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J.W. GIBBS

Elementary Principles in Statistical Mechanics - Developed with Especial
Reference to the Rational Foundation of Thermodynamics

C. Scribner’s Sons, New York, 1902; Yale University Press, New Haven, 1981), page
35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] fo have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory.
This will exclude certain cases, but not such apparently, as will affect
the value of our results with respect to their bearing on
thermodynamics. It will exclude, for instance cases in which the
system or parts of it can be distributed in unlimited space [---/. It also
excludes many cases in which the enerqy can decrease without limit,
as when the system contains material points which attract one
another inversely as the squares of their distances. [---]. For the
purposes of a general discussion, it is sufficient to call attention to the
assumption implicitly involved in the formula (92).



Enrico FERMI [hermodynamics (Dover, 1936)

The entropy of a system composed of several parts is very
often equal to the sum of the entropies of all the parts. This
is true if the enerqy of the system is the sum of the energies
of all the parts and if the work performed by the system
during a transformation is equal to the sum of the amounts
of work performed by all the parts. Notice that these
conditions are not quite obvious and that in some cases
they may not be fulfilled. Thus, for example, in the case of a
system composed of two homogeneous substances, it will
be possible to express the energy as the sum of the
energies of the two substances only if we can neglect the
surface enerqy of the two substances where they are in
contact, The surface enerqy can generally be neglected
only if the two substances are not very finely subdivided,
otherwise, it can play a considerable role.
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DEFINITION (g-Ilogarithm):

X791
1-q
In, x =1InXx

In, x= (x>0)

Hence, the entropies can be rewritten:

equal probabilities

generic probabilities

W
BG entropy k InW k > p, N
i=1 P
(a=1)
W 1
entropy S, k In,W k > p,In,—
i=1 O;

(9€R)




g-describable non g-describable

/ g=1 q+1 Others
local global
correlations correlations
IDEAL GAS
CRITICAL PHENOMENA C.T., M. Gell-Mann and Y. Sato
1+6 Europhysics News 36 (6), 186
- A. Robledo, Mol Phys 103 (2005) 3025 , '
1= [A- Robledo, Mol Phys 103 (2005) 3023] (European Physical Soc., 2005)
2
q= “9+§ 3 [F. Caruso and C. T, Phys Rev E 78 (2008) 021101]




THERMODYNAMICS

e

VLASOV EQUATION
BOLTZMANN KINETIC EQUATION
BBGKY HIERARCHY

FOKKER-PLANCK EQUATION

A A

LANGEVIN EQUATION

MASTER EQUATION

N

Braun and Hepp theorem

STATISTICAL MECHANICS

LIOUVILLE EQUATION
VON NEUMANN EQUATION

\

MECHANICS (classical, quantum, relativistic ---)




GROUNDING STAT. MECH.: Entropy extremization

Extremization of S, with appropriate constraints yields

1
P (X)oc[1-(1-0q)p x| e;ﬁx (g-generalized Boltzmann weight)

[inverse function of In_ x]

If (x)=0, extremization of S yields instead

1
p,(X) c[1-(1-q) 8 X" =e,”* (qg-generalized Gaussian)



EXTENSIVITY OF THE NONADDITIVE ENTROPY 5S¢



ADDITIVITY: O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment
(Pergamon, Oxford, 1970), page 167

An entropy is additive if, for two probabilistically independent systems A and B,
S(A+B)=S(A)+S(B)
Hence, S, and S(?e”yi (Vq) are additive, and S, (Vq #1) is nonadditive .

EXTENSIVITY:

Consider a system 2'= A + A, +...+ A, made of N (not necessarily independent)
Identical elements or subsystems A and A,, ..., A,.  Anentropy is extensive if

O< Iim S(N)

N —o

<o, 1, S(N)cN (N — )

CONSEQUENTLY:

The additive entropies S, and SqRe“yi are extensive if and only if the N subsystems are
(strictly or asymptotically) independent; otherwise, S, and S(fe”y‘ are nonextensive.
The nonadditive entropy S, (q =#1) is extensive for special values of q if the

subsystems are specially (globally) correlated.



HYBRID PASCAL - LEIBNITZ TRIANGLE
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A B 1 2

1 p2 + K p(l-p)—« P

2 pA-p)-x|(@-p) +x 1-p

p 1-p 1

EQUIVALENTLY:
(N =0) 1x1
(N =1) 1xp 1x(1- p)
(N =2) Ix[p*+x] 2x [p-p)-x] 1x[(1—p)*+x]



q=1SYSTEMS [ don’t believe that atoms exist!
l.e., suchthat S;(N)< N (N — x) Ernst Mach (January 1897, Vienna)

100

9
80
70 b
60
: quo-
40
30 F

20

10 +

L L L L L L L L L
0 1 1 1 1 1 1 1 1 1 0 L |
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 30 90 100 1 10 20

N N N
Leibnitz triangle N independent coins Stretched exponential
1 Pyo=DP" L
(pN,O :mj N.0 pN.O_ p
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(All three examples strictly satisfy the Leibnitz rule)
C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)



Asymptotically scale-invariant (d=2)

(N =0) .

(N =1) 12 12

= s 16 13

(N = 3) 3/8  5/48  5/48 AN |

(N=4) 2/5 3/40 1/20 0 0
d+1 g

(It asymptotically satisfies the Leibnitz rule)

C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)



q=1SYSTEMS
le., suchthat S (N)oc N (N — o0)

10000 10000 10000
8000 8000 8000
Sq Sq Sq
6000 6000 6000
4000 4000 4000
2000 2000 2000
g=1/2+0.1
g=2/3+0.1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

(All three examples asymptotically satisfy the Leibnitz rule)

C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)
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Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

Filippo Caruso' and Constantino Tsallis>?

'NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, ltaly
ZCentro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
(Received 16 March 2008:; revised manuscript received 16 May 2008 published 5 August 2008)

The Boltzmann—Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L1, Here we show, for d=1,2, that the (nonadditive) entropy S, satisfies, for a special value of g+ 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., Sq-:xf_,“’_ Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,

Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked
by a maximum of the special entropic index g.



SPIN 2 XY FERROMAGNET WITH TRANSVERSE MAGNETIC FIELD:

N—
H=->Y [1+7)8567,+(1—)6Y6%, | +2)67]

j=1

|7 |=1 — Ising ferromagnet

O0< |y| <1 — anisotropic XY ferromagnet
y =0 — Isotropic XY ferromagnet

A =transverse magnetic field
= length of a block withina N — o chain

F.Carusoand C. T., Phys Rev E 78,021101 (2008)



oy = ground state (T =0) of the N-system
(assuming A” =+0)

= py=py = Trp =1

= p, IS a pure state

= 5,(N)=0 (vq, VN)

Whereas p, =Tr,,_, p, satisfies Trp’ <1
= p, IS a mixed state
= S,(N,L)>0
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F.Carusoand C.T., Phys Rev E 78,021101 (2008)



Using a Quantum Field Theory result

In P. Calabrese and J. Cardy, JSTAT P06002 (2004)
we obtain, at the critical transverse magnetic field,

V9+¢? -3
ent -
with ¢ = central charge in conformal field theory

Hence

Ising and anisotropic XY ferromagnets = c¢ :% =™ =+/37 -6 ~0.0828
and

Isotropic XY ferromagnet = ¢=1 = q,= J10 -3 ~0.1623

F.Carusoand C.T., Phys Rev E 78,021101 (2008)



2-D guantum systems at T=0

Bosonic two-dimensional system of infinite

coupled harmonic oscillators at T=0

self-frequency / coordinate
2 2
= —E L@l (D~ D )+ (D - D, )]
momentum (the masses and coupling strengths are set to unity)
=0.01 i =
S, | Extensivity for ,.,=0.87
20|
Oor=0.87 « Mo ;
— o 3 ).99995 | . *
15 G=0.8 v -'.. | 0.9999!
¢ ] " °
» [ |
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10y N L \8087OCL2 ’
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F. Caruso and

2
JP.‘T., Phys Rev E 78, 021101 (2008)



Summarizing, for a wide class of quantum problems, we know that

Sgc(N)oc InL ocIn N =N  ford =1 quantum chains

«L o«/N =N ford=2bosonic systems

o« 2 «N?® N ford =3black hole

oc "7 o« NP 2N for d-dimensional bosonic systems

(d >1, area law)
L4t -1
. =In, , L #L°cN (d>1) (NONEXTENSIVE!)

oC

For the same class of quantum problems, we expect

Sq t(N) ol «N (d21 q,, #1) (EXTENSIVE!)
(which we have illustrated for d =1, 2)
F. Caruso and C. T., Phys Rev E 78, 021101 (2008)



NEWS AND VIEWS

When entropy does not seem extensive

Earlier speculations about the entropy of black holes has prompted an ingenious calculation suggesting that
entropy may (in special circumstances) be the same inside and outside an arbitrary boundary.

Evervoooy who knows about entropy knows
that it is an extensive property, like mass or
enthalpy. That, of course, is why the entropy
of some substance will be quoted as so much
per gram, or mole. If you then take two
grams, or two moles, of the same material
under the same conditions, the entropy will
be twice as much. And there should be no
confusion about the units; the simple Carnot
definition of a change of entropy in arevers-
ible process is the heat transfer divided by
the absolute temperature, so that the units of
entropy are simply those of energy divided
by temperature, joules per degree (kelvin)
in the SI system. The definitions of the
Gibbs and Helmholtz free energies would
be dimensionally discordant for that
reason were it not that entropy (S) always
turns up multiplied by temperature 7. So
much will readily be agreed.

Of course, there is more than that to
entropy, which is also a measure of disorder.
Everybody also agrees on that. But how is
disorder measured? By the number of ways
in which the constituents of some material
(theatoms and molecules) can be rearranged
without changing its properties and without
encrgetic consequences. Butnow there comes
4a.snag.

Like any extensive property, the com-
bined entropy of two separate chunks of
material should be the sum of the two entro-
pies, but the number of rearrangements of
the combined system must be the product of
the numbers of ways in which the two parts
separately can be rearranged. How to recon-
cile that with extensivity? By supposing
entropy is proportional not to the number of
rearrangements (technically called ‘com-
plexions’), but with the logarithm thereof.
And because entropy decreases as disorder
increases, the constant of proportionality
must be a negative (real) number.

From that it follows that § = §,-Klogh,
where K is a positive constant with the
dimensions of entropy, N is a number (with-
out dimensions) measuring disorder and §,
is an arbitrary constant entropy. All that is
simply a precis of the standard introductory
chapter in statistical mechanics textbooks,
most of which go on to show how to calcu-
late the properties of assemblages of, say,
diatomic molecules from a knowledge of
their individual behaviour. Because the
number of complexions of a particular state
ofan assemblage is invariably a function of
the number (n) of molecules it contains,
usually in the form of n!, because n is
usuzlly large and because log(n!) can then
be approximated by rlogn, the extensive

NATURE - VOL 365 - 9 SEPTEMBER 1993

property of entropy then follows simply
from the appearance of the leading factor n:
entropy is proportional to the number of
molecules.

That is what the textbooks say. It also
makes sense of what is known of the thermo-
dynamics of the real world. In a sample of a
diatomic gas, for example, there are vibra-
tions (one) and rotations (two) as well as
three rectilinear degrees of freedom. But the
problem is to tell how the energy available
is distributed among the different degrees of’
freedom. The arithmetic simplifies marvel-
lously because (in this case) each molecule
and each of its degrees of freedom is inde-
pendent. The best measure of disorder works
out at N = 2", where » is the number of
molgcul i
fun
mol|
tic,

app

con
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q
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well suited to the discussion of systems in
which one part (say the black hole) is sin-
gled out for attention while the remainder
(the Universe outside it} is dealt with in less
detail, perhaps because some averaging proc-
ess is appropriate, or because the whole
problem may not be calculable at all. (In
Dirac’s notation, the density matrix corre-
sponding to some state of the whole Uni-
verse would be represented as |1><1|, where
“1" is simply the name for a particular state
of the Universe.) What matters, where en-
tropy is concerned, is that the density ma-
trix, like all matrices, has eigenvalues from

which the entropy can be calculated.
So imagine that the Universe is parti-
tioned into two parts by means of a closed
ind ¢ with a

Jacob D. Bekenstein
Stephen W. Hawking
Gerard ‘t Hooft
Leonard Susskind
Stephen Lloyd

M. Maldacena ---

Juan

z1  When entropy does not seem extensive
« John Maddox, Nature 365, 103 (1993)

w  Everybody who knows about entropy knows that it is an
= extensive property, like mass or enthalpy. [...] Of course,
w  there is more than that to entropy, which is also a measure
2| of disorder. Everybody also agrees on that. But how is
\ disorder measured? [...] So why is the entropy of a black
=\ hole proportional to the square of its radius, and not to the
& cube of it? To its surface area rather than to its volume?

A bit of quantum mechanics goes into
the argument as weli, notably the notion of
the density matrix — an artificially con-
structed operator (on quantum states) that is

dealt with explicitly, as other entropy calcu-
lations are made. And that could be
exceedingly important.

John Maddox
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SYSTEMS ENTROPY Sec | ENTROPY Sq (q<1)

Short-range

Interactions, EXTENSIVE NONEXTENSIVE
weakly entangled
blocks, etc

Long-range
Interactions (QSS), | NONEXTENSIVE EXTENSIVE

strongly entangled
blocks, etc




MICROCANONICAL ENSEMBLE
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E.M.F. Curado and C. T. (2008)
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q- GENERALIZATION OF THE CENTRAL LIMIT THEOREM



ONE OF MANY CONNECTIONS OF THE CENTRAL LIMIT THEOREM
WITH BOLTZMANN-GIBBS STATISTICAL MECHANICS
Optimization of

S =- kjdx p(x) In[p(x)]

with
J'dx p(x)=1
and
(E(x)) = jdx p(x) E(x) = constant
yields
o~ FEX)
p(x) = Tay e 750

(Boltzmann-Gibbs distribution for thermal equilibrium)
Example: (x)=0 and <x2> =constant  yields
_ﬂxz
e
p(X) _ J-dy e_ﬂyz

(Gaussian distribution)



1

¢-GAUSSIANS:  p,(x) = ;09" = : (q<3)
11+(q-1) (x/0)* |¢d
G PylX) & p, )
— s g— - =
0.4
\-\ — g=1}
B g ° g
- g=2
o2 g=29
- =
0.0 & T PE—
-2 0 z 4

X/o

D. Prato and C. T., Phys Rev E 60, 2398 (1999)



LOOKING FOR A g-GENERALIZED CENTRAL LIMIT THEOREM:

" p(xt) _ o " [p(x. 17"

= O<a<2,0<3;t>0)

ot¥ o|x|”
globally correlated variables
finite g-variance;

al conjectured CLT « g -Gaussian attractor
2 /.
\ independent variables;
Graussian CLT finite variance;

Gaussian attractor

(IB — 1) 1- \Levy-(}nedenko CL T+« independent variables;
divergent variance;

Levy attractor
(g«a) - attractor

| | e
I [

1 0 1 . g s

M. Bologna, C. T. and P. Grigolini, Phys. Rev. E 62, 2213 (2000)
C.T., Milan J. Math. 73, 145 (2005)



g- PRODUCT:

L. Nivanen, A. Le Mehaute and Q.A. Wang, Rep. Math. Phys. 52, 437 (2003)
E.P. Borges, Physica A 340, 95 (2004)

The g- product is defined as follows:

1

X®, Y= [xl‘q +y —1]1—(1
Properties:
i) X® y=XY
1) In,(x®, y)=In,x+In_y (extensivity of Sq)

[whereas In (xy)=In,x+In,y+(1-q)(In, x)(In, y)]
(nonadditivity of Sq)



qg- GENERALIZED CENTRAL LIMIT THEOREM:
S. Umarov, C.T. and S. Steinberg, Milan J Math 76, 307 (2008)

g-Fourier transform:
FLHIE) = [ el g 100 dx= [ eh O 1) dx

(9=1)

(nonlinear!)



g2l —B @?
q— FourierTransform {ﬁ & B } _ eqlﬂl @
Cq

_1+q

where 0, | |
3—-( 7 invertible
s =
3

nd 7 < < (ﬂJﬁqﬂﬁqzﬂig_q } = K(q)

- 8p*C: ™ 8C2
. |
2o )
q_3 if q<1
—
(3-q) (1—q)r[ j
2(1-q)
with Cq:<\/; if g=1
Fas,
93 if 1<q<3
] —“(1)
q-1




q- GENERALIZED CENTRAL LIMIT THEOREM:
S.Umarov, C.T. and S. Steinberg, Milan J Math 76, 307 (2008)

g-independence:

Two random variables X [with density f, (x) ] and Y [with density f, (y)]
having zero g —mean values are said d-independent if

F [X+Y](S) =F,[X](S) @4 FIYI(S)

3-q
Le., If
[ azeffe, f @ =| [ oxeli e, (0] Suyey| [ dveds e, ()]
with

£, (2) = ji de: dy h(X,y) S(x+y—2)= ji dx h(x,z—X) = j“; dy h(z-y,Y)
where h(x, y) Is the joint density.

Independence If g=1, 1e, h(x,y) =1, (x) f, (y)

q - independence means _ _ :
global correlation if q=1, ie, h(x,y)= f, (x)f, (y)



A random variable X is said to have a (q,«)-stable distribution Lg , (X)

If its g - Fourier transform has the form a ealb S1

[a>0,b>0, 0<a<2 q,=(q+1)/(3—09)]
e, if
Ix&

© 00 X g _b o
Follq (&) = jeaxf ®q Lgq(X) dx = feéLq’ O (0 dx =@ ey ]

L1,2(X) =G(X) [Gaussian]

Ll,a (X) =L, (X) [a-stable Levy distribution]
Lq’z(x) =Gq(x) [9-Gaussian]

Lq,a(x) (0, @) - stable distribution]

S. Umarov, C. T., M. Gell-Mann and S. Steinberg
cond-mat/0606038v2 and cond-mat/0606040v2 (2008)



CENTRAL LIMIT THEOREM

Nl _scaled attractor IF(x) when summing N — oo (-independent identical random variables

with symmetric distribution f (X) with &g = [dx x*[f ()]° /[ dx [f (0)]° (QEZq%L%:———j

1+q
3—-q

q=1 [independent]

q=1l(ie, Q=29-1 #1) [globally correlated]

F(x) = Gaussian G(x),

F(x) =G, (x) EG( )(x), with same o, of f(x)

39;-1)/(1+q,

< G(x) if | x]<<x.(q,2)
OgS © - G,(x) ~
( Q ) with same o, of f(x) q( ) £(x)~Cy /| Xlz/(q_l) if [x[>> % (0,2)
o=2 .
Classic CLT with 1im, ., x;(4,2) =<
S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)
F(x) = Levy distribution L, (x), F(x)=Lq, ,» with same |x[—> « asymptotic behavior
with same | x| — oo behavior 2(1-9)-a(3-9)
Couqrapeqy XI~Cy, 1IX] 2
: 2(-0)-a(3-a)
G
Oq 7 ® (X_)f X La) (intermediate regime)
if | x|<<x. (1«
O<a<?2) L, (X)~ Lgo ~

f(x)~C, /| x[*
if | x>>x. (L)

with lim__, ,x. (L a)=o
Levy-Gnedenko CLT

(X)~CL /|X|(1+a)/(1+aq—a)
2(2q-a+3 2 q.a
a+l

(distant regime)

S. Umarov, C. T., M. Gell-Mann and S. Steinberg
cond-mat/0606038v2 and cond-mat/0606040v2 (2008)




SOME EXPERIMENTAL, OBSERVATIONAL
AND COMPUTATIONAL
VERIFICATIONS AND APPLICATIONS



CLASSICAL LONG-RANGE-INTERACTING MANY-BODY HAMILTONIAN SYSTEMS

V(r)~—ria r>w) (A>0, a>0)

Integrable if ald>1 (short-ranged)
non-integrable if 0<a/d <1 (long-ranged)

a EXTENSIVE
.l SYSTEMS

dipole-dipol
S
%" @ NONEXTENSIVE
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d-DIMENSIONAL CLASSICAL INERTIAL XY FERROMAGNET:

(We illustrate with the XY (i.e., n=2) model; the argument holds however true
for any n>1 and any d-dimensional Bravais lattice)

1- 005(9 -9)

H=K+V =5 ZLZ —Z (1>0,J>0)
u
(Nl if 0<al/d<l
with 2 = Zr‘“ocan if ald=1
constant  If ald>1
and periodic boundary conditions.

[The HMF model corresponds to «/d =0]

C. Anteneodo and C. T., Phys Rev Lett 80, 5313 (1998)
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XY FERROMAGNET WITH LONG-RANGE INTERACTIONS:

7 o -XY-model
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THERMAL CONTACT BETWEEN SYSTEMS A AND B:

Pu o e o e o

H = Z“_lﬁ —Z. 12 [L-cos(0 - 6M)]

v(LD) [1- COS(HiB_ej )]
ICEIED 3

+ | Zkzl[l— cos(4 - 6.)]
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RAPID COMMUNICA

Analysis of self-organized criticality in Ehrenfest’s dog-flea model

PHYSICAL REVIEW E 79, 040103(R) (2009)

Burhan Bakar"™ and Ugur Tirnakli"*'
lDepar:‘mcmr of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey
2Division of Statistical Mechanics and Complexity, Institute of Theoretical and Applied Physics (ITAP) Kaygiseki Mevkii, 48740 Turunc,
Mugla, Turkey
(Received 8 January 2009; published 23 April 2009)

The self-organized criticality in Ehrenfest’s historical dog-flea model is analyzed by simulating the under-
lying stochastic process. The fluctuations around the thermal equilibrium in the model are treated as ava-
lanches. We show that the distributions for the fluctuation length differences at subsequent time steps are in the
shape of a g-Gaussian (the distribution which is obtained naturally in the context of nonextensive statistical
mechanics) if one avoids the finite-size effects by increasing the system size. We provide clear numerical
evidence that the relation between the exponent 7 of avalanche size distribution obtained by maximum-
likelihood estimation and the g value of appropriate g-Gaussian obeys the analytical result recently introduced
by Caruso et al. [Phys. Rev. E 75, 055101(R) (2007)]. This allows us to determine the value of g-parameter a
priori from one of the well-known exponents of such dynamical systems.




B. Bakar and U. Tirnakli Phys Rev 5 N .
E 79,040103(R) (2009) "E R
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Hydra viridissima:
A Upadhyaya, J-P Rieu, JA Glazier and Y Sawada, Physica A 293, 549 (2001)
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COLD ATOMS IN DISSIPATIVE OPTICAL LATTICES:

RAPID COMNM

PHYSICAL REVIEW A 67, 051402(R) (2003)

Anomalous diffusion and Tsallis statistics in an optical lattice

Eric Lutz
Sloane Physics Laboratory, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
(Received 26 February 2003: published 27 May 2003)

We point out a connection between anomalous transport in an optical lattice and Tsallis” generalized statis-
tics. Specifically, we show that the momentum equation for the semiclassical Wigner function which describes
atomic motion in the optical potential, belongs to a class of transport equations recently studied by Borland
[Phys. Lett. A 245, 67 (1998)]. The important property of these ordinary linear Fokker-Planck equations is that
their stationary solutions are exactly given by Tsallis distributions. An analytical expression of the Tsallis index
g n terms of the microscopic parameters of the quantum-optical problem is given and the spatial coherence of
the atomic wave packets is discussed.

(i) The distribution of atomic velocities is a g-Gaussian;

(i) Q= 1+44E where E.
UO

recoll energy

U, = potential depth



Experimental and computational verifications in optical lattices:

7 week endin
PRL 96, 110601 (2006) PHYSICAL REVIEW LETTERS 24 MARCH 2006

Tunable Tsallis Distributions in Dissipative Optical Lattices

P. Douglas, S. Bergamini, and F. Renzoni
Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6B1, United Kingdom
(Received 10 January 2006; published 24 March 2006)

We demonstrated experimentally that the momentum distribution of cold atoms in dissipative optical
lattices is a Tsallis distribution. The parameters of the distribution can be continuously varied by changing
the parameters of the optical potential. In particular, by changing the depth of the optical lattice, it is
possible to change the momentum distribution from Gaussian, at deep potentials, to a power-law tail
distribution at shallow optical potentials.




Experimental and computational verifications
by P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601 (2006)
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7 week endin
PRL 100, 055003 (2008) PHYSICAL REVIEW LETTERS 8 FEBRUARY 2008

Superdiffusion and Non-Gaussian Statistics in a Driven-Dissipative 2D Dusty Plasma

Bin Liu and J. Goree
Department of Physics and Astronomy, The University of lowa, lowa City, lowa 52242, USA
(Received 1 June 2007; published 6 February 2008)

Anomalous diffusion and non-Gaussian statistics are detected experimentally in a two-dimensional
driven-dissipative system. A single-layer dusty plasma suspension with a Yukawa interaction and fric-
tional dissipation is heated with laser radiation pressure to yield a structure with liquid ordering.
Analyzing the time series for mean-square displacement, superdiffusion is detected at a low but
statistically significant level over a wide range of temperatures. The probability distribution function
fits a Tsallis distribution, yielding ¢, a measure of nonextensivity for non-Gaussian statistics.
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LASER COOLING:

week ending

PRL 102, 063001 (2009) PHYSICAL REVIEW LETTERS 13 FEBRUARY 2009

Power-Law Distributions for a Trapped Ion Interacting with a Classical Buffer Gas

Ralph G. DeVoe

Physics Department, Stanford University, Stanford, California 94305, USA
(Received 3 November 2008; published 10 February 2009)

Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in
a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of
buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from
cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters
and have ab initio agreement with experiment.
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FIG. 1 (color online). Monte Carlo distributions for a single
B®Ba™ ion cooled by six different buffer gases at 300 K ranging
from mg = 4 (left) to mp = 200 (right). Note the evolution from
Gaussian to power law (straight line) as the mass increases. The
solid lines are Tsallis functions [Eq. (7)] with fixed o =

T(x) =

T(9)

Devoe, Phys Rev Lett 102 (2009) 063001
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0.0185 cm and the exponents of Table 1. TABLE I. Tsallis parameters n and g fit from Fig. 1.
Buffer gas my/mg n qr
He 34.5 =60 1.03
Ar 3.40 8.2 1.12
Kr 1.70 3.8 1.26
Xe 1.0 1.98 1.51
170 0.80 1.50 1.80
200 0.68 1.15 1.87




SPIN RELAXATION IN SPIN GLASSES (NEUTRON SPIN ECHO):

PRL 102, 097202 (2009) PHYSICAL REVIEW LETTERS 6 MARGH 200

Generalized Spin-Glass Relaxation

R. M. Pickup.' R. Cywinski,®* C. Pappas.” B. Farago.® and P. Fouquet®
'School of Physics and Astronomy, University of Leeds, Leeds LS2 91T, United Kingdom
2School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
SHelmholtz Center Berlin for Materials and Energy, Glienickerstrasse 100, 14109, Berlin, Germany
*Institut Laue Langevin, 6 rue Jules Horowitz, 38000 Grenoble, France

(Received 18 July 2008; published 4 March 2009)

Spinrelaxation close to the glass temperature of CuMn and AuFe spin glasses is shown, by neutron spin
echo, to follow a generalized exponential function which explicitly introduces hierarchically constrained
dynamics and macroscopic interactions. The interaction parameter is directly related to the normalized
Tsallis nonextensive entropy parameter ¢ and exhibits universal scaling with reduced temperature. At the
olass temperature ¢ = 5/3 corresponding, within Tsallis’ g statistics, to a mathematically defined critical
value for the onset of strong disorder and nonlinear dynamics.
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SPIN RELAXATION IN SPIN GLASSES (NEUTRON SPIN ECHO):
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Non-Extensive Approach to Quark Matter

Tamas S. Biré!, Gabor Purcsel! and Kdroly Urmés

arch Institute for Particle and Nuclear Physi
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Extracted values for the quark g-parameier
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MENDELEEV TABLE (Ground state energy)
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LONDON STOCK EXCHANGE (Block market):

Data: I.I. Zovko; Fitting: E.P. Borges (2005)
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FACIAL EXPRESSION RECOGNITION USING ADVANCED LOCAL BINARY PATTERNS,
TSALLIS ENTROPIES AND GLOBAL APPEARANCE FEATURES

Shu Liao'?, Wei Fan®, Albert C. S. Chung™? and Dit-Yan Yeung®

Lo Kwee-Seong Medical Image Analysis Laboratory
and “Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong.

IO TY
CEERRERT

Angry Disgust Fear Happy Neutral Sadness Surprise

Kig. 4. Some sample images from the JAFFE database

[2006 IEEE International Conference on Image Processing, pages 665 — 668]



Features Classification Accuracy %
AMGER [15] 82.46
LBP [6] 835.57
ALBP 88.26
Tsallis 835.36
ALBP + Tsallis 91.89
ALBP + Tsallis + NLDAI 94.59

Table 2. Performance comparison of different approaches
with resolution level 64 <64 for the images from the JAFFE
database

Classification accuracy (%)

Features 48 x48 32x32 16x16
AMGER [13] 78.13 67.83 56.35

LBP [6] 81.44 77.28 68.02

ALBP 84.27 82.74 75.39
Tsallis 79.25 71.04 63.81

ALBP + Tsallis 87.31 85.73 30.40
ALBP + Tsallis + NLDAI | [90.54 88.82 34.62

Table 3. Performance comparison of different approaches
with resolution levels 48x48, 32x32 and 16X 16 for the im-
ages from the JAFFE database
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Analysis of Metagene Portraits Reveals Distinct
Transitions During Kidney Organogenesis

Igor F. Tsigelny,"?*T Valentina L. Kouznetsova,*' Derina E. Sweeney,® Wei Wu,?
Kevin T. Bush,® Sanjay K. Nigam3->:5*
(Published 9 December 2008; Volume 1 Issue 49 ralB6)



Kidney Parameters

e 20 parameters were measured e 1 parameter was calculated

— Embryo kidney mass — Reverse Tsallis entropy
— Embryo mass

— Kidney/body mass ratio
— Area

— DBA stained tissue

— Perimeter

— (ellipse) Perimeter (ellipse)
— Cortex area

— Medulla area

— Aspect

— Major axis

— Minor axis

— Feret cortex

— Feret medulla

— Feret kidney

— Roundness

— Tips

— Tips per unit ,
_ Glomeruli Valentina Kouznetsova

— Glomeruli per unit (2/18/2009)
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Prediction of the g- triplet: C.T,Physica A 340,1 (2004)

SENSITIVITY
(qsen)

RELAXATION STATIONARY STATE
(q re [) (q sta f)

Fig. 2. The triangle of the basic values of g, namely those associated with sensitivity to the initial conditions,
relaxation and stationary state. For the most relevant situations we expect gsen < 1, ¢yo; = 1 and gsrar = 1.
These indices are presumably inter-related since they all descend from the particular dynamical exploration
that the system does of its full phase space. For example, for long-range Hamiltonian systems characterized
by the decay exponent a« and the dimension d, it could be that gs.: decreases from a value above unity
(e.g., 2 or %) to unity when o/d increases from zero to unity. For such systems one expects relations like
the (particularly simple) ¢star = ¢re1 = 2 — @sen Or similar ones. In any case, it is clear that, for o/d > 1
(i.e., when BG statistics is known to be the correct one), one has gswur = grei = gsen = 1. All the weakly
chaotic systems focused on here are expected to have well defined values for gsen and g,.;, but only those
associated with a Hamiltonian are expected to also have a well defined value for gssar.
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Physica A 356 (2005) 375-384

www.elsevier.com/locate/physa

Triangle for the entropic index ¢ of non-extensive
statistical mechanics observed by Voyager 1
in the distant heliosphere

= e = _—
L.IF. Burlaga™, A.F. -Vinas
Laboratory for Solar and Space Physics, Code 612.2, NASA Goddard Space Flight Center,
Greenbelt, MD 20771, USA

Receved 10 June 2005
Available online 11 July 2005



SOLAR WIND: Magnetic Field Strength

L.F. Burlaga and A. F.-Vinas (2005) / NASA Goddard Space Flight Center; Physica A 356, 375 (2005)

[Data: Voyager 1 spacecraft (1989 and 2002); 40 and 85 AU; daily averages]
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Playing with additive duality (q—2-0)
and with multiplicative duality (q—1/q)
(and using numerical results related to the q— generalized central limit theorem)

we conjecture

qrel +i — 2 and qstat + i = 2

qsen qrel

hence 1- 4., =

hence only one independent!

Burlaga and Vinas (NASA) most precise value of the g—triplet is

Oy =1.75=7/4
hence O =— 0.5=—1/2  (consistent with g, =—-0.6 +0.2 )
and Qe =4 (consistent with g, = 3.8 £0.31)

C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)



g =1-q. =1—(-1/2)=3/2

€t =1-0y =1-4 =3

& stat E:I'_qstat =1-7/4 =-3/4

We verify

Etat = Esen ;gre' (arithmetic mean!)

Eson =/Esmt €ra (9EOMELTiC Mean!)

1 -1
- Econ TE -
c=—¢n_7sat (harmonic mean!)

rel — 2
N.O. Baella (2008)
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Strongly non-Markovian noise = Nonlinear Fokker-Planck equation: A
mesoscopic mechanism leading to nonextensive statistical mechanics

2 2—q

opixt) _ 0 | UK p(x,t) |[+D ‘ [p(x,g)] [0<3; D(2—-q)>0;t>0]
ot OX| OX 0 X

Plastino and Plastino, Physica A 222 (1995) 347; Fuentes and Caceres, PLA 372 (2008)

1) The imposition of the H -theorem in this equation mandates the entropy to be S,

Schwammle, Curado and Nobre,
Eur Phys J B 58 (2007) 159; Phys Rev E 76 (2007) 041123

2) Stationary state in the presence of any confining potential U (x):
P(X,00) oc ea'B WE-VOL \where p>0

3)If U(X)= —k1x+%k2x2 (k, > 0), then

p(X,t) oc g7, where 0 < () <
CTand DJ Bukman, Phys Rev E 54 (1996) R2197

2
4 If U(x)=0, then pP(X,t) oceaﬂ(t) * " Where B(t) c 1/t%9,

hence x* scales like t” with 7:i (prediction)

3—0



Multiplicative noise = Linear inhomogeneous Fokker-Planck equation:  Another
mesoscopic mechanism leading to nonextensive statistical mechanics

C. Anteneodo and C. T., J Math Phys 44 (2003) 5194

jx - F(X)+g(x) £ + ()

where £(t) and 7(t) are independent zero-mean white Gaussian noises
with amplitudes M and A. It follows

op(xt)__o[fe)pxt)] { [g(x)p(x,t)]} 0% [p(x,1)]
= (X) + A -
ot 0 X OX 0 X

If the deterministic drift is proportional to the multiplicative-noise induced drift,
e, if f(X)=—-rg(X)g'(x), [e.g., f(X)oc g(x)oxX]

then the stationary state is given by natural first physical choice
with  q=""M 51 and  p=r-TtM

[see also L. Borland, Phys Lett A 245 (1998) 67]



g =1 statistical mechanics:

Non, je ne regrette rien:--
baleyé, oublié, je me fous du passé:--

Edith Piaf

q = 1 statistical mechanics::
Je me souviens

Queéebec



Statistical mechanics of BE/ING - Boltzmann-Gibbs (q = 1)

Statistical mechanics of BECOMING - Nonextensive statistical mechanics
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Pois €, mal da para acreditar, mas ja se passaram mais de 20 anos da
proposta de generalizacao, baseada na entropia nao aditiva Sq, da
magnifica mecanica estatistica de Boltzmann-Gibbs [C. T., J. Stat. Phys.
52,479 (1988)]. E ainda tem inumeros, fascinantes e complexos
aspectos a serem esclarecidos. Mas varios outros estao ja razoavelmente
entendidos. Uma revisao breve sera apresentada, com énfase nas
diversas verificacoes -- experimentais, observacionais e computacionais
— atualmente disponiveis das predi¢des da teoria.

Bibliografia: (i) http://tsallis.cat.cbpf.br/biblio.htm ; (ii) C. Tsallis,
Introduction to Nonextensive Statistical Mechanics — Approaching a
Complex World (Springer, New York, 2009).
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