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Resumo

As estrelas de néutrons sao um dos objetos astrofisicos mais compactos e mais densos
conhecidos na natureza. Estes resultaram da explosao da supernova de uma estrela massiva.
A massa destes objetos situa-se entre uma e duas massas solares, normalmente tem raios de
10 km e muitas vezes giram rapidamente. Muitas das estrelas de néutrons tém campos mag-
néticos intensos, que levam a emissao de radio e radiagao de raios-X. Essas caracteristicas,
juntamente com o progresso continuo na astrofisica observacional e a observacao recente de
ondas gravitacionais provenientes da colisao de estrelas de néutrons, tornam esses objetos
poderosos laboratorios astrofisicos para uma ampla gama de fenomenos fisicos interessantes.
Este trabalho é dedicado a estudar os efeitos de campos magnéticos fortes na estrutura das
estrelas de néutrons, no ambito da teoria da relatividade geral. O primeiro passo é estudar os
aspectos formais do campo magnético na estrutura estelar e as equacoes do campo gravita-
cional usando duas abordagens diferentes, o que nos permite introduzir novas quantidades e
sua possivel interpretacao fisica. O segundo passo é apresentar o teorema do virial relativista
como uma integral que fornece uma verificacao de consisténcia das solu¢oes numéricas. Como
terceiro passo, estudamos o formalismo teorico que descreve as estrelas de néutrons com ro-
tacao nao nula e altamente magnetizadas no contexto das equacgoes de Einstein-Maxwell.
Especificamente, para estrelas de néutrons magnetizadas, estudamos campos magnéticos
poloidais e configuracoes estaticas. Sao apresentadas as quantidades fisicas relevantes que
descrevem esses objetos e uma discussao sobre a contribuicao da energia eletromagnética
para a massa gravitacional. Finalmente, encontramos o espaco-tempo que descreve estrelas
de néutrons com rotacao nao nula e magnetizadas. A distribuicao dos diferentes termos que
contribuem para a massa gravitacional e a relacao massa-raio é apresentada. Os resultados
obtidos mostram que para estrelas com campo magnético central ~ 10 G os efeitos ele-
tromagnéticos incrementam a massa em um 10.1% em relacdo a configuracdo sem campo
magnético. Os estudos realizados neste trabalho sao fundamentais para a compreensao dos

objetos astrofisicos conhecidos como Soft-Gamma Repeaters e Anomalous X-Ray Pulsars,
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que sao entendidos como sendo uma classe de estrelas de néutrons chamadas de magnetares.

Palavras-chave: Estrelas de néutrons, magnetars, campo magnético, estrutura.
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Abstract

Neutron stars are one of the most compact and densest astrophysical objects known
in nature, they result from the supernova explosion of a massive star. The mass of these
objects lies between one and two solar masses, they typically have radii of 10 km and often
spin very rapidly. Many of the neutron stars have very strong magnetic fields, which lead to
the emission of radio and X-ray radiation. The density inside these objects is many times
higher than the density of atomic nuclei. These features, together with the ongoing progress
in observational astrophysics and the recent observation of gravitational waves coming from
the collision of neutron stars, make these objects superb astrophysical laboratories for a wide
range of interesting physical phenomena. This work is devoted to study the effects of strong
magnetic fields in the structure of neutron stars, within the framework of the general rela-
tivity theory. The first step is to study the formal aspects of the magnetic field in the stellar
structure and gravitational equations using two different approaches, which allow us to intro-
duce new quantities and their possible physical interpretation. The second step is to present
the relativistic virial theorem as an integral that provides a consistency check of numerical
solutions. As third step, we study the theoretical formalism describing rotating and highly
magnetized neutron stars within the context of Einstein-Maxwell’s equations. Specifically,
for magnetized neutron stars, we study poloidal magnetic fields and static configurations.
The relevant physical quantities describing these objects are presented and a discussion about
the contribution of the electromagnetic energy to the total gravitational mass. Finally, we
find the spacetime describing rotating and magnetized neutron stars. The distribution of the
different terms that contribute to the total gravitational mass and the mass-radius relation
is presented. The results show that for stars with magnetic field ~ 10'® G the electromag-
netic effects increase the mass in 10.1% with respect to the configuration without magnetic
field. The studies performed in this work are key for the understanding the astrophysical
objects known as a Soft-Gamma Ray Repeaters and Anomalous X-Ray Pulsars, which are

understood as being one class of neutron stars called as magnetars.



Keywords: Neutron Stars, magnetars, magnetic field, structure.
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Chapter 1

Introduction

Neutron stars, which are the remnant of core collapse supernova, are one of the
most compact objects known in nature. The first modest observation of this phenomenal
explosion was in 1054 when Chinese astronomers saw and recorded the spectacular explosion
of a supernova, the guest star, as the Chinese called it, was so bright that people saw it in
the sky during the day for almost a month and remained visible in the evening sky for more
than a year [1]. The idea of neutron stars was proposed in 1934 by Walter Baade and Fritz
Zwicky, only two years after the discovery of the neutron by the English physicist Sir James
Chadwick [2]. They tentatively proposed that in a supernova explosion ordinary stars are
turned into stars that consist of extremely closely packed neutrons that they called neutron
stars.

Compact stars are in fact the remnant of massive stars, typically have radii of
10 km and masses that lie between one and two solar masses. The density inside these
objects is many times higher than the density of atomic nuclei (possibly up to 10 times
denser). Neutron stars are generally associated with three classes of astrophysical objects:
Pulsars [3], which are generally accepted to be rotating neutron stars, compact X-ray sources,
and magnetars, which are objects with very high magnetic fields. These objects are very
dense and as such, its structure must be described in the framework of Einstein’s general
relativity. In this theory, gravity is seen as curvature of spacetime, caused by mass-energy.

The problem of describing the structure of compact stars consists of finding the spacetime



geometry both inside and outside of the star for a given mass distribution.

It is common the use of the spherically symmetric solution to describe a wide range
of astrophysical objects, this assumption implies a lot of mathematical simplifications and
allows the use of Birkhoff’s theorem [4] which states that the spacetime outside of a spheri-
cal, nonrotating, gravitating body must be given by the Schwarzschild metric. This theorem
led Tolman-Openheimer-Volkoff [5-7| to calculate the hydrostatic equilibrium equations de-
scribing spherically symmetric fluids, known as TOV-equations. For dissipative fluid spheres
it is possible to match the interior and exterior spacetime with the Vaidya metric (known
as the radiating Schwarzshild metric) [8] allowing a physical interpretation of the dynamical
equations in terms of the dissipative variables [9] and a definition of the gravitational arrow
of time [10].

In the study of self gravitating compact objects it is usually assumed that small
deviations from spherical symmetry are likely to take place. Such small deviations are not
appropriate for stars with strong magnetic fields where a full axially symmetric treatment
is necessary to properly describe the system. Since the detection of soft gamma repeaters
(SGRs) in 1979 and an anomalous X-ray pulsar (AXPs) in 1981, there has been great interest
in neutron stars that could be powered by their strong magnetic field. In 1992 and 1993,
Duncan and Thompson proposed the magnetar model [11,12]| and, since then, approximately
30 SGRs and AXPs have been observed [13]. In recent years, several measurements have
estimated surface magnetic fields to be of the magnitude of 10'® G for the sources 1E 1048.1-
5937 and 1E 22594586 [14]. Furthermore, the observed X-ray luminosities of the AXPs may
require a field strength B > 10 G [15], in addition the observational data for the source
4U 0142+61 suggests internal magnetic fields to be on the magnitude 10® G with a possible
toroidal configuration [16]. The population statistics of SGRs suggest that magnetars may
constitute a significant fraction 2 10% of the neutron star population [17]. Hence it seems
likely that some mechanism is capable of generating large magnetic fields in nascent neutron
stars.

The above considerations motivate the study of the effects of magnetic field on

neutron star properties. Such study can be carried out from three points of view: the effects



in the composition of the neutron star matter, evolution and structure. The first point
is related to how magnetic fields may change the equation of state of dense matter, for
example generating anisotropies, and affecting the matter composition. The second point
is related to the effects on neutron stars temporal evolution, for example the influence of
a time dependent magnetic field in the true age of neutron stars. The last point is related
to the structural aspects, for example how magnetic fields change the mass and radius of
neutron stars.

The goal of this work is to study, within a totally general relativistic framework, the
effects of magnetic fields in the structure of neutron stars, i.e. how magnetic fields affect the
spacetime geometry of these compact objects. Me and my coworkers developed a complete
study of the three aspects, i.e. microscopical, structural and evolutionary, such study can
be found in [18].

We begin our goal studying the formal aspects of the magnetic field in the stellar
structure and gravitational equations using two different approaches. The first one uses
Weyl spherical coordinates from which conservation equations will be derived taking into
account the magnetic field contribution. The resulting equations will be compared with a
previous work where no magnetic contribution was considered and doing so, new quantities
with possible physical interpretation will be introduced. The second approach is based in
the study of Cook et al. [19] who considered rotating neutron stars and write the Einstein s
equations in terms of flat space elliptic operators and the source terms coming from the
matter and others containing non linear quadratic terms in the metric potentials. In this
section we will derive the Einstein ‘s equations following the method of Shapiro, but taking
into account the electromagnetic contribution. These equations will be written in terms of
the introduced new quantities with the idea to give the same physical interpretation and
discuss the electromagnetic contribution to the gravitational mass.

The next step to achieve our goal is to study the relativistic virial theorem. The
usefulness of the Newtonian virial theorem in physics and astrophysics is well known, mainly
within the context of the equilibrium and stability properties of dynamical systems. The

virial theorem relates the time average of kinetic energy of a generic particle with the time



average of the work executed by the forces with which the particles interact. In general
relativity, it is common to use the virial theorem derived from a conservation law. In chapter
IIT we present a relativistic version of the virial theorem as an integral identity (and not as
a conservation law) for a stationary and asymptotically flat spacetime, based in the 3 4 1
formalism. The resulting virial integral consists on terms that depend on the gravitational
source, rotational properties and metric potential. The idea behind discussing this important
theorem as a chapter in this thesis is because the virial theorem is used as a consistency check
in numerical solutions.

In chapter IV the theoretical formalism describing rotating and highly magnetized
neutron stars will be presented using a full axially symmetric treatment within the context
of Einstein-Maxwell equations. The hydrostatic equilibrium equations will be derived within
the assumption of infinite conductivity matter and the relevant quantities describing the
structure of rotating and highly magnetized neutron stars will be presented.

In chapter V we will deal with the numerical solution of the Einstein-Maxwell equa-
tions presented in chapter IV. We first consider a rotating neutron star without magnetic
field, modelled as a rotating isotropic fluid distribution. However, it is important to draw
attention to the role that is played by the pressure anisotropy in selfgravitating objects as
me and my coworkers showed in [20]. Second, we will study a highly magnetized neutron
star modelled as a perfect fluid coupled with a poloidal magnetic field, in this last case we
restrict to the static solutions (although both are stationary). As we mentioned our goal is
to study only the structural consequences of the magnetic field in neutron stars and not the
microscopical or evolutionary aspects, because of that we assume as the matter composition
a traditional equation of state that is independent of the magnetic field at the microscopical
level.

Finally, the conclusions and perspectives for future works are given in chapter VI.



Chapter 2

Formal aspects of the magnetic field on

the structure of neutron stars

We discuss the formal aspects of the magnetic field in the stellar structure and grav-
itational equations in the context of Einstein’s general relativity. The highly magnetized
star is described as a perfect fluid coupled with a poloidal magnetic field using two different
approaches, the first one uses Weyl spherical coordinates from which conservation equations
will be derived. The second approach is based in the study of Shapiro et al. [19] in which
Einstein field equation will be derived taking into account the electromagnetic contribution.
New quantities and their possible physical interpretation will be presented in the following

sections.

2.1 Neutron star structure using Weyl spherical coordi-

nates

We begin by considering a bound, static and axially symmetric source. The line

element may be written in cylindrical coordinates as

ds® = —A*(d2")? + B*[(dz")? + (d*)?] + D*(da?*)?, (2.1)
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where we identify 2° = t, 2! = p,2? = 2,2% = ¢ and A, B, D are positive functions of
the coordinates p and z. Here and throughout we set G = ¢ = 1. In the Weyl spherical

coordinates, the line element (2.1) is
ds® = —A*(dt)* + B?[(dr)? + r*(d9)*] + D*(d¢)?, (2.2)

where p = rsinf and z = rcosf. We denote the coordinates as x* = (t,r,0, ¢), and note
that A(r,0), B(r,0), D(r,0) are three independent functions.

The source of curvature in Einstein’s general relativity is represented by the energy-
momentum tensor. For a magnetized neutron star, we describe the system as a perfect fluid
coupled to a poloidal magnetic field. The perfect fluid assumption simplifies the mathe-
matical treatment dramatically. One must note, however, that there has also been research
considering spherically symmetric dissipative and anisotropic fluid distribution (see for in-
stance refs. [9,10]). As mentioned in the introduction, highly magnetized neutron stars with
poloidal fields should be modeled using an axially symmetric metric tensor which increases
the complexity of the problem considerably.

The motivation behind the assumption of a poloidal magnetic field is that such
assumption is compatible with the circularity of the space-time [21]. Tt is important to note,
however, that non-negligible toroidal magnetic fields are likely to exist in neutron stars,
making the study considerably more complicated. The study of toroidal magnetic fields, in
addition to poloidal ones is beyond the scope of this work.

Following the scenario discussed above, the energy-momentum tensor for the sys-
tem is written as that of a perfect-fluid in addition to the energy-momentum tensor of the
electromagnetic field,

T =T  +THM. (2.3)

The perfect fluid (PF) contribution is
7.5 = (p+ P)uyu, + Py, (2.4)

where p and P are, respectively, the rest-frame energy density and pressure, u* is the fluid
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4-velocity with u*u, = —1. The electromagnetic part (EM) in (4.2) is
s L (pop, L, pesr
TMV - E o va Zg;w aﬁ 9 (25)
where the Maxwell tensor F),, is defined in terms of the electromagnetic 4-potential A, as

F;w = Au“u - A;L,y- (26)

We are interested in describing a distribution without free-charge and with only poloidal

magnetic field, thus the electromagnetic 4-potential is reduced to
AM = (0,0,0,A¢(T, 0)) (27)

which leads to the following F},, (in matrix form)

0o 0 0 0
0 0 0o 2o
F, = : (2.8)
a 0A
o o0 0 2
o

with the assumptions above the electromagnetic energy-momentum tensor is

TEMO 0 0
O jvEMl1 TEM12 0
TEME, = : (2.9)
0 T%TEMlz _jvEMl1 0
0 0 0 —TBEMO,

where the non-vanishin components, in terms of the electromagnetic 4-potential, are given
by

(2.10)

Y

1 A4\’ A4\ >
EMO _ _ * ¢ | rr [ Y2 00 [ Yo
= s’ [g <8r) 9 (69)
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TEM1 i ¢ | 417 % i _ 49 % i (2.11)
e or 9 00 ’ '
1 0A 0A
TEM1 _ _— rroed [ 220 ) 2.12
27 47 I ( or ) ( a0 (212)

Now, inspired in equation (2.10) we define the following electromagnetic quantities

By =+/g" (%) , (2.13)

g (%) , (2.14)

It is important to realize that these components are not exactly the components measured
by the Eulerian observer, but rather convenient definitions of electromagnetic functions that

allow us to write the components of T in a more intuitive manner, as

1

TEMO — —8—7Tg¢¢ (B2 + Bg) , (2.15)
1

TEML — —8—ﬂ_g¢¢ (B2 — Bg) , (2.16)

1 grr
EM1 __ od |

In here, if we want to fully comprehend the physical meaning of the components of

the electromagnetic energy-momentum tensor, we must draw a parallel with its flat-space
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counterpart, given (in S.I. units) as [22]

S(e0E? + :—032) Szfc Sylc S./c
Siv c —Ogzge —O0g —Ozz
TR = / ’ , (2.18)
Sy/c Oy TOyy T Oyz
Sz/c —O0.z _Uzy —0;;
where § = %EXB? is the Poynting vector and the components o;; are given by
1 1 o 1 5
0ij = €L B+ —B;B; — 5 | ©E” + —B" | 0y. (2.19)
Ho 2 Ho

The first term in (2.18) is easily identified as the electromagnetic energy density,
the other terms in the diagonal, i.e. 0,4, 0,,,0.. can be read as the electromagnetic pressure
and the terms o;; for ¢ # j represent shear stress.

Inspired in the electromagnetic energy-momentum tensor for flat space-time, we

define the following quantities

1
W =—g% (B? + B? 2.20
87Tg ( r + 0) ) ( )
1

II=—¢% (B> - B? 2.21
87T ( T 9)7 ( )

1
o= —2¢°B,By. (2.22)

1

With these definitions, the matrix form of the electromagnetic energy-momentum

tensor looks like
-W 0 0 O

0 -II r¢ 0
TEMr — : (2.23)

0 Lo I 0

0 0o 0 W
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From (2.23) we can extract the following properties for THEM: it is symmetric, the
component TFM% ig positive definite and the tensor is traceless, which are the expected
properties of an electromagnetic energy-momentum tensor. One must note that equation
(2.23) corresponds to the mixed components of the electromagnetic energy-momentum ten-

TEMO positive definite and symmetric) are related to

sor, whereas the first two properties (
the contravariant components.
Combining (2.4) and (2.23), the matrix form of the energy-momentum tensor de-

scribing a perfect fluid coupled with a poloidal magnetic field for the line element (2.2)

is

=+ W) 0 0 0
0 12 P11 50 0
T = e ) 1 B . (2.24)
0 Bz0 (Br)? (P +1I) 0
0 0 0 22(P+ W)

The first term, i.e. T% in (2.24) represents the total energy density of the system
which comes from the perfect fluid distribution and the electromagnetic field, through the
quantity WW; the other diagonal terms correspond to the pressure and as we can see the
quantities II and W, which depend on the electromagnetic four potential, make part of the
pressure of the system. Finally, the off-diagonal terms depend only on the electromagnetic
four potential and represent the shear stress of the system o.

The Einstein field equations G# = 87T# for the spacetime described by (2.2) and

the source given by (2.24) are

Gy = 87Ty (2.25)

1 1 1 1 1 1
— | B -B —B —— | D -D —D = — 2.2
= ( T + r ;T + 7"2 706) + B2D ( T + r ,r + 7"2 760) 87T(p + W) + ( 6)

G = 8T} (2.27)
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1 (1 1 11,1
= (=Ap+=Dgp)+— (A, +=D,) = sr(P—TI 2.28
2B <A %D "’9)+7«B2 (A D ) m(f =)+ (2.28)

1 1

1 1
———(A.D, + 544D
AB2D( Ot 79)+

1 1
- B3D (B,TD,T - ﬁB,GD,G) )

G5 = 8Ty, (2.29)

- L (ZA,W " —Dw) — Se(PTI) (2:30)
1 1
= (A,TB,T _ ﬁAﬂB,g) +

1 1
AB2D (A,rD,r + T—QA,GD,G) +

1 1
+ B?’D <B,TD,T - T_QB,GD,O) )

Gy = 8rT?, (2.31)

1 1 1 1 1
— A, +-A,+—=A — | B,,+-B,+—=B = P 2.32
:ABQ( 7 +7” 7 +T2 ,99)4- < 7 +7” : +T2 799) (P + W)+ (2.32)

Gy = 87Ty, (2.33)

1 /1 1 1
—Ag+=Dy| =810 — ——(A,By+AyB, 2.34
= e (A D ’9) Smo = g ArBet AeBa) (2:34)

1 1 1 1
- W(B,rl),e + ByD,)+ B <ZA,7~9 + ED’TG) ;
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. o o 82 82
where the subscript f, = 9L, fo =% and f,. = 24, foo = 3.

962
With the goal of providing a physical interpretation to the quantities W, II and o we
now derive the conservation equations for a perfect fluid coupled with a poloidal magnetic
field and compare these equations with those obtained in [23] where no electromagnetic
contribution was considered.
The non-vanishing components of the conservation equations T*”, = 0 which rep-

resent energy-momentum conservation for the energy-momentum tensor (2.24) are

For =0
p+W =0 (2.35)

where the dot denotes derivative with respect to t. Equation (2.35) is a consequence of the
staticity.

The other non-vanishing components are

p=1
s BT DT
(P-1I), + —(p+W+P-1) — B’2H— D’(W+H)+ (2.36)
1 A7,9 B7,9 D,g .
+ ;|:079+<7+2§+6)0'—2H:|—0,
p=2
A B D
(P+H),9+7’9(p+W+P+H) + ?592H—6’9(W—H)+ (2.37)
+ (A g B P +20 =0
r O r A B D g o = U,

Equations (2.36) and (2.37) represent the hydrostatic equilibrium conditions. In the special
case of no magnetic field and an isotropic fluid, these equations reduce to the Tolman-
Openheimer-Volkoff equations [5-7].

At this point it is important to refer to the work of Herrera et al. [23] in which

axially symmetric, anisotropic bound sources were studied. The matter content considered
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by the authors in locally Minkowski coordinates (7, z,y, z) is given by

pw 0 0 0

. 0 Pw Poy O

Top = , (2.38)
0 P, P, O
0 0 0 P.

where pu, Py, P,

wys Pz Poy = Py, denote the energy density, pressure and shear stress, re-

spectively, measured by a locally Minkowskian observer. In a spacetime described by (2.2),

the energy-momentum tensor is

Top = (14 P)VaVs + Pgag + Tapg, (2.39)
with
hag
Mg = (Pow— Po) | KoK — 3
hag
+ (Pyy — Pzz) LaLﬁ — T + 2nyK(aL5), (240)

sz+Pyy+Pzz

P= ,
3

hag = gag + Va V3, (2.41)

where V,, K, and L, are 4-vectors in the time, radial and angular directions, respectively.

Vo =(—-A4,0,0,0), K,=(0,B,0,0), L,=(0,0,Br0). (2.42)
The conservation equations calculated in ref. [23] are

T

B, D,
St Pr) 4 (P = P+ (P Pua) + (2.43)

D
1 A B D
. lpw N (_ﬂ L oBo _ﬂ) Pyt P pyy} o,

Pzz,r +

A B D
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A B D
Pyyo+ —ﬁm + Pyy) + —’G(Pyy — Pp) + J(Pyy —P..)+ (2-44)
A B D
A, B, D,
o[ (o2 ) o] r2pamo

Comparing equations (2.36) and (2.37), which describe a perfect fluid coupled with
a poloidal magnetic field, with the hydrostatic equations (2.43) and (2.44), calculated in
ref. [23], which describe an anisotropic fluid (without electromagnetic contribution), we can
read the quantity p+W as the total energy density of our distribution. In fact, the definition
of W given by eq. (2.20) reminds us of the typical definition of the electromagnetic energy
density. The quantity 2II can be read as the anisotropy of the distribution, and it is a direct
consequence of the poloidal magnetic field. The quantity o given by (2.22) can be identified
as the shear stress experienced by the fluid. The quantities W + II and W — II can be
read as an anisotropy defined with respect to z-axis and P + II and as terms related to the
pressure. In conclusion, if we apply the Bondi approach [24] then a locally Minkowskian
observer measures, for the perfect fluid coupled with a poloidal magnetic field, p + W as
the total energy density, 2II as the anisotropy caused by the different components of the

magnetic field and o as the shear stress of the distribution.
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2.2 Neutron star structure using Shapiro’s approach

Shapiro et. al. [19] studied the spin-up of a rapidly rotating star by angular momen-
tum loss. In this section we use the same metric tensor used by Shapiro et al. but instead
of rotational effects, we consider magnetic field effects on the neutron star structure. The
goal is to write the general relativistic field equations determining the metric potentials in
terms of the quantities introduced in the previous section, i.e. W,II and ¢ and give the same
physical interpretation as before.

The space-time considered by Shapiro et al. is written for rotating equilibrium

models considered as stationary and axisymmetric and given by the following metric tensor,
ds? = =0 (dt)? + *[(dr)? + r2(dF)*] + eV P)r?sin®0(dp — wdt)?, (2.45)

where the coordinates are z# = (¢,7,0,¢) and the metric functions 7, p, a and w depend
only on the coordinates (r, ).

We consider a perfect fluid distribution coupled with a poloidal magnetic field with-
out rotation, i.e. in the equations of [25] the metric potential w = 0. The energy momentum
tensor TH is

THY — TPF;W 4 TEM;LV’ (246)

with

TP = (po + p; + P)utu” + Pg"” (2.47)

where pg is the rest energy density, p; is the internal energy density, P is the pressure and
u” is the matter four velocity with utu, = —1. The term T#M is given by eq. (2.5).

The Einstein field equations G* = 87 T* for the distribution described by the
energy-momentum tensor (2.46) using (2.45) following the Cook-Shapiro-Teulkosky approach
(which is inspired by the method of Komatsu-Eriguchi-Hachisu [25]) in which all nonlinear

and coupling terms from G* (hence terms associated with geometry) are considered as part
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of the source, named as effective source S, and S,.

1
(Vz to -0 3u> (v€"?) = S, (r, ) (2:48)

V2 (pe?’?) = S,(r, ) (2.49)

where V? is the flat-space, spherical coordinate Laplacian, = cosfl. The effective source

terms are given by

1
S (1, ) = e? [167re2°‘P + % (167?62aP — §V7.V7>] , (2.50)

o Vr M p ap_ 1 Vr M
Sy(r,p) = e/? [87?62 (po+pi+P)+ il + B (1671’62 P— §V7.V7 - + 7,_27,#)]

+ /2 2V A, VA, (2.51)

e =P
(=)
where f, = % and f,, = 2L and VLVf = (f,)* + S (f,)%

Comparing equation (2.51) with expression (6) in [19] (with w = 0) we realize the

source S, for a perfect-fluid coupled with a poloidal magnetic field can be written as
Sp(r, ) = ST 4 SV (2.52)

where S* corresponds to the perfect fluid contribution and S7* is the electromagnetic

source for the metric potential p. They are given by

PF /2 2% ' fy,T‘ IU/ p 2 1 fy,T‘ :u
Sp =e’ 8me (pO‘i‘pl_'_P)_'_?_ﬁ%“—i_i(HSﬂ-e P—§V7V7—7+§77u ’

(2.53)

—(v=p)

(&
SEM(r,p) = 7/?
g 1?)

= 2V Ay VA, (2.54)

Hence we can see the effective source for the metric potential p is the superposition
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of the source corresponding to the perfect fluid distribution plus the influence of the poloidal
magnetic field which depends on A, while comparing S., source (2.50) with expression (7)
in [19] we realize no magnetic contribution is present in the v effective source.

The third field equation determines the metric potential o and is given by

1 2, _
== 50t pu) = {171 = )+ [ = (L= p?),)] )

1
x| =530 = dp(l = )y + (L= 1) (3, v + P+

1 1
- 57‘%(1 +7y,) (1= 1) (v + o) + 5#7“(1 + 1)V — pr)+

1
— (1417, (1= 1) Vo + Vo v) + 57+ 17, (L= 1) (Vv — prpg) +

2
+ %[M — (1= )7, Bupu+1p,) — %[u — (1= ) [P — (1= 1)yl +
- 1= =) {909+ 9095 - o 2+ 1 ]+

O+ A=) 4 = (= i7,)]

ey [ = (L= 12)7,) 2(1 — pi?) 2|, 20+ 7m7r)
% e~ (1=pP) { (1 — /ﬂ) |:VA¢VA¢ — 2 (A¢,M) :| + . (A¢,r)(A¢,M)} .

(2.55)

If we consider no magnetic dipole influence, i.e. A, = 0 then equation (2.55) is equation
(11) in [19] with w = 0.

A possible physical interpretation for quantities related to energy, anisotropy and
shear stress named as W, TI, o, respectively, was given in [18] as we discussed in the previous
section. Now, we write Einstein-Maxwell field equations for each metric potential in terms
of these quantities and give them a similar interpretation. We begin writing these quantities

as follow

1

— %9 32 _82

W 87Tg ( r + 9)

1

= S—WQ‘M’ (9 (Ap0)? + 9" (Ap)?)
1 e~ (=P 2

= —— — VA, VA 2.
87 r2(1 _MQ) \ ¢ \Y @ ( 56)
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I = igqﬁqb(BZ_BQ)
8T r 4
1
= 597 (6" (A00)” = g7 (45,)°)
1 6_(7_0)6_20’ 2(1 - MZ)
8 r2(1 — p?) VA, VA, 2 (Agu)”| (2.57)

1
o = —2 g‘M’Bng
s

1
= 8—7TQQ¢¢\/999\/9”(14@0(14«579)

1 2¢= (=0 2@
_8_71' r T2<1 — ,u2>1/2 (A¢>,T>(A¢>,u)'

(2.58)

Comparing expressions (2.54) with (2.56), we can write for the source of the metric

potential p
EM _ /2 20
S, (r ) = e216me®W. (2.59)

Therefore the field equation for the metric potential p can be written in terms of the quantity

w

V2(pe?'?) = /2 |8me* (po + pi + P+ 2W) +

NI

1 r
(167re2°‘P — §V7.V”y _ 2 + %’y,“)]
rooor

(2.60)

We can see the electromagnetic influence in the term 2WW and that appears as a
sum of the energy density and pressure associated to the perfect fluid distribution, hence
this result allows us to take this term as part of the total energy density and pressure,
specifically electromagnetic energy density in agreement with the interpretation given in the
previous section and as me and my coworkers shown in [18] where the authors use a metric
tensor different from (2.45). The factor two in (2.60) is not entirely unexpected since this
factor is known to occur in relating electromagnetic to mechanical energy as Papapetrou
and Bonnor showed [26,27] and as we will show later in chapter IV when we write the total
gravitational mass expression and the factor two appears with the electromagnetic energy

density. This factor presumably arises from the fact that non-Maxwellian stresses are present
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in addition to purely electromagnetic ones, and these contribute to the gravitational mass.
Writing equation (2.55) for the metric potential v in terms of the introduced quan-

tities we find,

Xy = —%(’V,u o) = {2 =)+ [ = (1= g)y,0)] " %
O %{W —4p(1 = )y 4+ = 2 (7)" v + ) +

1 1
= () - 1) (v + o) + P17 = pr) +

1
— (L) (1= 1) (Vo + V) + (L) = 1) (VoY = PrPyi) +

+ %[u — (1= 1®)y,ulBupp +rps) — %[u — (1= 127 e — (1= )] +
- irz[u — (1= 1)) {W-W +Vp.Vp - 2(1%2”2)[(%#)2 + (p,u)z]} ] +
— {2 = i)+ [ = (1= iP),)] ) X

x {8mr?e® {[p— (1 — )y, )] T+ (1 — ) (1 +7rv,)0} }. (2.61)

From (2.61) we realize when we write the equation for the metric potential v in terms
of the introduced quantities the factor e?* appears in the right side of equation making the
solution associated to this metric potential more difficult than (2.55), where o only appears
in the left side of the equation.

The physical interpretation of II and o is related to anisotropy and the shear stress,
respectively. In equation (2.61) the magnetic contribution appears in the last term through
the quantities Il and o and these two quantities only appear in the equation related to the
metric potential «,, which is the factor associated to the coordinates r» and 6 in our metric
(2.45), through €?*, and these two coordinates, i.e. radial and polar, are the directions where
the symmetry is broken.

In our system the breaking of spherical symmetry is due to the poloidal magnetic
field which has two components B, and By, quantities II and o are written in terms of these
components.

We can understand that IT is related to anisotropy (two different components of the

magnetic field) and o is related to the shear stress. These two quantities are responsible for
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breaking the symmetry of the system. This interpretation of II and ¢ is in agreement with
the interpretation given in the previous section and in [18] where the metric tensor is written
in the Weyl spherical coordinates and another approach was used.

In conclusion, the electromagnetic contribution has been studied modelling a highly
magnetized neutron star as a perfect fluid coupled with a poloidal magnetic field, using
two different coordinates describing axially-symmetric spacetimes. The two approaches used
in order to give possible physical interpretation for three introduced quantities, named as
W, II and o, are in agreement on understanding these quantities as electromagnetic energy,

anisotropy and shear stress, respectively.



Chapter 3

The 3 + 1 formalism and the virial

theorem

The utility of the virial theorem in different areas of physics is well known. In many studies
of astrophysics and general relativity it is common to use the virial theorem derived from a
conservation law. This chapter is devoted to present a relativistic version of the virial theorem
as an integral identity (and not as a conservation law) for a stationary and asymptotically
flat spacetime, based on the 3+ 1 formalism. The derived identity will be use in chapter V as
a consistency check of numerical solution of Einstein equations for a rotating and magnetized

neutron star.

3.1 The 3+ 1 formalism

It is common to assume stationary models as an initial (unstable) condition in axisymmetric
collapse problems [21], in this case the chosen coordinates must be adapted to the dynamical
evolution which is expressed within the 3 + 1 formalism.

The 3+ 1 formalism supposes that the spacetime is foliated into a family of spacelike
hypersurfaces 3, levelled by a scalar function: the time coordinate, in that way the real
parameter ¢ may be considered as a coordinate associated to the Killing vector &: £ = 0/0t

(a stationary spacetime). The time-like 4 vector field orthogonal to the hypersurface ¥; and
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oriented in the direction of increasing ¢ is given by

ng = —Nt,, (3.1)

)

where n,n* = —1 (normalized) and N is the lapse function, which is positive for spacelike
hypersurfaces and is interpreted as the proper time measured by an Eulerian observer O,
whose 4-velocity is n®

dr = Ndt. (3.2)

The positive definite 3-metric induced by g on ¥; is

h,ag = Gap T NaNg. (33)

The metric tensor h and the normal vector n provide two useful tools to decompose any
4-dimensional tensor into a purely spacelike part (hence in 3;) and a purely timelike part
(orthogonal to ¥; and aligned with n).

In general, the Killing vector is not orthogonal to the hypersurface ¥;; leading to
the definition of shift vector N which means the orthogonal projection of £ onto ¥; and is

interpreted as a measure of the changes in the spatial coordinates } s, = x}, — N'dt, where

N := —h2¢”, (3.4)

a non zero shift vector means that the Eulerian observer does not follow the x* =const. lines

The relationship between these vectors is

£ = Np® — N°. (3.5)

The components of the 4-metric tensor g can be written as

ds® = —(N? — N;N")dt* — 2N,dtdz" + h;;dz'da’. (3.6)

The 3+ 1 formalism consists of writing the Einstein equations, which form a system
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of second order partial differential equations (PDE's) into a system of first order (with respect
to the coordinate t) PDE’s, in the form of a Cauchy evolution problem, subject to certain
constraints. The method consists in projecting the Einstein equations into the hypersurface

> which means
af 1 af
h Raﬁ - ERgaB = 8mh Tag (37)
and using (3.3)
a, B 1 a
R,sn*n” — iR = 87y, (3.8)
where the stress energy tensor in the hypersurface ¥; is
S =h* P T (3.9)

Due to the Einstein tensor projection into Y; we will have a 3-dimensional Riemann
and Ricci tensor, ng and R;B, respectively, which are purely spatial (spatial derivatives
of the spatial metric h) whereas the 4-dimensional Riemann and Ricci tensors contain also
time derivatives of the metric g.The information present in Rj ; and missing in ng can
be found in another spatial and symmetric tensor K,z called extrinsic curvature which is
defined as:

Kaﬁ = —hghgn(u;,u) = —Ng;a — NaGg, (310)

where ag = n®ng,, is the acceleration of normal observers. The extrinsic curvature measures
the changes in the normal vector under parallel transport, hence it measures how the 3-
dimensional hypersurface ¥; is bent with respect to the 4-dimensional spacetime. The trace
of the extrinsic curvature tensor is linked to the covariant divergence of the 4-velocity through

K=—n%, (3.11)

e’

Gauss equation enable one to express the Ricci tensor R,p of the metric g, in terms
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of the Ricci tensor R;g of the 3-metric h,g, the lapse function /N and the extrinsic curvature

tensor K,z of the hypersurface ¥, [28]
3 1- 3 g ) .
h”l/;z‘j - ZR + hwlj;jl/;i - Z(Kin” - K ) + (Kno‘);a = 47TSZ ! (312)

where v =1In N.
In collapse problems, it is common [29] to choose maximal slicing hypersurfaces 3,

which are defined by the requirement of a trace-free extrinsic curvature tensor
K =0. (3.13)

The world lines of Fulerian observers are normal to the maximal hypersurfaces
Y4, they coincide with the locally nonrotating observers introduced by Bardeen [30] in the
stationary axisymmetric case, the well known zero-angular momentum observers (ZAMO)

31].

3.2 The Virial theorem

The term "virial" comes from the latin vires which means strength, force or energy. The
virial theorem relates the time average of kinetic energy of a generic particle with the time
average of the works executed by the forces with which the particles interact. This important
theorem is thanks to Clausius who in 1870 delivered the lecture "On a Mechanical Theorem
Applicable to Heat" to the Association for Natural and Medical Sciences of the Lower Rhine,
following a 20-years study of thermodynamics.

The Newtonian version of the virial theorem is widely used in astrophysics, mainly
within the context of the equilibrium and stability properties of dynamical systems. One
example of this usefulness is the fact that the virial theorem has been used to derive the
Chandrasekhar limit for the stability of white dwarf stars [32]. On another hand, in astron-
omy the virial theorem, and related concepts, provide an often convenient means by which

to quantify the mass and size of a galaxy [33], which are often defined in terms of the "virial
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radius" and "virial mass", respectively.

Bonazzola [34] has derived a general relativistic version of the virial theorem in
the stationary axisymmetric case. The Bonazzola identity proved to be very useful as a
consistency check for numerical computation of steady-state rotating star models [21, 35|
and it will be the validity criteria to find numerical solutions in the present work, as we
will see in chapter V. In the case of spherical symmetry, a general relativistic formulation
of the non-stationary virial theorem has been found by Vilain [36] and applied to stability
problems. Katz [37] proposed a general formulation of the relativistic virial theorem without
supposing any symmetry. His formulation involves "virial vector fields" which are defined
with respect to a given flat background metric. His original goal was to obtain the virial
theorem as a surface integral at infinity, so that it would have been independent of the choice
of the virial vector fields. The result was "0 = 0" and the conclusion is the virial theorem
has to be formulated as a space integral, involving some extra structure, like the virial vector
fields. In the next section we are going to present a brief discussion about the relativistic

version of the virial theorem.

3.2.1 The relativistic virial theorem

We consider a stationary and asymptotically flat spacetime. As mentioned in the
previous section, stationary means that there exists a Killing vector field, £, which is time-
like. This vector is defined up to scale factor, which is fixed by the requirement that the

scalar product £,{" = —1. Asymptotically flat spacetime means:

e A spacetime with spatial sections Y; containing a compact region B such that 3, — B is
diffeomorphic to R®*—0. For an ordinary star, B may be reduced to one point, whereas

for a black hole, B shall enclose the event horizon.

e On each Y, there exists a coordinate system z’ such that the components g,z of
the metric differ from diag(—1,1,1,1) only by terms O(1/r) as r — oo and the first

derivatives g,s~ are O(1/r?).
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The relativistic Virial Theorem is based on the 3+1 formalism described in the previ-
ous section [38,39]; the starting point consists in integration over the space-like hypersurface

¥ of equation (3.12)

/Z \/Ed?’xlzms@ — hijy;ju;i+§(Kinij—K2)] = (3.14)

- 1 ~
— Vhd*z(Kn®) .o + [ Vhdzhiv,; — ) Vhd*zR.
p

Et Zt

If we consider the stationary case, the term of the first integral of the right hand

side of (3.14) can be write as

1 , 1 , N?
Kn%)., = —=(KN");, = =KN'v, K— 1
(K%)= V) = RN+ (K ) (3.15
and with the use of the Gauss theorem,
3 o g 1 i . K .. i
Vhd x(Kn%)., = VhdPz—KNv; + lim ¢ dS,—N'’ = Vhd*z—KN'v,;,
> ’ > N ’ S—o0 S N pof N ’

(3.16)

where the asymptotic flatness condition was considered.

For the second integral of the right hand side of (3.14) we use Gauss theorem and
then write this integral in terms of the total energy in the hypersurface >; which is known
as the Komar mass [40] defined for a stationary spacetime,

1 .
m = — lim ¢ dSape"), (3.17)

since the space is asymptotically flat (see appendix of [41] for further details)

/ Vhd*rhiv,; = lim ¢ dS;hv,; = 4mm. (3.18)
3t

S—o00

The last integral in (3.14) consists in the integration of the Ricci scalar of the
hypersurface 3;. This integral can be computed using the bimetric formalism which consists

in introducing into the hypersurface a flat background metric v (for further details see [41]
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and references therein). The introduced metric is flat everywhere in the case of ordinary
stars and coincide at infinity with the non-flat 3-metric h by virtue of the asymptotic flatness

hypothesis. Using this bimetric formalism, the Ricci scalar integral can be written as [42]
/ Vhd*zR = 167 Mapys + / Vhd*zhI[AL AT — AT AT (3.19)
Et Zt
with

A = §hj[hlk||j + Pk — Pl (3.20)

where the double vertical stroke || denotes covariant derivation associated with the metric
v [42] and Mapys is the Arnowitt-Deser-Misner mass-energy [39).
Taking into account that in the case of stationary and asymptotically flat spacetime,

Komar mass and ADM mass do coincide [43,44], expression (3.14) is

, . 1 ..
/E Vhdz [zmsg. — Wy (A AT = A AT (3.21)
+ Z<KZ]K] — K2) — NNZ'}L]V;J' =0.

Equation (3.21) is the general relativistic virial theorem, named in that way because
in the Newtonian limit this expression reduces to the classical virial theorem. The Virial
theorem integral can be read as containing terms related to the gravitational source, second

derivatives of the metric potential v and terms associated to the extrinsic curvature tensor.



Chapter 4

Neutron star structure

The theoretical formalism describing a rotating and highly magnetized neutron star
is presented in this chapter. As mentioned in the introduction, in order to properly de-
scribe this kind of astrophysical objects it is necessary a full axially symmetric treatment
within the context of Einstein-Maxwell equations. First, we describe the spacetime and the
Einstein-Maxwell equations within the approach used by Bonazzola et al. [21] which allows
us to write these equations in terms of a flat space elliptic operator and the source terms
containing matter, electromagnetic and non linear quadratic terms in the metric potentials.
Secondly, the hydrostatic equilibrium equations will be derived within the assumption of
infinite conductivity matter. Finally, the relevant physical quantities describing the system

will be presented.

4.1 Structure equations

In this study we assume that spacetime is stationary, axis-symmetric and circular,
which means the current 4-vector and fluid 4-velocity are parallel to a general combination
of the Killing vectors [45]. Most authors studying rapid rotation based their works in the
approach of Bardeen et. al. [46] which explicitely assumes an isotropic stress tensor and is

thus incompatible with electromagnetic fields. The authors of [21,35,47] present a formula-
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tion which allows such spacetime for the most general energy-momentum tensor. The metric

that describes such spacetime is given by

ds? = —e®dt* + ) (dr? + 1r2d0?) + e G*r?sin®0(dp — N?dt)?, (4.1)

where the coordinates are x# = (2%, x!, 2%, 23) = (¢,7,0,¢) and the metric functions v, (,G

and N? depend on the coordinates (r,6).
The energy-momentum tensor describing a perfect fluid coupled with electromag-
netic field is

T;w — TPF;W 4 TEM;LV’ (42)

the perfect fluid (PF) and the electromagnetic (EM) contributions are given by

THEW — (e 4 P)utu” + PgH, (4.3)
pesw = L (puepy 1w pespy (4.4)
T ir o« 39 o8 ) '

where ¢ and P are the rest frame energy density and pressure, respectively, u* is the fluid

4-velocity, g,, is the metric tensor and

- A;,L7V (45)

is the Maxwell tensor where A, is the electromagnetic 4-potential. Stationarity, axisym-
metry and circularity properties for the spacetime described by (4.1) imply that the non
vanishing components of the current 4-vector are j* = (j%,0,0,5%) and consequently the
electromagnetic potential components are A, = (A;,0,0, A,) [45].

We are going to use the Bonazzola approach [21]| which is based on the 3+1 formalism
discussed in chapter III. From the Einstein field equations, Bonazzola et al. derive a Poisson
equation for each of the metric variables. The determination of the gravitational field is

reduced to the integration of a system of four coupled elliptic partial differential equations
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(hereafter PDE) of the form

Afu _ O_;natter + O_Zuad (46)

where Ay is a flat space elliptic operator (namely a two or a three dimensional flat space

matter

. is the source term involving all matter terms (such as

Laplacian), v a metric potential, o
fluid, electromagnetic fields, etc.) and ¢7%%? is an expression containing only non linear terms
in the metric potentials. We use the Bonazzola’s formalism to derive equations governing
the equilibrium of rotating neutron stars with strong magnetic fields. This approach may
be useful in the study of systems based on other types of anisotropic stress-energy tensor
different of (4.2) such as the energy momentum tensor studied in [10].

The equations that describe a perfect fluid coupled with electromagnetic field are

the Einstein-Maxwell equations

G = 81Ty, (4.7)
Fopy + Frap + Fiya = 0, (4.8)
F% 5 = dmj, (4.9)

where equations (4.8) and (4.9) are the homogeneous (Faraday’s law and non-magnetic

monopole) and inhomogeneous (Gauss and Ampere-Maxwell laws) Maxwell equations.
Using the approach suggested by (4.6) for the metric tensor defined in (4.1) and

considering the matter defined by the energy-momentum tensor (4.2), Einstein-Maxwell

equations are written as [48]

Asv =0, (4.10)
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A3N¢:U”

N>
AyG = oa,
Ag( = o,
AzAy = O Ays
o
where
N® = rsindN?,
G= rsindG,
A0 = 7“2:;9’

31

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

and Ay, A; and A; are respectively the two-dimensional flat space Laplacian, the three-

dimensional flat space Laplacian, and the ¢ component of the three-dimensional flat space

vector Laplacian and they are given by

A:8_2+12+i8_2
T orz " ror | 12002

A:a_2+gg+ia_2+;g
T o2 T ror | 12002 ' r2tanf0f’

(4.19)

(4.20)
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1

By =Ry~ r2sin20’

matter

The source terms o,

are given by

1
o, = 4ne® V(B 4+ S8 + 56*4“627«25@7129(8]\7@5)2 — ovd(In G),

167T€2C+V [(;5
Oy = —

o . N(b 1 —4v 3
N o reind rsinON?O[In(e” G?)],

og = 82 Grsind (ST + S),

o= 87re2(47”)5$ + Z€4VG2T2SZ'712(9(8N¢)2 — (Ov)?,

oa, = — 4 (guj' + 9165°) + € gipOAON® — (2 + e gy ) 0A,ON®

2N? 1
- (8At + 2N¢8A¢)0[ln(e_2”G)] e (A¢,r + A¢79),

r rtand
of, == Ame® M GPrsind(j° — N?5') + e ¥ G*rsinfON? (0A; + N?OA,)
1 —2v
+ rsinGaA¢a[ln(e G)].

In these expressions the notation df0g denotes

1
8fag = va.g = f,rg,r + ﬁfﬂgﬂ-
The contributions from the energy-momentum tensor are

E =T,n"n",

I, = —hun, T,
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(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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Sy = hyy iy T, (4.31)

where the physical meaning of n* and h,, = ¢, + n,n, are the same as presented in
chapter III. In the coordinates x* = (¢,r,0, ¢) the components of the timelike four vector
are n, = (—N,0,0,0) where N = e is the lapse function. For the energy-momentum tensor

(4.2) we have

E = EPF + EEM (4.32)
Lo =107 + 17, (4.33)
Su = Spl + SN (4.34)

For the perfect fluid we have

EPF =T%(e+ P) - P, (4.35)
(I'F), = e "Grsinf(E"" + P)U, (4.36)
(PP =p, (SPM)g=P. (S"F)) =P+ (E"" + P)U?, (4.37)

where I' is the Lorentz factor linking the Eulerian observer O, and the fluid comoving

observer O; with velocity u*,

1
1-U%

I['= —nu*=TI?%= (4.38)

being U the physical fluid velocity in the ¢ direction, as measured by the Eulerian observer,
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and it is given by

where e_d,) is the unit spatial vector in the ¢ direction.

The non-vanishing components of the four velocity are related by
u® = Qu', (4.40)

where €2 is the angular velocity as seen by an inertial observer at infinity, who is at rest with

respect to the star’s center. We obtain for U
U = e *Grsinf(2 — N?). (4.41)

Note that if the fluid were at rest with respect to the local Eulerian observer, then U = 0
and 0 = N? #£ 0, hence it would not be at rest for an inertial observer at infinity: this is
the well known phenomena of dragging of the inertial frame [49-52].

For the electromagnetic part of the energy-momentum tensor we have

EEM — i(E,Ei + B;B"), (4.42)

s
(154 = ﬁe%?’”Gr?sme(E”Be — EB"), (4.43)
(SEMyr — 8%(E9E9 — E.E"+ ByB’ — B.B"), (4.44)
(575 = —(S"M)7, (4.45)
(MY = BPM. (4.46)
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Note that the only non vanishing component of the Poynting vector is (1), which
is consistent with the circularity assumption. In the above expressions E; and B; are the
components of the electric and magnetic fields as measured by the Eulerian observer O, [38],

and given by

E,=n"F,s
(4.47)
= [0, G_V(At7r + N¢A¢7T), G_V(Atﬂ + N¢A¢79), 0] s
1 8
Ba = —éEaﬁpan FpU
o o (4.48)
=0, —Ay9,————A4,,0],
"Gresin P Gsind”®

where €,4,, is the Levi-Civita tensor associated with the metric g,, given by (4.1).

The theorem of Cowling [53] states that an axisymmetric magnetic field cannot be
generated or maintained by the motion of a fluid, since finite resistivity involves dissipation,
leading to magnetic field decay. Hence stationary models of neutron stars in magnetic fields
require a separation of dynamical and dissipative timescales, encoded in an assumption
of infinite conductivity (magnetic fields "frozen in" and carried with the fluid, a common
assumption in astrophysics [54]). In the case of neutron stars matter studies indicate [54|
that ohmic dissipation timescale is larger than the age of the universe [55], so the infinite
conductivity assumption is well justified.

According to Ohm’s law, and assuming that the matter has infinite conductivity,
the electric field as measured by the fluid observer must be zero. This condition leads to the

following relation between the two components of the potential 4-vector inside the star [21]

From this equation we have either 2 = const, or Ay = A,(£2), but the latter condition
cannot be fulfilled in general since A, has to satisfy the Maxwell-Ampere equation, thus

we retain only the case (2 = const and conclude that a stationary configuration with some
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magnetic field is necessarily rigidly rotating. Equation (4.49) is integrated and yields
Ay = —QA, + constant (4.50)

where the constant is determined by the total electric charge of the star.

4.2 Hydrostatic equilibrium equations

The hydrostatic equilibrium equations are provided by the conservation of the energy-

momentum tensor
T = 0. (4.51)

Applying the above equation to the energy-momentum tensor of our system we obtain

1 1
crplitvim D=5 fi =0, (4.52)

from left to right, the above equation can be understood as (by analogy with the Newtonian

case) the pressure force, gravitational force, centrifugal force and Lorentz force given by
fi = Fiaj® = j'Ari + %Ay (4.53)

Considering a one parameter EoS, ¢ = €(n), P = P(n), where n is the baryon
density, the first integral of the first term in equation (4.52) is identified as the heat function
H

G 1 arw)
H0O= [ ma) (454

which is a regular function of n when € and P tend to zero. For example, at zero temperature
and in chemical equilibrium, the first law of thermodynamics allows to write H(n) = In g(n),

where ¢ is the enthalpy per baryon ¢ := (”—nm or the total of possible states [56,57]. In the
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case of cold stars, the EoS parameter n is the proper baryon density, at zero temperature.

The star surface corresponds to H(0) = 0 which will be an important condition in order to

find numerical solutions as we will see in the next chapter.

Introducing (4.49), (4.53) and (4.54) in (4.52), we have

1
(e+ P)

(H+v—1Inl), — (7* = Q") Ay = 0.

The above equation suggests that there exists a function M (r,6) such that

(% — Qi) Ay = M.

(e+ P)

with the adoption of a current function

f(Ag) = (5% - Q)

(e+ P)

we can write
—f(Ag)Ags = M,
and hence equation (4.55) can be written as
(H+v—InT'+ M), =0.
The first integral of motion is
H(r,0)+v(r,0) —In[(r,0) + M(r,0) = C = constant
with

Agy(r,0)
M(r,0) = M(Ay(r,0)) = —/0 dz f(z).

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

Besides there is a freedom of choice for function f(A,), the integrability condition



CHAPTER 4. NEUTRON STAR STRUCTURE 38

(4.57) represents a significant restriction on the form of the electromagnetic current that
allows the existence of stationary solutions. The constant C' is determined by an input
parameter, e.g. the pressure specified at some point in the star.

The electric and magnetic fields are linked by the infinite conductivity assumption
(4.50), so equations (4.42)-(4.46) can be written in terms of the electromagnetic potential

Ay and the fluid velocity U

4y —2
FEM _ 1 e <

1
= e U (el 5 e?). (162

= L e L, 4.63
o = Traramp (el 5 (A00)" ) (4.63)
(SEM)TZLL_QCG_U% (A )2—i(A )2 (4 64)
" 81 G%r?sin26 ¢ 2\ Ae0) | .
(S7M)5 = = (S™M);
1 e % ) ) 1 ) (4.65)
-~ =) (e~ 0e0?)
(SEM)z :EEM
1 e (4.66)

1
= (14U (A,,)°+ =(A40)? ).
87TG2r23in20( +U*) (( o)+ 5 (As0)
In summary, the formalism of stationary neutron stars with poloidal magnetic fields

consists of a closed system of:

e Fleven variables:

Four metric variables: v, G, N?,(.

— Energy density: e.

— Pressure: P.

Two components of the electromagnetic potential: A;, Ay.
— Two components of the electromagnetic current: jt, j%.

— The heat function: H(r,6).
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e Eleven equations:

— Four Poisson equations for the metric variables: (4.10)-(4.13).

— Two Poisson equations for the components of the electromagnetic potential: (4.14)

and (4.15).

— The relation between the components of the electromagnetic potential (infinity

conductivity assumption): equation (4.50).
— The equation of state: P = P(e).
— The relation between the heat function H, ¢ and P.
— The first integral of the equations of hydrostatic equilibrium: equation (4.60).

— The restriction on the electromagnetic current: equation (4.57).
e Three input parameters:

— Angular velocity €.
— Total electric charge Q).

— Central density €. or central pressure P..

e One input function: f(Ay).

e The relevant boundary conditions.

4.3 Physical quantities describing the system

In this section we calculate some relevant physical quantities that describe the rotating or
magnetized neutron star, these quantities are the circumferential radius, total gravitational
mass, angular momentum and the magnetic moment.

The stellar equator is defined as the closed line at the surface of the star defined by

t = const and 0 = 7/2 (equatorial plane). It has a constant value of the coordinate r, that
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we identified as r.,. A characterization of the stellar equator is the circumferential radius

defined as [58]
R:=— (4.67)

where [ is the circumference of the star in the equatorial plane, i.e. the proper length of the

equator as given by the metric tensor. For the line element (4.1) that means
2m
ds* = e"*G?r?sin® 0d¢* = | = / e "Greqdo, (4.68)
0
considering the symmetry in the ¢ direction
R =e"Gyreq, (4.69)

where v, = v(req, m/2) and Gy = G(rey, m/2). As we can see, differently from the spherically
symmetric case, for an axially symmetric spacetime the coordinate r does not coincide with
the circumferential radius.

For a static matter distribution or in slow evolution regime [10], the energy (mass)
concept is well defined. For the spherically symmetric and non dissipative case, the exterior
spacetime is described by the Schwarzshild metric and as a consequence of the coupling
conditions, the total energy of the system is equal to the Schwarzschild parameter M [59].

However, the definition of the energy distribution of a part of the fluid is not unique.
This ambiguity in the energy localization, that is present even in classical electrodynam-
ics [60], has been object of several discussions leading to different energy definitions, for
example for spherically symmetric relativistic fluids is common the use of the mass func-
tion [59] to calculate the numerical solution of relativistic gravitational collapse [61]. How-
ever, another interesting energy definition for static or sloswly evolving distribution is the
Tolman-Whittaker mass [62,63] which plays the role of the active gravitational mass (see [64]
for more details).

The Komar mass [40] is another definition of the mass and it is commonly used for
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stationary asymptotically flat spacetimes as we mentioned in chapter ITI. Because we are
interested in describing a rotating or magnetized neutron star we will use the Komar mass
expression to calculate the mass of the system.

The Komar mass m is given by [65]
m= | (T} — T})v/—gds'dz*dx?. (4.70)

3¢

In the following, we will calculate m for two different cases: first, for a rotating fluid without

magnetic field and second, for a perfect fluid (without rotation) coupled with a poloidal field.

4.3.1 Mass and angular momentum for a rotating star

For a rotating fluid without magnetic field the extrinsic curvature is part of the

Komar mass,
o0 ™ 2 ) 1
m = / dr/ d9/ dorsinfe* G| (E + S8 + 2—(/@% +x3)|. (4.71)
0 0 0 T
where the components of the extrinsic curvature K,z for the metric tensor (4.1) are
L ) Grsing NG L~ Gsingne
Ky = —ge GrsindN§ Ky = —5¢€ GsindNy. (4.72)
Considering (4.37) we have,
St =T%e+ P)U* + 3P (4.73)
hence

E+ Si =T+ P)(1+ U?) +2P. (4.74)

Then, considering the above equations, the total gravitational mass for a rotating fluid
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(without magnetic field) is
oo T 2T 1
m = / d’r’/ d@/ dgr?sinfe* =G |T%(e + P)(1 + U?) 4+ 2P + 2—(/@? + k3| (4.75)
0 0 0 T

so part of the energy of a rotating neutron star without magnetic field arises from a term
which is not associated to the components of the extrinsic curvature tensor (later in chapter
V we will call as a perfect fluid contribution, because it coincides with the energy density
associated with a perfect fluid in the nonrotating case), and a term coming from the extrinsic
curvature contribution.

To compute the total angular momentum of the rotating star we use the fact that

the spacetime is asymptotically flat which, mathematically, means when r — oo

v(r,0) — 0, (4.76)
N?(r,0) — 0, (4.77)
¢(r,0) =0, (4.78)
G(r,0) — 1. (4.79)

The solution of (4.11) satisfying these conditions has a leading term when r — oo of the

form

NO(r,0) ~ = (4.80)

where J is a constant independent of  and 6 and is identified as the total angular momentum
of the star [66]. Integrating equation (4.11) on a sphere of large radius, transforming the left
hand side into a surface flux integral of VIN?, thanks to Gauss theorem, using the asymptotic

behavior of N (4.80) (see [21] for more details) the expression for J corresponding to the
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metric (4.1) is

00 ™ 2w
J = / dr / do / dor?singGe* I (4.81)
0 0 0

and taking into account (4.35) and (4.36), we have
J = 27r/ d'r’/ dOrdsin?0G*2 212 (e + P)U (4.82)
0 0

where the symmetry in the ¢ direction was considered.
In the next chapter the mass, angular momentum and the angular velocity will be

used to describe a rotating neutron star without magnetic field.

4.3.2 Mass and magnetic moment for a magnetized star

For a perfect fluid coupled with a poloidal magnetic field we have for the energy-momentum

tensor (4.70),

Ti pe TPFiZ- + TE'M;’ Tt L= TPFtt 4 TEME (483)
For the perfect fluid contribution, considering u* = (u°,0,0,0) and uu, = —1, we

have
TP =3P, TPM = —¢ (4.84)

For the electromagnetic field contribution,

A 1 %, 1 % o
TEMI — o (F PE,, — Z@F’) Fm), (4.85)

taking into account that A, = (0,0,0, As(r,0)),

64V—2C

; 1
o _ 7 . 2 2
P Fpn = PPy =25 (Ao, + (o) (4.86)
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hence,

EMi 1 et o 1 2 EM
;= 87 G2 2sin2(0) (Apr)” + p(Aaﬁ,@) =F (4.87)
1
TEME — __167TFPUFPU — —EEM (488)

The expression in parenthesis in (4.70) is,
T, =3P+ E"™ T' =—(e+E") (4.89)
For the line element (4.1) the factor \/—g = €*¢~*)Gr?sinf, and the Komar mass is
00 ™ 2m
m = / d'r’/ d@/ dor?sinfe* G (e + 3P + 2BFM). (4.90)
0 0 0

It is worth noting that in this chapter we are using different coordinates and metric
tensor compared with chapter II, where we used the Cook-Shapiro-Teukolsky metric tensor
and again we realize the presence of the factor 2 multiplying the electromagnetic energy
density in the expression of the total gravitational mass, hence we verify the conclusion of
Papapetrou [26], this factor appears as a fundamental property of electro-gravitational field
and hence is independent on the coordinates choice. This result is a consequence of the fact
that there is no possibility of formulating the law of conservation of energy without using
the potential energy of gravitation.

Another important point to mention is the fact that comparing expressions (4.90)
and (4.75) we notice an analogy between the roles of the electromagnetic energy and the
total extrinsic curvature, however the distributions of these energies through the star are
different as we will show in the next chapter.

The magnetic moment of the star is defined in terms of the asymptotic behaviour of

the magnetic field as measured by the Eulerian observer O, [48], and considering the poloidal
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nature of the field

B — 2ucos6

T

T (4.91)

considering that this is the r-component of B in the orthonormal basis associated to (r,0,0).

The relation between B, and B,, which is the r-component of B,, is

B, = B, (4.92)
using equation (4.48), we have
2ucos6 e’
(v — B —(— )4 4.93
(6 3 ) r |r—>oo (GT’2 sin 9) ( qﬁ,G) |r—>ooa ( )
and hence
e2v—¢ r

H= 2G  sinfcosl (o) lr—so0 (4.94)

In the next chapter the mass, magnetic dipole moment, magnetic field at the pole
and in the center will be used to describe the numerical solution of a magnetized neutron

star without rotation.



Chapter 5

Numerical procedure and Results

Numerical relativity is one of the branches of the general relativity theory that allows physi-
cists to solve the non linear equations that describe systems like the highly magnetized
neutron stars. This chapter deals with the numerical solution of the Einstein-Maxwell equa-
tions presented in chapter IV. In this study we consider a rotating neutron star without
magnetic field and highly magnetized neutron star modelled as a perfect fluid coupled with
a poloidal magnetic field, in this last case we restrict to the static configuration (although
both are stationary). In terms of the potential observability of the effects of large magnetic
fields, relevant situations appear to be for nonrotating or slowly rotating neutron stars, for
example on June 2016 a team of researchers led by Antonino D’Ali from Italy’s National
Institute of Astrophysics [67] picked up strange X-ray bursts coming from the supernova
remnant RCW 103, known as 1E 1613, based on their data another team of researchers lead
by Nanda Rea [68] from the University of Amsterdam in the Netherlands concluded that
this object is likely a magnetar which is rotating once every 6.67 hours, much slower than

the slowest magnetars known, which spins around once every 10 seconds.

5.1 Equation of state of the matter considered

The link between the microscopic and macroscopic properties of a system is given by the
equation of state (EoS), P = P(e), which is derived from a microscopic model of the matter

that hypothetically composes the system.
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The goal of this work is to study the effects of the magnetic field in the structure
of neutron stars and not at the microscopic level, because of that we consider as the matter
composition a traditional model of EoS known as G300 [69], which is based on a relativistic
quantum field theory describing the nuclear matter present in the neutron star using the
relativistic mean field approximation, where the fields are replaced by their mean values.

The model supposes that the neutron stars are composed by hadrons and studies
the system in the framework of field theory of interacting nucleons, hyperons and mesons.
The parameters of the theory are adjusted to reproduce the bulk properties of the nuclear

matter, summarized in table 5.1

Saturation Energy E/N -16 MeV

Saturation Density 0o 0.16 fm=3
Compressibility K 265 MeV
Symmetry Energy Asym 32.5 MeV

Nucleon Effective Mass | m*/my 0.796

Table 5.1: Bulk nucleus properties used to constrain neutron star matter model, my =
938MeV is the average nucleon mass

The method stars from a Lagrangian model which is written in terms of a group
of coupling parameters, the barions and mesons are the fermionic and bosonic fields, re-
spectively [69,70]. The next step is to make use of the Euler-Lagrange equations for each
field and with the use of some approximations, the expected value of the energy momen-
tum tensor in the fundamental state is calculated in terms of the Lagrangian. Finally, the
energy-momentum tensor of a perfect fluid in a flat spacetime is used and the result is the
desired relationship between pressure and energy density P = P(e). Figure 5.1 shows this

relationship.
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Figure 5.1: Pressure as a function of energy density for the G300 model
5.2 Numerical solution for the metric potentials.

To solve the Poisson equations for the metric potentials (4.10 - 4.15) we use Green’s functions,
similar to the method of Komatsu, Eriguchi and Hachisu (KEH) [25] and Cook, Shapiro and
Teukolsky [19], but with a different treatment to find the solution for the metric potential
a, this point will be discussed in more details in the next subsection.

Equations (4.10), (4.11) and (4.15), for the metric potentials v, N and Ay, respec-

tively, are of the form
Agu = Oy, (51)

where Aj is the three-dimensional flat space Laplacian and o, is the source of the function

u. The solution of this equation is
u(r) = /dV’au(F')G?,D(F,'F'), (5.2)

where dV is the volume element. The Green’s function G3p is given by

1 1

Gl T) = =]
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Equations defining the metric potentials G and ( are of the form
Aqu = oy, (5.4)
where A, is the two-dimensional flat space Laplacian, the solution of this equation is
u(f) = / AN 0, () Gap (. 7). (5.5)

where dA is the area element and G5p the two-dimensional Green “s function given by

1
Gap (7 7) = 5-In | 7= 7| (5.6)

To find numerical solution for the metric potentials the radial domain 0 < r < oo is

compactified using the following change of variable

rzR(liS) (5.7)

where R is some length scale and the new domain is then 0 < s < 1, hence s maps radial

infinity to the finite coordinate location s = 1. The computational domain is divided into
"inner" and "outer" grids, where the equatorial surface is located at the radial position
s = 0.5, hence the equatorial radius is set at » = R.

For the angular variable, one can choose the coordinate change presented in chapter
IT where u = cos#, however in the next equations we will make use of the variable 6 for
writing the solution of the metric potentials.

Taking into account the azimuthal and equatorial symmetries present in the con-
figurations, imposing the boundary conditions [all metric functions finite at the origin and
(v, N?,(, Ag) |r—00— 0, G |, 00— 1], and using the expansion series for the Green s function

given by equations (28) - (32) in reference [25], the solution of the elliptical field equations
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(4.10), (4.11), (4.12) and (4.15) in terms of variables (s, #) are

Lo\ /S dS/L /M2 db' sin 0’ Py,,(cos 6')5, (s, 0") (5.8)
0 (1 _ 8/)2n+2 0 2n v )

2n el N2n /2
S ]_ — S . ~ /
(1 ) /S ds’i( 5’2”+3 /0 df' sin 0’ Py, (cos 0')a, (s, 0 )} :

= P} _,(cosb)
10} - _ 2n—1
N¥s,9) R Z 2n(2n — 1) sin 0

1—3 2n+1 s S,Qn_l /2
8 ( p ) /Ods'm /0 de/sinefpgnl(cosma—m(sgef)}

2Mm—2 1 No2n—2 /2
1 —
(155) / L= / da’sme’P%n1<cos0'>6m<8"9')}’

(5.9)
2 <X sin[(2n — 1)
Gls6)=1-— ; (2r£<— 1) Sir)lﬁ]

x| (1= QN/sd s /%de’ in[(2n —1)064(s",0) (5.10)
S ; S (1 _ S/)Zn-‘rl 0 S " e

2n—2 1 N2n—3 /2
1—
+ {(1 i 5) / ds'%/o df’sin[(2n — 1)64(s, 9')},

=\ P3 ,(cos®) .
2 Zgind
2n(2n — 1)

A¢($, 0) =—R

n=1

y 1—s 2n—1 /sd , g/2n—1 /7r/2 i P ( g’)~ ) (5'11)
; i s T ), sin 0" Py, 1 (cos 0')5 4,
2n el N2n—2 pr/2
s (1-4) : .
+ {(1 — 3) /S dSIT /o df'sin @' Py, (cos «9’)0&] :

2
where 67 = r?0; = R? (1%8) oy, is the dimensionless source of the potential f, P, is the

Legendre polynomial and P is the associated Legendre function. The solution for the
component A; is not presented in this chapter because we will deal only with the static

configuration for a magnetized star.
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5.2.1 Special case: solution of the metric potential (

In the chapter II we studied a perfect fluid coupled with a poloidal magnetic field inspired in
the work of Shapiro et al. [19]. As we have seen the equations defining the metric potentials
p and v are of the form of (5.1) and (5.4), respectively, but the equation defining the metric
potential « is of the form

g—(g = &(r,0) (5.12)
where G is a complicated expression containing first and second order derivatives, quadratic
terms of these derivatives and even terms like v, [see equation (2.55)].

In the current formalism the role of the metric potential « is taken by (, but the
equation defining it is of the form Ay( = o, which looks simpler than equation (5.12).
The solution of the metric potential ( however, should be handled with care because its
may result in a logarithmic divergence at infinity during iteration procedure. To avoid this
problem we use the virial theorem discussed in the chapter III.

The starting point is to remember that the Green’s function of the 2D Laplacian is

given by equation (5.6) hence the solution for the metric potential ¢ is

1 0 2 .
C(r,0) = %/ T’dr'/ dfoc(r',0) In | 7 — 1 | (5.13)
r’ 0

where the source o is given by equation (4.25). Since the regularity conditions at r = 0
imply that all scalar functions may be expanded into a series of cos(nf), the analytical

continuation satisfies
VO € [m,2n],  oc(r,0) =oc(r,2m —6). (5.14)

On the other hand, when r — co, the term In | — 7/ |~ Inr, so that ((r,8) ~ I Inr,

where

1 0 2
I:= —/ r'dr'/ dd'oc(r',0). (5.15)
2 ! 0
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Taking into account the asymptotic flatness condition at infinity ¢ = 0,the integral

should be zero
1 00 2m
Py // T’dr'/o df'oc(r',0") =0 (5.16)
Using the expression of o, given by equation (4.25),
& 27‘- ! ! 3 /
/ r'dr'/ o’ |:87T62(C v )ng + 16_41/ G™r'*sin? 0'(ON?)? — (0v')*| = 0. (5.17)
r/ 0

where the primes over the metric function u means u = u(r’,¢'), for example v/ = v (1, ¢).
The above equality corresponds to the virial theorem expressed by equation (3.21),
taking into account that for the present study we choose the hypersurface ¥; to be maximal
slicing [29], usually used in numerical relativity, so that the trace of the extrinsic curvature
tensor is zero K = 0. The term (ON?)? is related to the components of the extrinsic

curvature, through equations

1 1
K1 = —56_(<+V)GT sin HNyf Ko = —56_(C+V)G sin HNfg. (5.18)

As we can see, the integral (5.17) has three terms, one related to the source, second
associated to the extrinsic curvature and the last term containing second derivatives of the
metric potential v, just the structure of the virial integral (3.21) presented in chapter III.

The source o, can be written as
oc =o' + of (5.19)

where the prescriptions m and f mean matter and field, so 0" contains the "matter terms"
(those involving components of the stress-energy tensor) and ag contains the "field terms"
(those involving only the metric variables), in agreement with equation (4.6). Considering

this, the integral I for o, can be written as I = I™ + I = 0, which in terms of the
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compactified variable s is

/ d3<1_8 SE 50¢0(s )+/0 dsrss)g)ago(s) =0 (5.20)

where

O'C,o(S):/OWdQO'C(S,H). (521)

Equation (5.20) is a solution of Einstein s equations, however it may blow up, due
to the logarithm factor, spoiling convergence. In order to avoid the logarithmic divergence
caused by the violation of (5.20) and to guarantee the convergence of the iteration, the

technique is to write the equation for the metric potential ¢ as [35]
Aol = ol + Ao (5.22)

where the parameter A is

1 S m
Jo ds = 5)304,0(3)

A= — 7 )
f ds 1 53‘7(0(5)

(5.23)

At the end of the iteration process A must approach to 1 for the computed metric functions
to represent a valid solution to Einstein’s equations.

Finally, the solution of the metric potential { is then given by

((s,0) _2 Inr(s) /S ds’# /W/Q df'c.(s',0') + /1 ds'; Inr(s’) /7r/2 d0'Gc(s',0)
o 0 (L=5)Jo o s (1 =) 0 S
cos( 2n9 —s\" e, g UL N
——Z |:( S ) /(; dSWA do 008(277,8 )04(5,9)

2n  p1 N2n—2 pm/2
s (1= / / N~
RSl 9
+ (1—5) /S ds 2 i df'cos(2nb ) (s',0') |,

(5.24)

where the source gc = Rr(of" + )\OC) R (7%5)(o" + )\UC) At the end of the iteration the

quantity | 1 — X\ | appears to be a good indicator of the discrepancy between the achieved
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solution and the exact one.

A valid question would be why one does not use the virial theorem for the metric
function G as equation (4.12) also involves the two dimensional Laplacian in a similar way
than the equation defining the metric potential (? Such procedure is not needed since the
sin @ factor present in the source o guarantees that the In7 term vanishes. The key issue

here is that the analytical continuation on [, 27] of the source term o is not satisfied, since
og = ogrsind = oa(r,0) # oa(r, 2T — 6) (5.25)

but, instead, the source og satisfies the analytical continuation and hence,
VO € [m,2n],  oa(r,0) = oq(r,2m — 0)rsind. (5.26)

The integral I for the source og is

1 [e'e] 2T
=2 [ / 0o, 6). (5.27)
0

2T !

Now using the analytical continuation (5.26)
e 27 e 27
/ r'dr’/ df'os(r',0") :/ r'dr’/ d0'og(r', 2 — 6" )r'sind’, (5.28)
[ 0 [l 0

hence the integral I = 0 everywhere.

5.3 Results

In the following we show the results corresponding to the solution for rotating neutron
stars without magnetic field and for nonrotating neutron stars with a poloidal magnetic
field. The terms that allow us to calculate the virial factor A, i.e. of" and crg will be
written in terms of the physical variables and the coordinate s for each case. The results
for the mass, radius, angular momentum, magnetic field at the pole and center as well the

magnetic moment will be presented. The contour plots of some quantities like the extrinsic
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curvature and electromagnetic energy density will shed light on how the high rotation or
high magnetic field affect the system. Finally, the mass-radius relation will be shown for the

case of magnetized neutron stars with different central densities and magnetic field.

5.3.1 Results for a rotating neutron star without magnetic field

A rotating neutron star without magnetic field is studied for three values of the angular
velocity, defined in terms of the relation between the polar and equatorial radius 7,44, =
Tpote/Teq- The first value corresponds to .4, = 1.00 which defines the spherically symmetric
case, the second value is 7,4, = 0.80 which generates an intermediate deformation and the
last one .4, = 0.70 generating the largest deformation with an acceptable value of the virial
parameter \ for a star with central density e. = 500 MeV /fm?. In table 5.2 we show the
results for the total gravitational mass m, the circumferential radius R, the perfect fluid *
contribution to the mass M*F the contribution of the extrinsic curvature to the total mass
M* the angular velocity €, the total angular momentum J and the virial factor | 1 — X |.
The perfect fluid and the extrinsic curvature contributions to the gravitational mass

of the system in table 5.2 are given by

1 2 /2
MPF = 47 R? / dsﬁ / dfsinfe* <G [W(e +P)(1+U?) + QP] . (5.29)
0 - S 0

K ' 5” RE . e—v 1
M" = 47TR3/0 dsm/o dfsinfe™ )G[%(K? + Hg)] (5.30)

The terms for calculate the virial factor A in this case are given by

U2

1—s)?

crg = 26_4”G2$m29[52(1 - 5)2(]\77(‘2)2 + (Nfz)Q] _ 7 {(1 — 82 (V) + é(V,G)Q (5.32)

Lwe use this name because this term remember us the expression of the total gravitational mass of the
perfect fluid for a nonrotating star
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Figures 5.2 - 5.9 show the distribution of each term that contributes to the gravi-
tational mass, i.e. MPF and M* and the pressure contour, for a star with a fixed central
density €. = 500 MeV /fm?® and different values of the angular velocity corresponding to the
table 5.2. The red solid line shows the star surface. The values reported in the table for M
and M*, correspond to equations (5.29) and (5.30), respectively, while the values showed
in the legend of the figures 5.2 - 5.6 correspond to expressions within the brackets in these
equations, i.e. the contour plots of the perfect fluid contribution to the total mass in figures
5.2 -5.4 are the contour plots of the term within the brackets in equation (5.29),while the
contour plots of the extrinsic curvature contribution to the total mass in figures 5.5 and 5.6
are the contour plots of the term within the brackets in equation (5.30), in units of energy
density g/cm3.

Comparing the graphics that show the energy density coming from MTP¥, pressure
and the extrinsic curvature contribution, for the different values of r,.4,, we realize the rota-
tional effects in the shape of the star surface and the distribution of the extrinsic curvature
energy, while the distribution of the energy associated to M is concentrated around the
center of the star, as we can see from figure 5.2, 5.3 and 5.4, the energy coming from M"
has its biggest values near to the star’s surface, as show figures 5.5 and 5.6, actually we can
see values between (0.5 — 1.5) x 10'? g/cm?® outside of the star’s surface. In the sense of
the maximum values reached by the perfect fluid contribution to the energy density (figures
5.2, 5.3 and 5.4) and the maximum pressure (figures 5.7, 5.8 and 5.9), there are no differ-
ence between the three cases, i.e. the maximum energy density or the maximum pressure
reached for stars with different angular velocities remain the same, but for the plots showing
the extrinsic curvature contribution, the maximum value grows up from zero (the spherical
symmetric configuration) to ~ 4.5 x 10'2g/cm? corresponding to a star with angular velocity

Q = 0.585 x 10%s71, i.e a star for which . = 70%re,.
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Tratio | M R MPF M* Q J |1— )|
M, km My | (1073 Mg | (10%) s71 | (10™) erg.s | (1072)
1.00 | 1.543 | 12.841 | 1.543 0.000 0.000 0.000 1.454
0.80 | 1.645 | 14.205 | 1.632 1.302 0.493 4.642 2.356
0.70 | 1.728 | 15.331 | 1.706 2.259 0.585 6.428 4.368
Table 5.2: Properties for rotating neutron stars with central energy density e,

500 MeV /fm3
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Figure 5.2: Contour plot of the energy density coming from the perfect fluid contribution
to the total mass for a star with 7,4, = 1.00 and €, = 500 MeV /fm?. The figure shows the
distribution of the term within the brackets in equation (5.29). The red solid line represents
the star’s surface.
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Figure 5.3: Contour plot of the energy density coming from the perfect fluid contribution
to the total mass for a star with 7,4, = 0.80 and €, = 500 MeV /fm?. The figure shows the
distribution of the term within the brackets in equation (5.29). The red solid line represents
the star’s surface.
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Figure 5.4: Contour plot of the energy density coming from the perfect fluid contribution
to the total mass for a star with 7,4, = 0.70 and €, = 500 MeV /fm?. The figure shows the
distribution of the term within the brackets in equation (5.29). The red solid line represents
the star’s surface.
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Figure 5.5: Contour plot of the energy density coming from the extrinsic curvature contri-
bution to the total mass for a star with r.44, = 0.80 and €. = 500 MeV/fm3. The figure
shows the distribution of the term within the brackets in equation (5.30). The red solid line
represents the star’s surface.
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Figure 5.6: Contour plot of the energy density coming from the extrinsic curvature contri-
bution to the total mass for a star with 7.4, = 0.70 and ¢, = 500 MeV /fm3. The figure
shows the distribution of the term within the brackets in equation (5.30). The red solid line
represents the star’s surface.
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Figure 5.7: Contour plot of the pressure for a star with 7,44, = 1.00 and €, = 500 MeV /fm3.
The red solid line represents the star’s surface.
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Figure 5.8: Contour plot of the pressure for a star with 7,44, = 0.80 and €. = 500 MeV /fm?.
The red solid line represents the star’s surface.
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Figure 5.9: Contour plot of the pressure for a star with 7,44, = 0.70 and €, = 500 MeV /fm3.
The red solid line represents the star’s surface.
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5.3.2 Results for a highly magnetized neutron star

As we mentioned in the introduction of this chapter we restrict attention to static configura-
tions, which involves a number of simplifications, including the vanishing of N?, A,, and J,
and the absence of surface charges. Moreover, we have chosen the current function defined
by equation (4.57) to be a constant f(Ags) = f,, hence the 4-current density has only one

component given by
j* = (e+ P)fo, (5.33)

hence the azimutal component of j# in an orthonormal basis is

j® =€ VGrsinf(e + P)f,, (5.34)

In the following, neutron stars with a poloidal magnetic field are studied for different
values of the current function f; which will help us to study from the spherical symmetric
configuration (f, = 0.00) as well as a highly magnetized star (f, = 3.26) in which the strong
magnetic field affects the matter distribution in the system, as we will see. In table 5.3
we show the results for the total gravitational mass m, the circumferential radius R, the
perfect fluid ? contribution to the mass MP¥, the electromagnetic contribution to the mass
MFM  the magnetic field magnitude at the center B, and at the pole Bypoie, the magnetic
moment p at @ = w/4 and the virial factor | 1 — A\ | for stars with a fixed central density
€. = 350 MeV /fm3.

The perfect fluid and the electromagnetic contributions to the gravitational mass

are given by

1 2 w/2
MFF = 47 R? / d5874 / dfsinfe* " G(e + 3P), (5.35)
0 (1—35)*Jo

2we use this name because this term remember us the expression of the gravitational mass of the perfect
fluid for a nonmagnetized star
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1 2 w/2
MM — yr @3 [ ds—>—— [ dbsingeX ) G(2EFM), (5.36)
0 (1—=9)*Jo

In terms of the coordinates (s, 6) the expression (4.94) for the magnetic moment is

2v—C s

s, 0) = 2Gc0393in0R1 — S(AM) o1 (5:37)

For the case of a perfect fluid coupled with a poloidal magnetic field, the terms that

allow us to calculate the virial quantity A are

621/ (1 _ 8)4

1
m 2(¢C—v 2 2 2
o' = 8rGne® P + Gy YT [(1 = 5)*(As0)" + 5 (Ag) } . (5.38)

and

ol = ) [(1 — ) (v + %(’49)2] : (5.39)

Figures 5.10 - 5.23 show the distribution of each term that contributes to the
gravitational mass, i.e. MTF and MM the contour of the pressure and the electromag-
netic potential A, with magnetic field lines, for stars with a fixed central energy density
€. = 350 MeV/fm?® and different values of the current function corresponding to the table
5.3. The red solid line shows the star surface. The values reported in the table for M*¥
and MEM | correspond to equations (5.35)and (5.36), respectively, while the values showed
in the legend of the figures 5.10 - 5.16 correspond to the expressions within the parenthesis
in these equations, i.e. the contour plots of the perfect fluid contribution to the total mass
in figures 5.10 - 5.13 are the contour plots of the term within parenthesis in equation (5.35),
while the contour plots of the electromagnetic contribution to the total mass in figures 5.14
- 5.16 are the contour plots of the term within parenthesis in equation (5.36), in units of
energy density g/cm?.

Comparing the graphics that show the energy distribution associated to the perfect
fluid contribution for f, = 1.00 with the spherically symmetric configuration (figures 5.11

and 5.10, respectively), we see no significantly differences, however when the current fucntion
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is f, = 2.50 the shape of the star’s surface shows a deviation from the spherically symmetric
configuration (figure 5.12) showing the effects of the increase of magnetic field. The same
observations are valid for figures that show the contour plot of the pressure, figures 5.17,
5.18 and 5.19, where the maximum values reached for P remains in 5.5 dyn/cm?, but
for f, = 2.50 as before the increase of the magnetic field affects the shape of the star.
The electromagnetic effects become more dramatic when the magnetic field increases from
B, = 1.844x10' G to B, = 1.240 x 10'® G which corresponds to f, = 3.26, the effects of this
higher magnetic field are reflected not only in the shape of the star but also in the matter
distribution, for this value of f, the magnetic forces push the matter off-center, showing the
transition to a toroidal topology (figures 5.13 and 5.20), similar results were reported by
Lattimer et. al. [71]. The electromagnetic energy at the center experiments a growth from
~ 14 x 10" g/cm?® for f, = 1.00, ~ 12 x 10'? g/cm?® for f, = 2.50 to the highest value
~ 6 x 10'3 g/cm? for f, = 3.26 as we can see in figures 5.14,5.15 and 5.16, respectively. The
increase in the magnetic field is shown in figures 5.21, 5.22 and 5.23 where we can see the
change in the order of magnitude of Ay between the different values of the current function,
from Ay oz ~ 4.5 x 10%® G.cm t0 Agmee ~ 6.0 x 102 G.cm. The red line changes from
spherical to ellipsoidal, showing the effects in the shape of the star of the growing magnetic
field. From these figures we can conclude that the only component of the 4-current density
is j¢ which vanishes at the center and in the surface of the star. The current measured by a
local observer in the equatorial plane j~¢ peaks somewhere inside the star and vanishes at the
origin and the surface, as equation (5.34) suggests, generating the poloidal magnetic field.
Another conclusion that these figures allow us to draw is the fact that the highest magnitude
of the magnetic field is at the center of the star in contrast to figure 1 of Lattimer et. al. [71]
in which the magnetic field strength can not be deduced from the lines distribution. After
the value f, = 3.26 for a star with ¢, = 350 MeV /fm3, convergence cannot be achieved. In
that sense, the transition to a toroidal topology is suggestive of possible dynamical outcomes
that may be considered for future works.

It is important to draw attention to the fact that the maximum values of the pressure

in the case of a rotating stars without magnetic field (figures 5.7, 5.8 and 5.9) are ~ 11 x
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10** dyn/cm? and for magnetized stars without rotation (figures 5.17, 5.18 and 5.19) the
maximum pressure values are ~ 5.5 x 103 dyn/cm?, the first value mentioned corresponds
to a star with central density ¢, = 500 MeV/fm?® while the second one corresponds to
€. = 350 MeV /fm3, but when the current function is set at f, = 3.26 these maximum values
become similar as we can see in figure 5.20. It would be interesting for future works, to
compare the effects of high central densities for rotating neutron stars and high magnetic
fields in the magnitude of the total pressure.

Another important point to be mentioned is that besides the expressions for the
gravitational mass for the rotating star with no magnetic field and the magnetized star
without rotation, equations (4.75) and (4.90), respectively, suggest an analogy between the
roles of the energy density coming from the extrinsic curvature and the electromagnetic
contribution in the gravitational mass, figures 5.5 and 5.6 for a rotating star and figures 5.14,
5.15 and 5.16 for a magnetized star, show that the distribution in the star of these energies
are different, while the energy associated to the extrinsic curvature tensor is concentrated
near to the surface of the star, the electromagnetic energy has its maximum values near to the
center. Another difference between these two curvature sources is associated to the maximum
values they reach, while for the extrinsic curvature its maximum value is ~ 4.5 x 10*?g/cm?
for the electromagnetic energy the maximum value is ~ 6 x 10*3g/cm3, being only one order

of magnitude less than the maximum values reached for the perfect fluid contribution.

fo m R MPFE MEM B. Boe i [1—X|
M, km My | (1073)Mg | (10') G | (10'7) G | (10%) Gaussian | (1073%)
0.000 | 1.275 | 13.257 | 1.275 0.000 0.000 0.000 0.000 7.164
1.000 | 1.303 | 13.367 | 1.300 2.342 1.844 0.242 3.028 9.744
2.500 | 1.562 | 14.211 | 1.535 26.714 5.535 0.879 10.089 10.938
3.260 | 2.986 | 15.541 | 2.745 241.7 12.400 2.995 32.797 130.600

Table 5.3: Properties of magnetized stars with central energy density ¢, = 350 MeV /fm3
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Figure 5.10: Contour plot of the energy density coming from the perfect fluid contribution
to the total mass for a star with f, = 0.00 and ¢, = 350 MeV/fm3. The figure shows
the distribution of the term within the parenthesis in equation (5.35). The red solid line
represents the star’s surface.
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Figure 5.11: Contour plot of the energy density coming from the perfect fluid contribution
to the total mass for a star with f, = 1.00 and ¢, = 350 MeV/fm3. The figure shows
the distribution of the term within the parenthesis in equation (5.35). The red solid line
represents the star’s surface.
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Figure 5.12: Contour plot of the energy density coming from the perfect fluid contribution
to the total mass for a star with f, = 2.50 and ¢, = 350 MeV/fm3. The figure shows
the distribution of the term within the parenthesis in equation (5.35). The red solid line
represents the star’s surface.
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Figure 5.13: Contour plot of the energy density coming from the perfect fluid contribution
to the total mass for a star with f, = 3.26 and ¢, = 350 MeV/fm3. The figure shows
the distribution of the term within the parenthesis in equation (5.35). The red solid line
represents the star’s surface.
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Figure 5.14: Contour plot of the energy density coming from the electromagnetic contribution
to the total mass for a star with f, = 1.00 and ¢, = 350 MeV/fm3. The figure shows
the distribution of the term within the parenthesis in equation (5.36). The red solid line
represents the star’s surface.
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Figure 5.15: Contour plot of the energy density coming from the electromagnetic contribution
to the total mass for a star with f, = 2.50 and ¢, = 350 MeV/fm3. The figure shows
the distribution of the term within the parenthesis in equation (5.36). The red solid line
represents the star’s surface.
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Figure 5.16: Contour plot of the energy density coming from the electromagnetic contribution
to the total mass for a star with f, = 3.26 and ¢, = 350 MeV/fm3. The figure shows
the distribution of the term within the parenthesis in equation (5.36). The red solid line
represents the star’s surface.
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Figure 5.17: Contour plot of the pressure for a star with f, = 0.00 and €. = 350 MeV /fm3.
The red solid line represents the star’s surface.
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Figure 5.18: Contour plot of the pressure for a star with f, = 1.00 and €. = 350 MeV /fm3.
The red solid line represents the star’s surface.
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Figure 5.19: Contour plot of the pressure for a star with f, = 2.50 and €. = 350 MeV /fm3.
The red solid line represents the star’s surface.
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Figure 5.20: Contour plot of the pressure for a star with f, = 3.26 and €. = 350 MeV /fm3.
The red solid line represents the star’s surface.
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Figure 5.21: Contour plot of the electromagnetic potential for a star with f, = 1.00 and
€. = 350 MeV/fm3. The white lines show the magnetic field (in Gauss) and the red solid

line represents the star’s surface.
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Figure 5.22: Contour plot of the electromagnetic potential for a star with f, = 2.50 and
€. = 350 MeV/fm?®. The white lines show the magnetic field (in Gauss) and the red solid
line represents the star’s surface.
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Figure 5.23: Contour plot of the electromagnetic potential for a star with f, = 3.26 and
€. = 350 MeV/fm?®. The white lines show the magnetic field (in Gauss) and the red solid
line represents the star’s surface.
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5.3.3 Stellar sequences

Figures 5.24 and 5.25 show the gravitational mass as a function of the circumferential radius
and the mass as a function of the central density, respectively, for static stars each of them
with constant current functions. The range considered for the central energy density is
between (120 — 1860) MeV /fm?® which allow us to study stars with low and high values of
.. The lower line represents the spherically symmetric configuration with f, = 0.00 (no
magnetic field) with the lowest value of the virial factor | 1 — A |~ 10™* corresponding to
a central density ¢, = 186.273 MeV /fm?® (see table 5.5). The black curve corresponds to
fo = 1.00 which has similar values of the spherically symmetric configuration as the figures
show, this fact allow us to conclude that stars with this value of the current function can be
studied as a perturbation of the spherically symmetric configuration.

The effects of higher magnetic field are shown by the red and violet curves which
exhibit more differences than the blue and black ones. When the current function grows to
fo=2.00 or f, =2.50 the effects of the magnetic field are considerable, as we concluded for
a star with a fixed value of the central energy density in the previous section. In fact, for the
value of €, = 400 MeV /fm? for example, the mass of the star changes from m = 1.534M, to
m = 1.662M; and the magnetic field at the pole changes from the order of B,y ~ 106G
to Bpole ~ 10'7 G. The largest value of the magnetic field at the center reported in table
5.5 corresponds to a mass of m = 2.016M,, and R = 10.351km with B, = 1.065 x 10'® G,
for €. = 1498.705 MeV /fm3. Note that for this last value reported for €, the radius of the
star decreases with the growing of the current function value, but each of them being higher
than its corresponding spherical star.

Figure 5.26 shows the circumferential radius as a function of the central density. For
arange of €. € (200—1350) MeV /fm? the radius of the star grows with the magnetic field, but
for €, ~ 1400 MeV /fm? this situation begins to be different for ultra relativistic situations,
as figure 5.27 shows for high values of the central density, stars with higher values of f, have
smaller radii, even for €. € (1500 — 1860) MeV /fm? the red and violet curves corresponding
to f, = 2.00 and f, = 2.50, respectively, are below the blue one which corresponds to the

spherically symmetric configuration, similar results were reported by Bocquet et. al. [48]. In
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this section we have not studied the stellar sequence for f, = 3.26 because for this value of
the current function convergence cannot be achieved for densities around ~ 400 MeV /fm?.

The maximum mass configuration properties for static stars with a poloidal magnetic
field are summarized in table 5.4. The mass increases with the magnetic field, reaching max-
imum values similar to that reported by Lattimer et al. [71] for the EoS taken from Prakash,
Cooke and Lattimer (PCLhyp) [72] which is based on a relativistic field-theoretical descrip-
tion of dense matter starting from the Lagrangian proposed by Zimanyi and Moszkowski [73|
with the inclusion of hyperons. The mass reported by Lattimer et. al. [71] is m = 2.04Mg
with a radius R = 11.8 km, corresponding to a central density e, = 20.09 x 10** g/cm? which
are very similar to that reported in table 5.4 where the maximum mass is m = 2.038M
with R = 11.094km corresponding to €. = 20.41 x 10'* g/cm3. However, the values of the
magnetic field at the center and in the pole reported by Lattimer et. al. B, = 23.5 x 107 G
and Bpye = 13.0 x 10'7 G, are higher than the one computed with our code. A possible
explanation for this result is the fact that in the EoS PCLhyp the authors consider the
presence of quarks as part of the microscopical composition of the neutron star.

A final point to be mentioned is the fact that the magnetic field values reported in

this work are smaller than the limit value estimation of Lattimer et. al. [71]

(5.40)

1.4M
Bl &~ 8 X 1018(76)(}

for which a black hole formation is inevitable. This limiting field is not much larger than

the maximum fields reported by Lattimer et. al. who studied different EoS.

fO €c m R Bc Bpole 1% | 1—A |
MeV /fm?® | My km | (10'7) G | (10'") G | (10%°) Gaussian | (1072)
0.000 | 1436.267 | 1.937 | 10.468 | 0.000 0.000 0.000 4.109
1.000 | 1416.038 | 1.963 | 10.518 | 3.959 0.469 1.931 4.597
2.000 | 1246.328 | 2.000 | 10.854 | 7.881 0.995 4.394 4.893
2.500 | 1144.644 | 2.038 | 11.094 9.929 1.324 6.042 5.240

Table 5.4: Properties of magnetized stars for the maximum mass configuration
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€c fO m R Bc Bpole 1% ‘ 1—A |
MeV/fm? M, km | (10'7)G | (10'7) G | (10%) Gaussian | (1072)
186.273 | 0.000 | 0.519 | 13.166 | 0.000 0.000 0.000 0.073
1.000 | 0.530 | 13.226 | 0.810 0.709 1.064 0.199
2.000 | 0.575 | 13.465 | 1.749 0.170 2.546 0.785
2.500 | 0.629 | 13.731 | 2.332 0.244 3.771 2.258
350.000 | 0.000 | 1.275 | 13.257 | 0.000 0.000 0.000 0.716
1.000 | 1.300 | 13.367 | 1.844 0.242 3.028 0.974
2.000 | 1.416 | 13.776 | 4.029 0.582 7.222 2.042
2.500 | 1.562 | 14.211 | 5.535 0.879 10.89 3.294
375.000 | 0.000 | 1.341 | 13.230 | 0.000 0.000 0.000 0.880
1.000 | 1.369 | 13.332 | 1.975 0.263 3.159 1.114
2.000 | 1.478 | 13.674 | 4.391 0.643 7.482 1.809
2.500 | 1.610 | 14.014 | 6.075 0.973 11.07 2.826
400.000 | 0.000 | 1.397 | 13.186 | 0.000 0.000 0.000 0.989
1.000 | 1.426 | 13.284 | 2.072 0.277 3.237 1.238
2.000 | 1.534 | 13.606 | 4.601 0.677 7.607 1.982
2.500 | 1.662 | 13.916 | 6.352 1.018 11.13 2.998
425.000 | 0.000 | 1.447 | 13.132 | 0.000 0.000 0.000 1.085
1.000 | 1.476 | 13.226 | 2.163 0.291 3.290 1.359
2.000 | 1.582 | 13.528 | 4.798 0.706 7.669 2.145
2.500 | 1.705 | 13.807 | 6.607 1.057 11.09 3.145
450.000 | 0.000 | 1.492 | 13.071 | 0.000 0.000 0.000 1.184
1.000 | 1.521 | 13.159 | 2.250 0.303 3.323 1.475
2.000 | 1.626 | 13.441 | 4.983 0.733 7.683 2.308
2.500 | 1.742 | 13.692 | 6.843 1.091 10.99 3.286
475.000 | 0.000 | 1.534 | 13.002 | 0.000 0.000 0.000 1.268
1.000 | 1.563 | 13.087 | 2.334 0.314 3.339 1.583
2.000 | 1.659 | 13.344 | 5.056 0.739 7.576 2.331
2.500 | 1.775 | 13.572 | 7.064 1.120 10.84 3.421
500.000 | 0.000 | 1.572 | 12.929 | 0.000 0.000 0.000 1.345
1.000 | 1.547 | 13.002 | 2.392 0.321 3.324 1.604
2.000 | 1.693 | 13.247 | 5.216 0.759 7.522 2.473
2.500 | 1.804 | 13.450 | 7.273 1.147 10.67 3.547
1498.705 | 0.000 | 1.935 | 10.346 | 0.000 0.000 0.000 2.548
1.000 | 1.962 | 10.380 | 4.024 0.471 1.844 4.793
2.000 | 1.992 | 10.369 | 8.297 1.007 3.746 5.254
2.500 | 2.016 | 10.351 | 10.655 1.334 4.728 5.556

Table 5.5: Properties of magnetized stars for different values of ¢, and f,

76
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Figure 5.24: Mass vs circumferencial radius for different current functions.
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Figure 5.25: Mass vs central energy density for different current functions.
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Figure 5.26: Circumferential radius vs central energy density for different current functions.
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Figure 5.27: Circumferential radius vs central energy density for different current functions.
This plot is a zoom of figure 5.26. It shows that from around €. = 1500MeV /fm? the stars
with higher magnetic field, corresponding to f, = 2.00 and f, = 2.50, have smaller radius.



Chapter 6

Conclusions

The three main fronts of compact star research are the microscopical composition
and equation of state, relativistic structure, and evolution. The purpose of this research was
to study, within a totally general relativistic framework, the effects of magnetic fields in the
structure of neutron stars, i.e. how a magnetic field affects the spacetime geometry of these
compact objects. We started by studying the formal general relativity aspects involving
the equations that describe a perfect fluid coupled with a poloidal magnetic field using two
different approaches, the first one uses Weyl spherical coordinates considered by Herrera
et. al. [23] to describe an anisotropic relativistic fluid and the second one is based in the
study of Shapiro et al. [19] who derived the field equations for a rotating neutron star. We
introduced three quantities, namely W, II and o, and derived the conservation equations of
a magnetized neutron star. Comparing with the equations presented by Herrera et. al. we
concluded that these quantities could be identified as the electromagnetic energy density,
anisotropy and the shear stress expirienced by the fluid, respectively [18|.

Inspired by the work of Shapiro et. al. [19], the field equations describing a perfect
fluid coupled with a poloidal magnetic field were derived. The results show that the electro-
magnetic effects are only present in the source associated with the metric potential p and in
the equation defining the metric potential «. When the equations are written in terms of the
4-potential Ay, the source S, can be written as a superposition of the source coming from the

perfect fluid contribution S7*" and the electromagnetic source S7*. No direct contribution
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from the electromagnetic field is present in the source of the metric potential ~.

With the physical interpretation for the introduced quantities W, II and ¢ in mind,
we wrote the field equations for the metric potentials p and « in terms of these three quanti-
ties. The right hand side of the equation associated to the metric potential p, corresponding
to the source S, shows the electromagnetic influence in the term 2W which appears as a
sum of the energy density and pressure of the fluid. Moreover, the factor 2 appears again in
the expression of the gravitational mass in chapter IV, in which another approach was used
to study the neutron star structure and where the term E¥M definitely represents the elec-
tromagnetic energy density. These results allow us to conclude two important points: one is
the fact that the quantity W can be understood as the electromagnetic energy density as is
concluded in [18]. The second point is, we confirm the conclusions of Papapetrou in 1947 [26]
who studied the static solution of the equations of the gravitational field for an arbitrary
charge distribution, the factor 2 appears as a fundamental property of electro-gravitational
field and hence is independent on the coordinates choice. Later, in 1960 Bonnor [27] studied
the contribution to the gravitational mass of a circular wire carring a steady current. Bonnor
showed that to obtain a physically reasonable solution, within general relativity, for the field
of a loop steady current, it is necessary to endow the wire with a gravitational mass which
corresponds to the energy of the magnetic field created. The result of Bonnor was the grav-
itational mass is twice the magnetic energy M = 2W (see equation (7.16) in reference [27]).
In the present work, we have studied the contribution of the electromagnetic energy to the
gravitational mass for a perfect fluid coupled with a poloidal magnetic field and our results
are in agreement with the conclusions of Papapetrou and Bonnor.

In the Shapiro approach no source is associated to the metric potential o because the
method used by the authors to solve this metric function does not imply a Poisson equation.
Writing the expression that defines « in terms of the 4-potential, the electromagnetic effects
appear as an addition of the equation found by Shapiro et. al. [19] if is considered a non
rotating fluid. But more interesting issues arise when this expression is written in terms of the
introduced quantities. First of all, no influence of W is present in the equation. Secondly, the

quantities IT and o appear as the electromagnetic effects in the equation of a.. For the metric
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considered, « is the factor associated to the coordinates r» and 6 which are the directions
where the symmetry is broken. In our system the breaking of spherical symmetry is due to
the poloidal magnetic field which has two components B, and By, quantities Il and o are
written in terms of these components. We can conclude that IT is related to anisotropy (two
different components of the magnetic field) and o is related to the shear stress experienced
by the fluid. These two quantities are responsible to breaking the symmetry of the system.

Having in mind the future numerical solution, in chapter III we studied the relativis-
tic virial theorem, but instead of the usual derivation from a conservation law, this important
theorem was derived from a projection of the Einstein field equations in the hypersurface
> thanks to the 3 + 1 formalism. The equations presented in this chapter are based in the
pioneer work of Bonazzola and Gourgoulhon [41] who derived a relativistic generalization of
the virial theorem for any stationary and asymptotically flat spacetime. The result of this
work is a virial integral which consists of a term related to the gravitational field source (such
as energy density, pressure, electromagnetic field, etc.), a term taking into account second
derivatives of the metric potential v, which plays the role of the gravitational potential in the
Newtonian limit and finally, a term associated with the extrinsic curvature. The motivation
to present the virial theorem in a chapter of this work was twofold: first, the usefulness as
a consistency check of numerical solutions of the Einstein equations and secondly the fact
that in the works in which we based to model numerically the solutions found in chapter V,
the virial integral looks unclear for the reader.

In chapter IV, we presented the theoretical formalism describing rotating and highly
magnetized neutron stars using a full axially symmetric treatment, we wrote the Einstein-
Maxwell equations in terms of a flat space elliptic operator and denoted the source as the
terms containing matter, electromagnetic and non linear terms in the metric potentials. The
hydrostatic equilibrium equations were derived within the assumption of infinite conductivity
matter and the relevant physical quantities describing the system were derived. We found
that the formalism of stationary neutron stars with poloidal magnetic fields consists of
a closed system of eleven variables (four metric variables, energy density, pressure, two

components of the electromagnetic potential, two components of the electromagnetic current,
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and the heat function); eleven equations (four Poisson equations for the metric variables, two
Poisson equations for the components of the electromagnetic potential, a relation between
these components, the equation of state, the relation between the heat function, energy
density and pressure, the first integral of the equations of hydrostatic equilibrium, and the
restriction on the electromagnetic current); three input parameters (angular velocity, total
electric charge, and the maximum density); and one input current function.

The discussions developed in chapter IV, aided us in constructing the numerical solu-
tion presented in chapter V, where we studied both rotating neutron stars without magnetic
field and magnetized neutron stars without rotation, modelled as a perfect fluid coupled with
a poloidal magnetic field in stationary configurations. As focus was the study of magnetic
field effects in the structure of neutron stars, the microscopical composition used to describe
neutron star matter was based on a traditional model of EoS known as G300 which supposes
that the neutron stars are composed by hadrons and studies the system in the framework of
field theory of interacting nucleons, hyperons and mesons.

To describe global properties of a rotating neutron star without magnetic field we
calculated the total gravitational mass, the circumferential radius, the angular velocity, an-
gular momentum and two quantities that contribute to the total gravitational mass, the first
one depends on matter and the kinetic energy, and the second measures the contribution of
the extrinsic curvature to the total energy of the system. The results show that the rota-
tional effects increase the spherical configuration mass in 18.5% for the maximum rotation
studied and change the star’s surface from the spherical to ellipsoidal shape.

To describe magnetized neutron stars without rotation with constant current func-
tions we calculated the total gravitational mass, the circumferential radius, the magnetic
field at the center, magnetic field in the pole, the magnetic moment and two quantities that
contribute to the total gravitational mass, the first one expresses the perfect fluid contribu-
tion, and the second measures the contribution of the electromagnetic energy to the total
mass. The results show that for a star with the lowest value of the current function, which
means lower magnetic fields, the deviations from the spherically symmetric configuration are

not significant. In fact, for the maximum mass configuration the magnetic field increases
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the spherical mass only in 2.6%, hence the spherical perturbation method would be used to
describe these magnetized neutron stars. This perturbation approach was followed by Ioka
et. al. [74] who considered poloidal and toroidal magnetic fields with meridional flow.

When the current function is set at f, = 2.50, the contribution of the electromag-
netic energy increases the mass in 28.7% for a star with central energy density equal to
350 MeV /fm?® which corresponds to a magnetic field at the pole of 8.79 x 10'® G. For this
case the shape of the star s surface has a clear deviation from spherical symmetry, showing
the effects of the electromagnetic energy.

The electromagnetic effects become more dramatic for a star with a magnetic field
in the center of 1.240 x 10'® G, for this case not only the shape of the star’s surface is
affected but also the magnetic force pushes a sufficient amount of mass off-center, showing
the transition to a toroidal topology. For the maximum mass configuration, the results
showed that for stars with central magnetic field ~ 10'® G electromagnetic effects increase
the mass in 10.1% with respect to the configuration without magnetic field.

The pressure contours studied suggest similar effects in the magnitude of the pres-
sure between rotating and nonmagnetized neutron stars with high central densities and
nonrotating neutron stars with high magnetic fields and lower central densities.

Another important point to be mentioned is that besides the expressions for the
gravitational mass for a rotating star with no magnetic field and the magnetized star without
rotation, suggest an analogy between the roles of the energy density coming from the extrinsic
curvature and the electromagnetic contribution in the gravitational mass, the results show
that the distribution through the star of these gravitational sources are different, while the
extrinsic curvature energy density has its largest values near and even beyond to the star’s
surface, the electromagnetic energy density maximum values are near the center of the star.

The mass-radius and mass-central energy density relations for the stellar sequences
show that for stars with values of the current functions f, = 2.00 and f, = 2.50, the
deviation from the spherical symmetry is more dramatic, this allows us to conclude that it is
not appropriate to adopt the spherical perturbation approach for these stars and hence the

full axially symmetric treatment used in this work brings the suitable description for these
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highly magnetized neutron stars. As expected we see that as the magnetic fields increase the
maximum mass and the radius also increase. Similar results can be found in Lattimer et. al.
[71], actually the largest maximum mass founded by our study is similar to that reported by
Lattimer, although in our work the magnetic field at center and in the pole are smaller than
that reported by Lattimer. This result indicates the role of the microscopical composition of
the matter in magnetized neutron stars, while Lattimer considered the presence of quarks,
the EoS adopted in this work only considers hadrons.

An interesting effect that we found was that for lower central energy densities the
radius increases with magnetic field, but for stars with central energy density between (1500—
1860) MeV /fm? the radius of the stars with higher magnetic field are smaller, even compared
with the spherically symmetric configurations. This effect is not present for stars with
fo = 1.00 whose radii have similar values compared to the nonmagnetized stars.

In summary, in chapter V we showed results of the numerical solution describing
rotating and highly magnetized neutron stars considering the static configurations. The code
that allowed us to found the numerical solution combined the methods used by Shapiro et.
al. [19] and Lattimer et. al. [71]. Our method is on par with that of the other authors.

A few topics to be considered for future investigations:

e Investigate if the factor two present in the gravitational mass expression for the elec-
tromagnetic energy, i.e. 2W, for a perfect fluid coupled with a poloidal magnetic field
and discussed in chapter II, (identified by Papapetrou [26]| as a fundamental property
of the static electro-gravitational field) appears in the case of non poloidal magnetic

field, for example toroidal configurations.

e Study the relation between the extrinsic curvature contribution to the total gravita-

tional mass as well its contour plot near to the Kepler frequency.

e Compare the effects of the extrinsic curvature in the orbits of different kind of particles

with the results founded by Alfradique et. al. [75].

e Compare the redshift effects of the magnetic fields founded in our solution with the

results reported by Troconis et. al. [76] who adopted the analytical solution for the
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metric proposed by Bonnor [50] and measures the redshift effect for neutron stars with

magnetic field at the center ~ 10 G.

e As we saw in chapter V, after the value f, = 3.26 for a star with central density equal
to 350MeV /fm?, convergence cannot be achieved. In that sense, the transition to a
toroidal topology is suggestive of possible dynamical outcomes that may be considered

for future works.

e Investigate the effects of the microscopical composition in the extrinsic curvature and

electromagnetic energy distribution considering more realistic equations of state.

e The magnetic field evolution, non constant current functions, the magnetic field role
in the cooling processes and the consequences in the neutron star structure are other

issues that can be considered as the next step of the present work.



Chapter 7

Appendix

7.1 Appendix of chapter II

Thinking in future works devoted to find numerical solutions of the equations presented in
chapter 11, we are going to write Einstein field equations in terms of dimensionless coordinate

s which is related to radial coordinate r, through

r:R(1i8> (7.1)

soifs=0=r=0and s =1=r — oo and in this way we cover all r coordinate domain.

In terms of s we have that

—3)2 — 2
Vng = <1 R;) |:(1 - S)Qf,sg,s + <1 S2lu )f,ug,u:| (72)

Sy(s,p) =€ {167r620‘P + % {16%2@13 - <12;%f)2 ((1 — 5)2(7.5)% + L“Q)(W)?)] } (7.3)
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Nonetheless, equation (7.3) has dimension of ﬁ, so our dimensionless effective source S will

be define as

S, (s, 1) =18, (s, )
2

5 S
=R—=S
R (1 _ S)Q ’Y(Snu)
- ~ 1
= ¢1/? {167T620‘P + % [IGWGZO‘P ~3 (s°(1 = 8)*(v,5)* + (1 — ,uz)(v,u)z)] } :
(7.4)
where the dimensionless quantity C is defined as
C = r’C
, 8
= R § —5)20 (7.5)
then P = r?P, po = r2py and p; = r?p;.
The expression for S,(s, p) is
o 1—s)Py,  p(1—s)?
Sp<8, ,LL) = ey/z |:87T€2 (po +pi + P) + %?’ - ﬁ%’y,“ + (76)

p ap 1 (1=s)Pys , p(1=s)7?
+ 5 (167’(’62 P — §V’}/V’}/ - R2 ? —+ ﬁ 82 ’Y,ﬂ -+

ef(ﬂffp)

v/2
TR

(1—s)?
2V A,V A,

The expression for the dimensionless source (or effective source) S,(s, i) is
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Sp(s,p) = 125,(s, )

82

=
= /2 [87r620‘(ﬁ0 + pi + ﬁ) +5(1—s)y,s— py, +

= R2 SP(S7/’L)

+ 5(1671'6 ap_ S VY.V +

)

(
— 5(1—3s) 73+u7ﬂ>} +67/2

)QVA¢ VA,

(7.7)

where V~.Vy and VA, VA, are given by (7.2) and we have to remember the dimensions

of quadripotential in our coordinates are [As] = [Lenght], so the final term of (7.7) is

dimensionless.

The dimensionless introduced quantities, i.e. dimensionless energy, anisotropy and

shear stress are given by

Wi(s,pu) = TZW(‘S? 1t)

82

= RZWW(S,M)
2 —(v=p) —
5 S 1 e e 2% (1 —s)?
= 2VA;. VA
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1 e~ (VP2

(s,) = r*T(s, )
), 8
= R mﬂ(saﬂ)
2 —(y=p) p—2c )2 2 )2
5 S le e (1—ys) 21— p*) (1 =)
= —— Ay VAy —
R (1—s)? { 8 R2(1 — pu?) &2 ViAs- VA R? s?
]_ ef(ﬂffp)672a 2(1 — l,LQ) (1 — 5)2 2
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a(s,p) = r0(s, )
= R2WU(S,M)

s 1 2e~(Pe=2a (1 — )5

(1—9)2 {_87 Rl — 22 & (Adas)(Aas,u)}

1 2e~ (P2 (1 — )3

T SRl ) (A6,5)(Agp,)- (7.10)

S

= R?

Taking into account (7.8) and (7.7) we write the expression for S,(s, i) in terms of

the dimensionless introduced quantities,

Sy(s,u) = e? [87r620‘(]50 +pi+ P+ QW) +5(1—s)ys— py,+ (7.11)

82

P 205 L2
P16me2ep — = Vo — s(1—s)v., .
+ 2( 6re 2R (1_8)2V’y Vy —s(l—s)y, —l—,wy,u)}

Expression for :5’} is given by (7.4) and it does not depend on the possible physical

quantities.

Finally, the equation for v in a dimensionless way is
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2

5O ) — I 5= )P0 = )+ [ (1= ]2 (712)

1
— 5{3u2 —4p(1 — 1)y + (L= ) (v,0) 2 (v + o) +

550 = S)al1 + 501 = s17J(1 = 1)+ ) + pss(L = )1+ 5(1= )]0 = ps) +
(1= 5)[1 4 5(1 = 5)3.0(1 = 122) s+ 77

551 = )L+ 51— )71~ 1) (1475 — o)
%[M — (1= )7, Bupu + 5(1 = 5)p,]

Sl (1= i (20 = 9= 810 — 20 = (L= 127} +
{1451 = )7 20— ) + [ — (1= p?)7,)] } " x

e~ () = (1= )7, |:VA¢.VA¢ (Gl Uy (o S)Q(Aqs,u)Q +

(1—p?) R?s?
2(1 — 5) [1;5(1 — S)’Y,s] <A¢7s)<A¢7“):| )

Using equations (7.9) and (7.10) we write,
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5O ) — I 5= )P0 = )+ [ (1= ]2 (713)

— S = 41— Wt (L= 20,0 G+ )
550 = 971+ 50— )] = 1) (v ) +
Sis(1 = )1+ 5(1 = 5)1.] (0 = ) +
(1= )1+ (1= 917,100 = 1)+ 77
550 = )L+ 5= 53,1~ 12) (7 — ) +
Sl (1 12, Bup + 51— 9)p.] +
Sl (= (20 = (U= )00 = 23] = (L= i)y} +

1 52

vl 1—sy = (1= )] {Vw.Vv +Vp.Vp — T2 [(v,)° + (va)Q]} ] +

{1+ 51— )72 (1= ) + [p— (1= p2)7,)] 7 x

{sme {[u— (1= 9,0 s, 1) + (1= 1) P11+ 5(1 = )7, J5(5, ) } |
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