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Resumo

As estrelas de nêutrons são um dos objetos astrofísi
os mais 
ompa
tos e mais densos


onhe
idos na natureza. Estes resultaram da explosão da supernova de uma estrela massiva.

A massa destes objetos situa-se entre uma e duas massas solares, normalmente tem raios de

10 km e muitas vezes giram rapidamente. Muitas das estrelas de nêutrons têm 
ampos mag-

néti
os intensos, que levam à emissão de rádio e radiação de raios-X. Essas 
ara
terísti
as,

juntamente 
om o progresso 
ontínuo na astrofísi
a observa
ional e a observação re
ente de

ondas gravita
ionais provenientes da 
olisão de estrelas de nêutrons, tornam esses objetos

poderosos laboratórios astrofísi
os para uma ampla gama de fen�menos físi
os interessantes.

Este trabalho é dedi
ado a estudar os efeitos de 
ampos magnéti
os fortes na estrutura das

estrelas de nêutrons, no âmbito da teoria da relatividade geral. O primeiro passo é estudar os

aspe
tos formais do 
ampo magnéti
o na estrutura estelar e as equações do 
ampo gravita-


ional usando duas abordagens diferentes, o que nos permite introduzir novas quantidades e

sua possível interpretação físi
a. O segundo passo é apresentar o teorema do virial relativista


omo uma integral que forne
e uma veri�
ação de 
onsistên
ia das soluções numéri
as. Como

ter
eiro passo, estudamos o formalismo teóri
o que des
reve as estrelas de nêutrons 
om ro-

tação não nula e altamente magnetizadas no 
ontexto das equações de Einstein-Maxwell.

Espe
i�
amente, para estrelas de nêutrons magnetizadas, estudamos 
ampos magnéti
os

poloidais e 
on�gurações estáti
as. São apresentadas as quantidades físi
as relevantes que

des
revem esses objetos e uma dis
ussão sobre a 
ontribuição da energia eletromagnéti
a

para a massa gravita
ional. Finalmente, en
ontramos o espaço-tempo que des
reve estrelas

de nêutrons 
om rotação não nula e magnetizadas. A distribuição dos diferentes termos que


ontribuem para a massa gravita
ional e a relação massa-raio é apresentada. Os resultados

obtidos mostram que para estrelas 
om 
ampo magnéti
o 
entral ∼ 1018 G os efeitos ele-

tromagnéti
os in
rementam a massa em um 10.1% em relação à 
on�guração sem 
ampo

magnéti
o. Os estudos realizados neste trabalho são fundamentais para a 
ompreensão dos

objetos astrofísi
os 
onhe
idos 
omo Soft-Gamma Repeaters e Anomalous X-Ray Pulsars,
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que são entendidos 
omo sendo uma 
lasse de estrelas de nêutrons 
hamadas de magnetares.

Palavras-
have: Estrelas de nêutrons, magnetars, 
ampo magnéti
o, estrutura.
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Abstra
t

Neutron stars are one of the most 
ompa
t and densest astrophysi
al obje
ts known

in nature, they result from the supernova explosion of a massive star. The mass of these

obje
ts lies between one and two solar masses, they typi
ally have radii of 10 km and often

spin very rapidly. Many of the neutron stars have very strong magneti
 �elds, whi
h lead to

the emission of radio and X-ray radiation. The density inside these obje
ts is many times

higher than the density of atomi
 nu
lei. These features, together with the ongoing progress

in observational astrophysi
s and the re
ent observation of gravitational waves 
oming from

the 
ollision of neutron stars, make these obje
ts superb astrophysi
al laboratories for a wide

range of interesting physi
al phenomena. This work is devoted to study the e�e
ts of strong

magneti
 �elds in the stru
ture of neutron stars, within the framework of the general rela-

tivity theory. The �rst step is to study the formal aspe
ts of the magneti
 �eld in the stellar

stru
ture and gravitational equations using two di�erent approa
hes, whi
h allow us to intro-

du
e new quantities and their possible physi
al interpretation. The se
ond step is to present

the relativisti
 virial theorem as an integral that provides a 
onsisten
y 
he
k of numeri
al

solutions. As third step, we study the theoreti
al formalism des
ribing rotating and highly

magnetized neutron stars within the 
ontext of Einstein-Maxwell's equations. Spe
i�
ally,

for magnetized neutron stars, we study poloidal magneti
 �elds and stati
 
on�gurations.

The relevant physi
al quantities des
ribing these obje
ts are presented and a dis
ussion about

the 
ontribution of the ele
tromagneti
 energy to the total gravitational mass. Finally, we

�nd the spa
etime des
ribing rotating and magnetized neutron stars. The distribution of the

di�erent terms that 
ontribute to the total gravitational mass and the mass-radius relation

is presented. The results show that for stars with magneti
 �eld ∼ 1018 G the ele
tromag-

neti
 e�e
ts in
rease the mass in 10.1% with respe
t to the 
on�guration without magneti


�eld. The studies performed in this work are key for the understanding the astrophysi
al

obje
ts known as a Soft-Gamma Ray Repeaters and Anomalous X-Ray Pulsars, whi
h are

understood as being one 
lass of neutron stars 
alled as magnetars.
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Chapter 1

Introdu
tion

Neutron stars, whi
h are the remnant of 
ore 
ollapse supernova, are one of the

most 
ompa
t obje
ts known in nature. The �rst modest observation of this phenomenal

explosion was in 1054 when Chinese astronomers saw and re
orded the spe
ta
ular explosion

of a supernova, the guest star, as the Chinese 
alled it, was so bright that people saw it in

the sky during the day for almost a month and remained visible in the evening sky for more

than a year [1℄. The idea of neutron stars was proposed in 1934 by Walter Baade and Fritz

Zwi
ky, only two years after the dis
overy of the neutron by the English physi
ist Sir James

Chadwi
k [2℄. They tentatively proposed that in a supernova explosion ordinary stars are

turned into stars that 
onsist of extremely 
losely pa
ked neutrons that they 
alled neutron

stars.

Compa
t stars are in fa
t the remnant of massive stars, typi
ally have radii of

10 km and masses that lie between one and two solar masses. The density inside these

obje
ts is many times higher than the density of atomi
 nu
lei (possibly up to 10 times

denser). Neutron stars are generally asso
iated with three 
lasses of astrophysi
al obje
ts:

Pulsars [3℄, whi
h are generally a

epted to be rotating neutron stars, 
ompa
t X-ray sour
es,

and magnetars, whi
h are obje
ts with very high magneti
 �elds. These obje
ts are very

dense and as su
h, its stru
ture must be des
ribed in the framework of Einstein´s general

relativity. In this theory, gravity is seen as 
urvature of spa
etime, 
aused by mass-energy.

The problem of des
ribing the stru
ture of 
ompa
t stars 
onsists of �nding the spa
etime
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geometry both inside and outside of the star for a given mass distribution.

It is 
ommon the use of the spheri
ally symmetri
 solution to des
ribe a wide range

of astrophysi
al obje
ts, this assumption implies a lot of mathemati
al simpli�
ations and

allows the use of Birkho�´s theorem [4℄ whi
h states that the spa
etime outside of a spheri-


al, nonrotating, gravitating body must be given by the S
hwarzs
hild metri
. This theorem

led Tolman-Openheimer-Volko� [5�7℄ to 
al
ulate the hydrostati
 equilibrium equations de-

s
ribing spheri
ally symmetri
 �uids, known as TOV-equations. For dissipative �uid spheres

it is possible to mat
h the interior and exterior spa
etime with the Vaidya metri
 (known

as the radiating S
hwarzshild metri
) [8℄ allowing a physi
al interpretation of the dynami
al

equations in terms of the dissipative variables [9℄ and a de�nition of the gravitational arrow

of time [10℄.

In the study of self gravitating 
ompa
t obje
ts it is usually assumed that small

deviations from spheri
al symmetry are likely to take pla
e. Su
h small deviations are not

appropriate for stars with strong magneti
 �elds where a full axially symmetri
 treatment

is ne
essary to properly des
ribe the system. Sin
e the dete
tion of soft gamma repeaters

(SGRs) in 1979 and an anomalous X-ray pulsar (AXPs) in 1981, there has been great interest

in neutron stars that 
ould be powered by their strong magneti
 �eld. In 1992 and 1993,

Dun
an and Thompson proposed the magnetar model [11,12℄ and, sin
e then, approximately

30 SGRs and AXPs have been observed [13℄. In re
ent years, several measurements have

estimated surfa
e magneti
 �elds to be of the magnitude of 1015 G for the sour
es 1E 1048.1-

5937 and 1E 2259+586 [14℄. Furthermore, the observed X-ray luminosities of the AXPs may

require a �eld strength B & 1016 G [15℄, in addition the observational data for the sour
e

4U 0142+61 suggests internal magneti
 �elds to be on the magnitude 1016 G with a possible

toroidal 
on�guration [16℄. The population statisti
s of SGRs suggest that magnetars may


onstitute a signi�
ant fra
tion & 10% of the neutron star population [17℄. Hen
e it seems

likely that some me
hanism is 
apable of generating large magneti
 �elds in nas
ent neutron

stars.

The above 
onsiderations motivate the study of the e�e
ts of magneti
 �eld on

neutron star properties. Su
h study 
an be 
arried out from three points of view: the e�e
ts
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in the 
omposition of the neutron star matter, evolution and stru
ture. The �rst point

is related to how magneti
 �elds may 
hange the equation of state of dense matter, for

example generating anisotropies, and a�e
ting the matter 
omposition. The se
ond point

is related to the e�e
ts on neutron stars´temporal evolution, for example the in�uen
e of

a time dependent magneti
 �eld in the true age of neutron stars. The last point is related

to the stru
tural aspe
ts, for example how magneti
 �elds 
hange the mass and radius of

neutron stars.

The goal of this work is to study, within a totally general relativisti
 framework, the

e�e
ts of magneti
 �elds in the stru
ture of neutron stars, i.e. how magneti
 �elds a�e
t the

spa
etime geometry of these 
ompa
t obje
ts. Me and my 
oworkers developed a 
omplete

study of the three aspe
ts, i.e. mi
ros
opi
al, stru
tural and evolutionary, su
h study 
an

be found in [18℄.

We begin our goal studying the formal aspe
ts of the magneti
 �eld in the stellar

stru
ture and gravitational equations using two di�erent approa
hes. The �rst one uses

Weyl spheri
al 
oordinates from whi
h 
onservation equations will be derived taking into

a

ount the magneti
 �eld 
ontribution. The resulting equations will be 
ompared with a

previous work where no magneti
 
ontribution was 
onsidered and doing so, new quantities

with possible physi
al interpretation will be introdu
ed. The se
ond approa
h is based in

the study of Cook et al. [19℄ who 
onsidered rotating neutron stars and write the Einstein´s

equations in terms of �at spa
e ellipti
 operators and the sour
e terms 
oming from the

matter and others 
ontaining non linear quadrati
 terms in the metri
 potentials. In this

se
tion we will derive the Einstein´s equations following the method of Shapiro, but taking

into a

ount the ele
tromagneti
 
ontribution. These equations will be written in terms of

the introdu
ed new quantities with the idea to give the same physi
al interpretation and

dis
uss the ele
tromagneti
 
ontribution to the gravitational mass.

The next step to a
hieve our goal is to study the relativisti
 virial theorem. The

usefulness of the Newtonian virial theorem in physi
s and astrophysi
s is well known, mainly

within the 
ontext of the equilibrium and stability properties of dynami
al systems. The

virial theorem relates the time average of kineti
 energy of a generi
 parti
le with the time
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average of the work exe
uted by the for
es with whi
h the parti
les intera
t. In general

relativity, it is 
ommon to use the virial theorem derived from a 
onservation law. In 
hapter

III we present a relativisti
 version of the virial theorem as an integral identity (and not as

a 
onservation law) for a stationary and asymptoti
ally �at spa
etime, based in the 3 + 1

formalism. The resulting virial integral 
onsists on terms that depend on the gravitational

sour
e, rotational properties and metri
 potential. The idea behind dis
ussing this important

theorem as a 
hapter in this thesis is be
ause the virial theorem is used as a 
onsisten
y 
he
k

in numeri
al solutions.

In 
hapter IV the theoreti
al formalism des
ribing rotating and highly magnetized

neutron stars will be presented using a full axially symmetri
 treatment within the 
ontext

of Einstein-Maxwell equations. The hydrostati
 equilibrium equations will be derived within

the assumption of in�nite 
ondu
tivity matter and the relevant quantities des
ribing the

stru
ture of rotating and highly magnetized neutron stars will be presented.

In 
hapter V we will deal with the numeri
al solution of the Einstein-Maxwell equa-

tions presented in 
hapter IV. We �rst 
onsider a rotating neutron star without magneti


�eld, modelled as a rotating isotropi
 �uid distribution. However, it is important to draw

attention to the role that is played by the pressure anisotropy in selfgravitating obje
ts as

me and my 
oworkers showed in [20℄. Se
ond, we will study a highly magnetized neutron

star modelled as a perfe
t �uid 
oupled with a poloidal magneti
 �eld, in this last 
ase we

restri
t to the stati
 solutions (although both are stationary). As we mentioned our goal is

to study only the stru
tural 
onsequen
es of the magneti
 �eld in neutron stars and not the

mi
ros
opi
al or evolutionary aspe
ts, be
ause of that we assume as the matter 
omposition

a traditional equation of state that is independent of the magneti
 �eld at the mi
ros
opi
al

level.

Finally, the 
on
lusions and perspe
tives for future works are given in 
hapter VI.



Chapter 2

Formal aspe
ts of the magneti
 �eld on

the stru
ture of neutron stars

We dis
uss the formal aspe
ts of the magneti
 �eld in the stellar stru
ture and grav-

itational equations in the 
ontext of Einstein's general relativity. The highly magnetized

star is des
ribed as a perfe
t �uid 
oupled with a poloidal magneti
 �eld using two di�erent

approa
hes, the �rst one uses Weyl spheri
al 
oordinates from whi
h 
onservation equations

will be derived. The se
ond approa
h is based in the study of Shapiro et al. [19℄ in whi
h

Einstein �eld equation will be derived taking into a

ount the ele
tromagneti
 
ontribution.

New quantities and their possible physi
al interpretation will be presented in the following

se
tions.

2.1 Neutron star stru
ture using Weyl spheri
al 
oordi-

nates

We begin by 
onsidering a bound, stati
 and axially symmetri
 sour
e. The line

element may be written in 
ylindri
al 
oordinates as

ds2 = −A2(dx0)2 +B2[(dx1)2 + (dx2)2] +D2(dx3)2, (2.1)
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where we identify x0 = t, x1 = ρ, x2 = z, x3 = φ and A,B,D are positive fun
tions of

the 
oordinates ρ and z. Here and throughout we set G = c = 1. In the Weyl spheri
al


oordinates, the line element (2.1) is

ds2 = −A2(dt)2 +B2[(dr)2 + r2(dθ)2] +D2(dφ)2, (2.2)

where ρ = rsinθ and z = rcosθ. We denote the 
oordinates as xµ = (t, r, θ, φ), and note

that A(r, θ), B(r, θ), D(r, θ) are three independent fun
tions.

The sour
e of 
urvature in Einstein's general relativity is represented by the energy-

momentum tensor. For a magnetized neutron star, we des
ribe the system as a perfe
t �uid


oupled to a poloidal magneti
 �eld. The perfe
t �uid assumption simpli�es the mathe-

mati
al treatment dramati
ally. One must note, however, that there has also been resear
h


onsidering spheri
ally symmetri
 dissipative and anisotropi
 �uid distribution (see for in-

stan
e refs. [9,10℄). As mentioned in the introdu
tion, highly magnetized neutron stars with

poloidal �elds should be modeled using an axially symmetri
 metri
 tensor whi
h in
reases

the 
omplexity of the problem 
onsiderably.

The motivation behind the assumption of a poloidal magneti
 �eld is that su
h

assumption is 
ompatible with the 
ir
ularity of the spa
e-time [21℄. It is important to note,

however, that non-negligible toroidal magneti
 �elds are likely to exist in neutron stars,

making the study 
onsiderably more 
ompli
ated. The study of toroidal magneti
 �elds, in

addition to poloidal ones is beyond the s
ope of this work.

Following the s
enario dis
ussed above, the energy-momentum tensor for the sys-

tem is written as that of a perfe
t-�uid in addition to the energy-momentum tensor of the

ele
tromagneti
 �eld,

Tµν = T PF
µν + TEM

µν . (2.3)

The perfe
t �uid (PF) 
ontribution is

T PF
µν = (ρ+ P )uµuν + Pgµν , (2.4)

where ρ and P are, respe
tively, the rest-frame energy density and pressure, uµ
is the �uid
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4-velo
ity with uµuµ = −1. The ele
tromagneti
 part (EM) in (4.2) is

TEM
µν =

1

4π

(
F α
µ Fνα − 1

4
gµνF

αβFαβ

)
, (2.5)

where the Maxwell tensor Fµν is de�ned in terms of the ele
tromagneti
 4-potential Aµ as

Fµν = Aν,µ − Aµ,ν . (2.6)

We are interested in des
ribing a distribution without free-
harge and with only poloidal

magneti
 �eld, thus the ele
tromagneti
 4-potential is redu
ed to

Aµ = (0, 0, 0, Aφ(r, θ)). (2.7)

whi
h leads to the following Fµν (in matrix form)

Fµν =




0 0 0 0

0 0 0
∂Aφ

∂r

0 0 0
∂Aφ

∂θ

0 −∂Aφ

∂r
−∂Aφ

∂θ
0




, (2.8)

with the assumptions above the ele
tromagneti
 energy-momentum tensor is

TEMµ
ν =




TEM0
0 0 0 0

0 TEM1
1 TEM1

2 0

0 1
r2
TEM1

2 −TEM1
1 0

0 0 0 −TEM0
0




, (2.9)

where the non-vanishin 
omponents, in terms of the ele
tromagneti
 4-potential, are given

by

TEM0
0 = − 1

8π
gφφ

[
grr

(
∂Aφ

∂r

)2

+ gθθ
(
∂Aφ

∂θ

)2
]
, (2.10)
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TEM1
1 =

1

8π
gφφ

[
grr

(
∂Aφ

∂r

)2

− gθθ
(
∂Aφ

∂θ

)2
]
, (2.11)

TEM1
2 =

1

4π
grrgφφ

(
∂Aφ

∂r

)(
∂Aφ

∂θ

)
. (2.12)

Now, inspired in equation (2.10) we de�ne the following ele
tromagneti
 quantities

Bθ =
√
grr

(
∂Aφ

∂r

)
, (2.13)

Br =
√
gθθ

(
∂Aφ

∂θ

)
. (2.14)

It is important to realize that these 
omponents are not exa
tly the 
omponents measured

by the Eulerian observer, but rather 
onvenient de�nitions of ele
tromagneti
 fun
tions that

allow us to write the 
omponents of TEM
in a more intuitive manner, as

TEM0
0 = − 1

8π
gφφ

(
B2

r +B2
θ

)
, (2.15)

TEM1
1 = − 1

8π
gφφ

(
B2

r − B2
θ

)
, (2.16)

TEM1
2 =

1

8π
2gφφ

√
grr

gθθ
BrBθ. (2.17)

In here, if we want to fully 
omprehend the physi
al meaning of the 
omponents of

the ele
tromagneti
 energy-momentum tensor, we must draw a parallel with its �at-spa
e
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ounterpart, given (in S.I. units) as [22℄

TEMµν =




1
2
(ǫ0E

2 + 1
µ0

B2) Sx/c Sy/c Sz/c

Sx/c −σxx −σxy −σxz

Sy/c −σyx −σyy −σyz

Sz/c −σzx −σzy −σzz




, (2.18)

where

~S = 1
µ0

~Ex ~B is the Poynting ve
tor and the 
omponents σij are given by

σij = ǫ0EiEj +
1

µ0
BiBj −

1

2

(
ǫ0E

2 +
1

µ0
B2

)
δij . (2.19)

The �rst term in (2.18) is easily identi�ed as the ele
tromagneti
 energy density,

the other terms in the diagonal, i.e. σxx, σyy, σzz 
an be read as the ele
tromagneti
 pressure

and the terms σij for i 6= j represent shear stress.

Inspired in the ele
tromagneti
 energy-momentum tensor for �at spa
e-time, we

de�ne the following quantities

W ≡ 1

8π
gφφ

(
B2

r +B2
θ

)
, (2.20)

Π ≡ 1

8π
gφφ

(
B2

r − B2
θ

)
, (2.21)

σ ≡ 1

8π
2gφφBrBθ. (2.22)

With these de�nitions, the matrix form of the ele
tromagneti
 energy-momentum

tensor looks like

TEMµ
ν =




−W 0 0 0

0 −Π rσ 0

0 1
r
σ Π 0

0 0 0 W




. (2.23)
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From (2.23) we 
an extra
t the following properties for T µEM
: it is symmetri
, the


omponent TEM00
is positive de�nite and the tensor is tra
eless, whi
h are the expe
ted

properties of an ele
tromagneti
 energy-momentum tensor. One must note that equation

(2.23) 
orresponds to the mixed 
omponents of the ele
tromagneti
 energy-momentum ten-

sor, whereas the �rst two properties (TEM00
positive de�nite and symmetri
) are related to

the 
ontravariant 
omponents.

Combining (2.4) and (2.23), the matrix form of the energy-momentum tensor de-

s
ribing a perfe
t �uid 
oupled with a poloidal magneti
 �eld for the line element (2.2)

is

T µν =




1
A2 (ρ+W ) 0 0 0

0 1
B2 (P − Π) 1

rB2σ 0

0 1
rB2σ

1
(Br)2

(P +Π) 0

0 0 0 1
D2 (P +W )




. (2.24)

The �rst term, i.e. T 00
in (2.24) represents the total energy density of the system

whi
h 
omes from the perfe
t �uid distribution and the ele
tromagneti
 �eld, through the

quantity W ; the other diagonal terms 
orrespond to the pressure and as we 
an see the

quantities Π and W , whi
h depend on the ele
tromagneti
 four potential, make part of the

pressure of the system. Finally, the o�-diagonal terms depend only on the ele
tromagneti


four potential and represent the shear stress of the system σ.

The Einstein �eld equations Gµ
ν = 8πT µ

ν for the spa
etime des
ribed by (2.2) and

the sour
e given by (2.24) are

G0
0 = 8πT 0

0 (2.25)

⇒ 1

B3

(
B,rr +

1

r
B,r +

1

r2
B,θθ

)
+

1

B2D

(
D,rr +

1

r
D,r +

1

r2
D,θθ

)
= −8π(ρ+W ) + (2.26)

+
1

B4

[
(B,r)

2 +
1

r2
(B,θ)

2

]
,

G1
1 = 8πT 1

1 (2.27)
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⇒ 1

r2B2

(
1

A
A,θθ +

1

D
D,θθ

)
+

1

rB2

(
1

A
A,r +

1

D
D,r

)
= 8π(P − Π) + (2.28)

− 1

AB3

(
A,rB,r −

1

r2
A,θB,θ

)
+

− 1

AB2D

(
A,rD,r +

1

r2
A,θD,θ

)
+

− 1

B3D

(
B,rD,r −

1

r2
B,θD,θ

)
,

G2
2 = 8πT 2

2 , (2.29)

⇒ 1

B2

(
1

A
A,rr +

1

D
D,rr

)
= 8π(P +Π) + (2.30)

+
1

AB3

(
A,rB,r −

1

r2
A,θB,θ

)
+

− 1

AB2D

(
A,rD,r +

1

r2
A,θD,θ

)
+

+
1

B3D

(
B,rD,r −

1

r2
B,θD,θ

)
,

G3
3 = 8πT 3

3 , (2.31)

⇒ 1

AB2

(
A,rr +

1

r
A,r +

1

r2
A,θθ

)
+

1

B3

(
B,rr +

1

r
B,r +

1

r2
B,θθ

)
= 8π(P +W ) + (2.32)

+
1

B4

[
(B,r)

2 +
1

r2
(B,θ)

2

]
,

G1
2 = 8πT 1

2 , (2.33)

⇒ 1

r2B2

(
1

A
A,θ +

1

D
D,θ

)
= 8πσ − 1

rAB3
(A,rB,θ + A,θB,r) + (2.34)

− 1

rDB3
(B,rD,θ +B,θD,r) +

1

rB2

(
1

A
A,rθ +

1

D
D,rθ

)
,
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where the subs
ript f,r =
∂f
∂r
, f,θ =

∂f
∂θ

and f,rr =
∂2f
∂r2

, f,θθ =
∂2f
∂θ2

.

With the goal of providing a physi
al interpretation to the quantities W,Π and σ we

now derive the 
onservation equations for a perfe
t �uid 
oupled with a poloidal magneti


�eld and 
ompare these equations with those obtained in [23℄ where no ele
tromagneti



ontribution was 
onsidered.

The non-vanishing 
omponents of the 
onservation equations T µν
;ν = 0 whi
h rep-

resent energy-momentum 
onservation for the energy-momentum tensor (2.24) are

For µ = 0

ρ̇+ Ẇ = 0 (2.35)

where the dot denotes derivative with respe
t to t. Equation (2.35) is a 
onsequen
e of the

stati
ity.

The other non-vanishing 
omponents are

µ = 1

(P − Π),r +
A,r

A
(ρ+W + P − Π) − B,r

B
2Π− D,r

D
(W +Π) + (2.36)

+
1

r

[
σ,θ +

(
A,θ

A
+ 2

B,θ

B
+

D,θ

D

)
σ − 2Π

]
= 0,

µ = 2

(P +Π),θ +
A,θ

A
(ρ+W + P +Π) +

B,θ

B
2Π− D,θ

D
(W −Π) + (2.37)

+ r

[
σ,r +

(
A,r

A
+ 2

B,r

B
+

D,r

D

)
σ

]
+ 2σ = 0,

Equations (2.36) and (2.37) represent the hydrostati
 equilibrium 
onditions. In the spe
ial


ase of no magneti
 �eld and an isotropi
 �uid, these equations redu
e to the Tolman-

Openheimer-Volko� equations [5�7℄.

At this point it is important to refer to the work of Herrera et al. [23℄ in whi
h

axially symmetri
, anisotropi
 bound sour
es were studied. The matter 
ontent 
onsidered
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by the authors in lo
ally Minkowski 
oordinates (τ, x, y, z) is given by

T̂αβ =




µ 0 0 0

0 Pxx Pxy 0

0 Pyx Pyy 0

0 0 0 Pzz




, (2.38)

where µ, Pxx, Pyy, Pzz, Pxy = Pyx denote the energy density, pressure and shear stress, re-

spe
tively, measured by a lo
ally Minkowskian observer. In a spa
etime des
ribed by (2.2),

the energy-momentum tensor is

Tαβ = (µ+ P )VαVβ + Pgαβ +Παβ , (2.39)

with

Παβ = (Pxx − Pzz)

(
KαKβ −

hαβ

3

)

+ (Pyy − Pzz)

(
LαLβ −

hαβ

3

)
+ 2PxyK(αLβ), (2.40)

P =
Pxx + Pyy + Pzz

3
, hαβ = gαβ + VαVβ, (2.41)

where Vα, Kα and Lα are 4-ve
tors in the time, radial and angular dire
tions, respe
tively.

Vα = (−A, 0, 0, 0), Kα = (0, B, 0, 0), Lα = (0, 0, Br, 0). (2.42)

The 
onservation equations 
al
ulated in ref. [23℄ are

Pxx,r +
A,r

A
(µ+ Pxx) +

B,r

B
(Pxx − Pyy) +

D,r

D
(Pxx − Pzz) + (2.43)

+
1

r

[
Pxy,θ +

(
A,θ

A
+ 2

B,θ

B
+

D,θ

D

)
Pxy + Pxx − Pyy

]
= 0,
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Pyy,θ +
A,θ

A
(µ+ Pyy) +

B,θ

B
(Pyy − Pxx) +

D,θ

D
(Pyy − Pzz) + (2.44)

+ r

[
Pxy,r +

(
A,r

A
+ 2

B,r

B
+

D,r

D

)
Pxy

]
+ 2Pxy = 0.

Comparing equations (2.36) and (2.37), whi
h des
ribe a perfe
t �uid 
oupled with

a poloidal magneti
 �eld, with the hydrostati
 equations (2.43) and (2.44), 
al
ulated in

ref. [23℄, whi
h des
ribe an anisotropi
 �uid (without ele
tromagneti
 
ontribution), we 
an

read the quantity ρ+W as the total energy density of our distribution. In fa
t, the de�nition

of W given by eq. (2.20) reminds us of the typi
al de�nition of the ele
tromagneti
 energy

density. The quantity 2Π 
an be read as the anisotropy of the distribution, and it is a dire
t


onsequen
e of the poloidal magneti
 �eld. The quantity σ given by (2.22) 
an be identi�ed

as the shear stress experien
ed by the �uid. The quantities W + Π and W − Π 
an be

read as an anisotropy de�ned with respe
t to z-axis and P +Π and as terms related to the

pressure. In 
on
lusion, if we apply the Bondi approa
h [24℄ then a lo
ally Minkowskian

observer measures, for the perfe
t �uid 
oupled with a poloidal magneti
 �eld, ρ + W as

the total energy density, 2Π as the anisotropy 
aused by the di�erent 
omponents of the

magneti
 �eld and σ as the shear stress of the distribution.
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2.2 Neutron star stru
ture using Shapiro's approa
h

Shapiro et. al. [19℄ studied the spin-up of a rapidly rotating star by angular momen-

tum loss. In this se
tion we use the same metri
 tensor used by Shapiro et al. but instead

of rotational e�e
ts, we 
onsider magneti
 �eld e�e
ts on the neutron star stru
ture. The

goal is to write the general relativisti
 �eld equations determining the metri
 potentials in

terms of the quantities introdu
ed in the previous se
tion, i.e. W,Π and σ and give the same

physi
al interpretation as before.

The spa
e-time 
onsidered by Shapiro et al. is written for rotating equilibrium

models 
onsidered as stationary and axisymmetri
 and given by the following metri
 tensor,

ds2 = −e(γ+ρ)(dt)2 + e2α[(dr)2 + r2(dθ)2] + e(γ−ρ)r2sin2θ(dφ− ωdt)2, (2.45)

where the 
oordinates are xµ = (t, r, θ, φ) and the metri
 fun
tions γ, ρ, α and ω depend

only on the 
oordinates (r, θ).

We 
onsider a perfe
t �uid distribution 
oupled with a poloidal magneti
 �eld with-

out rotation, i.e. in the equations of [25℄ the metri
 potential ω = 0. The energy momentum

tensor T µν
is

T µν = T PFµν + TEMµν , (2.46)

with

T PFµν = (ρ0 + ρi + P )uµuν + Pgµν (2.47)

where ρ0 is the rest energy density, ρi is the internal energy density, P is the pressure and

uµ
is the matter four velo
ity with uµuµ = −1. The term TEM

is given by eq. (2.5).

The Einstein �eld equations Gµν = 8πT µν
for the distribution des
ribed by the

energy-momentum tensor (2.46) using (2.45) following the Cook-Shapiro-Teulkosky approa
h

(whi
h is inspired by the method of Komatsu-Erigu
hi-Ha
hisu [25℄) in whi
h all nonlinear

and 
oupling terms from Gµν
(hen
e terms asso
iated with geometry) are 
onsidered as part
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of the sour
e, named as e�e
tive sour
e Sγ and Sρ.

(
∇2 +

1

r
∂r −

µ

r2
∂µ

)
(γeγ/2) = Sγ(r, µ) (2.48)

∇2
(
ρeγ/2

)
= Sρ(r, µ) (2.49)

where ∇2
is the �at-spa
e, spheri
al 
oordinate Lapla
ian, µ = cosθ. The e�e
tive sour
e

terms are given by

Sγ(r, µ) = eγ/2
[
16πe2αP +

γ

2

(
16πe2αP − 1

2
∇γ.∇γ

)]
, (2.50)

Sρ(r, µ) = eγ/2
[
8πe2α(ρ0 + ρi + P ) +

γ,r
r

− µ

r2
γ,µ +

ρ

2

(
16πe2αP − 1

2
∇γ.∇γ − γ,r

r
+

µ

r2
γ,µ

)]

+ eγ/2
e−(γ−ρ)

r2(1− µ2)
2∇Aφ.∇Aφ, (2.51)

where f,r =
∂f
∂r

and f,µ = ∂f
∂µ

and ∇f.∇f = (f,r)
2 + (1−µ2)

r2
(f,µ)

2
.

Comparing equation (2.51) with expression (6) in [19℄ (with ω = 0) we realize the

sour
e Sρ for a perfe
t-�uid 
oupled with a poloidal magneti
 �eld 
an be written as

Sρ(r, µ) = SPF
ρ + SEM

ρ (2.52)

where SPF
ρ 
orresponds to the perfe
t �uid 
ontribution and SEM

ρ is the ele
tromagneti


sour
e for the metri
 potential ρ. They are given by

SPF
ρ = eγ/2

[
8πe2α(ρ0 + ρi + P ) +

γ,r
r

− µ

r2
γ,µ +

ρ

2

(
16πe2αP − 1

2
∇γ.∇γ − γ,r

r
+

µ

r2
γ,µ

)]
,

(2.53)

SEM
ρ (r, µ) = eγ/2

e−(γ−ρ)

r2(1− µ2)
2∇Aφ.∇Aφ. (2.54)

Hen
e we 
an see the e�e
tive sour
e for the metri
 potential ρ is the superposition
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of the sour
e 
orresponding to the perfe
t �uid distribution plus the in�uen
e of the poloidal

magneti
 �eld whi
h depends on Aφ, while 
omparing Sγ sour
e (2.50) with expression (7)

in [19℄ we realize no magneti
 
ontribution is present in the γ e�e
tive sour
e.

The third �eld equation determines the metri
 potential α and is given by

α,µ =− 1

2
(γ,µ + ρµ)− {(1 + rγ,r)

2(1− µ2) +
[
µ− (1− µ2)γ,µ)

]2}−1×

×
[
− 1

2
{3µ2 − 4µ(1− µ2)γ,µ + (1− µ2)2(γ,µ)

2}(γ,µ + ρ,µ)+

− 1

2
rγ,r(1 + rγ,r)(1− µ2)(γ,µ + ρ,µ) +

1

2
µr(1 + rγ,r)(γ,r − ρ,r)+

− r(1 + rγ,r)(1− µ2)(γ,rµ + γ,rγ,µ) +
1

2
r(1 + rγ,r)(1− µ2)(γ,rγ,µ − ρ,rρ,µ)+

+
1

2
[µ− (1− µ2)γ,µ](3µρ,µ + rρ,r)−

1

2
[µ− (1− µ2)γ,µ][r

2γ,rr − (1− µ2)γ,µµ]+

− 1

4
r2[µ− (1− µ2)γ,µ]

{
∇γ.∇γ +∇ρ.∇ρ− 2(1− µ2)

r2
[(γ,µ)

2 + (ρ,µ)
2]

}]
+

+ {(1 + rγ,r)
2(1− µ2) +

[
µ− (1− µ2)γ,µ)

]2}−1×

× e−(γ−ρ)

{
[µ− (1− µ2)γ,µ]

(1− µ2)

[
∇Aφ.∇Aφ −

2(1− µ2)

r2
(Aφ,µ)

2

]
+

2(1 + rγ,r)

r
(Aφ,r)(Aφ,µ)

}
.

(2.55)

If we 
onsider no magneti
 dipole in�uen
e, i.e. Aφ = 0 then equation (2.55) is equation

(11) in [19℄ with ω = 0.

A possible physi
al interpretation for quantities related to energy, anisotropy and

shear stress named as W, Π, σ, respe
tively, was given in [18℄ as we dis
ussed in the previous

se
tion. Now, we write Einstein-Maxwell �eld equations for ea
h metri
 potential in terms

of these quantities and give them a similar interpretation. We begin writing these quantities

as follow

W =
1

8π
gφφ(B2

r +B2
θ)

=
1

8π
gφφ

(
gθθ(Aφ,θ)

2 + grr(Aφ,r)
2
)

=
1

8π

e−(γ−ρ)e−2α

r2(1− µ2)
∇Aφ.∇Aφ, (2.56)
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Π =
1

8π
gφφ(B2

r − B2
θ)

=
1

8π
gφφ

(
gθθ(Aφ,θ)

2 − grr(Aφ,r)
2
)

= − 1

8π

e−(γ−ρ)e−2α

r2(1− µ2)

[
∇Aφ.∇Aφ −

2(1− µ2)

r2
(Aφ,µ)

2

]
, (2.57)

σ =
1

8π
2gφφBrBθ

=
1

8π
2gφφ

√
gθθ

√
grr(Aφ,r)(Aφ,θ)

= − 1

8π

2e−(γ−ρ)

r

e−2α

r2(1− µ2)1/2
(Aφ,r)(Aφ,µ). (2.58)

Comparing expressions (2.54) with (2.56), we 
an write for the sour
e of the metri


potential ρ

SEM
ρ (r, µ) = eγ/216πe2αW. (2.59)

Therefore the �eld equation for the metri
 potential ρ 
an be written in terms of the quantity

W

∇2(ρeγ/2) = eγ/2
[
8πe2α(ρ0 + ρi + P + 2W ) +

ρ

2

(
16πe2αP − 1

2
∇γ.∇γ − γ,r

r
+

µ

r2
γ,µ

)]

(2.60)

We 
an see the ele
tromagneti
 in�uen
e in the term 2W and that appears as a

sum of the energy density and pressure asso
iated to the perfe
t �uid distribution, hen
e

this result allows us to take this term as part of the total energy density and pressure,

spe
i�
ally ele
tromagneti
 energy density in agreement with the interpretation given in the

previous se
tion and as me and my 
oworkers shown in [18℄ where the authors use a metri


tensor di�erent from (2.45). The fa
tor two in (2.60) is not entirely unexpe
ted sin
e this

fa
tor is known to o

ur in relating ele
tromagneti
 to me
hani
al energy as Papapetrou

and Bonnor showed [26,27℄ and as we will show later in 
hapter IV when we write the total

gravitational mass expression and the fa
tor two appears with the ele
tromagneti
 energy

density. This fa
tor presumably arises from the fa
t that non-Maxwellian stresses are present
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in addition to purely ele
tromagneti
 ones, and these 
ontribute to the gravitational mass.

Writing equation (2.55) for the metri
 potential α in terms of the introdu
ed quan-

tities we �nd,

α,µ = −1

2
(γ,µ + ρµ)− {(1 + rγ,r)

2(1− µ2) +
[
µ− (1− µ2)γ,µ)

]2}−1 ×

×
[
− 1

2
{3µ2 − 4µ(1− µ2)γ,µ + (1− µ2)2(γ,µ)

2}(γ,µ + ρ,µ) +

− 1

2
rγ,r(1 + rγ,r)(1− µ2)(γ,µ + ρ,µ) +

1

2
µr(1 + rγ,r)(γ,r − ρ,r) +

− r(1 + rγ,r)(1− µ2)(γ,rµ + γ,rγ,µ) +
1

2
r(1 + rγ,r)(1− µ2)(γ,rγ,µ − ρ,rρ,µ) +

+
1

2
[µ− (1− µ2)γ,µ](3µρ,µ + rρ,r)−

1

2
[µ− (1− µ2)γ,µ][r

2γ,rr − (1− µ2)γ,µµ] +

− 1

4
r2[µ− (1− µ2)γ,µ]

{
∇γ.∇γ +∇ρ.∇ρ− 2(1− µ2)

r2
[(γ,µ)

2 + (ρ,µ)
2]

}]
+

− {(1 + rγ,r)
2(1− µ2) +

[
µ− (1− µ2)γ,µ)

]2}−1 ×

×
{
8πr2e2α

{[
µ− (1− µ2)γ,µ)

]
Π + (1− µ2)1/2(1 + rγ,r)σ

}}
. (2.61)

From (2.61) we realize when we write the equation for the metri
 potential α in terms

of the introdu
ed quantities the fa
tor e2α appears in the right side of equation making the

solution asso
iated to this metri
 potential more di�
ult than (2.55), where α only appears

in the left side of the equation.

The physi
al interpretation of Π and σ is related to anisotropy and the shear stress,

respe
tively. In equation (2.61) the magneti
 
ontribution appears in the last term through

the quantities Π and σ and these two quantities only appear in the equation related to the

metri
 potential α, whi
h is the fa
tor asso
iated to the 
oordinates r and θ in our metri


(2.45), through e2α, and these two 
oordinates, i.e. radial and polar, are the dire
tions where

the symmetry is broken.

In our system the breaking of spheri
al symmetry is due to the poloidal magneti


�eld whi
h has two 
omponents Br and Bθ, quantities Π and σ are written in terms of these


omponents.

We 
an understand that Π is related to anisotropy (two di�erent 
omponents of the

magneti
 �eld) and σ is related to the shear stress. These two quantities are responsible for
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breaking the symmetry of the system. This interpretation of Π and σ is in agreement with

the interpretation given in the previous se
tion and in [18℄ where the metri
 tensor is written

in the Weyl spheri
al 
oordinates and another approa
h was used.

In 
on
lusion, the ele
tromagneti
 
ontribution has been studied modelling a highly

magnetized neutron star as a perfe
t �uid 
oupled with a poloidal magneti
 �eld, using

two di�erent 
oordinates des
ribing axially-symmetri
 spa
etimes. The two approa
hes used

in order to give possible physi
al interpretation for three introdu
ed quantities, named as

W,Π and σ, are in agreement on understanding these quantities as ele
tromagneti
 energy,

anisotropy and shear stress, respe
tively.



Chapter 3

The 3 + 1 formalism and the virial

theorem

The utility of the virial theorem in di�erent areas of physi
s is well known. In many studies

of astrophysi
s and general relativity it is 
ommon to use the virial theorem derived from a


onservation law. This 
hapter is devoted to present a relativisti
 version of the virial theorem

as an integral identity (and not as a 
onservation law) for a stationary and asymptoti
ally

�at spa
etime, based on the 3+1 formalism. The derived identity will be use in 
hapter V as

a 
onsisten
y 
he
k of numeri
al solution of Einstein equations for a rotating and magnetized

neutron star.

3.1 The 3 + 1 formalism

It is 
ommon to assume stationary models as an initial (unstable) 
ondition in axisymmetri



ollapse problems [21℄, in this 
ase the 
hosen 
oordinates must be adapted to the dynami
al

evolution whi
h is expressed within the 3 + 1 formalism.

The 3+1 formalism supposes that the spa
etime is foliated into a family of spa
elike

hypersurfa
es Σt, levelled by a s
alar fun
tion: the time 
oordinate, in that way the real

parameter t may be 
onsidered as a 
oordinate asso
iated to the Killing ve
tor ξ: ξ = ∂/∂t

(a stationary spa
etime). The time-like 4 ve
tor �eld orthogonal to the hypersurfa
e Σt and
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oriented in the dire
tion of in
reasing t is given by

nα = −Nt,α (3.1)

where nαn
α = −1 (normalized) and N is the lapse fun
tion, whi
h is positive for spa
elike

hypersurfa
es and is interpreted as the proper time measured by an Eulerian observer Oo

whose 4-velo
ity is nα

dτ = Ndt. (3.2)

The positive de�nite 3-metri
 indu
ed by g on Σt is

hαβ = gαβ + nαnβ. (3.3)

The metri
 tensor h and the normal ve
tor n provide two useful tools to de
ompose any

4-dimensional tensor into a purely spa
elike part (hen
e in Σt) and a purely timelike part

(orthogonal to Σt and aligned with n).

In general, the Killing ve
tor is not orthogonal to the hypersurfa
e Σt; leading to

the de�nition of shift ve
tor Nα
whi
h means the orthogonal proje
tion of ξ onto Σt and is

interpreted as a measure of the 
hanges in the spatial 
oordinates xi
t0+δt = xi

t0
−N idt, where

Nα := −hα
σξ

σ, (3.4)

a non zero shift ve
tor means that the Eulerian observer does not follow the xi =
onst. lines

The relationship between these ve
tors is

ξα = Nnα −Nα. (3.5)

The 
omponents of the 4-metri
 tensor g 
an be written as

ds2 = −(N2 −NiN
i)dt2 − 2Nidtdx

i + hijdx
idxj . (3.6)

The 3+1 formalism 
onsists of writing the Einstein equations, whi
h form a system
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of se
ond order partial di�erential equations (PDE

′

s) into a system of �rst order (with respe
t

to the 
oordinate t) PDE
′

s, in the form of a Cau
hy evolution problem, subje
t to 
ertain


onstraints. The method 
onsists in proje
ting the Einstein equations into the hypersurfa
e

Σt whi
h means

hαβ

(
Rαβ −

1

2
Rgαβ

)
= 8πhαβTαβ (3.7)

and using (3.3)

Rαβn
αnβ − 1

2
R = 8πSα

α , (3.8)

where the stress energy tensor in the hypersurfa
e Σt is

Sαβ = hα
µh

β
νT

µν . (3.9)

Due to the Einstein tensor proje
tion into Σt we will have a 3-dimensional Riemann

and Ri

i tensor,

˜Rα
βγδ and R̃αβ , respe
tively, whi
h are purely spatial (spatial derivatives

of the spatial metri
 h) whereas the 4-dimensional Riemann and Ri

i tensors 
ontain also

time derivatives of the metri
 g.The information present in Rα
βγδ and missing in

˜Rα
βγδ 
an

be found in another spatial and symmetri
 tensor Kαβ 
alled extrinsi
 
urvature whi
h is

de�ned as:

Kαβ = −hµ
αh

ν
βn(ν;µ) = −nβ;α − nαaβ, (3.10)

where aβ = nαnβ;α is the a

eleration of normal observers. The extrinsi
 
urvature measures

the 
hanges in the normal ve
tor under parallel transport, hen
e it measures how the 3-

dimensional hypersurfa
e Σt is bent with respe
t to the 4-dimensional spa
etime. The tra
e

of the extrinsi
 
urvature tensor is linked to the 
ovariant divergen
e of the 4-velo
ity through

K = −nα
;α. (3.11)

Gauss equation enable one to express the Ri

i tensor Rαβ of the metri
 g, in terms
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of the Ri

i tensor R̃αβ of the 3-metri
 hαβ , the lapse fun
tion N and the extrinsi
 
urvature

tensor Kαβ of the hypersurfa
e Σt [28℄

hijν;ij −
1

4
R̃ + hijν;jν;i −

3

4
(KijK

ij −K2) + (Knα);α = 4πS i
i (3.12)

where ν = lnN .

In 
ollapse problems, it is 
ommon [29℄ to 
hoose maximal sli
ing hypersurfa
es Σt

whi
h are de�ned by the requirement of a tra
e-free extrinsi
 
urvature tensor

K = 0. (3.13)

The world lines of Eulerian observers are normal to the maximal hypersurfa
es

Σt, they 
oin
ide with the lo
ally nonrotating observers introdu
ed by Bardeen [30℄ in the

stationary axisymmetri
 
ase, the well known zero-angular momentum observers (ZAMO)

[31℄.

3.2 The Virial theorem

The term "virial" 
omes from the latin vires whi
h means strength, for
e or energy. The

virial theorem relates the time average of kineti
 energy of a generi
 parti
le with the time

average of the works exe
uted by the for
es with whi
h the parti
les intera
t. This important

theorem is thanks to Clausius who in 1870 delivered the le
ture "On a Me
hani
al Theorem

Appli
able to Heat" to the Asso
iation for Natural and Medi
al S
ien
es of the Lower Rhine,

following a 20-years study of thermodynami
s.

The Newtonian version of the virial theorem is widely used in astrophysi
s, mainly

within the 
ontext of the equilibrium and stability properties of dynami
al systems. One

example of this usefulness is the fa
t that the virial theorem has been used to derive the

Chandrasekhar limit for the stability of white dwarf stars [32℄. On another hand, in astron-

omy the virial theorem, and related 
on
epts, provide an often 
onvenient means by whi
h

to quantify the mass and size of a galaxy [33℄, whi
h are often de�ned in terms of the "virial
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radius" and "virial mass", respe
tively.

Bonazzola [34℄ has derived a general relativisti
 version of the virial theorem in

the stationary axisymmetri
 
ase. The Bonazzola identity proved to be very useful as a


onsisten
y 
he
k for numeri
al 
omputation of steady-state rotating star models [21, 35℄

and it will be the validity 
riteria to �nd numeri
al solutions in the present work, as we

will see in 
hapter V. In the 
ase of spheri
al symmetry, a general relativisti
 formulation

of the non-stationary virial theorem has been found by Vilain [36℄ and applied to stability

problems. Katz [37℄ proposed a general formulation of the relativisti
 virial theorem without

supposing any symmetry. His formulation involves "virial ve
tor �elds" whi
h are de�ned

with respe
t to a given �at ba
kground metri
. His original goal was to obtain the virial

theorem as a surfa
e integral at in�nity, so that it would have been independent of the 
hoi
e

of the virial ve
tor �elds. The result was "0 = 0" and the 
on
lusion is the virial theorem

has to be formulated as a spa
e integral, involving some extra stru
ture, like the virial ve
tor

�elds. In the next se
tion we are going to present a brief dis
ussion about the relativisti


version of the virial theorem.

3.2.1 The relativisti
 virial theorem

We 
onsider a stationary and asymptoti
ally �at spa
etime. As mentioned in the

previous se
tion, stationary means that there exists a Killing ve
tor �eld, ξ, whi
h is time-

like. This ve
tor is de�ned up to s
ale fa
tor, whi
h is �xed by the requirement that the

s
alar produ
t ξµξ
µ = −1. Asymptoti
ally �at spa
etime means:

� A spa
etime with spatial se
tions Σt 
ontaining a 
ompa
t region B su
h that Σt−B is

di�eomorphi
 to R
3−0. For an ordinary star, B may be redu
ed to one point, whereas

for a bla
k hole, B shall en
lose the event horizon.

� On ea
h Σt, there exists a 
oordinate system xi
su
h that the 
omponents gαβ of

the metri
 di�er from diag(−1, 1, 1, 1) only by terms O(1/r) as r → ∞ and the �rst

derivatives gαβ,γ are O(1/r2).
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The relativisti
 Virial Theorem is based on the 3+1 formalism des
ribed in the previ-

ous se
tion [38,39℄; the starting point 
onsists in integration over the spa
e-like hypersurfa
e

Σt of equation (3.12)

∫

Σt

√
hd3x

[
4πSi

i − hijν;jν;i +
3

4
(KijK

ij −K2)

]
= (3.14)

=

∫

Σt

√
hd3x(Knα);α +

∫

Σt

√
hd3xhijν;ij −

1

4

∫

Σt

√
hd3xR̃.

If we 
onsider the stationary 
ase, the term of the �rst integral of the right hand

side of (3.14) 
an be write as

(Knα);α =
1

N
(KN i);i =

1

N
KN iν;i +

(
K

N i

N

)

;i

, (3.15)

and with the use of the Gauss theorem,

∫

Σt

√
hd3x(Knα);α =

∫

Σt

√
hd3x

1

N
KN iν;i + lim

S→∞

∮

S

dSi
K

N
N i =

∫

Σt

√
hd3x

1

N
KN iν;i,

(3.16)

where the asymptoti
 �atness 
ondition was 
onsidered.

For the se
ond integral of the right hand side of (3.14) we use Gauss theorem and

then write this integral in terms of the total energy in the hypersurfa
e Σt whi
h is known

as the Komar mass [40℄ de�ned for a stationary spa
etime,

m :=
1

8π
lim
S→∞

∮

S

dSαβξ
[α;β], (3.17)

sin
e the spa
e is asymptoti
ally �at (see appendix of [41℄ for further details)

∫

Σt

√
hd3xhijν;ij = lim

S→∞

∮
dSih

ijν;j = 4πm. (3.18)

The last integral in (3.14) 
onsists in the integration of the Ri

i s
alar of the

hypersurfa
e Σt. This integral 
an be 
omputed using the bimetri
 formalism whi
h 
onsists

in introdu
ing into the hypersurfa
e a �at ba
kground metri
 γ (for further details see [41℄
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and referen
es therein). The introdu
ed metri
 is �at everywhere in the 
ase of ordinary

stars and 
oin
ide at in�nity with the non-�at 3-metri
 h by virtue of the asymptoti
 �atness

hypothesis. Using this bimetri
 formalism, the Ri

i s
alar integral 
an be written as [42℄

∫

Σt

√
hd3xR̃ = 16πMADM +

∫

Σt

√
hd3xhij [∆l

im∆
m

jl −∆l
lm∆

m
ij ], (3.19)

with

∆i
jk =

1

2
hij [hlk‖j + hjl‖k − hjk‖l], (3.20)

where the double verti
al stroke ‖ denotes 
ovariant derivation asso
iated with the metri


γ [42℄ and MADM is the Arnowitt-Deser-Misner mass-energy [39℄.

Taking into a

ount that in the 
ase of stationary and asymptoti
ally �at spa
etime,

Komar mass and ADM mass do 
oin
ide [43, 44℄, expression (3.14) is

∫

Σt

√
hd3x

[
4πSi

i − hijν;jν;i +
1

4
hij(∆l

im∆
m
jl −∆l

lm∆
m
ij) + (3.21)

+
3

4
(KijK

ij −K2)− K

N
Nih

ijν;j

]
= 0.

Equation (3.21) is the general relativisti
 virial theorem, named in that way be
ause

in the Newtonian limit this expression redu
es to the 
lassi
al virial theorem. The Virial

theorem integral 
an be read as 
ontaining terms related to the gravitational sour
e, se
ond

derivatives of the metri
 potential ν and terms asso
iated to the extrinsi
 
urvature tensor.



Chapter 4

Neutron star stru
ture

The theoreti
al formalism des
ribing a rotating and highly magnetized neutron star

is presented in this 
hapter. As mentioned in the introdu
tion, in order to properly de-

s
ribe this kind of astrophysi
al obje
ts it is ne
essary a full axially symmetri
 treatment

within the 
ontext of Einstein-Maxwell equations. First, we des
ribe the spa
etime and the

Einstein-Maxwell equations within the approa
h used by Bonazzola et al. [21℄ whi
h allows

us to write these equations in terms of a �at spa
e ellipti
 operator and the sour
e terms


ontaining matter, ele
tromagneti
 and non linear quadrati
 terms in the metri
 potentials.

Se
ondly, the hydrostati
 equilibrium equations will be derived within the assumption of

in�nite 
ondu
tivity matter. Finally, the relevant physi
al quantities des
ribing the system

will be presented.

4.1 Stru
ture equations

In this study we assume that spa
etime is stationary, axis-symmetri
 and 
ir
ular,

whi
h means the 
urrent 4-ve
tor and �uid 4-velo
ity are parallel to a general 
ombination

of the Killing ve
tors [45℄. Most authors studying rapid rotation based their works in the

approa
h of Bardeen et. al. [46℄ whi
h expli
itely assumes an isotropi
 stress tensor and is

thus in
ompatible with ele
tromagneti
 �elds. The authors of [21,35,47℄ present a formula-
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tion whi
h allows su
h spa
etime for the most general energy-momentum tensor. The metri


that des
ribes su
h spa
etime is given by

ds2 = −e2νdt2 + e2(ζ−ν)(dr2 + r2dθ2) + e−2νG2r2sin2θ(dφ−Nφdt)2, (4.1)

where the 
oordinates are xµ = (x0, x1, x2, x3) = (t, r, θ, φ) and the metri
 fun
tions ν, ζ, G

and Nφ
depend on the 
oordinates (r, θ).

The energy-momentum tensor des
ribing a perfe
t �uid 
oupled with ele
tromag-

neti
 �eld is

T µν = T PFµν + TEMµν , (4.2)

the perfe
t �uid (PF) and the ele
tromagneti
 (EM) 
ontributions are given by

T PFµν = (ǫ+ P )uµuν + Pgµν , (4.3)

TEMµν =
1

4π

(
F µαF ν

α − 1

4
gµνF αβFαβ

)
, (4.4)

where ǫ and P are the rest frame energy density and pressure, respe
tively, uµ
is the �uid

4-velo
ity, gµν is the metri
 tensor and

Fµν = Aν,µ −Aµ,ν (4.5)

is the Maxwell tensor where Aµ is the ele
tromagneti
 4-potential. Stationarity, axisym-

metry and 
ir
ularity properties for the spa
etime des
ribed by (4.1) imply that the non

vanishing 
omponents of the 
urrent 4-ve
tor are jµ = (jt, 0, 0, jφ) and 
onsequently the

ele
tromagneti
 potential 
omponents are Aµ = (At, 0, 0, Aφ) [45℄.

We are going to use the Bonazzola approa
h [21℄ whi
h is based on the 3+1 formalism

dis
ussed in 
hapter III. From the Einstein �eld equations, Bonazzola et al. derive a Poisson

equation for ea
h of the metri
 variables. The determination of the gravitational �eld is

redu
ed to the integration of a system of four 
oupled ellipti
 partial di�erential equations
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(hereafter PDE) of the form

∆fu = σmatter
u + σquad

u (4.6)

where ∆f is a �at spa
e ellipti
 operator (namely a two or a three dimensional �at spa
e

Lapla
ian), u a metri
 potential, σmatter
u is the sour
e term involving all matter terms (su
h as

�uid, ele
tromagneti
 �elds, et
.) and σquad
u is an expression 
ontaining only non linear terms

in the metri
 potentials. We use the Bonazzola's formalism to derive equations governing

the equilibrium of rotating neutron stars with strong magneti
 �elds. This approa
h may

be useful in the study of systems based on other types of anisotropi
 stress-energy tensor

di�erent of (4.2) su
h as the energy momentum tensor studied in [10℄.

The equations that des
ribe a perfe
t �uid 
oupled with ele
tromagneti
 �eld are

the Einstein-Maxwell equations

Gµν = 8πTµν . (4.7)

Fαβ;γ + Fγα;β + Fβγ;α = 0, (4.8)

F αβ
;β = 4πjα, (4.9)

where equations (4.8) and (4.9) are the homogeneous (Faraday´s law and non-magneti


monopole) and inhomogeneous (Gauss and Ampere-Maxwell laws) Maxwell equations.

Using the approa
h suggested by (4.6) for the metri
 tensor de�ned in (4.1) and


onsidering the matter de�ned by the energy-momentum tensor (4.2), Einstein-Maxwell

equations are written as [48℄

∆3ν = σν , (4.10)
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∆̃3Ñφ = σ
Ñφ , (4.11)

∆2G̃ = σG̃, (4.12)

∆2ζ = σζ , (4.13)

∆3At = σAt
, (4.14)

∆̃3Ãφ = σÃφ
, (4.15)

where

Ñφ ≡ rsinθNφ, (4.16)

G̃ ≡ rsinθG, (4.17)

Ãφ ≡ Aφ

rsinθ
, (4.18)

and ∆2,∆3 and ∆̃3 are respe
tively the two-dimensional �at spa
e Lapla
ian, the three-

dimensional �at spa
e Lapla
ian, and the φ 
omponent of the three-dimensional �at spa
e

ve
tor Lapla
ian and they are given by

∆2 ≡
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
, (4.19)

∆3 ≡
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

1

r2 tan θ

∂

∂θ
, (4.20)
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∆̃3 ≡ ∆3 −
1

r2sin2θ
. (4.21)

The sour
e terms σmatter
u are given by

σν = 4πe2(ζ−ν)(E + Si
i) +

1

2
e−4νG2r2sin2θ(∂Nφ)2 − ∂ν∂(lnG), (4.22)

σ
Ñφ = −16πe2ζ+ν

G2

Iφ
rsinθ

− rsinθ∂Nφ∂[ln(e−4νG3)], (4.23)

σG̃ = 8πe2(ζ−ν)Grsinθ(Sr
r + Sθ

θ ), (4.24)

σζ = 8πe2(ζ−ν)Sφ
φ +

3

4
e−4νG2r2sin2θ(∂Nφ)2 − (∂ν)2, (4.25)

σAt
=− 4πe2(ζ−ν)(gttj

t + gtφj
φ) + e−2νgtφ∂At∂N

φ − (2 + e−2νgtt)∂Aφ∂N
φ

− (∂At + 2Nφ∂Aφ)∂[ln(e
−2νG)]− 2Nφ

r

(
Aφ,r +

1

r tan θ
Aφ,θ

)
,

(4.26)

σÃφ
=− 4πe2ζ−4νG2rsinθ(jφ −Nφjt) + e−4νG2rsinθ∂Nφ(∂At +Nφ∂Aφ)

+
1

rsinθ
∂Aφ∂[ln(e

−2νG)].
(4.27)

In these expressions the notation ∂f∂g denotes

∂f∂g ≡ ∇f.∇g ≡ f,rg,r +
1

r2
f,θg,θ. (4.28)

The 
ontributions from the energy-momentum tensor are

E = Tµνn
νnµ, (4.29)

Iµ = −hµνnγT
νγ, (4.30)
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Sµν = hµγhνρT
γρ, (4.31)

where the physi
al meaning of nµ
and hµν = gµν + nµnν are the same as presented in


hapter III. In the 
oordinates xµ = (t, r, θ, φ) the 
omponents of the timelike four ve
tor

are nµ = (−N, 0, 0, 0) where N = eν is the lapse fun
tion. For the energy-momentum tensor

(4.2) we have

E = EPF + EEM , (4.32)

Iµ = IPF
µ + IEM

µ , (4.33)

Sµν = SPF
µν + SEM

µν . (4.34)

For the perfe
t �uid we have

EPF = Γ2(ǫ+ P )− P, (4.35)

(IPF )φ = e−νGrsinθ(EPF + P )U, (4.36)

(SPF )rr = P, (SPF )θθ = P, (SPF )φφ = P + (EPF + P )U2, (4.37)

where Γ is the Lorentz fa
tor linking the Eulerian observer Oo and the �uid 
omoving

observer O1 with velo
ity uµ
,

Γ = −nαu
α ⇒ Γ2 =

1

1− U2
, (4.38)

being U the physi
al �uid velo
ity in the φ dire
tion, as measured by the Eulerian observer,



CHAPTER 4. NEUTRON STAR STRUCTURE 34

and it is given by

U =
1

Γ
−→eφ .−→u , (4.39)

where

−→eφ is the unit spatial ve
tor in the φ dire
tion.

The non-vanishing 
omponents of the four velo
ity are related by

uφ = Ωut, (4.40)

where Ω is the angular velo
ity as seen by an inertial observer at in�nity, who is at rest with

respe
t to the star's 
enter. We obtain for U

U = e−2νGrsinθ(Ω−Nφ). (4.41)

Note that if the �uid were at rest with respe
t to the lo
al Eulerian observer, then U = 0

and Ω = Nφ 6= 0, hen
e it would not be at rest for an inertial observer at in�nity: this is

the well known phenomena of dragging of the inertial frame [49�52℄.

For the ele
tromagneti
 part of the energy-momentum tensor we have

EEM =
1

8π
(EiE

i +BiB
i), (4.42)

(IEM)φ =
1

4π
e2ζ−3νGr2sinθ(ErBθ − EθBr), (4.43)

(SEM)rr =
1

8π
(EθE

θ − ErE
r +BθB

θ −BrB
r), (4.44)

(SEM)θθ = −(SEM)rr, (4.45)

(SEM)φφ = EEM . (4.46)
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Note that the only non vanishing 
omponent of the Poynting ve
tor is (IEM)φ, whi
h

is 
onsistent with the 
ir
ularity assumption. In the above expressions Ei and Bi are the


omponents of the ele
tri
 and magneti
 �elds as measured by the Eulerian observer Oo [38℄,

and given by

Eα = nβFαβ

=
[
0, e−ν(At,r +NφAφ,r), e

−ν(At,θ +NφAφ,θ), 0
]
,

(4.47)

Bα = −1

2
ǫαβρσn

βF ρσ

=

[
0,

eν

Gr2sinθ
Aφ,θ,−

eν

Gsinθ
Aφ,r, 0

]
,

(4.48)

where ǫαβρσ is the Levi-Civita tensor asso
iated with the metri
 gµν given by (4.1).

The theorem of Cowling [53℄ states that an axisymmetri
 magneti
 �eld 
annot be

generated or maintained by the motion of a �uid, sin
e �nite resistivity involves dissipation,

leading to magneti
 �eld de
ay. Hen
e stationary models of neutron stars in magneti
 �elds

require a separation of dynami
al and dissipative times
ales, en
oded in an assumption

of in�nite 
ondu
tivity (magneti
 �elds "frozen in" and 
arried with the �uid, a 
ommon

assumption in astrophysi
s [54℄). In the 
ase of neutron stars matter studies indi
ate [54℄

that ohmi
 dissipation times
ale is larger than the age of the universe [55℄, so the in�nite


ondu
tivity assumption is well justi�ed.

A

ording to Ohm's law, and assuming that the matter has in�nite 
ondu
tivity,

the ele
tri
 �eld as measured by the �uid observer must be zero. This 
ondition leads to the

following relation between the two 
omponents of the potential 4-ve
tor inside the star [21℄

At,i = −ΩAφ,i. (4.49)

From this equation we have either Ω = const, or Aφ = Aφ(Ω), but the latter 
ondition


annot be ful�lled in general sin
e Aφ has to satisfy the Maxwell-Ampere equation, thus

we retain only the 
ase Ω = const and 
on
lude that a stationary 
on�guration with some
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magneti
 �eld is ne
essarily rigidly rotating. Equation (4.49) is integrated and yields

At = −ΩAφ + constant (4.50)

where the 
onstant is determined by the total ele
tri
 
harge of the star.

4.2 Hydrostati
 equilibrium equations

The hydrostati
 equilibrium equations are provided by the 
onservation of the energy-

momentum tensor

T µν
;ν = 0. (4.51)

Applying the above equation to the energy-momentum tensor of our system we obtain

1

(ǫ+ P )
P,i + ν,i − (ln Γ),i −

1

(ǫ+ P )
fi = 0, (4.52)

from left to right, the above equation 
an be understood as (by analogy with the Newtonian


ase) the pressure for
e, gravitational for
e, 
entrifugal for
e and Lorentz for
e given by

fi = Fiαj
α = jtAt,i + jφAφ,i. (4.53)

Considering a one parameter EoS, ǫ = ǫ(n), P = P (n), where n is the baryon

density, the �rst integral of the �rst term in equation (4.52) is identi�ed as the heat fun
tion

H

H(n) =

∫ n

0

1

(ǫ(n′) + P (n′))

dP (n′)

dn′
dn′, (4.54)

whi
h is a regular fun
tion of n when ǫ and P tend to zero. For example, at zero temperature

and in 
hemi
al equilibrium, the �rst law of thermodynami
s allows to write H(n) = ln g(n),

where g is the enthalpy per baryon g := (ǫ+P )
n

or the total of possible states [56, 57℄. In the
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ase of 
old stars, the EoS parameter n is the proper baryon density, at zero temperature.

The star surfa
e 
orresponds to H(0) = 0 whi
h will be an important 
ondition in order to

�nd numeri
al solutions as we will see in the next 
hapter.

Introdu
ing (4.49), (4.53) and (4.54) in (4.52), we have

(H + ν − ln Γ),i −
1

(ǫ+ P )
(jφ − Ωjt)Aφ,i = 0. (4.55)

The above equation suggests that there exists a fun
tion M(r, θ) su
h that

− 1

(ǫ+ P )
(jφ − Ωjt)Aφ,i = M,i. (4.56)

with the adoption of a 
urrent fun
tion

f(Aφ) =
1

(ǫ+ P )
(jφ − Ωjt) (4.57)

we 
an write

−f(Aφ)Aφ,i = M,i, (4.58)

and hen
e equation (4.55) 
an be written as

(H + ν − ln Γ +M),i = 0. (4.59)

The �rst integral of motion is

H(r, θ) + ν(r, θ)− ln Γ(r, θ) +M(r, θ) = C = constant (4.60)

with

M(r, θ) = M(Aφ(r, θ)) = −
∫ Aφ(r,θ)

0

dxf(x). (4.61)

Besides there is a freedom of 
hoi
e for fun
tion f(Aφ), the integrability 
ondition
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(4.57) represents a signi�
ant restri
tion on the form of the ele
tromagneti
 
urrent that

allows the existen
e of stationary solutions. The 
onstant C is determined by an input

parameter, e.g. the pressure spe
i�ed at some point in the star.

The ele
tri
 and magneti
 �elds are linked by the in�nite 
ondu
tivity assumption

(4.50), so equations (4.42)-(4.46) 
an be written in terms of the ele
tromagneti
 potential

Aφ and the �uid velo
ity U

EEM =
1

8π

e4ν−2ζ

G2r2sin2θ
(1 + U2)

(
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

)
, (4.62)

IEM
φ =

1

4π

e3ν−ζ

Grsinθ
U

(
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

)
, (4.63)

(SEM)rr =
1

8π

e4ν−2ζ

G2r2sin2θ
(1− U2)

(
(Aφ,r)

2 − 1

r2
(Aφ,θ)

2

)
, (4.64)

(SEM)θθ =− (SEM)rr

= − 1

8π

e4ν−2ζ

G2r2sin2θ
(1− U2)

(
(Aφ,r)

2 − 1

r2
(Aφ,θ)

2

)
,

(4.65)

(SEM)φφ =EEM

=
1

8π

e4ν−2ζ

G2r2sin2θ
(1 + U2)

(
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

)
.

(4.66)

In summary, the formalism of stationary neutron stars with poloidal magneti
 �elds


onsists of a 
losed system of:

� Eleven variables:

� Four metri
 variables: ν,G,Nφ, ζ .

� Energy density: ǫ.

� Pressure: P .

� Two 
omponents of the ele
tromagneti
 potential: At, Aφ.

� Two 
omponents of the ele
tromagneti
 
urrent: jt, jφ.

� The heat fun
tion: H(r, θ).
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� Eleven equations:

� Four Poisson equations for the metri
 variables: (4.10)-(4.13).

� Two Poisson equations for the 
omponents of the ele
tromagneti
 potential: (4.14)

and (4.15).

� The relation between the 
omponents of the ele
tromagneti
 potential (in�nity


ondu
tivity assumption): equation (4.50).

� The equation of state: P = P (ǫ).

� The relation between the heat fun
tion H , ǫ and P .

� The �rst integral of the equations of hydrostati
 equilibrium: equation (4.60).

� The restri
tion on the ele
tromagneti
 
urrent: equation (4.57).

� Three input parameters:

� Angular velo
ity Ω.

� Total ele
tri
 
harge Q.

� Central density ǫc or 
entral pressure Pc.

� One input fun
tion: f(Aφ).

� The relevant boundary 
onditions.

4.3 Physi
al quantities des
ribing the system

In this se
tion we 
al
ulate some relevant physi
al quantities that des
ribe the rotating or

magnetized neutron star, these quantities are the 
ir
umferential radius, total gravitational

mass, angular momentum and the magneti
 moment.

The stellar equator is de�ned as the 
losed line at the surfa
e of the star de�ned by

t = const and θ = π/2 (equatorial plane). It has a 
onstant value of the 
oordinate r, that
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we identi�ed as req. A 
hara
terization of the stellar equator is the 
ir
umferential radius

de�ned as [58℄

R :=
l

2π
(4.67)

where l is the 
ir
umferen
e of the star in the equatorial plane, i.e. the proper length of the

equator as given by the metri
 tensor. For the line element (4.1) that means

ds2 = e−2νG2r2 sin2 θdφ2 ⇒ l =

∫ 2π

0

e−νGreqdφ, (4.68)


onsidering the symmetry in the φ dire
tion

R = e−νeqGeqreq, (4.69)

where νeq = ν(req, π/2) and Geq = G(req, π/2). As we 
an see, di�erently from the spheri
ally

symmetri
 
ase, for an axially symmetri
 spa
etime the 
oordinate r does not 
oin
ide with

the 
ir
umferential radius.

For a stati
 matter distribution or in slow evolution regime [10℄, the energy (mass)


on
ept is well de�ned. For the spheri
ally symmetri
 and non dissipative 
ase, the exterior

spa
etime is des
ribed by the S
hwarzshild metri
 and as a 
onsequen
e of the 
oupling


onditions, the total energy of the system is equal to the S
hwarzs
hild parameter M [59℄.

However, the de�nition of the energy distribution of a part of the �uid is not unique.

This ambiguity in the energy lo
alization, that is present even in 
lassi
al ele
trodynam-

i
s [60℄, has been obje
t of several dis
ussions leading to di�erent energy de�nitions, for

example for spheri
ally symmetri
 relativisti
 �uids is 
ommon the use of the mass fun
-

tion [59℄ to 
al
ulate the numeri
al solution of relativisti
 gravitational 
ollapse [61℄. How-

ever, another interesting energy de�nition for stati
 or sloswly evolving distribution is the

Tolman-Whittaker mass [62,63℄ whi
h plays the role of the a
tive gravitational mass (see [64℄

for more details).

The Komar mass [40℄ is another de�nition of the mass and it is 
ommonly used for
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stationary asymptoti
ally �at spa
etimes as we mentioned in 
hapter III. Be
ause we are

interested in des
ribing a rotating or magnetized neutron star we will use the Komar mass

expression to 
al
ulate the mass of the system.

The Komar mass m is given by [65℄

m =

∫

Σt

(T i
i − T t

t )
√−gdx1dx2dx3. (4.70)

In the following, we will 
al
ulate m for two di�erent 
ases: �rst, for a rotating �uid without

magneti
 �eld and se
ond, for a perfe
t �uid (without rotation) 
oupled with a poloidal �eld.

4.3.1 Mass and angular momentum for a rotating star

For a rotating �uid without magneti
 �eld the extrinsi
 
urvature is part of the

Komar mass,

m =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφr2sinθe2(ζ−ν)G

[
(E + Si

i) +
1

2π
(κ2

1 + κ2
2)

]
. (4.71)

where the 
omponents of the extrinsi
 
urvature Kαβ for the metri
 tensor (4.1) are

κ1 = −1

2
e−(ζ+ν)GrsinθNφ

,r κ2 = −1

2
e−(ζ+ν)GsinθNφ

,θ. (4.72)

Considering (4.37) we have,

Si
i = Γ2(ǫ+ P )U2 + 3P (4.73)

hen
e

E + Si
i = Γ2(ǫ+ P )(1 + U2) + 2P. (4.74)

Then, 
onsidering the above equations, the total gravitational mass for a rotating �uid
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(without magneti
 �eld) is

m =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφr2sinθe2(ζ−ν)G

[
Γ2(ǫ+ P )(1 + U2) + 2P +

1

2π
(κ2

1 + κ2
2)

]
. (4.75)

so part of the energy of a rotating neutron star without magneti
 �eld arises from a term

whi
h is not asso
iated to the 
omponents of the extrinsi
 
urvature tensor (later in 
hapter

V we will 
all as a perfe
t �uid 
ontribution, be
ause it 
oin
ides with the energy density

asso
iated with a perfe
t �uid in the nonrotating 
ase), and a term 
oming from the extrinsi



urvature 
ontribution.

To 
ompute the total angular momentum of the rotating star we use the fa
t that

the spa
etime is asymptoti
ally �at whi
h, mathemati
ally, means when r → ∞

ν(r, θ) → 0, (4.76)

Nφ(r, θ) → 0, (4.77)

ζ(r, θ) → 0, (4.78)

G(r, θ) → 1. (4.79)

The solution of (4.11) satisfying these 
onditions has a leading term when r → ∞ of the

form

Nφ(r, θ) ∼ 2J

r3
(4.80)

where J is a 
onstant independent of r and θ and is identi�ed as the total angular momentum

of the star [66℄. Integrating equation (4.11) on a sphere of large radius, transforming the left

hand side into a surfa
e �ux integral of ∇Nφ
, thanks to Gauss theorem, using the asymptoti


behavior of Nφ
(4.80) (see [21℄ for more details) the expression for J 
orresponding to the
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metri
 (4.1) is

J =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφr2sinθGe2ζ−3νIφ (4.81)

and taking into a

ount (4.35) and (4.36), we have

J = 2π

∫ ∞

0

dr

∫ π

0

dθr3sin2θG2e2(ζ−2ν)Γ2(ǫ+ P )U (4.82)

where the symmetry in the φ dire
tion was 
onsidered.

In the next 
hapter the mass, angular momentum and the angular velo
ity will be

used to des
ribe a rotating neutron star without magneti
 �eld.

4.3.2 Mass and magneti
 moment for a magnetized star

For a perfe
t �uid 
oupled with a poloidal magneti
 �eld we have for the energy-momentum

tensor (4.70),

T i
i = T PF i

i + TEMi
i, T t

t = T PFt
t + TEMt

t (4.83)

For the perfe
t �uid 
ontribution, 
onsidering uµ = (u0, 0, 0, 0) and uµuµ = −1, we

have

T PF i
i = 3P, T PFt

t = −ǫ (4.84)

For the ele
tromagneti
 �eld 
ontribution,

TEMi
i =

1

4π

(
F iρFiρ −

1

4
δiiF

ρσFρσ

)
, (4.85)

taking into a

ount that Aµ = (0, 0, 0, Aφ(r, θ)),

F ρσFρσ = F iρFiρ = 2
e4ν−2ζ

G2r2sin2(θ)

[
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

]
(4.86)
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hen
e,

TEMi
i =

1

8π

e4ν−2ζ

G2r2sin2(θ)

[
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

]
= EEM

(4.87)

TEMt
t = − 1

16π
F ρσFρσ = −EEM

(4.88)

The expression in parenthesis in (4.70) is,

T i
i = 3P + EEM T t

t = −(ǫ+ EEM) (4.89)

For the line element (4.1) the fa
tor

√−g = e2(ζ−ν)Gr2sinθ, and the Komar mass is

m =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφr2sinθe2(ζ−ν)G(ǫ+ 3P + 2EEM). (4.90)

It is worth noting that in this 
hapter we are using di�erent 
oordinates and metri


tensor 
ompared with 
hapter II, where we used the Cook-Shapiro-Teukolsky metri
 tensor

and again we realize the presen
e of the fa
tor 2 multiplying the ele
tromagneti
 energy

density in the expression of the total gravitational mass, hen
e we verify the 
on
lusion of

Papapetrou [26℄, this fa
tor appears as a fundamental property of ele
tro-gravitational �eld

and hen
e is independent on the 
oordinates 
hoi
e. This result is a 
onsequen
e of the fa
t

that there is no possibility of formulating the law of 
onservation of energy without using

the potential energy of gravitation.

Another important point to mention is the fa
t that 
omparing expressions (4.90)

and (4.75) we noti
e an analogy between the roles of the ele
tromagneti
 energy and the

total extrinsi
 
urvature, however the distributions of these energies through the star are

di�erent as we will show in the next 
hapter.

The magneti
 moment of the star is de�ned in terms of the asymptoti
 behaviour of

the magneti
 �eld as measured by the Eulerian observer Oo [48℄, and 
onsidering the poloidal
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nature of the �eld

B̃r =
2µcosθ

r3
, (4.91)


onsidering that this is the r-
omponent of

~B in the orthonormal basis asso
iated to (r, θ, φ).

The relation between B̃r and Br, whi
h is the r-
omponent of Bα, is

Br = eζ−νB̃r, (4.92)

using equation (4.48), we have

(
eζ−ν 2µcosθ

r3

)
= Br |r→∞=

(
eν

Gr2 sin θ

)
(Aφ,θ) |r→∞, (4.93)

and hen
e

µ =
e2ν−ζ

2G

r

sinθcosθ
(Aφ,θ) |r→∞ . (4.94)

In the next 
hapter the mass, magneti
 dipole moment, magneti
 �eld at the pole

and in the 
enter will be used to des
ribe the numeri
al solution of a magnetized neutron

star without rotation.



Chapter 5

Numeri
al pro
edure and Results

Numeri
al relativity is one of the bran
hes of the general relativity theory that allows physi-


ists to solve the non linear equations that des
ribe systems like the highly magnetized

neutron stars. This 
hapter deals with the numeri
al solution of the Einstein-Maxwell equa-

tions presented in 
hapter IV. In this study we 
onsider a rotating neutron star without

magneti
 �eld and highly magnetized neutron star modelled as a perfe
t �uid 
oupled with

a poloidal magneti
 �eld, in this last 
ase we restri
t to the stati
 
on�guration (although

both are stationary). In terms of the potential observability of the e�e
ts of large magneti


�elds, relevant situations appear to be for nonrotating or slowly rotating neutron stars, for

example on June 2016 a team of resear
hers led by Antonino D'Alì from Italy's National

Institute of Astrophysi
s [67℄ pi
ked up strange X-ray bursts 
oming from the supernova

remnant RCW 103, known as 1E 1613, based on their data another team of resear
hers lead

by Nanda Rea [68℄ from the University of Amsterdam in the Netherlands 
on
luded that

this obje
t is likely a magnetar whi
h is rotating on
e every 6.67 hours, mu
h slower than

the slowest magnetars known, whi
h spins around on
e every 10 se
onds.

5.1 Equation of state of the matter 
onsidered

The link between the mi
ros
opi
 and ma
ros
opi
 properties of a system is given by the

equation of state (EoS), P = P (ǫ), whi
h is derived from a mi
ros
opi
 model of the matter

that hypotheti
ally 
omposes the system.
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The goal of this work is to study the e�e
ts of the magneti
 �eld in the stru
ture

of neutron stars and not at the mi
ros
opi
 level, be
ause of that we 
onsider as the matter


omposition a traditional model of EoS known as G300 [69℄, whi
h is based on a relativisti


quantum �eld theory des
ribing the nu
lear matter present in the neutron star using the

relativisti
 mean �eld approximation, where the �elds are repla
ed by their mean values.

The model supposes that the neutron stars are 
omposed by hadrons and studies

the system in the framework of �eld theory of intera
ting nu
leons, hyperons and mesons.

The parameters of the theory are adjusted to reprodu
e the bulk properties of the nu
lear

matter, summarized in table 5.1

Saturation Energy E/N -16 MeV

Saturation Density ρ0 0.16 fm−3

Compressibility K 265 MeV

Symmetry Energy asym 32.5 MeV

Nu
leon E�e
tive Mass m∗/mN 0.796

Table 5.1: Bulk nu
leus properties used to 
onstrain neutron star matter model, mN =
938MeV is the average nu
leon mass

The method stars from a Lagrangian model whi
h is written in terms of a group

of 
oupling parameters, the barions and mesons are the fermioni
 and bosoni
 �elds, re-

spe
tively [69, 70℄. The next step is to make use of the Euler-Lagrange equations for ea
h

�eld and with the use of some approximations, the expe
ted value of the energy momen-

tum tensor in the fundamental state is 
al
ulated in terms of the Lagrangian. Finally, the

energy-momentum tensor of a perfe
t �uid in a �at spa
etime is used and the result is the

desired relationship between pressure and energy density P = P (ǫ). Figure 5.1 shows this

relationship.
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Figure 5.1: Pressure as a fun
tion of energy density for the G300 model

5.2 Numeri
al solution for the metri
 potentials.

To solve the Poisson equations for the metri
 potentials (4.10 - 4.15) we use Green's fun
tions,

similar to the method of Komatsu, Erigu
hi and Ha
hisu (KEH) [25℄ and Cook, Shapiro and

Teukolsky [19℄, but with a di�erent treatment to �nd the solution for the metri
 potential

α, this point will be dis
ussed in more details in the next subse
tion.

Equations (4.10), (4.11) and (4.15), for the metri
 potentials ν,Nφ
and Aφ, respe
-

tively, are of the form

∆3u = σu, (5.1)

where ∆3 is the three-dimensional �at spa
e Lapla
ian and σu is the sour
e of the fun
tion

u. The solution of this equation is

u(~r) =

∫
dV ′σu(~r

′)G3D(~r, ~r
′), (5.2)

where dV is the volume element. The Green´s fun
tion G3D is given by

G3D(~r, ~r
′) = − 1

4π

1

| ~r − ~r′ | (5.3)
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Equations de�ning the metri
 potentials G and ζ are of the form

∆2u = σu, (5.4)

where ∆2 is the two-dimensional �at spa
e Lapla
ian, the solution of this equation is

u(~r) =

∫
dA′σu(~r

′)G2D(~r, ~r
′), (5.5)

where dA is the area element and G2D the two-dimensional Green´s fun
tion given by

G2D(~r, ~r
′) =

1

2π
ln | ~r − ~r′ | (5.6)

To �nd numeri
al solution for the metri
 potentials the radial domain 0 ≤ r ≤ ∞ is


ompa
ti�ed using the following 
hange of variable

r = R

(
s

1− s

)
(5.7)

where R is some length s
ale and the new domain is then 0 ≤ s ≤ 1, hen
e s maps radial

in�nity to the �nite 
oordinate lo
ation s = 1. The 
omputational domain is divided into

"inner" and "outer" grids, where the equatorial surfa
e is lo
ated at the radial position

s = 0.5, hen
e the equatorial radius is set at r = R.

For the angular variable, one 
an 
hoose the 
oordinate 
hange presented in 
hapter

II where µ = cos θ, however in the next equations we will make use of the variable θ for

writing the solution of the metri
 potentials.

Taking into a

ount the azimuthal and equatorial symmetries present in the 
on-

�gurations, imposing the boundary 
onditions [all metri
 fun
tions �nite at the origin and

(ν,Nφ, ζ, Aφ) |r→∞→ 0, G |r→∞→ 1℄, and using the expansion series for the Green´s fun
tion

given by equations (28) - (32) in referen
e [25℄, the solution of the ellipti
al �eld equations
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(4.10), (4.11), (4.12) and (4.15) in terms of variables (s, θ) are

ν(s, θ) =−
∞∑

n=0

P2n(cos θ)

×
[(

1− s

s

)2n+1 ∫ s

0

ds′
s′2n

(1− s′)2n+2

∫ π/2

0

dθ′ sin θ′P2n(cos θ
′)σ̃ν(s

′, θ′)

]

+

[(
s

1− s

)2n ∫ 1

s

ds′
(1− s′)2n

s′2n+1

∫ π/2

0

dθ′ sin θ′P2n(cos θ
′)σ̃ν(s

′, θ′)

]
,

(5.8)

Nφ(s, θ) =− 1

R

∞∑

n=1

P 1
2n−1(cos θ)

2n(2n− 1) sin θ

×
[(

1− s

s

)2n+1 ∫ s

0

ds′
s′2n−1

(1− s′)2n+1

∫ π/2

0

dθ′ sin θ′P 1
2n−1(cos θ

′)σ̃
Ñφ(s

′, θ′)

]

+

[(
s

1− s

)2n−2 ∫ 1

s

ds′
(1− s′)2n−2

s′2n

∫ π/2

0

dθ′ sin θ′P 1
2n−1(cos θ

′)σ̃
Ñφ(s

′, θ′)

]
,

(5.9)

G(s, θ) =1− 2

π

∞∑

n=1

sin[(2n− 1)θ]

(2n− 1) sin θ

×
[(

1− s

s

)2n ∫ s

0

ds′
s′2n−1

(1− s′)2n+1

∫ π/2

0

dθ′ sin[(2n− 1)θ′]σ̃G̃(s
′, θ′)

]

+

[(
s

1− s

)2n−2 ∫ 1

s

ds′
(1− s′)2n−3

s′2n−1

∫ π/2

0

dθ′ sin[(2n− 1)θ′]σ̃G̃(s
′, θ′)

]
,

(5.10)

Aφ(s, θ) =− R

∞∑

n=1

P 1
2n−1(cos θ)

2n(2n− 1)
sin θ

×
[(

1− s

s

)2n−1 ∫ s

0

ds′
s′2n−1

(1− s′)2n+1

∫ π/2

0

dθ′ sin θ′P 1
2n−1(cos θ

′)σ̃Ãφ

]

+

[(
s

1− s

)2n ∫ 1

s

ds′
(1− s′)2n−2

s′2n

∫ π/2

0

dθ′ sin θ′P 1
2n−1(cos θ

′)σ̃Ãφ

]
,

(5.11)

where σ̃f = r2σf = R2

(
s

1−s

)2

σf , is the dimensionless sour
e of the potential f , Pn is the

Legendre polynomial and Pm
n is the asso
iated Legendre fun
tion. The solution for the


omponent At is not presented in this 
hapter be
ause we will deal only with the stati



on�guration for a magnetized star.
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5.2.1 Spe
ial 
ase: solution of the metri
 potential ζ

In the 
hapter II we studied a perfe
t �uid 
oupled with a poloidal magneti
 �eld inspired in

the work of Shapiro et al. [19℄. As we have seen the equations de�ning the metri
 potentials

ρ and γ are of the form of (5.1) and (5.4), respe
tively, but the equation de�ning the metri


potential α is of the form

∂α

∂θ
= S(r, θ) (5.12)

where S is a 
ompli
ated expression 
ontaining �rst and se
ond order derivatives, quadrati


terms of these derivatives and even terms like γ,rµ [see equation (2.55)℄.

In the 
urrent formalism the role of the metri
 potential α is taken by ζ , but the

equation de�ning it is of the form ∆2ζ = σζ , whi
h looks simpler than equation (5.12).

The solution of the metri
 potential ζ however, should be handled with 
are be
ause its

may result in a logarithmi
 divergen
e at in�nity during iteration pro
edure. To avoid this

problem we use the virial theorem dis
ussed in the 
hapter III.

The starting point is to remember that the Green's fun
tion of the 2D Lapla
ian is

given by equation (5.6) hen
e the solution for the metri
 potential ζ is

ζ(r, θ) =
1

2π

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σζ(r
′, θ′) ln | ~r − ~r′ | (5.13)

where the sour
e σζ is given by equation (4.25). Sin
e the regularity 
onditions at r = 0

imply that all s
alar fun
tions may be expanded into a series of cos(nθ), the analyti
al


ontinuation satis�es

∀θ ∈ [π, 2π], σζ(r, θ) = σζ(r, 2π − θ). (5.14)

On the other hand, when r → ∞, the term ln | ~r− ~r′ |∼ ln r, so that ζ(r, θ) ∼ I ln r,

where

I :=
1

2π

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σζ(r
′, θ′). (5.15)
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Taking into a

ount the asymptoti
 �atness 
ondition at in�nity ζ = 0,the integral

should be zero

1

2π

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σζ(r
′, θ′) = 0 (5.16)

Using the expression of σζ given by equation (4.25),

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′
[
8πe2(ζ

′−ν′)Sφ
φ +

3

4
e−4ν′G′2r′2 sin2 θ′(∂Nφ′)2 − (∂ν ′)2

]
= 0. (5.17)

where the primes over the metri
 fun
tion u means u = u(r′, θ′), for example ν ′ = ν(r′, θ′).

The above equality 
orresponds to the virial theorem expressed by equation (3.21),

taking into a

ount that for the present study we 
hoose the hypersurfa
e Σt to be maximal

sli
ing [29℄, usually used in numeri
al relativity, so that the tra
e of the extrinsi
 
urvature

tensor is zero K = 0. The term (∂Nφ′)2 is related to the 
omponents of the extrinsi



urvature, through equations

κ1 = −1

2
e−(ζ+ν)Gr sin θNφ

,r κ2 = −1

2
e−(ζ+ν)G sin θNφ

,θ. (5.18)

As we 
an see, the integral (5.17) has three terms, one related to the sour
e, se
ond

asso
iated to the extrinsi
 
urvature and the last term 
ontaining se
ond derivatives of the

metri
 potential ν, just the stru
ture of the virial integral (3.21) presented in 
hapter III.

The sour
e σζ 
an be written as

σζ = σm
ζ + σf

ζ , (5.19)

where the pres
riptions m and f mean matter and �eld, so σm
ζ 
ontains the "matter terms"

(those involving 
omponents of the stress-energy tensor) and σf
ζ 
ontains the "�eld terms"

(those involving only the metri
 variables), in agreement with equation (4.6). Considering

this, the integral I for σζ 
an be written as I = Im + If = 0, whi
h in terms of the
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ompa
ti�ed variable s is

∫ 1

0

ds
s

(1− s)3
σm
ζ,0(s) +

∫ 1

0

ds
s

(1− s)3
σf
ζ,0(s) = 0 (5.20)

where

σζ,0(s) =

∫ 2π

0

dθσζ(s, θ). (5.21)

Equation (5.20) is a solution of Einstein´s equations, however it may blow up, due

to the logarithm fa
tor, spoiling 
onvergen
e. In order to avoid the logarithmi
 divergen
e


aused by the violation of (5.20) and to guarantee the 
onvergen
e of the iteration, the

te
hnique is to write the equation for the metri
 potential ζ as [35℄

∆2ζ = σm
ζ + λσf

ζ (5.22)

where the parameter λ is

λ = −
∫ 1

0
ds s

(1−s)3
σm
ζ,0(s)∫ 1

0
ds s

(1−s)3
σf
ζ,0(s)

. (5.23)

At the end of the iteration pro
ess λ must approa
h to 1 for the 
omputed metri
 fun
tions

to represent a valid solution to Einstein's equations.

Finally, the solution of the metri
 potential ζ is then given by

ζ(s, θ) =
2

π

[
ln r(s)

∫ s

0

ds′
1

(1− s′)2

∫ π/2

0

dθ′σ̃ζ(s
′, θ′) +

∫ 1

s

ds′
1

(1− s′)2
ln r(s′)

∫ π/2

0

dθ′σ̃ζ(s
′, θ′)

]

− 2

π

∞∑

n=1

cos(2nθ)

2n

[(
1− s

s

)2n ∫ s

0

ds′
s′2n

(1− s′)2n+2

∫ π/2

0

dθ′cos(2nθ′)σ̃ζ(s
′, θ′)

+

(
s

1− s

)2n ∫ 1

s

ds′
(1− s′)2n−2

s′2n

∫ π/2

0

dθ′cos(2nθ′)σ̃ζ(s
′, θ′)

]
,

(5.24)

where the sour
e σ̃ζ = Rr(σm
ζ + λσf

ζ ) = R2( s
1−s

)(σm
ζ + λσf

ζ ). At the end of the iteration the

quantity | 1 − λ | appears to be a good indi
ator of the dis
repan
y between the a
hieved
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solution and the exa
t one.

A valid question would be why one does not use the virial theorem for the metri


fun
tion G̃ as equation (4.12) also involves the two dimensional Lapla
ian in a similar way

than the equation de�ning the metri
 potential ζ? Su
h pro
edure is not needed sin
e the

sin θ fa
tor present in the sour
e σG̃ guarantees that the ln r term vanishes. The key issue

here is that the analyti
al 
ontinuation on [π, 2π] of the sour
e term σG̃ is not satis�ed, sin
e

σG̃ = σGrsinθ ⇒ σG̃(r, θ) 6= σG̃(r, 2π − θ) (5.25)

but, instead, the sour
e σG satis�es the analyti
al 
ontinuation and hen
e,

∀θ ∈ [π, 2π], σG̃(r, θ) = σG(r, 2π − θ)rsinθ. (5.26)

The integral I for the sour
e σG̃ is

I :=
1

2π

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σG̃(r
′, θ′). (5.27)

Now using the analyti
al 
ontinuation (5.26)

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σG̃(r
′, θ′) =

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σG(r
′, 2π − θ′)r′sinθ′, (5.28)

hen
e the integral I = 0 everywhere.

5.3 Results

In the following we show the results 
orresponding to the solution for rotating neutron

stars without magneti
 �eld and for nonrotating neutron stars with a poloidal magneti


�eld. The terms that allow us to 
al
ulate the virial fa
tor λ, i.e. σm
ζ and σf

ζ will be

written in terms of the physi
al variables and the 
oordinate s for ea
h 
ase. The results

for the mass, radius, angular momentum, magneti
 �eld at the pole and 
enter as well the

magneti
 moment will be presented. The 
ontour plots of some quantities like the extrinsi
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urvature and ele
tromagneti
 energy density will shed light on how the high rotation or

high magneti
 �eld a�e
t the system. Finally, the mass-radius relation will be shown for the


ase of magnetized neutron stars with di�erent 
entral densities and magneti
 �eld.

5.3.1 Results for a rotating neutron star without magneti
 �eld

A rotating neutron star without magneti
 �eld is studied for three values of the angular

velo
ity, de�ned in terms of the relation between the polar and equatorial radius rratio =

rpole/req. The �rst value 
orresponds to rratio = 1.00 whi
h de�nes the spheri
ally symmetri



ase, the se
ond value is rratio = 0.80 whi
h generates an intermediate deformation and the

last one rratio = 0.70 generating the largest deformation with an a

eptable value of the virial

parameter λ for a star with 
entral density ǫc = 500 MeV/fm3
. In table 5.2 we show the

results for the total gravitational mass m, the 
ir
umferential radius R, the perfe
t �uid

1


ontribution to the mass MPF
, the 
ontribution of the extrinsi
 
urvature to the total mass

Mκ
, the angular velo
ity Ω, the total angular momentum J and the virial fa
tor | 1− λ |.

The perfe
t �uid and the extrinsi
 
urvature 
ontributions to the gravitational mass

of the system in table 5.2 are given by

MPF = 4πR3

∫ 1

0

ds
s2

(1− s)4

∫ π/2

0

dθsinθe2(ǫ−ν)G

[
Γ2(ǫ+ P )(1 + U2) + 2P

]
, (5.29)

Mκ = 4πR3

∫ 1

0

ds
s2

(1− s)4

∫ π/2

0

dθsinθe2(ǫ−ν)G

[
1

2π
(κ2

1 + κ2
2)

]
. (5.30)

The terms for 
al
ulate the virial fa
tor λ in this 
ase are given by

σm
ζ = 8πGNe

2(ζ−ν)

[
P + (ǫ+ P )

U2

1− U2

]
(5.31)

σf
ζ =

3

4
e−4νG2sin2θ[s2(1− s)2(Nφ

,s)
2 + (Nφ

,θ)
2]− (1− s)2

R2

[
(1− s)2(ν,s)

2 +
1

s2
(ν,θ)

2

]
(5.32)

1

we use this name be
ause this term remember us the expression of the total gravitational mass of the

perfe
t �uid for a nonrotating star
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Figures 5.2 - 5.9 show the distribution of ea
h term that 
ontributes to the gravi-

tational mass, i.e. MPF
and Mκ

and the pressure 
ontour, for a star with a �xed 
entral

density ǫc = 500 MeV/fm3
and di�erent values of the angular velo
ity 
orresponding to the

table 5.2. The red solid line shows the star surfa
e. The values reported in the table forMPF

and Mκ
, 
orrespond to equations (5.29) and (5.30), respe
tively, while the values showed

in the legend of the �gures 5.2 - 5.6 
orrespond to expressions within the bra
kets in these

equations, i.e. the 
ontour plots of the perfe
t �uid 
ontribution to the total mass in �gures

5.2 -5.4 are the 
ontour plots of the term within the bra
kets in equation (5.29),while the


ontour plots of the extrinsi
 
urvature 
ontribution to the total mass in �gures 5.5 and 5.6

are the 
ontour plots of the term within the bra
kets in equation (5.30), in units of energy

density g/cm3
.

Comparing the graphi
s that show the energy density 
oming from MPF
, pressure

and the extrinsi
 
urvature 
ontribution, for the di�erent values of rratio, we realize the rota-

tional e�e
ts in the shape of the star surfa
e and the distribution of the extrinsi
 
urvature

energy, while the distribution of the energy asso
iated to MPF
is 
on
entrated around the


enter of the star, as we 
an see from �gure 5.2, 5.3 and 5.4, the energy 
oming from Mκ

has its biggest values near to the star's surfa
e, as show �gures 5.5 and 5.6, a
tually we 
an

see values between (0.5 − 1.5) × 1012 g/cm3
outside of the star´s surfa
e. In the sense of

the maximum values rea
hed by the perfe
t �uid 
ontribution to the energy density (�gures

5.2, 5.3 and 5.4) and the maximum pressure (�gures 5.7, 5.8 and 5.9), there are no di�er-

en
e between the three 
ases, i.e. the maximum energy density or the maximum pressure

rea
hed for stars with di�erent angular velo
ities remain the same, but for the plots showing

the extrinsi
 
urvature 
ontribution, the maximum value grows up from zero (the spheri
al

symmetri
 
on�guration) to ∼ 4.5×1012g/cm3

orresponding to a star with angular velo
ity

Ω = 0.585× 104s−1
, i.e a star for whi
h rpole = 70%req.
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rratio m R MPF Mκ Ω J | 1− λ |
M⊙ km M⊙ (10−2

)M⊙ (104) s−1
(1071) erg.s (10−2

)

1.00 1.543 12.841 1.543 0.000 0.000 0.000 1.454

0.80 1.645 14.205 1.632 1.302 0.493 4.642 2.356

0.70 1.728 15.331 1.706 2.259 0.585 6.428 4.368

Table 5.2: Properties for rotating neutron stars with 
entral energy density ǫc =
500 MeV/fm3
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Figure 5.2: Contour plot of the energy density 
oming from the perfe
t �uid 
ontribution

to the total mass for a star with rratio = 1.00 and ǫc = 500 MeV/fm3
. The �gure shows the

distribution of the term within the bra
kets in equation (5.29). The red solid line represents

the star's surfa
e.



CHAPTER 5. NUMERICAL PROCEDURE AND RESULTS 58

r sinθ (km)

r 
co

sθ
 (

km
)

 

 

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

0

0.5

1

1.5

2

2.5
x 10

14

g/cm3

Figure 5.3: Contour plot of the energy density 
oming from the perfe
t �uid 
ontribution

to the total mass for a star with rratio = 0.80 and ǫc = 500 MeV/fm3
. The �gure shows the

distribution of the term within the bra
kets in equation (5.29). The red solid line represents

the star's surfa
e.
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Figure 5.4: Contour plot of the energy density 
oming from the perfe
t �uid 
ontribution

to the total mass for a star with rratio = 0.70 and ǫc = 500 MeV/fm3
. The �gure shows the

distribution of the term within the bra
kets in equation (5.29). The red solid line represents

the star's surfa
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Figure 5.5: Contour plot of the energy density 
oming from the extrinsi
 
urvature 
ontri-

bution to the total mass for a star with rratio = 0.80 and ǫc = 500 MeV/fm3
. The �gure

shows the distribution of the term within the bra
kets in equation (5.30). The red solid line

represents the star's surfa
e.
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Figure 5.6: Contour plot of the energy density 
oming from the extrinsi
 
urvature 
ontri-

bution to the total mass for a star with rratio = 0.70 and ǫc = 500 MeV/fm3
. The �gure

shows the distribution of the term within the bra
kets in equation (5.30). The red solid line

represents the star's surfa
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Figure 5.7: Contour plot of the pressure for a star with rratio = 1.00 and ǫc = 500 MeV/fm3
.

The red solid line represents the star's surfa
e.
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Figure 5.8: Contour plot of the pressure for a star with rratio = 0.80 and ǫc = 500 MeV/fm3
.

The red solid line represents the star's surfa
e.
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Figure 5.9: Contour plot of the pressure for a star with rratio = 0.70 and ǫc = 500 MeV/fm3
.

The red solid line represents the star's surfa
e.
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5.3.2 Results for a highly magnetized neutron star

As we mentioned in the introdu
tion of this 
hapter we restri
t attention to stati
 
on�gura-

tions, whi
h involves a number of simpli�
ations, in
luding the vanishing of Nφ, At, and J t
,

and the absen
e of surfa
e 
harges. Moreover, we have 
hosen the 
urrent fun
tion de�ned

by equation (4.57) to be a 
onstant f(Aφ) = fo, hen
e the 4-
urrent density has only one


omponent given by

jφ = (ǫ+ P )fo, (5.33)

hen
e the azimutal 
omponent of jµ in an orthonormal basis is

j̃φ = e−νGr sin θ(ǫ+ P )fo, (5.34)

In the following, neutron stars with a poloidal magneti
 �eld are studied for di�erent

values of the 
urrent fun
tion f0 whi
h will help us to study from the spheri
al symmetri



on�guration (fo = 0.00) as well as a highly magnetized star (fo = 3.26) in whi
h the strong

magneti
 �eld a�e
ts the matter distribution in the system, as we will see. In table 5.3

we show the results for the total gravitational mass m, the 
ir
umferential radius R, the

perfe
t �uid

2


ontribution to the mass MPF
, the ele
tromagneti
 
ontribution to the mass

MEM
, the magneti
 �eld magnitude at the 
enter Bc and at the pole Bpole, the magneti


moment µ at θ = π/4 and the virial fa
tor | 1 − λ | for stars with a �xed 
entral density

ǫc = 350 MeV/fm3
.

The perfe
t �uid and the ele
tromagneti
 
ontributions to the gravitational mass

are given by

MPF = 4πR3

∫ 1

0

ds
s2

(1− s)4

∫ π/2

0

dθsinθe2(ǫ−ν)G(ǫ+ 3P ), (5.35)

2

we use this name be
ause this term remember us the expression of the gravitational mass of the perfe
t

�uid for a nonmagnetized star
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MEM = 4πR3

∫ 1

0

ds
s2

(1− s)4

∫ π/2

0

dθsinθe2(ǫ−ν)G(2EEM). (5.36)

In terms of the 
oordinates (s, θ) the expression (4.94) for the magneti
 moment is

µ(s, θ) =
e2ν−ζ

2Gcosθsinθ
R

s

1− s
(Aφ,θ) |s→1 . (5.37)

For the 
ase of a perfe
t �uid 
oupled with a poloidal magneti
 �eld, the terms that

allow us to 
al
ulate the virial quantity λ are

σm
ζ = 8πGNe

2(ζ−ν)P +GN
e2ν

R4G2sin2θ

(1− s)4

s2

[
(1− s)2(Aφ,s)

2 +
1

s2
(Aφ,θ)

2

]
, (5.38)

and

σf
ζ = −(1− s)2

R2

[
(1− s)2(ν,s)

2 +
1

s2
(ν,θ)

2

]
. (5.39)

Figures 5.10 - 5.23 show the distribution of ea
h term that 
ontributes to the

gravitational mass, i.e. MPF
and MEM

, the 
ontour of the pressure and the ele
tromag-

neti
 potential Aφ with magneti
 �eld lines, for stars with a �xed 
entral energy density

ǫc = 350 MeV/fm3
and di�erent values of the 
urrent fun
tion 
orresponding to the table

5.3. The red solid line shows the star surfa
e. The values reported in the table for MPF

and MEM
, 
orrespond to equations (5.35)and (5.36), respe
tively, while the values showed

in the legend of the �gures 5.10 - 5.16 
orrespond to the expressions within the parenthesis

in these equations, i.e. the 
ontour plots of the perfe
t �uid 
ontribution to the total mass

in �gures 5.10 - 5.13 are the 
ontour plots of the term within parenthesis in equation (5.35),

while the 
ontour plots of the ele
tromagneti
 
ontribution to the total mass in �gures 5.14

- 5.16 are the 
ontour plots of the term within parenthesis in equation (5.36), in units of

energy density g/cm3
.

Comparing the graphi
s that show the energy distribution asso
iated to the perfe
t

�uid 
ontribution for fo = 1.00 with the spheri
ally symmetri
 
on�guration (�gures 5.11

and 5.10, respe
tively), we see no signi�
antly di�eren
es, however when the 
urrent fu
ntion
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is fo = 2.50 the shape of the star's surfa
e shows a deviation from the spheri
ally symmetri



on�guration (�gure 5.12) showing the e�e
ts of the in
rease of magneti
 �eld. The same

observations are valid for �gures that show the 
ontour plot of the pressure, �gures 5.17,

5.18 and 5.19, where the maximum values rea
hed for P remains in 5.5 dyn/cm2
, but

for fo = 2.50 as before the in
rease of the magneti
 �eld a�e
ts the shape of the star.

The ele
tromagneti
 e�e
ts be
ome more dramati
 when the magneti
 �eld in
reases from

Bc = 1.844×1017 G to Bc = 1.240×1018 G whi
h 
orresponds to fo = 3.26, the e�e
ts of this

higher magneti
 �eld are re�e
ted not only in the shape of the star but also in the matter

distribution, for this value of fo the magneti
 for
es push the matter o�-
enter, showing the

transition to a toroidal topology (�gures 5.13 and 5.20), similar results were reported by

Lattimer et. al. [71℄. The ele
tromagneti
 energy at the 
enter experiments a growth from

∼ 14 × 1011 g/cm3
for fo = 1.00, ∼ 12 × 1012 g/cm3

for fo = 2.50 to the highest value

∼ 6× 1013 g/cm3
for fo = 3.26 as we 
an see in �gures 5.14,5.15 and 5.16, respe
tively. The

in
rease in the magneti
 �eld is shown in �gures 5.21, 5.22 and 5.23 where we 
an see the


hange in the order of magnitude of Aφ between the di�erent values of the 
urrent fun
tion,

from Aφ,max ∼ 4.5 × 1028 G.cm to Aφ,max ∼ 6.0 × 1029 G.cm. The red line 
hanges from

spheri
al to ellipsoidal, showing the e�e
ts in the shape of the star of the growing magneti


�eld. From these �gures we 
an 
on
lude that the only 
omponent of the 4-
urrent density

is jφ whi
h vanishes at the 
enter and in the surfa
e of the star. The 
urrent measured by a

lo
al observer in the equatorial plane j̃φ peaks somewhere inside the star and vanishes at the

origin and the surfa
e, as equation (5.34) suggests, generating the poloidal magneti
 �eld.

Another 
on
lusion that these �gures allow us to draw is the fa
t that the highest magnitude

of the magneti
 �eld is at the 
enter of the star in 
ontrast to �gure 1 of Lattimer et. al. [71℄

in whi
h the magneti
 �eld strength 
an not be dedu
ed from the lines distribution. After

the value fo = 3.26 for a star with ǫc = 350 MeV/fm3
, 
onvergen
e 
annot be a
hieved. In

that sense, the transition to a toroidal topology is suggestive of possible dynami
al out
omes

that may be 
onsidered for future works.

It is important to draw attention to the fa
t that the maximum values of the pressure

in the 
ase of a rotating stars without magneti
 �eld (�gures 5.7, 5.8 and 5.9) are ∼ 11 ×
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1034 dyn/cm2
and for magnetized stars without rotation (�gures 5.17, 5.18 and 5.19) the

maximum pressure values are ∼ 5.5 × 1034 dyn/cm2
, the �rst value mentioned 
orresponds

to a star with 
entral density ǫc = 500 MeV/fm3
while the se
ond one 
orresponds to

ǫc = 350 MeV/fm3
, but when the 
urrent fun
tion is set at fo = 3.26 these maximum values

be
ome similar as we 
an see in �gure 5.20. It would be interesting for future works, to


ompare the e�e
ts of high 
entral densities for rotating neutron stars and high magneti


�elds in the magnitude of the total pressure.

Another important point to be mentioned is that besides the expressions for the

gravitational mass for the rotating star with no magneti
 �eld and the magnetized star

without rotation, equations (4.75) and (4.90), respe
tively, suggest an analogy between the

roles of the energy density 
oming from the extrinsi
 
urvature and the ele
tromagneti



ontribution in the gravitational mass, �gures 5.5 and 5.6 for a rotating star and �gures 5.14,

5.15 and 5.16 for a magnetized star, show that the distribution in the star of these energies

are di�erent, while the energy asso
iated to the extrinsi
 
urvature tensor is 
on
entrated

near to the surfa
e of the star, the ele
tromagneti
 energy has its maximum values near to the


enter. Another di�eren
e between these two 
urvature sour
es is asso
iated to the maximum

values they rea
h, while for the extrinsi
 
urvature its maximum value is ∼ 4.5× 1012g/cm3

for the ele
tromagneti
 energy the maximum value is ∼ 6× 1013g/cm3
, being only one order

of magnitude less than the maximum values rea
hed for the perfe
t �uid 
ontribution.

f0 m R MPF MEM Bc Bpole µ | 1− λ |
M⊙ km M⊙ (10−3

)M⊙ (1017) G (1017) G (1035) Gaussian (10−3
)

0.000 1.275 13.257 1.275 0.000 0.000 0.000 0.000 7.164

1.000 1.303 13.367 1.300 2.342 1.844 0.242 3.028 9.744

2.500 1.562 14.211 1.535 26.714 5.535 0.879 10.089 10.938

3.260 2.986 15.541 2.745 241.7 12.400 2.995 32.797 130.600

Table 5.3: Properties of magnetized stars with 
entral energy density ǫc = 350 MeV/fm3
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Figure 5.10: Contour plot of the energy density 
oming from the perfe
t �uid 
ontribution

to the total mass for a star with fo = 0.00 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.35). The red solid line

represents the star's surfa
e.
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Figure 5.11: Contour plot of the energy density 
oming from the perfe
t �uid 
ontribution

to the total mass for a star with fo = 1.00 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.35). The red solid line

represents the star's surfa
e.
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Figure 5.12: Contour plot of the energy density 
oming from the perfe
t �uid 
ontribution

to the total mass for a star with fo = 2.50 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.35). The red solid line

represents the star's surfa
e.
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Figure 5.13: Contour plot of the energy density 
oming from the perfe
t �uid 
ontribution

to the total mass for a star with fo = 3.26 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.35). The red solid line

represents the star's surfa
e.
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Figure 5.14: Contour plot of the energy density 
oming from the ele
tromagneti
 
ontribution

to the total mass for a star with fo = 1.00 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.36). The red solid line

represents the star's surfa
e.
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Figure 5.15: Contour plot of the energy density 
oming from the ele
tromagneti
 
ontribution

to the total mass for a star with fo = 2.50 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.36). The red solid line

represents the star's surfa
e.
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Figure 5.16: Contour plot of the energy density 
oming from the ele
tromagneti
 
ontribution

to the total mass for a star with fo = 3.26 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.36). The red solid line

represents the star's surfa
e.
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Figure 5.17: Contour plot of the pressure for a star with fo = 0.00 and ǫc = 350 MeV/fm3
.

The red solid line represents the star's surfa
e.
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Figure 5.18: Contour plot of the pressure for a star with fo = 1.00 and ǫc = 350 MeV/fm3
.

The red solid line represents the star's surfa
e.
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Figure 5.19: Contour plot of the pressure for a star with fo = 2.50 and ǫc = 350 MeV/fm3
.

The red solid line represents the star's surfa
e.
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Figure 5.20: Contour plot of the pressure for a star with fo = 3.26 and ǫc = 350 MeV/fm3
.

The red solid line represents the star's surfa
e.
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Figure 5.21: Contour plot of the ele
tromagneti
 potential for a star with fo = 1.00 and

ǫc = 350 MeV/fm3
. The white lines show the magneti
 �eld (in Gauss) and the red solid

line represents the star's surfa
e.
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Figure 5.22: Contour plot of the ele
tromagneti
 potential for a star with fo = 2.50 and

ǫc = 350 MeV/fm3
. The white lines show the magneti
 �eld (in Gauss) and the red solid

line represents the star's surfa
e.
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Figure 5.23: Contour plot of the ele
tromagneti
 potential for a star with fo = 3.26 and

ǫc = 350 MeV/fm3
. The white lines show the magneti
 �eld (in Gauss) and the red solid

line represents the star's surfa
e.
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5.3.3 Stellar sequen
es

Figures 5.24 and 5.25 show the gravitational mass as a fun
tion of the 
ir
umferential radius

and the mass as a fun
tion of the 
entral density, respe
tively, for stati
 stars ea
h of them

with 
onstant 
urrent fun
tions. The range 
onsidered for the 
entral energy density is

between (120 − 1860) MeV/fm3
whi
h allow us to study stars with low and high values of

ǫc. The lower line represents the spheri
ally symmetri
 
on�guration with fo = 0.00 (no

magneti
 �eld) with the lowest value of the virial fa
tor | 1 − λ |∼ 10−4

orresponding to

a 
entral density ǫc = 186.273 MeV/fm3
(see table 5.5). The bla
k 
urve 
orresponds to

fo = 1.00 whi
h has similar values of the spheri
ally symmetri
 
on�guration as the �gures

show, this fa
t allow us to 
on
lude that stars with this value of the 
urrent fun
tion 
an be

studied as a perturbation of the spheri
ally symmetri
 
on�guration.

The e�e
ts of higher magneti
 �eld are shown by the red and violet 
urves whi
h

exhibit more di�eren
es than the blue and bla
k ones. When the 
urrent fun
tion grows to

fo = 2.00 or fo = 2.50 the e�e
ts of the magneti
 �eld are 
onsiderable, as we 
on
luded for

a star with a �xed value of the 
entral energy density in the previous se
tion. In fa
t, for the

value of ǫc = 400 MeV/fm3
for example, the mass of the star 
hanges from m = 1.534M⊙ to

m = 1.662M⊙ and the magneti
 �eld at the pole 
hanges from the order of Bpole ∼ 1016G

to Bpole ∼ 1017 G. The largest value of the magneti
 �eld at the 
enter reported in table

5.5 
orresponds to a mass of m = 2.016M⊙ and R = 10.351km with Bc = 1.065 × 1018 G,

for ǫc = 1498.705 MeV/fm3
. Note that for this last value reported for ǫc the radius of the

star de
reases with the growing of the 
urrent fun
tion value, but ea
h of them being higher

than its 
orresponding spheri
al star.

Figure 5.26 shows the 
ir
umferential radius as a fun
tion of the 
entral density. For

a range of ǫc ∈ (200−1350) MeV/fm3
the radius of the star grows with the magneti
 �eld, but

for ǫc ∼ 1400 MeV/fm3
this situation begins to be di�erent for ultra relativisti
 situations,

as �gure 5.27 shows for high values of the 
entral density, stars with higher values of fo have

smaller radii, even for ǫc ∈ (1500− 1860) MeV/fm3
the red and violet 
urves 
orresponding

to fo = 2.00 and fo = 2.50, respe
tively, are below the blue one whi
h 
orresponds to the

spheri
ally symmetri
 
on�guration, similar results were reported by Bo
quet et. al. [48℄. In
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this se
tion we have not studied the stellar sequen
e for fo = 3.26 be
ause for this value of

the 
urrent fun
tion 
onvergen
e 
annot be a
hieved for densities around ∼ 400 MeV/fm3
.

The maximummass 
on�guration properties for stati
 stars with a poloidal magneti


�eld are summarized in table 5.4. The mass in
reases with the magneti
 �eld, rea
hing max-

imum values similar to that reported by Lattimer et al. [71℄ for the EoS taken from Prakash,

Cooke and Lattimer (PCLhyp) [72℄ whi
h is based on a relativisti
 �eld-theoreti
al des
rip-

tion of dense matter starting from the Lagrangian proposed by Zimanyi and Moszkowski [73℄

with the in
lusion of hyperons. The mass reported by Lattimer et. al. [71℄ is m = 2.04M⊙

with a radius R = 11.8 km, 
orresponding to a 
entral density ǫc = 20.09×1014 g/cm3
whi
h

are very similar to that reported in table 5.4 where the maximum mass is m = 2.038M⊙

with R = 11.094km 
orresponding to ǫc = 20.41 × 1014 g/cm3
. However, the values of the

magneti
 �eld at the 
enter and in the pole reported by Lattimer et. al. Bc = 23.5× 1017 G

and Bpole = 13.0 × 1017 G, are higher than the one 
omputed with our 
ode. A possible

explanation for this result is the fa
t that in the EoS PCLhyp the authors 
onsider the

presen
e of quarks as part of the mi
ros
opi
al 
omposition of the neutron star.

A �nal point to be mentioned is the fa
t that the magneti
 �eld values reported in

this work are smaller than the limit value estimation of Lattimer et. al. [71℄

Blim ≃ 8× 1018
(
1.4M⊙

M

)
G (5.40)

for whi
h a bla
k hole formation is inevitable. This limiting �eld is not mu
h larger than

the maximum �elds reported by Lattimer et. al. who studied di�erent EoS.

f0 ǫc m R Bc Bpole µ | 1− λ |
MeV/fm3 M⊙ km (1017) G (1017) G (1035) Gaussian (10−2

)

0.000 1436.267 1.937 10.468 0.000 0.000 0.000 4.109

1.000 1416.038 1.963 10.518 3.959 0.469 1.931 4.597

2.000 1246.328 2.000 10.854 7.881 0.995 4.394 4.893

2.500 1144.644 2.038 11.094 9.929 1.324 6.042 5.240

Table 5.4: Properties of magnetized stars for the maximum mass 
on�guration
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ǫc f0 m R Bc Bpole µ | 1− λ |
MeV/fm3 M⊙ km (1017)G (1017) G (1035) Gaussian (10−2

)

186.273 0.000 0.519 13.166 0.000 0.000 0.000 0.073

1.000 0.530 13.226 0.810 0.709 1.064 0.199

2.000 0.575 13.465 1.749 0.170 2.546 0.785

2.500 0.629 13.731 2.332 0.244 3.771 2.258

350.000 0.000 1.275 13.257 0.000 0.000 0.000 0.716

1.000 1.300 13.367 1.844 0.242 3.028 0.974

2.000 1.416 13.776 4.029 0.582 7.222 2.042

2.500 1.562 14.211 5.535 0.879 10.89 3.294

375.000 0.000 1.341 13.230 0.000 0.000 0.000 0.880

1.000 1.369 13.332 1.975 0.263 3.159 1.114

2.000 1.478 13.674 4.391 0.643 7.482 1.809

2.500 1.610 14.014 6.075 0.973 11.07 2.826

400.000 0.000 1.397 13.186 0.000 0.000 0.000 0.989

1.000 1.426 13.284 2.072 0.277 3.237 1.238

2.000 1.534 13.606 4.601 0.677 7.607 1.982

2.500 1.662 13.916 6.352 1.018 11.13 2.998

425.000 0.000 1.447 13.132 0.000 0.000 0.000 1.085

1.000 1.476 13.226 2.163 0.291 3.290 1.359

2.000 1.582 13.528 4.798 0.706 7.669 2.145

2.500 1.705 13.807 6.607 1.057 11.09 3.145

450.000 0.000 1.492 13.071 0.000 0.000 0.000 1.184

1.000 1.521 13.159 2.250 0.303 3.323 1.475

2.000 1.626 13.441 4.983 0.733 7.683 2.308

2.500 1.742 13.692 6.843 1.091 10.99 3.286

475.000 0.000 1.534 13.002 0.000 0.000 0.000 1.268

1.000 1.563 13.087 2.334 0.314 3.339 1.583

2.000 1.659 13.344 5.056 0.739 7.576 2.331

2.500 1.775 13.572 7.064 1.120 10.84 3.421

500.000 0.000 1.572 12.929 0.000 0.000 0.000 1.345

1.000 1.547 13.002 2.392 0.321 3.324 1.604

2.000 1.693 13.247 5.216 0.759 7.522 2.473

2.500 1.804 13.450 7.273 1.147 10.67 3.547

1498.705 0.000 1.935 10.346 0.000 0.000 0.000 2.548

1.000 1.962 10.380 4.024 0.471 1.844 4.793

2.000 1.992 10.369 8.297 1.007 3.746 5.254

2.500 2.016 10.351 10.655 1.334 4.728 5.556

Table 5.5: Properties of magnetized stars for di�erent values of ǫc and fo
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Figure 5.24: Mass vs 
ir
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ial radius for di�erent 
urrent fun
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urrent fun
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This plot is a zoom of �gure 5.26. It shows that from around ǫc = 1500MeV/fm3
the stars

with higher magneti
 �eld, 
orresponding to fo = 2.00 and fo = 2.50, have smaller radius.



Chapter 6

Con
lusions

The three main fronts of 
ompa
t star resear
h are the mi
ros
opi
al 
omposition

and equation of state, relativisti
 stru
ture, and evolution. The purpose of this resear
h was

to study, within a totally general relativisti
 framework, the e�e
ts of magneti
 �elds in the

stru
ture of neutron stars, i.e. how a magneti
 �eld a�e
ts the spa
etime geometry of these


ompa
t obje
ts. We started by studying the formal general relativity aspe
ts involving

the equations that des
ribe a perfe
t �uid 
oupled with a poloidal magneti
 �eld using two

di�erent approa
hes, the �rst one uses Weyl spheri
al 
oordinates 
onsidered by Herrera

et. al. [23℄ to des
ribe an anisotropi
 relativisti
 �uid and the se
ond one is based in the

study of Shapiro et al. [19℄ who derived the �eld equations for a rotating neutron star. We

introdu
ed three quantities, namely W , Π and σ, and derived the 
onservation equations of

a magnetized neutron star. Comparing with the equations presented by Herrera et. al. we


on
luded that these quantities 
ould be identi�ed as the ele
tromagneti
 energy density,

anisotropy and the shear stress expirien
ed by the �uid, respe
tively [18℄.

Inspired by the work of Shapiro et. al. [19℄, the �eld equations des
ribing a perfe
t

�uid 
oupled with a poloidal magneti
 �eld were derived. The results show that the ele
tro-

magneti
 e�e
ts are only present in the sour
e asso
iated with the metri
 potential ρ and in

the equation de�ning the metri
 potential α. When the equations are written in terms of the

4-potential Aφ, the sour
e Sρ 
an be written as a superposition of the sour
e 
oming from the

perfe
t �uid 
ontribution SPF
ρ and the ele
tromagneti
 sour
e SEM

ρ . No dire
t 
ontribution
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from the ele
tromagneti
 �eld is present in the sour
e of the metri
 potential γ.

With the physi
al interpretation for the introdu
ed quantities W, Π and σ in mind,

we wrote the �eld equations for the metri
 potentials ρ and α in terms of these three quanti-

ties. The right hand side of the equation asso
iated to the metri
 potential ρ, 
orresponding

to the sour
e Sρ, shows the ele
tromagneti
 in�uen
e in the term 2W whi
h appears as a

sum of the energy density and pressure of the �uid. Moreover, the fa
tor 2 appears again in

the expression of the gravitational mass in 
hapter IV, in whi
h another approa
h was used

to study the neutron star stru
ture and where the term EEM
de�nitely represents the ele
-

tromagneti
 energy density. These results allow us to 
on
lude two important points: one is

the fa
t that the quantity W 
an be understood as the ele
tromagneti
 energy density as is


on
luded in [18℄. The se
ond point is, we 
on�rm the 
on
lusions of Papapetrou in 1947 [26℄

who studied the stati
 solution of the equations of the gravitational �eld for an arbitrary


harge distribution, the fa
tor 2 appears as a fundamental property of ele
tro-gravitational

�eld and hen
e is independent on the 
oordinates 
hoi
e. Later, in 1960 Bonnor [27℄ studied

the 
ontribution to the gravitational mass of a 
ir
ular wire 
arring a steady 
urrent. Bonnor

showed that to obtain a physi
ally reasonable solution, within general relativity, for the �eld

of a loop steady 
urrent, it is ne
essary to endow the wire with a gravitational mass whi
h


orresponds to the energy of the magneti
 �eld 
reated. The result of Bonnor was the grav-

itational mass is twi
e the magneti
 energy M = 2W (see equation (7.16) in referen
e [27℄).

In the present work, we have studied the 
ontribution of the ele
tromagneti
 energy to the

gravitational mass for a perfe
t �uid 
oupled with a poloidal magneti
 �eld and our results

are in agreement with the 
on
lusions of Papapetrou and Bonnor.

In the Shapiro approa
h no sour
e is asso
iated to the metri
 potential α be
ause the

method used by the authors to solve this metri
 fun
tion does not imply a Poisson equation.

Writing the expression that de�nes α in terms of the 4-potential, the ele
tromagneti
 e�e
ts

appear as an addition of the equation found by Shapiro et. al. [19℄ if is 
onsidered a non

rotating �uid. But more interesting issues arise when this expression is written in terms of the

introdu
ed quantities. First of all, no in�uen
e ofW is present in the equation. Se
ondly, the

quantities Π and σ appear as the ele
tromagneti
 e�e
ts in the equation of α. For the metri
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onsidered, α is the fa
tor asso
iated to the 
oordinates r and θ whi
h are the dire
tions

where the symmetry is broken. In our system the breaking of spheri
al symmetry is due to

the poloidal magneti
 �eld whi
h has two 
omponents Br and Bθ, quantities Π and σ are

written in terms of these 
omponents. We 
an 
on
lude that Π is related to anisotropy (two

di�erent 
omponents of the magneti
 �eld) and σ is related to the shear stress experien
ed

by the �uid. These two quantities are responsible to breaking the symmetry of the system.

Having in mind the future numeri
al solution, in 
hapter III we studied the relativis-

ti
 virial theorem, but instead of the usual derivation from a 
onservation law, this important

theorem was derived from a proje
tion of the Einstein �eld equations in the hypersurfa
e

Σt thanks to the 3 + 1 formalism. The equations presented in this 
hapter are based in the

pioneer work of Bonazzola and Gourgoulhon [41℄ who derived a relativisti
 generalization of

the virial theorem for any stationary and asymptoti
ally �at spa
etime. The result of this

work is a virial integral whi
h 
onsists of a term related to the gravitational �eld sour
e (su
h

as energy density, pressure, ele
tromagneti
 �eld, et
.), a term taking into a

ount se
ond

derivatives of the metri
 potential ν, whi
h plays the role of the gravitational potential in the

Newtonian limit and �nally, a term asso
iated with the extrinsi
 
urvature. The motivation

to present the virial theorem in a 
hapter of this work was twofold: �rst, the usefulness as

a 
onsisten
y 
he
k of numeri
al solutions of the Einstein equations and se
ondly the fa
t

that in the works in whi
h we based to model numeri
ally the solutions found in 
hapter V,

the virial integral looks un
lear for the reader.

In 
hapter IV, we presented the theoreti
al formalism des
ribing rotating and highly

magnetized neutron stars using a full axially symmetri
 treatment, we wrote the Einstein-

Maxwell equations in terms of a �at spa
e ellipti
 operator and denoted the sour
e as the

terms 
ontaining matter, ele
tromagneti
 and non linear terms in the metri
 potentials. The

hydrostati
 equilibrium equations were derived within the assumption of in�nite 
ondu
tivity

matter and the relevant physi
al quantities des
ribing the system were derived. We found

that the formalism of stationary neutron stars with poloidal magneti
 �elds 
onsists of

a 
losed system of eleven variables (four metri
 variables, energy density, pressure, two


omponents of the ele
tromagneti
 potential, two 
omponents of the ele
tromagneti
 
urrent,
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and the heat fun
tion); eleven equations (four Poisson equations for the metri
 variables, two

Poisson equations for the 
omponents of the ele
tromagneti
 potential, a relation between

these 
omponents, the equation of state, the relation between the heat fun
tion, energy

density and pressure, the �rst integral of the equations of hydrostati
 equilibrium, and the

restri
tion on the ele
tromagneti
 
urrent); three input parameters (angular velo
ity, total

ele
tri
 
harge, and the maximum density); and one input 
urrent fun
tion.

The dis
ussions developed in 
hapter IV, aided us in 
onstru
ting the numeri
al solu-

tion presented in 
hapter V, where we studied both rotating neutron stars without magneti


�eld and magnetized neutron stars without rotation, modelled as a perfe
t �uid 
oupled with

a poloidal magneti
 �eld in stationary 
on�gurations. As fo
us was the study of magneti


�eld e�e
ts in the stru
ture of neutron stars, the mi
ros
opi
al 
omposition used to des
ribe

neutron star matter was based on a traditional model of EoS known as G300 whi
h supposes

that the neutron stars are 
omposed by hadrons and studies the system in the framework of

�eld theory of intera
ting nu
leons, hyperons and mesons.

To des
ribe global properties of a rotating neutron star without magneti
 �eld we


al
ulated the total gravitational mass, the 
ir
umferential radius, the angular velo
ity, an-

gular momentum and two quantities that 
ontribute to the total gravitational mass, the �rst

one depends on matter and the kineti
 energy, and the se
ond measures the 
ontribution of

the extrinsi
 
urvature to the total energy of the system. The results show that the rota-

tional e�e
ts in
rease the spheri
al 
on�guration mass in 18.5% for the maximum rotation

studied and 
hange the star´s surfa
e from the spheri
al to ellipsoidal shape.

To des
ribe magnetized neutron stars without rotation with 
onstant 
urrent fun
-

tions we 
al
ulated the total gravitational mass, the 
ir
umferential radius, the magneti


�eld at the 
enter, magneti
 �eld in the pole, the magneti
 moment and two quantities that


ontribute to the total gravitational mass, the �rst one expresses the perfe
t �uid 
ontribu-

tion, and the se
ond measures the 
ontribution of the ele
tromagneti
 energy to the total

mass. The results show that for a star with the lowest value of the 
urrent fun
tion, whi
h

means lower magneti
 �elds, the deviations from the spheri
ally symmetri
 
on�guration are

not signi�
ant. In fa
t, for the maximum mass 
on�guration the magneti
 �eld in
reases
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the spheri
al mass only in 2.6%, hen
e the spheri
al perturbation method would be used to

des
ribe these magnetized neutron stars. This perturbation approa
h was followed by Ioka

et. al. [74℄ who 
onsidered poloidal and toroidal magneti
 �elds with meridional �ow.

When the 
urrent fun
tion is set at fo = 2.50, the 
ontribution of the ele
tromag-

neti
 energy in
reases the mass in 28.7% for a star with 
entral energy density equal to

350 MeV/fm3
whi
h 
orresponds to a magneti
 �eld at the pole of 8.79 × 1016 G. For this


ase the shape of the star´s surfa
e has a 
lear deviation from spheri
al symmetry, showing

the e�e
ts of the ele
tromagneti
 energy.

The ele
tromagneti
 e�e
ts be
ome more dramati
 for a star with a magneti
 �eld

in the 
enter of 1.240 × 1018 G, for this 
ase not only the shape of the star´s surfa
e is

a�e
ted but also the magneti
 for
e pushes a su�
ient amount of mass o�-
enter, showing

the transition to a toroidal topology. For the maximum mass 
on�guration, the results

showed that for stars with 
entral magneti
 �eld ∼ 1018 G ele
tromagneti
 e�e
ts in
rease

the mass in 10.1% with respe
t to the 
on�guration without magneti
 �eld.

The pressure 
ontours studied suggest similar e�e
ts in the magnitude of the pres-

sure between rotating and nonmagnetized neutron stars with high 
entral densities and

nonrotating neutron stars with high magneti
 �elds and lower 
entral densities.

Another important point to be mentioned is that besides the expressions for the

gravitational mass for a rotating star with no magneti
 �eld and the magnetized star without

rotation, suggest an analogy between the roles of the energy density 
oming from the extrinsi



urvature and the ele
tromagneti
 
ontribution in the gravitational mass, the results show

that the distribution through the star of these gravitational sour
es are di�erent, while the

extrinsi
 
urvature energy density has its largest values near and even beyond to the star's

surfa
e, the ele
tromagneti
 energy density maximum values are near the 
enter of the star.

The mass-radius and mass-
entral energy density relations for the stellar sequen
es

show that for stars with values of the 
urrent fun
tions fo = 2.00 and fo = 2.50, the

deviation from the spheri
al symmetry is more dramati
, this allows us to 
on
lude that it is

not appropriate to adopt the spheri
al perturbation approa
h for these stars and hen
e the

full axially symmetri
 treatment used in this work brings the suitable des
ription for these
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highly magnetized neutron stars. As expe
ted we see that as the magneti
 �elds in
rease the

maximum mass and the radius also in
rease. Similar results 
an be found in Lattimer et. al.

[71℄, a
tually the largest maximum mass founded by our study is similar to that reported by

Lattimer, although in our work the magneti
 �eld at 
enter and in the pole are smaller than

that reported by Lattimer. This result indi
ates the role of the mi
ros
opi
al 
omposition of

the matter in magnetized neutron stars, while Lattimer 
onsidered the presen
e of quarks,

the EoS adopted in this work only 
onsiders hadrons.

An interesting e�e
t that we found was that for lower 
entral energy densities the

radius in
reases with magneti
 �eld, but for stars with 
entral energy density between (1500−

1860) MeV/fm3
the radius of the stars with higher magneti
 �eld are smaller, even 
ompared

with the spheri
ally symmetri
 
on�gurations. This e�e
t is not present for stars with

fo = 1.00 whose radii have similar values 
ompared to the nonmagnetized stars.

In summary, in 
hapter V we showed results of the numeri
al solution des
ribing

rotating and highly magnetized neutron stars 
onsidering the stati
 
on�gurations. The 
ode

that allowed us to found the numeri
al solution 
ombined the methods used by Shapiro et.

al. [19℄ and Lattimer et. al. [71℄. Our method is on par with that of the other authors.

A few topi
s to be 
onsidered for future investigations:

� Investigate if the fa
tor two present in the gravitational mass expression for the ele
-

tromagneti
 energy, i.e. 2W , for a perfe
t �uid 
oupled with a poloidal magneti
 �eld

and dis
ussed in 
hapter II, (identi�ed by Papapetrou [26℄ as a fundamental property

of the stati
 ele
tro-gravitational �eld) appears in the 
ase of non poloidal magneti


�eld, for example toroidal 
on�gurations.

� Study the relation between the extrinsi
 
urvature 
ontribution to the total gravita-

tional mass as well its 
ontour plot near to the Kepler frequen
y.

� Compare the e�e
ts of the extrinsi
 
urvature in the orbits of di�erent kind of parti
les

with the results founded by Alfradique et. al. [75℄.

� Compare the redshift e�e
ts of the magneti
 �elds founded in our solution with the

results reported by Tro
onis et. al. [76℄ who adopted the analyti
al solution for the
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metri
 proposed by Bonnor [50℄ and measures the redshift e�e
t for neutron stars with

magneti
 �eld at the 
enter ∼ 1016 G.

� As we saw in 
hapter V, after the value fo = 3.26 for a star with 
entral density equal

to 350MeV/fm3
, 
onvergen
e 
annot be a
hieved. In that sense, the transition to a

toroidal topology is suggestive of possible dynami
al out
omes that may be 
onsidered

for future works.

� Investigate the e�e
ts of the mi
ros
opi
al 
omposition in the extrinsi
 
urvature and

ele
tromagneti
 energy distribution 
onsidering more realisti
 equations of state.

� The magneti
 �eld evolution, non 
onstant 
urrent fun
tions, the magneti
 �eld role

in the 
ooling pro
esses and the 
onsequen
es in the neutron star stru
ture are other

issues that 
an be 
onsidered as the next step of the present work.



Chapter 7

Appendix

7.1 Appendix of 
hapter II

Thinking in future works devoted to �nd numeri
al solutions of the equations presented in


hapter II, we are going to write Einstein �eld equations in terms of dimensionless 
oordinate

s whi
h is related to radial 
oordinate r, through

r = R

(
s

1− s

)
(7.1)

so if s = 0 ⇒ r = 0 and s = 1 ⇒ r −→ ∞ and in this way we 
over all r 
oordinate domain.

In terms of s we have that

∇f.∇g =
(1− s)2

R2

[
(1− s)2f,sg,s +

(1− µ2)

s2
f,µg,µ

]
(7.2)

Sγ(s, µ) = eγ/2
{
16πe2αP +

γ

2

[
16πe2αP − (1− s)2

2R2

(
(1− s)2(γ,s)

2 +
(1− µ2)

s2
(γ,µ)

2

)]}
.(7.3)
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Nonetheless, equation (7.3) has dimension of

1
[L]2

, so our dimensionless e�e
tive sour
e S̃ will

be de�ne as

S̃γ(s, µ) =r2Sγ(s, µ)

= R2 s2

(1− s)2
Sγ(s, µ)

= eγ/2
{
16πe2αP̃ +

γ

2

[
16πe2αP̃ − 1

2

(
s2(1− s)2(γ,s)

2 + (1− µ2)(γ,µ)
2
)]}

.

(7.4)

where the dimensionless quantity C̃ is de�ned as

C̃ = r2C

= R2 s2

(1− s)2
C (7.5)

then P̃ = r2P , ρ̃0 = r2ρ0 and ρ̃i = r2ρi.

The expression for Sρ(s, µ) is

Sρ(s, µ) = eγ/2
[
8πe2α(ρ0 + ρi + P ) +

(1− s)3

R2

γ,s
s

− µ

R2

(1− s)2

s2
γ,µ + (7.6)

+
ρ

2

(
16πe2αP − 1

2
∇γ.∇γ − (1− s)3

R2

γ,s
s

+
µ

R2

(1− s)2

s2
γ,µ

)]
+

+ eγ/2
e−(γ−ρ)

R2(1− µ2)

(1− s)2

s2
2∇Aφ.∇Aφ,

The expression for the dimensionless sour
e (or e�e
tive sour
e) S̃ρ(s, µ) is
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S̃ρ(s, µ) = r2Sρ(s, µ)

= R2 s2

(1− s)2
Sρ(s, µ)

= eγ/2
[
8πe2α(ρ̃0 + ρ̃i + P̃ ) + s(1− s)γ,s − µγ,µ + (7.7)

+
ρ

2

(
16πe2αP̃ − 1

2
R2 s2

(1− s)2
∇γ.∇γ +

− s(1− s)γ,s + µγ,µ

)]
+ eγ/2

e−(γ−ρ)

(1− µ2)
2∇Aφ.∇Aφ,

where ∇γ.∇γ and ∇Aφ.∇Aφ are given by (7.2) and we have to remember the dimensions

of quadripotential in our 
oordinates are [Aφ] = [Lenght], so the �nal term of (7.7) is

dimensionless.

The dimensionless introdu
ed quantities, i.e. dimensionless energy, anisotropy and

shear stress are given by

W̃ (s, µ) = r2W (s, µ)

= R2 s2

(1− s)2
W (s, µ)

= R2 s2

(1− s)2
1

16π

e−(γ−ρ)e−2α

R2(1− µ2)

(1− s)2

s2
2∇Aφ.∇Aφ

=
1

16π

e−(γ−ρ)e−2α

(1− µ2)
2∇Aφ.∇Aφ, (7.8)

Π̃(s, µ) = r2Π(s, µ)

= R2 s2

(1− s)2
Π(s, µ)

= R2 s2

(1− s)2

{
− 1

8π

e−(γ−ρ)e−2α

R2(1− µ2)

(1− s)2

s2

[
∇Aφ.∇Aφ −

2(1− µ2)

R2

(1− s)2

s2
(Aφ,µ)

2

]}

= − 1

8π

e−(γ−ρ)e−2α

(1− µ2)

[
∇Aφ.∇Aφ −

2(1− µ2)

R2

(1− s)2

s2
(Aφ,µ)

2

]
, (7.9)
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σ̃(s, µ) = r2σ(s, µ)

= R2 s2

(1− s)2
σ(s, µ)

= R2 s2

(1− s)2

{
− 1

8π

2e−(γ−ρ)e−2α

R4(1− µ2)1/2
(1− s)5

s3
(Aφ,s)(Aφ,µ)

}

= − 1

8π

2e−(γ−ρ)e−2α

R2(1− µ2)1/2
(1− s)3

s
(Aφ,s)(Aφ,µ). (7.10)

Taking into a

ount (7.8) and (7.7) we write the expression for S̃ρ(s, µ) in terms of

the dimensionless introdu
ed quantities,

S̃ρ(s, µ) = eγ/2
[
8πe2α(ρ̃0 + ρ̃i + P̃ + 2W̃ ) + s(1− s)γ,s − µγ,µ + (7.11)

+
ρ

2

(
16πe2αP̃ − 1

2
R2 s2

(1− s)2
∇γ.∇γ − s(1− s)γ,s + µγ,µ

)]
.

Expression for S̃γ is given by (7.4) and it does not depend on the possible physi
al

quantities.

Finally, the equation for γ in a dimensionless way is
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α,µ = −1

2
(γ,µ + ρµ)− {[1 + s(1− s)γ,s]

2(1− µ2) +
[
µ− (1− µ2)γ,µ)

]2}−1 × (7.12)

×
[
− 1

2
{3µ2 − 4µ(1− µ2)γ,µ + (1− µ2)2(γ,µ)

2}(γ,µ + ρ,µ) +

− 1

2
s(1− s)γ,s[1 + s(1− s)γ,s](1− µ2)(γ,µ + ρ,µ) +

1

2
µs(1− s)[1 + s(1− s)γ,s](γ,s − ρ,s) +

− s(1− s)[1 + s(1− s)γ,s](1− µ2)(γ,sµ + γ,sγ,µ)

+
1

2
s(1− s)[1 + s(1− s)γ,s](1− µ2)(γ,sγ,µ − ρ,sρ,µ)

+
1

2
[µ− (1− µ2)γ,µ][3µρ,µ + s(1− s)ρ,s]

− 1

2
[µ− (1− µ2)γ,µ]{s2(1− s)[(1− s)γ,ss − 2γ,s]− (1− µ2)γ,µµ}+

− 1

4
R2 s2

(1− s)2
[µ− (1− µ2)γ,µ]

{
∇γ.∇γ +∇ρ.∇ρ− 2(1− µ2)(1− s)2

R2s2
[(γ,µ)

2 + (ρ,µ)
2]

}]
+

+ {[1 + s(1− s)γ,s]
2(1− µ2) +

[
µ− (1− µ2)γ,µ)

]2}−1 ×

× e−(γ−ρ)

[
[µ− (1− µ2)γ,µ]

(1− µ2)

[
∇Aφ.∇Aφ −

2(1− µ2)(1− s)2

R2s2
(Aφ,µ)

2

]
+

+
2(1− s)3[1 + s(1− s)γ,s]

R2s
(Aφ,s)(Aφ,µ)

]
.

Using equations (7.9) and (7.10) we write,
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α,µ = −1

2
(γ,µ + ρµ)− {[1 + s(1− s)γ,s]

2(1− µ2) +
[
µ− (1− µ2)γ,µ)

]2}−1 × (7.13)

×
[
− 1

2
{3µ2 − 4µ(1− µ2)γ,µ + (1− µ2)2(γ,µ)

2}(γ,µ + ρ,µ) +

− 1

2
s(1− s)γ,s[1 + s(1− s)γ,s](1− µ2)(γ,µ + ρ,µ) +

+
1

2
µs(1− s)[1 + s(1− s)γ,s](γ,s − ρ,s) +

− s(1− s)[1 + s(1− s)γ,s](1− µ2)(γ,sµ + γ,sγ,µ)

+
1

2
s(1− s)[1 + s(1− s)γ,s](1− µ2)(γ,sγ,µ − ρ,sρ,µ) +

+
1

2
[µ− (1− µ2)γ,µ][3µρ,µ + s(1− s)ρ,s] +

− 1

2
[µ− (1− µ2)γ,µ]{s2(1− s)[(1− s)γ,ss − 2γ,s]− (1− µ2)γ,µµ}+

− 1

4
R2 s2

(1− s)2
[µ− (1− µ2)γ,µ]

{
∇γ.∇γ +∇ρ.∇ρ− 2(1− µ2)(1− s)2

R2s2
[(γ,µ)

2 + (ρ,µ)
2]

}]
+

− {[1 + s(1− s)γ,s]
2(1− µ2) +

[
µ− (1− µ2)γ,µ)

]2}−1 ×

×
{
8πe2α

{[
µ− (1− µ2)γ,µ)

]
Π̃(s, µ) + (1− µ2)1/2[1 + s(1− s)γ,s]σ̃(s, µ)

}}
.
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