sala A5-01 do Instituto de Física.

Título: Universality in surface kinetic roughening: some recent developments

Apresentador: Rodolfo Cuerno Rejado (U. Carlos III de Madrid, Spain)

Resumo: Kinetic roughening is a well-known instance of non-equilibrium phenomena in which spatiotemporal scale-invariance occurs. This has made it a natural generalization of equilibrium critical behavior. Thus, related concepts like the universality class, and techniques, such as the renormalization group, have provided successful theoretical frameworks to characterize and describe this type of behavior. A paradigmatic system in this context is the so-called Kardar-Parisi-Zhang (KPZ) equation, expected to describe the large-scale behavior of many far-from-equilibrium surfaces in which dynamics are not conserved. Recent theoretical and experimental results on KPZ growth show quite dramatically the degree to which universality occurs in this class. Motivated by them, we will address a number of situations in which. nevertheless, KPZ universality does not operate in the form that would be naively expected. These include systems with non-local or with anisotropic interactions, or growth of circular interfaces. Elucidation of their peculiarities will undoubtedly improve our understanding of the way in which universality needs to be generalized to this type of spatially extended, non-equilibrium systems.

Venue

Grupo:
Sala A5-01
Street:
Instituto de Física da UFF
ZIP:
24210-346
City:
Niteroi
State:
RJ
Country:
Country: br

Description

Sorry, no description available
<<  Nov 24  >>
 Do  Lu  Ma  Mi  Ju  Vi  Sá 
       1  2
  3  4  5  6  9
1011121316
17181920
2425262730