

Novos materiais como requisito para novas tecnologias

Prof. Dante F. Franceschini Filho Laboratório de Filmes Finos

Visão geral

- Monitor LCD
- Condutores Transparentes
- Materiais superduros
- Carbono amorfo hidrogenado: resultados recentes
- Ablação por laser: Filmes finos e nanoestruturas.
- Nanotubos de Carbono
- Conclusões

LCD

LCD

Condutores transparentes

- MRS Buletin vol. 25 no.8 (2000)
- Transparent Conducting Oxides D.S. Ginley and Clark Beight
- Criteria for Choosing Transparent Conductors – R.G. Gordon
- Characterization of Transparent |Conducting Oxides – T.J. Coutts, D.L. Young and X. Li

Condutores transparentes

Condutividade vs.transparência

Teoria de Drude – elétrons livres

$$\varepsilon_{1} = \varepsilon_{\infty} \left(1 - \frac{\omega_{p}^{2}}{\omega^{2}} \right) \qquad \varepsilon_{2} = \left(\frac{\varepsilon_{\infty} \omega_{p}^{2}}{\omega^{3} \tau} \right) \qquad \omega_{p} = \left(\frac{ne^{\tau}}{\varepsilon_{\infty} \varepsilon_{\infty} m_{c}^{*}} \right)^{\frac{1}{\tau}}$$

$$\frac{1}{\tau} << \omega$$

 $\mathcal{E}_1, \mathcal{E}_2 \rightarrow N, k + coef. Fresnel \rightarrow$

reflectância absorbância

Reflectância

Absorbância

 $\mu = 1000 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

Teoria de Drude – elétrons livres

$$\varepsilon_{1} = \varepsilon_{\infty} \left(1 - \frac{\omega_{p}^{2}}{\omega^{2}} \right) \qquad \varepsilon_{\gamma} = \left(\frac{\varepsilon_{\infty} \omega_{p}^{\gamma}}{\omega^{\gamma} \tau} \right) \qquad \omega_{p} = \left(\frac{ne^{\gamma}}{\varepsilon_{\gamma} \varepsilon_{\infty} m_{c}^{*}} \right)^{\frac{1}{\tau}}$$

$$\frac{\gamma}{\tau} << \omega$$
Instant in the second s

 $\mathcal{E}_{\gamma}, \mathcal{E}_{\gamma} \rightarrow N, k + coef. Fresnel \rightarrow$

absorbância

Table I: History of Processes for Making Transparent Conductors.

Materials and Process

Ag by chemical-bath deposition SnO₂:Sb by spray pyrolysis SnO₂:Cl by spray pyrolysis SnO₂: F by spray pyrolysis In₂O₃: Sn by spray pyrolysis In₂O₃: Sn by sputtering SnO₂: Sb by CVD Cd₂SnO₄ by sputtering Cd₂SnO₄ by spray pyrolysis SnO₂: F by CVD TiN by CVD ZnO: In by spray pyrolysis ZnO: Al by sputtering ZnO: In by sputtering ZnO: B by CVD ZnO: Ga by sputtering ZnO: F by CVD ZnO: AI by CVD ZnO:Ga by CVD ZnO: In by CVD Zn₂SnO₄ by sputtering ZnSnO₃ by sputtering Cd₂SnO₄ by pulsed laser deposition

Reference

Unknown Venetian J.M. Mochel (Corning), 19471 H.A. McMaster (Libbey-Owens-Ford), 1947² W.O. Lytle and A.E. Junge (PPG), 1951³ J.M. Mochel (Corning), 1951⁴ L. Holland and G. Siddall, 1955⁵ H.F. Dates and J.K. Davis (Corning), 19676 A.J. Nozik (American Cyanamid), 19747 A.J. Nozik and G. Haacke (American Cyanamid), 1976 R.G. Gordon (Harvard), 1979 S.R. Kurtz and R.G. Gordon (Harvard), 1986¹⁰ S. Major et al. (Ind. Inst. Tech.), 198411 T. Minami et al. (Kanazawa),198412 S.N. Qiu et al. (McGill), 198713 P.S. Vijayakumar et al. (Arco Solar), 1988¹⁴ B.H. Choi et al. (KAIST), 199015 J. Hu and R.G. Gordon (Harvard), 1991¹⁶ J. Hu and R.G. Gordon (Harvard), 1992¹⁷ J. Hu and R.G. Gordon (Harvard), 199218 J. Hu and R.G. Gordon (Harvard), 1993¹⁹ H. Enoki et al. (Tohoku), 1992²⁰ T. Minami et al. (Kanazawa), 1994²¹ J.M. McGraw et al. (Colorado School of Mines and NREL), 1995²²

spray-pyrolysis (SnO₂)

Janelas – Revestimentos Funcionais

Sputtering

Indium Tim Oxide - FPD

Table VI: Etchants for Transparent Conductors.

Material	Etchant
ZnO	Dilute acids
ZnO	Ammonium chloride
TîN	$H_2O_2 + NH_3$
In ₂ O ₃	HCI + HNO ₃ or FeCl ₃
SnO ₂	Zn + HCl
SnO ₂	CrCl ₂

Table VII: Hardness of Some Transparent Conductors.

	Material	Mohs Hardness	
_	TiN	9	
	SnO ₂	6.5	
	Soda-lime glass	6	
	In ₂ O ₃	~5	
	ZnO	4	
	Ag	low	

Table III: Approximate Minimum Resistivities and Plasma Wavelengths for				
Some Transparent Conductors.				

Material	Resistivity $(\mu\Omega \text{ cm})$	Plasma Wavelength (μm)		
Ad	1.6		0.4	
TiN	20		0.7	
In ₂ O ₂ Sn	100		>1.0	
Cd₀SnO₄	130		>1.3	
ZnO:Al	150		>1.3	
SnO ₂ : F	200		>1.6	
ZnO:F	400		>2.0	

Table VIII: Choice of Transparent Conductors.

Property	Material
Highest transparency	ZnO:F, Cd ₂ SnO ₄
Highest conductivity	In ₂ O ₃ :Sn
Lowest plasma frequency	SnO ₂ : F, ZnO: F
Highest plasma frequency	Ag, TiN, In ₂ O ₃ :Sn
Highest work function, best contact to p-Si	SnO ₂ : F, ZnSnO ₃
Lowest work function, best contact to n-Si	ZnO:F
Best thermal stability	SnO ₂ : F, TiN, Cd ₂ SnO ₄
Best mechanical durability	TiN, SnO ₂ :F
Best chemical durability	SnO ₂ :F
Easiest to etch	ZnO:F, TiN
Best resistance to H plasmas	ZnO:F
Lowest deposition temperature	In ₂ O ₃ :Sn, ZnO:B, Ag
Least toxic	ZnO:F, SnO ₂ :F
Lowest cost	SnO ₂ :F

Adição de N₂

Diamante CVD

Filamento Quente

substrato ~700[°]C

Aplicações

- Brocas odontológicas
- Janelas resistentes à radiação
- Ferramentas de corte para metais não ferrosos
- Revestimentos anti-desgaste e anti-atrito

ALTA RUGOSIDADE (CRISTAIS DE ~1 μ m)

Amorphous Hydrogenated Carbon a-C:H

	sp ³ (%)	H (% at.)	Density (g / cm ³)	Gap (eV)	Hardness (GPa)
Diamond	100	0	3.515	5.5	100
Graphite	0	0	2.267	0	
ta-C	80-88	0	3.1	2.5	80
Hard a-C:H	40	30-40	1.6-2.2	1.1-1.7	10-20
Soft a-C:H	60	40-50	1.2-1.6	1.7-4	<10
ta-C:H	70	30	2.4	2-2.5	50
polyethylene	100	67	0.92	6	0.01

Applications

- Mechanical protective coatings
- Friction reduction
- Wear Protection
- Hydrophobic anti-adhesion coatings
- Gas Barrier Coatings
- IR antireflective coatings
- Dielectric in ULSI ICs

a-C:H film deposition - PECVD

RF-Plasma Enhanced Chemical Vapor Deposition

Ion Impact Hardness and Stress

a-C:H from noble gas diluted CH_4 plasmas.

Capote and Freire Mater. Sci. Eng. B (2004)

Caracterização das constantes ópticas in-situ

$$R(d) = A \frac{r_1^2 + r_2^2 \cdot e^{-4\operatorname{Im}(\beta)} + 2 \cdot r_1 \cdot r_2 \cdot e^{-2\operatorname{Im}(\beta)} \cdot \cos[2 \cdot \operatorname{Re}(\beta) + \delta_2 - \delta_1]}{1 + r_1^2 \cdot r_2^2 \cdot e^{-4\operatorname{Im}(\beta)} + 2 \cdot r_1 \cdot r_2 \cdot e^{-2\operatorname{Im}(\beta)} \cdot \cos[2 \cdot \operatorname{Re}(\beta) + \delta_2 + \delta_1]}$$

$$r_1^2 = R_1 = \frac{(1 - n_1)^2 + k_1^2}{(1 + n_1)^2 + k_1^2}$$

$$r_2^2 = R_2 = \frac{(n_1 + n_2)^2 + (k_1 - k_2)^2}{(n_1 + n_2)^2 + (k_1 + k_2)^2}$$

reflectâncias das duas interfaces

$$R(d) = A \frac{r_1^2 + r_2^2 \cdot e^{-4\operatorname{Im}(\beta)} + 2 \cdot r_1 \cdot r_2 \cdot e^{-2\operatorname{Im}(\beta)} \cdot \cos[2 \cdot \operatorname{Re}(\beta) + \delta_2 - \delta_1]}{1 + r_1^2 \cdot r_2^2 \cdot e^{-4\operatorname{Im}(\beta)} + 2 \cdot r_1 \cdot r_2 \cdot e^{-2\operatorname{Im}(\beta)} \cdot \cos[2 \cdot \operatorname{Re}(\beta) + \delta_2 + \delta_1]}$$

$$r_1^{\mathsf{r}} = R_1 = \frac{(1 - n_1)^{\mathsf{r}} + k_1^{\mathsf{r}}}{(1 + n_1)^{\mathsf{r}} + k_1^{\mathsf{r}}}$$

reflectâncias das duas interfaces

In-situ optical characterization of plasma deposited a-C:H films during deposition by CH4 plasmas and erosion by N2-H2 plasmas.

Fabiano Pereira (dout.), Dácio Souza (IC)

Framework for analysis of optical constants of a-C:H films

Fabiano Pereira (dout.), Alexandre P. Silva (ex-dout)

¹³C NMR

Fingerprinting of a-C:H films by optical constants

- a-C:H films taken as an inhomogeneous mixture of three fases:
- Diamond-like: clustered sp³ carbon, dense transparent. n = 2.41, k = 0
- Polymer-like: hydrogenated carbon, low density, transparent n = 1.5, k=0
 - Graphite-like: clustered sp² carbon, dense, absorbing n=2.47, k=0.41

Efective Medium – three components

A.M. Jayannavar, N.Kumar – Phys. Rev. 44 (1991), 12014

$$\begin{pmatrix} \varepsilon_0 \\ \varepsilon \end{pmatrix}^{1/2} \begin{pmatrix} \varepsilon - A \\ \varepsilon_0 - A \end{pmatrix}^{\alpha} \begin{pmatrix} \varepsilon - B \\ \varepsilon_0 - B \end{pmatrix}^{\beta} = (1 - C)^{3/2}$$

$$A = A(x_1, x_2, \varepsilon_1, \varepsilon_2)$$

$$B = B(x_1, x_2, \varepsilon_1, \varepsilon_2)$$

$$\alpha = \alpha(A, B, \varepsilon_1, \varepsilon_2)$$

$$\beta = \beta(A, B, \varepsilon_1, \varepsilon_2)$$

(1-C) – volume fraction of the polymer-like fraction x_1C – volume fraction of sp³ clustered phase $x_2 C = (1-x_1) C$ – volume fraction of sp²clustered phase

MWNT 800 C Ar Н2 CH_4 HV mag WD 10.00 kV 40 000 x 4.9 mm det spot TLD 3.0 pressure 4 66F-3 Pa FT62 mit Au bec Prof. F.B. Passos (EQ) Hugo Alvarenga (dout, EQ) Dácio Souza (IC, UFF)

SWNT

Dr. Carlos Sanchez (pós-doc) Dacio Souza (IC),, Ingrid Hames (mestr)

Planos

- Dispersão de nanotubos (Prof. E. Ponzio Quim)
- Filmes finos para determinação de propriedades ópticas [prof. A.Latge, Ingrid Hames (mestrado)]
- formação de compósitos nanotubos-a-C:H
 - condutores transparentes (Prof. E. Ponzio QUI)

Filmes Finos por ablação por laser

- Filmes de carbono duro 32 GPa! Dr. C. Sanchez (Pós-doc uff), Prof. M. Maia da Costa (PUC)
- Nanopartículas de Óxido de Eu –
- C. Sanches, prof. Glauco Maciel (UFF), prof Hugo Luna (UFRJ), prof. C. Fellows (UFF), prof. Dalber Candela (UFF), prof. Renato Guimarães (UFF)

condutor transparente comercial

O Laboratório de Filmes Finos está operando e ampliando as suas atividades em Física dos Materiais.

