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1. Extreme Events

Various types:
e Rare events --> larger or smaller than some (big) threshold
» Extremal events --> largest or smallest in a given set

e Records --> larger or smaller than any previous

Interesting in stochastic dynamics (unpredictable):

» Fun (sports, Guiness book,...)

» Danger (weather, earthquakes, epileptic seizures,...)
» Money (lotto jackpot, insurance claims,...)

» Curiosity (how often, why, ...)

> ...



Difficult to handle mathematically:

e Described by tails of probability distribution --> poor statistics
* Normally interested in peak position (mean (LLN) and variance (CLT))
--> machinery not so well-developed for tails

==> Statistical description by extreme value theory
Application to empirical data problematic:

 approximations difficult because of poor convergence to limiting distributions
* no insight in mechanisms of origin
* no prediction and prevention

New: Interesting in Statistical Mechanics:

» Conceptual (Foundations of Stat Mech)
» Study causes and effects



Not so new: Extreme events in Equilibrium Stat Mech

Canonical ensemble = subsystem in heat bath

subsystem E,V,N

energy exchange
(V,N fixed)

total system Y,V ,N,.,

statistical weight of subsystem:

B=S’(E): Inverse T of heat bath

heat bath Y - E

w(E) = e P

Boltzmann distribution




- origin of exponential: statistical independence of subsystems

1y Lk,

w12(E1 + E2) = wi(F1)w2(F2)

- probability p(T,V,N) to find microstate of subsystem with energy E: p = w(E)/Z

partition function Z(T,V,N) = Z o BF

macrostates

= ) r(BV,Ne
E

— Z e B(E-TS)

E

- sharp peak at some U (mean energy of subsystem) - Helmholtz free energy

F(TV,N)=-kTInZ=U-TS




- second equation: Legrende transformation U(S,V,N) €2 F(T,V,N)
- extremal principle: F takes minimal value for given set of system parameters

- extensivity: F =V /T,p)
Microscopic viewpoint (large deviation theory):

- Consider particle energies E; in subsystem
- Large deviation theory: (i) P(E) = Prob[ =, E, = E] ~ e"A(®)
(i) < e PE > ~ g B(B)
- A,B extensive, satisfy extremal principle A(E) = max; [ B(B) - BE ]
- Microcanonical ensemble: P(E) ~T'(E) ==> A(E) =- S(E)
- B(B) =-1In(2) =P F(p)

==> choosing p that maximizes S yields Legendre transformation F=U - TS



2. Gallavotti-Cohen Symmetry

Far from equilibrium:
- no generally applicable ensemble
- no large deviation theory (in general)

- but: generally valid Fluctuation Theorems

Gallavotti-Cohen
[Evans, Cohen, Morris ‘93,
Gallavotti, Cohen ‘95]

- mathematical asymptotic theorem for certain dynamical systems

- no specific information about entropy production o

- allows (statistical) prediction of negative entropy production (extreme)



Stochastic dynamics: [Kurchan ‘98, Lebowitz, Spohn ‘99, Harris, G.M.S. ‘07]
Consider stochastic process with set of configurations o
- Trajectory (realization) {o} = {o,, oy, ... 0,} with random jump times <,

- Measure some quantity r associated with each transition (energy transfer,
mass transfer,...) --> (antisymmetric) r. ; for transition from ¢ -—> ¢’

- Example: Particles hopping on a lattice
t + J -Ing
g(nm 27 12,1

— T

kK k+1 Op 0,0,

- r = +/- 1 for jump across K,k+1:
==> sum of all r along trajectory = integrated particle current



Associate some physical quantity with initial state (In f) and final state (- In g)
(Example for equilibrium: energy of initial and final configuration)

- Trajectory functional (measurement) ¢ J “Ing
T 2,1

Xp(t,{o}, f,9) = Tr(t,{o}) + B(f,9)

— Tp

0+ dmfe b ,
Gp 0103

- Integrated current of trajectory (sum of all r) plus boundary parts
- boundary provide appropriate statistical weight in functional
- choice of f,g depends on experimental setting!

- no restriction to any equilibrium condition



Consider instantaneous entropy production [Seifert ‘05]

,((71,)0 (7_) —In [wmﬁ (T)]

Wy o (T)

Then trajectory functional = entropy change in environment + boundary terms

- Detailed balance (equilibrium process): r = AE / (KT)

==> Thermal systems: AS_,, = Q/T

- Otherwise still well-defined through transition rates

- Stochastic particle systems: proportional to particle current

- Entropy production extensive in time (~t for each trajectory at large times)



Call corresponding trajectory functional R

- Consider generating function < e**> ==> gives weight e’ to each transition

- TIME REVERSAL

transition rates of reversed process t T J -ing

. r |

= original rates x e T, o e’

’ , w(0,0” )
w(o,0' ) =wW(o ,0) X ——— L T+ I 0 g
w(o’ ,0) F
= w(o’ ,0) e'v’ 0 O 1 Infe- O RSRRRIEEEEEE
’ Gp 0192

==> weight e(!-*rto each transition

(reversal of entropy production in each elementary step of each trajectory)



- extra factor for as many transitions as in initial (forward) process
< e-kR>F - < e-(1-7\)R>B

(includes interchange of boundary terms)

- Large deviation property (extensivity of R for t large)

< eM> ~ gto®)

- or equivalently g(A) =g(1-A) + (W’[

- Legrende transformation

==> Gallavotti-Cohen symmetry




Conceptually important
==> far-from-equilibrium generalization of Onsager relations

==> boosted the whole field of fluctuation theorems

e GC is asymptotic ==> one can use it to extrapolate

* Numerical tests can be performed in lattice gas models

What is the question?

Rigorous in lattice models with finite local state space (exclusion processes)

==> Is GCS valid, if we violate this condition?



3. Classical condensation phenomena

Granular shaking  N=100 plastic particles in box with two compartments separated
by wall with slit [Schiichting and Nordmesier ‘96, Eggers *99, Lohse ‘02]
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i) Strong shaking (fixed amplitude, 50 Hz frequency): = Equal gaseous distribution
ii)  Moderate shaking (same amplitude, 30 Hz): = Condensation (with SSB)

Effective, frequency-dependent temperature leads to phase transition
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Single File Diffusion:

SFD: Quasi one-dimensional diffusion without passing

. molecular diffusion in zeolites

. colloidal particles in narrow channels

. transport in carbon nanotubes

Three phases of kinesin transport (Chodhury et al.)

. molecular motors and ribosomes /

. gel electrophoresis \

. automobile traffic flow

Condensation = traffic jam = phase separation

Polyribosome:

Ot h er CO m p I eX SySte m S [http://lomega.dawsoncollege.qc.ca/ray/protein/protein.htm

* Network rewiring

« Accumulation of wealth



Condensation transition in the zero-range process

Zero-range process (ZRP) with symmetric nearest-neighbour hopping [spitzer (1970)]

« Stochastic particle hopping model
« Cluster of size n (or length of domain) < occupation number in ZRP

- particle flux J(n,) between compartments (domains) < hopping rate in ZRP

g R




Exact grand canonical stationary distribution spitzer, (1970)]

=» Product measure with marginals P(n) and local partition function Z
P(i) = ][ P(n;)
1EN

1 n 1 O
P(n)zgzn ] 77 k), Z= ) P(n)
k=1 n=0
 Fugacity z determines (fluctuating) density p(z)
- Well-defined for fugacities within radius of convergence z* (that depends on J)

- Canonical ensembles for any N by projection on fixed N

- Grand canonical ensemble: What happens if p(z*) is finite?



Spatially homogeneous systems

1)  Asymptotically vanishing flux J(n) = 0: =» z*=0 and hence p, =0

2) Consider generic case where for large n
J(n) =A(1 +b/n9)
=» radius of convergence of partition function: z<z* = A

=>» at z* one has finite density p, for o < 1

> Foro=1: = P(n)~1/nb

(+*) = o0 for b <2
PRET=N pe=1/(b—2) forb>?2



Interpretation of critical density for b>2 or o < 1 for canonical ensemble:

« Above critical density all sites except one (background) are at critical density

* One randomly selected site carries remaining O(L) particles

=» Classical analogue of Bose-Einstein condensation
[Evans '96, Ferrari, Krug '96, O’Loan, Evans, Cates, 98, Jeon, March ‘00]

=» Single random condensation site
[Grosskinsky, GMS, Spohn, ’05, Ferrari, Landim, Sisko '07, Loulakis, Armendariz ‘08,
Evans, Majumdar ‘08]]

= Continuous condensation transition (P, = P)

=» Coarsening as precursor of condensation
[Grosskinsky, GMS, Spohn, '05; Godreche ‘05]

Generic model for classical condensation phenomena




4. Breakdown of GCS

Validity of Gallavotti-Cohen symmetry:

* It’s a mathematical theorem (Good-bye, experimental physics?!)
* Related fluctuation theorems (Jarzinsky, Crooks, ...) also rigorous...
* ... but then, in which experimental system can you check the
hypotheses of the theorem?
=» In other words, how robust is GC symmetry? (Experimentalists, please return!)
Related fluctuation theorems experimentally well-confirmed in systems with

- relatively small number of degrees of freedom
- boundary terms matter for experimental time scales



Test of GCS for zero-range process

Exactly solvable for b=0

=>» large time regime accessible
=» many degrees of freedom

=» unbounded state space

BUT:
* N0 condensation

» exponentially small probability for large occupation



Zero-range process with open boundaries [R.J.Harris, A. Rakos, G.M.S., ‘05-07]

J
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\' quy, pwy,
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General case w,, arbitrary

Consider integrated current J, across bond |,I+1, starting from some initial distribution
Take t large, study mean currentj, =J,/t
=» Compute large deviation function g(A) from generation function <e-AJ>

=» Compute Legendre transform (probability to observe specific |,



Exact result:

- write master equation in Quantum Hamiltonian form
- make product ansatz for groundstate to obtain lowest eigenvalue (LDF)

Large deviation _ (p—g)e* 1) [av‘g (p/ Q)L—l e — 75]

. A) =
function ) Yp—q—B8)+BE—q+7)(p/g)" "
Legrende 80(j) = (p — @)leB(p/q)" " + 0]
transform ! v —q—B8)+ B8 —q+7)(p/g)t

p—q—B)+8(p—q+7)(p/q)")
~ jln - 208(p/q)" ' (p — q) ]
Y(p—qg—08)+ 8 —qg+v)(p/q)E

+4ln -j 4 \/jz + - 4afyi(p/q)"(p— q)? ]

) dafvd(p/q) 1 (p — q)?
- \/] i

p—q—B8)+ B8 —q+7)(p/q)F)?

- satisfies GCS, independent of |, but boundary terms ignored



For boundary terms consider totally asymmetric ZRP, w, = 1

- direct computation of complete LDF (no diagonalization --> inclusion of boundary terms)
- mapping to totally asymmetric simple exclusion process

- Bethe ansatz --> determinantal transition probabilities

- summation of determinants yields exact expression \V

current distribution | i In(i /o) ‘/\
input bond Po(J, 1) ~ e eI O
1

Poisson, by definition of process

y e—t[a—jﬁ-j]n(j,-"a)] ] < 3
output bond Pl(]= ) ~ e_t[a—j+,}']nU,-"aJ] 5 e-z[,@—jﬂ' In(j/8)] j> 3

- different from bond 0O

- non-analytic behaviour at j = 3



How can a mean current larger than exit rate be realized?

- requires previous build-up of large number of particles at site 1 (~t)
followed by rapid extraction

- implies input/output are independent Poisson processes
--> product form

- fransient condensate through (rare) fluctuation

- causes non-analytic behaviour in tale of
probability distribution (extreme events)

- mathematical: divergence of boundary term,
possible because of unbounded local state

~QQ§“¥50



Conjecture for full lattice:

e Input bond
poj ) ~ ettt/

Bulk bonds, [ # 0, L

| o tla—i+iln(j/a)) j <1
pi(J, t) ~ e~ tla—itiln(i/a)l ¢ o—t(1—j+jlnj)l j = 1L

e QOutput bond

(o~ tla—j+iIn(j/a)] j< 8
I)L(j, t) ~ ¢ e—t[a—j+j In(j /a)) > e—t[(.3—j+jln(j/.3)] ‘3 < ] <1
| etlai+ilmG/a)] y ~t1-i+imi)(L-1) y o~tB~i+imG/B) > 1.

- proof for small L by determinant formula obtained from Bethe ansatz



Exact expression for current distribution:

1+1
p(it) = [t
t=1
DO(Jtst) DO(Jt—lat) DO(]t—l+13t) DH—I(]t—lat)
y Dy(5t + 1,¢t) Dy(jt, 1) oo Do(gt —1+2,t) Dpq(jt—141,1)
Do(gt +1,t) Do(gt+1—1,t) ... Dy(5t+ 1,%) D;.1(jt,t)

with elements

1+1
{ |
D (z,t) = — fet/*z‘”"1 H (1—v;2)""dz.

2wl .
i—s+1

- evaluation by steepest descent for finite L




Back to partially asymmetric ZRP

take one site, b=0 for analytic calulation

generate equilibrium with fugacity x

change boundary parameters to non-equilibrium situation

obtain different non-analyticities, depending both on j and x
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Simulation results for larger lattice:
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e breaking of GCS persists

e measurable in Monte- Carlo simulations



5. Conclusions

Statistical Mechanics of extreme events yields:
 Fluctuation theorems through time reversal
e Gallavotti-Cohen symmetry may break down in “natural” setting

e Violation caused by transient condensation

==> dynamical mechanism underlying non-analytic change of
extreme event identified

 Large deviation phase diagram

==> Large deviations, fluctuation theorems, extremal events should be
studied together

==> Study of critical phenomena in extreme events



Mapping of single-file diffusion to zero range process:

- Label particles consecutively

« Map particle label to lattice site

« Map discretized interparticle distance to particle number
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