Wetting and adhesion on nano-patterned surfaces,

How geometry couples to physics

Olivier Pierre-Louis

Oxford Theoretical Physics, Oxford, UK, AND LSP, Univ. J. Fourier, Grenoble, France. olivier.pierre-louis@ujf-grenoble.fr

20th May 2009

Olivier Pierre-Louis (Oxford Theoretical Physics, OWetting and adhesion on nano-patterned surfaces,

<ロ> (日) (日) (日) (日) (日)

Membranes and Filaments

Wetting of solid clusters on nano-patterned surfaces,

How geometry couples to physics

2 Solid clusters

3 Membranes and Filaments

<ロ> (日) (日) (日) (日) (日)

Some examples

- Contact angle
- Lotus effect

Young contact angle

Surface/Interface free Energies

$$\mathcal{F} = \int_{VS} \mathrm{ds} \, \gamma_{VS}(\theta) + \int_{SA} \mathrm{ds} \, \gamma_{SA}(\theta) + \int_{AV} \mathrm{ds} \, \gamma(\theta)$$

Assumptions:

(i) flat substrate

(ii) fixed total volume:

$$\mathcal{N} = \Omega^{-1} \int \int_{A} \mathrm{d}^2 \mathbf{r}$$

Equilibrium:

$$\delta(\mathcal{F} - \mu \mathcal{N}) = 0$$

Laplace:

$$\mu = \Omega \gamma_{AV} \kappa$$

Young relation (1805):

$$\gamma_{SA} + \gamma_{AV} \cos \theta_0 = \gamma_{SV}$$

Super-hydro-phobic surfaces: Wenzel and cassie-Baxter states

Bico, Marzolin, Quéré, Europhys. Lett (1999).

Figure 12. Substrate decorated with posts (the bar indicates 1 μ m). If coated with a monolayer of fluorinated silanes, this substrate is found to be super-hydrophobic [37].

Wenzel and Cassie-Baxter states

Effective contact angle:

$$\gamma_{SA}^{eff} + \gamma_{AV} \cos \theta_0 = \gamma_{SV}^{eff}$$

Wenzel (1936) substrate lengthening $r \ge 1$

 $\cos\theta_W = r\cos\theta_0$

Cassie-Baxter (1944) solid-liquid contact fraction ϕ_{AS} liquid-vapor contact fraction η_{AV}

 $\cos\theta_{CB} = \phi_{AS}\cos\theta_0 - \eta_{AV}$

Pinning

Gibbs Inequality Condition (1906)

$$\theta_0 - \theta_C \le \theta \le \theta_0 + \theta_C$$

 \rightarrow Pinning at corners

Dynamics of lifting and collapse

R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, O. Pierre Louis, C. W. M. Bastiaansen, D.J. Broer, preprint

- 4 司 ト 4 ヨ ト 4

Capillary filling

Seeman*et al* (2005) Polystyrene drops on Silicon

・ロト ・回ト ・ヨト ・ヨ

Wetting of solid clusters on nano-patterned surfaces,

How geometry couples to physics

3 Membranes and Filaments

<ロ> (日) (日) (日) (日) (日)

Experimental equilibrium shape

Au/Graphite, Héyraud, Métois, Marseille

NaCl, Métois et al (620-710°C)

Solids vs liquid

 \bullet Anisotropy: roughnening transition \rightarrow facets

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Solids vs liquid

- \bullet Anisotropy: roughnening transition \rightarrow facets
- Energy: elasticity, eletronic energy, etc.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Solids vs liquid

- \bullet Anisotropy: roughnening transition \rightarrow facets
- Energy: elasticity, eletronic energy, etc.
- Mass Transport: diffusion (surface atoms, or bulk vacancies)

The Wulff and Kaishev constructions

Isotropic solid $\gamma(\theta) = \bar{\gamma}$

$$\begin{split} \mu &= \Omega \bar{\gamma} \kappa \quad \Rightarrow \quad R = \frac{\Omega \bar{\gamma}}{\mu} \\ \bar{\gamma} \cos(\theta_0) &= -\gamma_S \quad \Rightarrow \quad h_s = \frac{\Omega \gamma_S}{\mu} \end{split}$$

Polygonal shape

$$h_i = rac{\Omega \gamma_i}{\mu}$$

 $h_s = rac{\Omega \gamma_s}{\mu}$

・ロト ・日子・ ・ ヨア・

Global geometry

$$\psi = \frac{S_{AV}}{S_{AS}}$$

э

3D KMC Model

3D KMC Hopping along the surface

$$\nu = \nu_0 e^{-(n_1 J_1 + n_2 J_2 + n_{s1} J_{s1} + n_{s2} J_{s2})/T}$$

J bond energy, n_i nb neighbors i = 1 NN adsrobate i = 2 NNN adsorbate i = s1 NN substrate i = s2 NNN substrate Moves to NN/ surface Shape parameter

$$\zeta = \frac{J_2}{J_1} = \frac{J_{s2}}{J_{s1}}$$

Wetting controlled by

$$\chi = \frac{J_{s1}}{J_1}$$

isotropic: $\chi = (1 + \cos \theta_0)/2$

<ロ> <同> <同> < 同> < 同>

Flat substrate vs parallel nanogrooves

 $N = 10^4$, $\lambda = 20$, $\zeta = 0.2$, $\chi = 0.4$, $T/J_1 = 0.5$

Flat substrate

Parallel grooves \rightarrow 3 states Wenzel, Cassie-Baxter, Capillary Filling

・ロット (雪) () () (

э

Hysteresis

・ロト ・回ト ・ヨト ・ヨ

Surface Diffusion

Mullins' Model Local chemical potential $\mu = \Omega \tilde{\gamma} \kappa$. Mullins model:

$$j = -\frac{Dc}{k_B T} \partial_s \mu$$
$$V_n = -\Omega \partial_s j$$

Triple Line

Equilibrium contact angle $\theta = \theta_0$

Scaling

 $v_n \sim \widetilde{\partial}_{ss} \kappa$ Relaxation time $t \sim L^4$

Dynamics

Dynamics limited by peeling or nucleation

Combe, Jensen, Pimpinelli, Phys Rev Lett 2000 Mullins and Rohrer, J. Am. Ceram. Soc. 2000 Activation energy: \sim lateral size RCost: $\gamma_{step}2\pi\rho$ Gain: $\gamma_{rough}(1/R)$ per atom Total:

$$E = \gamma_{step} 2\pi\rho - \frac{\gamma_{rough}}{R}\pi\rho^2$$
$$E_b = \pi \frac{\gamma_{step}^2}{\gamma_{surf}}R$$

Slow relaxation time $t \sim e^{E_b/k_BT}$

Experiments

Controlled positionning of mass in holes Ling *et al* Surf. Sci 2006 McCarty NanoLetters 2006 Ag/W(110)

Nucleationless motion

W. L. Ling et al. Surf. Sci. Lett. (2004)

Model

$$\mathcal{X} = (x_U + x_D)/2$$
, and $\mathcal{H} = \mathcal{X} \tan(\theta)$
 $I_T = x_U - x_D$, $I_{\perp} = y_+ - y_-$

Einstein-like relation

$$\partial_t \mathcal{X} = -\frac{D_C}{k_B T} \partial_{\mathcal{X}} E_T.$$

Diffusion limited dynamics

$$D_C pprox rac{\Omega^2 D c_{eq}}{\mathcal{H}^2 I_T I_\perp}$$

Khare, Bartelt, Einstein, Phys. Rev. Lett. 1998 OPL, T.L. Einstein, Phys. Rev.B 2000

Interfacial and Wetting energies

Free energy

$$E_I \approx \gamma (h_U + h_D) (I_\perp + I_T) + 2\gamma (1 - \chi) I_T I_\perp$$

 $\mathcal{X} \gg I_T$ Maximum aspect ratio $r = I_\perp/I_T$

$$r_{max}^{I} \approx \left(\frac{1-\chi}{\tan\theta}\right)^{1/4} r_{init}^{3/2}$$

Drift dynamics

$$\partial_t \mathcal{X} = \frac{\Omega^2 D c_{eq}}{k_B T} \, \frac{2\gamma (1-\chi)}{\mathcal{X}^3 \tan^2(\theta)}$$

leading to $\mathcal{X} \sim t^{1/4}$ (also wetting potential $\mathcal{W}(h)$)

Elastic energy

Exp: Tersoff Tromp, 1993 Ag/Si(100) Exp: Xu et al 2007, Ge/Si(111)

$$E_E pprox rac{1}{2} \int dr_j \int dr_k \ \mathcal{G}_{j,k} \left(\mathbf{r}_j - \mathbf{r}_k\right) \mathbf{f}_j(\mathbf{r}) \mathbf{f}_k(\mathbf{r})$$

Maximum aspect ratio $r = I_{\perp}/I_T$

$$r_{max}^{E} = C \frac{V^{1/2}}{\tan(\theta)^{1/2} d_{0}^{3/2}} e^{-3(3+\sigma)/8(1-\sigma)}$$

where C = 0.175...Drift dynamics

$$\partial_t \mathcal{X} = \frac{\Omega^2 D c_{eq}}{k_B T} \frac{\alpha^2 (1 - \sigma^2)}{\pi Y d_0} \mathrm{e}^{-1/(1 - \sigma)} \frac{1}{\mathcal{X}}$$

where Y is the Young modulus. Scaling law $\mathcal{X} \sim t^{1/2}$.

FIG. 3. Portion of a Ag island on Si(001), as seen with LEEM. Field of view is 6 µm. Faint wavy lines are steps on substrate surface.

<ロ> (日) (日) (日) (日) (日)

Other energy

Metallic layers: Electronic confinement energy

- Z. Zhang et al, Phys.Rev.Lett.1998,1999
- Metals/Semiconductor
- 1) Quantum confinement of electrons
- 2) Charge spilling in the substrate
- 3) Friedel oscillations

Magic thicknesses (as in metal clusters)

Van der Waals forces

$$U_{VdW} = -\frac{A}{12\pi h^2}$$

A can be either > 0 or < 0 ? ?? $A \sim 10^{-20}$ J Z. Suo and Z. Zhang, Phys Rev B (1998)

Wetting of solid clusters on nano-patterned surfaces,

How geometry couples to physics

2 Solid clusters

Membranes and Filaments

Carbon nanostructures

Graphene on rough SiO₂ E.D. Williams *et al*, NanoLetters (2007); scale-bar 2nm.

・ロト ・回 ・ ・ ヨト ・

Lipidic membranes

L. Tan et al PNAS (2003); scale-bar $10\mu m$

Simple (fluid) lipid membrane on a nonflat surface

M. Abkarian A. Viallat, Biophys J. (2005); $D = 130 \mu m$

<ロ> (日) (日) (日) (日) (日)

1D model: Filament or membrane on ripples

Amplitude ϵ

Total energy

$$\mathcal{E} = \int ds \left[\frac{C}{2} \kappa(s)^2 + \sigma + V(\mathbf{r}(s)) \right]$$

outside solid V = 0, surface $V = -\gamma$, inside $V = +\infty$. i.e. Deformations $\gg \ell_{eq}$ Adhesion energy γ Bending rigidity C Tension σ

Equilibrium equations for the Euler elastica with adhesion

Free parts

$$C\partial_{ss}\kappa + \frac{C}{2}\kappa^3 - \sigma\kappa = 0.$$

Euler-Bernoulli elastica model

Boundary conditions BC1

$$\kappa_F = \kappa_B - \kappa_{eq},$$

where $\kappa_{eq} = (2\gamma/C)^{1/2}$ BC2

$$\kappa_B - \kappa_{eq} \leq \kappa_F \leq \kappa_B + \kappa_{eq}.$$

Similar to the Gibbs Inequality Condition for the wetting contact angle BC3

・ロト ・ 同ト ・ ヨト ・ ヨ

$$\kappa_+ = \kappa_-, \quad \text{and} \quad \partial_s \kappa_+ \leq \partial_s \kappa_-,$$

Patterned substrates: a 1D model

Natural parameters

Non-overlapping reduces the number of \mathbf{m} possible states

 $\alpha \gg 1 \rightarrow$ Membrane follows patterns **e** α

(日)

Ground state Transitions

Metastability

(日)

Sinusoidal surfaces

э

・ロット (雪) () () (

Orders of magnitude

Orders of magnitude

Graphene

$$\begin{split} & C = 0.9 \mathrm{eV}, \ \gamma \sim 6 \mathrm{meV} \mathrm{\AA}^{-2}, \ \sigma \approx 0 \\ & \rightarrow \epsilon \kappa_{eq} \sim 1. \\ & \epsilon = 1 \mathrm{nm}, \ \mathrm{and} \ \lambda = 10 \mathrm{nm}, \ \Rightarrow \alpha \sim 2 \\ & \text{larger than 100 nm follow} \\ & \text{A. Incze, A. Pasturel and P. Peyla, Phys.Rev.B (2004)} \\ & \text{Oxygen adsorption tunes bending rigidity:} \\ & 12.5\% \ \text{oxygen} \ C = 40 \mathrm{eV} \ \text{Peyla et al} \\ & \epsilon \kappa_{eq} < 1. \\ & \epsilon = 1 \mathrm{nm}, \ \mathrm{and} \ \lambda = 10 \mathrm{nm}, \ \Rightarrow \alpha \approx 0.6. \\ & \text{Oxygen adsorption} \ \Rightarrow \ \mathrm{scan \ tranisiton \ region} \end{split}$$

Orders of magnitude

lipid membranes(Swain and Andelman) $C = 1.4 \times 10^{-19}$ J, and $\sigma = 1.7 \times 10^{-5}$ Jm⁻² $\gamma = 5 \times 10^{-6}$ Jm⁻², $\ell_{eq} = 3$ nm Choosing $\epsilon \approx 50$ nm $\gg \ell_{eq}$, $\lambda \approx 500$ nm $\gg \epsilon$, we obtain $\Rightarrow \alpha \approx 1.5$ and $\beta \approx 5$

Nanotubes

 $\sigma \approx 0, C = 20 \text{eV.nm}, \text{ and } \gamma \approx 1 \text{eV.nm}^{-1}$ Choosing $\epsilon = 5 \text{nm}, \lambda = 50 \text{nm}$ we obtain $\alpha \approx 2$ (Nevertheless $\epsilon \kappa_{eq} \sim 1$)

< ロ > < 同 > < 回 > < 回 >

Wetting of solid clusters on nano-patterned surfaces,

How geometry couples to physics

2 Solid clusters

3 Membranes and Filaments

<ロ> (日) (日) (日) (日) (日)

• Liquids on micro-grooves:

R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, OPL, C. W. M. Bastiaansen, D.J. Broer, preprint

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Liquids on micro-grooves:

R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, OPL, C. W. M. Bastiaansen, D.J. Broer, preprint

Solids on nano-grooves:

OPL, Y. Saito, EuroPhys. Lett. 2009

Liquids on micro-grooves:

R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, OPL, C. W. M. Bastiaansen, D.J. Broer, preprint

- Solids on nano-grooves:
 OPL, Y. Saito, EuroPhys. Lett. 2009
- Drift of solid islands:

M. Dufay, OPL, preprint

Liquids on micro-grooves:

R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, OPL, C. W. M. Bastiaansen, D.J. Broer, preprint

- Solids on nano-grooves:
 OPL, Y. Saito, EuroPhys. Lett. 2009
- Drift of solid islands:

M. Dufay, OPL, preprint

Membranes and filaments on patterns

OPL, Phys. Rev. E 2007

<ロ> (日) (日) (日) (日) (日)

Perspectives

• Coupling between physics and morphology

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Perspectives

- Coupling between physics and morphology
- Nonlinear phenomena, Statistical Physics, Non-equilibrium processes

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Perspectives

- Coupling between physics and morphology
- Nonlinear phenomena, Statistical Physics, Non-equilibrium processes
- Dewetting of solid films on flat substrates OPL, A. Chame, Y. Saito, Phys. Rev. Lett. 2007

Perspectives

- Coupling between physics and morphology
- Nonlinear phenomena, Statistical Physics, Non-equilibrium processes
- Dewetting of solid films on flat substrates OPL, A. Chame, Y. Saito, Phys. Rev. Lett. 2007
- Nonlinear dynamics, instabilities, and fluctuations of extended fronts OPL, Europhys. Lett. 2005; C. Misbah, OPL, Y. Saito, Rev. Mod. Phys. 2009

Elastica: variation of the energy

 $s < s_B$ free $s > s_B$ adhesion

$$\begin{split} \mathcal{E} &= \int^{s_B} ds \left[\frac{C}{2} \kappa^2 + \sigma \right] + \int_{s_B} ds \left[\frac{C}{2} \kappa^2 + \sigma - \gamma \right] \\ \mathbf{t}_{s_B^-} &= \mathbf{t}_{s_B^+}, \end{split}$$

Variation $\delta \mathbf{r}(s)$ with $\delta \mathbf{r}(s) = 0$ for $s > s_B$.

$$\begin{split} \delta \mathcal{E} &= \int^{s_B} d\mathbf{s} (\delta \mathbf{r} \cdot \mathbf{n}) \left[C \partial_{ss} \kappa + \frac{C}{2} \kappa^3 - \sigma \kappa \right] \\ &+ \left[-(\delta \mathbf{r} \cdot \mathbf{n}) C \partial_s \kappa + (\partial_s \delta \mathbf{r} \cdot \mathbf{n}) C \kappa \right] |_{s_B^-} \\ &+ ds_B \left[\left(\frac{C}{2} \kappa^2 + \sigma \right) |_{s_B^-} - \left(\frac{C}{2} \kappa^2 + \sigma - \gamma \right) |_{s_B^+} \right] \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・