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Abstract

In 1989 E. Witten, using traditional QFT techniques, develop an exact path integral repre-
sentation to many classes of topological invariants. These QFTs, so-called Topological QFTs
(TQFTs), share the property that all of their observables are metric-independent. In other
words, the observables are global invariants classifying the topological and smooth structure
of spacetime. In this sense, one could say, that TQFTs are examples of background independent
and exactly soluble perturbative QFTs.

One of the most proeminent example perhaps is the four dimensional Topological Yang-
Mills theory (TYM). This theory can be obtained by the BRST quantization of the Pontryagin
invariant

∫
Tr (FF), instead of the tradition Yang-Mills action

∫
Tr (F⋆ F). The observables

are known to be the Donaldson’s polynomials, which classify the smooth structure of the
underlying manifold. In particular, TYM theory is so symmetric that it has remarkably simple
quantum properties. For instance, in the Landau gauge, it renormalizes, to all orders in
perturbation theory, with only one (nonphysical) parameter and the theory is actually exactly
soluble at tree-level (all quantum corrections vanish).

These remarkable properties led Witten to hypothesize if such a theory could describe an
unbroken phase of General Relativity. In this thesis, we will propose a renormalizable TYM
theory that can generate gravity via an explicity breaking of its topological BRST symmetry -
thus fulfilling Witten’s vision. In particular, we will consider the family of Lovelock-Cartan
theories of gravity due to their generality and closer relation to the gauge structure.
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Chapter 1

Introduction

The quantum mechanical behavior of the gravitational field remains mostly unknown even
after ninety years of continuous scientific investigation. The main source of difficulty is the
total lack of experimental data: quantum gravity (QG) corrections become dominant only at
∼1016 TeV, many orders of magnitude above the current output of particle accelerators1.

Though it is very hard to justify the research in QG on practical grounds, a complete
self-consistent theory should be able to solve or, at least, enlighten us about major open
problems in theoretical physics. Some of these includes spacetime singularities, information
loss, the nature of dark energy, chronology protection, cosmic and topology censorship,
locality, extra dimensions, etc.

In contrast, the other three forces of Nature manifest their full quantum mechanical
behavior in much lower energy scales, well within the reach of contemporany accelerators.
For these, an extremely precise model for their description could be formulated.

The Standard model of Particle Physics, or Standard Model (SM), for short, describes
the strong and electroweak force as quantum fields over spacetime with gauge symmetry
SU(3)c × SU(2)L × U(1)Y2. In particular, at ∼102 GeV the electroweak sector SU(2)L × U(1)Y
suffers a spontaneous symmetry breaking, via the Higgs mechanism, to its Abelian subgroup
U(1)em. The result is a splitting in the electromagnetic force, mediated by the massless photon
γ, and the weak force, mediated by the massive bosons W± and Z0 at energies lower than

1For comparison, the current output of the Large Hardron Collider is ∼10 × 101 TeV.
2SU(3)c is the color symmmetry of strong interactions. SU(2)L is the weak isospin symmetry of left-handed

fermions and U(1)Y is the weak hypercharge.



2 Introduction

this threshold3. At about ∼102 MeV, hardronization takes place and the SU(3)c sector gets
confined inside hadrons.

In this Quantum Field Theory (QFT) framework, we can predict the strength of electro-
magnetic interactions, for instance, with a precision of ten parts per billion (10−8), making
Quantum Electrodynamics the most precise theory of all Sciences.

Besides the lack of experimental data, the apparent clash between the QFT framework
and gravity also sources great theoretical difficulties in the QG research. On one hand, QFT
describes the behavior of quantum field over a background manifold4. In other words, it is a
background dependent framework that needs, for instance, a fixed background metric. On
the other hand, we will see in chapter 4 that the most important lesson we learned from
General Relativity (GR) was the background independence principle. In other words, that the
role of gravity is to predict the features of spacetime, not to assume them à priori. For that
reason, the metric must not be fixed in a gravitational theory, but dynamical, given by an
action principle.

If this clash is just apparent or deeply rooted is still an open debate. The most tradicional
program, however, is to give up background independence in favor of a perturbative QFT
description. The reason is much more historical than evidence based. In fact, it is not clear at
all if this program results in a sensible physical description. This is the so-called problem of
d = 4 perturbative QG. Maybe a brief review is due.

In the path integral approach to quantum GR, for instance, one tries to make sense of a
sum over all possible inequivalent geometries or, more precisely, a sum over the functional
space of metrics modulus diffeomorphisms5. The usual program is to split the metric field
into a simple sum of a fixed background д̄µν and a massless symmetric field hµν. In this way,
gravity can be treated as a perturbative QFT for hµν. Again, the presence of д̄µν jeopardizes
the background independence principle. But not only that, in mid seventies it was shown

3At ∼102 GeV the Higgs field attains a nontrivial vacuum expectation value (vev). This creates all sorts of
new interactions and possibly mixing among the fields that were coupled to it. In particular, this is what happens
among the SU(2)L and U(1)Y gauge fields, respectively, W1,W2,W3 and B. Due to the nontrivial vev of the Higgs
field, bosons W1 and W2 coalesce into two massive bosons, namely, W± = (W1 ± iW2) /

√
2, while bosons W3

and B coalesce into the massive Z0 = − sin (θ)B + cos(θ)W3 and the massless γ = cos (θ) + sin (θ)W3, where
θ is the so-called mixing angle. The final result is the electromagnetic field as an U(1)em gauge field coupled
nonminimally to the massive weak field.

4A manifold is, in general, a globally complicated space which locally looks very simple. Indeed, it can be
seen as a generalization of the Euclidean space in which the tools of Differential Calculus apply only locally.
Mathematically, it is defined as a topological space endowed with a differentiable atlas. We will exclusively
consider manifolds with C∞-atlases, also called smooth structures.

5A diffeomorphism is an isomorphism between manifolds, i.e., a differentiable and invertible map that
preserves topological and smooth structure features. Manifolds connected by a diffeomorphism share the same
global invariants and are physically indistinguishable from each other.
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that this program is nonpredictive: it is perturbatively nonrenormalizable for GR dynamics6

or nonunitary for higher derivatives (HD) Lagrangians7.
Many other approaches were formulated in these ninety years of QG research. They,

however, can be divided in basically two “world views". One understands QG as a quantum
theory of spacetime, i.e., that gravity is fundamentally a spacetime property and therefore
it must be quantized in an explictly background independent manner. Examples are the
spinfoam formulation of Loop Quantum Gravity [10], Causal Dynamical Triangulations [11],
Causal Sets [12], Tensor Models [13], etc.

Other approaches quantize gravity in such a way that background independence is lost -
at least explictly - and there is no clear step on how to recover it. Even more drastically, some
assume that spacetime properties are emergent, i.e., that gravity is fundamentally something
else. In these approaches, geometrodynamics should be recovered in some limit, of course.
One of most proeminent example of such model is the strings hypothesis [14, 15]. It, however,
aims a far greater goal of a Theory of Everything. More conservative approaches includes
(the already mentioned) HDQG [16], Asymptotic Safe Quantum Gravity [17], Supergravities
[18], Hořava-Lifshitz [19], induced gravities [20], etc.

The scenario that will be analysed in the chapter 5 of this thesis unites the best of both
worlds. Namely, that the quantum mechanical behavior of the gravitational field could be
described by a perturbative renormalizable QFT that is also background independent - at least
in some particular sense.

The idea is that a TQFT is such a theory, describing gravity at a trans-Planckian8 regime.
Here, the reader should be careful in realizing the paradigm shift. At these energies, gravity
would not be about geometry anymore, since TQFTs describes no local degrees of freedom.
This, however, should not be a surprise. Virtually every QG approach give up on geometrody-
namics. For the same reason, there are no gravitons either. Again, no surprises. Particles are
background dependent concepts.

6In 1974 G. ’t Hooft and M. Veltman showed that at 1-loop GR has divergences proportinal to R2 and
RµνRµν [1]. Therefore the pure theory is 1-loop renormalizable (since it is Ricci flat) but nonrenormalizable in
the presence of minimally coupled scalar fields. This result was later extended to spinor, vector and tensor
fields [2–5]. The hope was that 2-loop corrections could cancel these divergences. In 1985, M. H. Goroff and
A. Sagnotti showed that this was not the case [6]. In fact, the 2-loop divergences were worse, proportional to
R µν
αβ

R σλ
µν R αβ

σλ
, rendering GR nonrenormalizable even without matter field couplings.

7In 1977, K. S. Stelle introduced a class of gravity theories that were renormalizable to all orders in perturba-
tionn theory. They, however, were plagued with ghost fields appearing in their physical spectrum. To be fair,
until today there is still an open debate about whether or not these ghosts can be tamed [7–9]. Thus, HDQG still
is an active field of research.

8This word means beyond Planck energy, i.e., energies higher than 1016 TeV.
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TQFTs, however, describe global degrees of freedom. In this sense, in our scenario,
QG would be reduced to the knowledge of global invariants of spacetime, nothing else. In
particular, invariants that classify the smooth structure, known as the Donaldson polynomials.

The local degrees of freedom of gravity and thus geometrodynamics could only be gen-
erated by a breaking of the topological symmetry. It is reasonable to expect this to happen
at Planck’s energy. The breaking mechanism, however, will not be tackle in this thesis. Our
work will be restrict to the analysis of the physical consistency of this scenario. In particular,
if such TQFT is stable under quantum corrections and thus renormalizable to all orders. The
algebraic renormalizability technique will be employed to this aim.

Chapter 2 is dedicated to a review of the concepts and tools that will be used throughout
this thesis. This is done in the context of Yang-Mills theories for mainly two reasons. The
first is that Yang-Mills theories are fairly well understood by most theoretical physicists. So,
hopefully, the reader can start this thesis feeling confortable. The second, and more practical,
was that the BRST construction adopted, hopefully, will make chapter 3 more natural: from
the perspective of the BRST structure, it is more easy to comprehend TYM theories as natural
generalizations of Yang-Mills theories.

Chapter 3 is dedicated to TQFTs with strong emphasis on TYM theories. In particular,
their remarkable quantum properties in the self and anti-self-dual Landau [(A)SDL] gauges.
Here, two novel results will be exposed i) the fact that, in the (A)SDL gauges, TYM theories
renormalize with only one (unphysical) parameter, not four as stated in [21, 22] and; ii) that
they are actually tree-level exact.

Chapter 4 is dedicated to gravity. We will start with the GR, putting particular emphasis
on the background independence principle. We will argue that this principle leads to more
general theories of gravity such as the Einstein-Cartan theory. Further, we will introduce
the gauge theoretical approach to gravity, as it represents a more suitable framework for our
purposes. This will culminate on the Lovelock-Cartan-(Sciama-Kibble) family as the most
general theories of gravity that envolve nonvanishing torsion.

In chapter 5, we will propose the TYM theory that can generate the Lovelock-Cartan family
via the explicit breaking of its topological BRST symmetry. In particular, we will present
its renormalizability properties such as the most general counterterm, quantum stability,
z-factors, etc. This is the main novel content of this thesis.

Finally, in chapter 6 the reader will find the conclusions and perspectives of this work.



Chapter 2

Yang-Mills theories

2.1 Introduction

In 1954, physicists C. N. Yang and R. Mills generalized the ideas of the electromagnetic U(1)em
gauge symmetry to a more general, non-Abelian gauge group [23]. The objective was to
develop a consistent QFT that could correctly describe the quantum dynamics of hadrons -
particles that compose the atomic nuclei. The Yang-Mills (YM) theories, however, immediately
faced severe difficulties.

The first one perhaps was the apparent masslessness of the gauge field. This problem was
immediately pointed out by W. Pauli and rests on the fact that the gauge symmetry forbids
the presence of a mass term for the gauge field in the action functional. In other words, the
perturbative framework dictates that the fundamental excitations of the YM field must be
massless vector bosons. Matter coupled to this field would thus experience a long range
force, well beyond the typical nuclei distance. This was, of course, in direct contradiction to
experimental data.

The second problem was the general feeling that the QFT framework was inherently
ill-defined due to the inevitable presence of infinities as soon as one left the lowest order in
perturbation theory. The physical meaning of the renormalization precedure was not yet
known. In despite of the sucessful application in QED, it was believed that this procedure
was a trick. A trick to hide the inconsistencies of QFT under a rug.

It was also believed that the perturbative QFT framework could not possibly describe
fundamental interactions because these become infinitely strong at higher energies: a property
known as a Landau pole. This general disbelieve was specially true among the fathers of QFT
itself, namely R. P. Feynman, J. Schwinger, F. Dyson and others, making it even harder to be
overcome.
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Only in 1960 the first step towards the general acceptance of the YM theories was taken.
Physicist Y. Nambu discovered, in the context of the BCS1 theory for superconductivity, that
new massless states could appear in the physical spectrum of gauge theories if one of its
global symmetries was spontaneously broken2 [24].

J. Goldstone subsequently elucidated Nambu’s work in [25] and, together with A. Salam
and S. Weinberg, convencily extended the results to a relativistc QFT framework [26]. These
are now known as the Goldstone theorem and the resulting Nambu-Goldstone bosons [27].

In 1961 Schwinger was the first to realize that the Goldstone theorem did not exactly
apply to local gauge symmetries [28]. In other words, that a spontaneous breaking of the
local gauge invariance not necessarily led to propagating massless states. Nonetheless, it was
P. Anderson, in 1962, the first to create a mechanism in which massive states could actually
arise [29]. However, Anderson’s work was in a nonrelativistic framework.

The relativistic case was develop in 1964 by three independent groups: i) P. Higgs [30]; ii)
R. Brout and F. Englert [31] and; iii) G. Guralnik, C. R. Hagen and T. Kibble [32]. This mass
generation mechanism is now known as the Higgs mechanism [27]. It precisely describes
how a gauge theory coupled with a scalar field can aquire mass by “absorbing” the would-be
Nambu-Goldstone bosons. This process exactly occurs when one of the gauged symmetries
is partially or totally broken due to this scalar field, known as the Higgs field, attaining a
nontrivial vev.

The Higgs mechanism solved the mass problem of YM theories. In particular, the Higgs
field excitations were the latest particles of the SM to be experimentally verified. This was
achieved, independently, by the CMS and ATLAS collaboration in 2012 [33, 34]. Shortly after,
in 2013, Higgs as well as Englert were awarded the 2013 Nobel Prize in Physics.

Another important step occured in 1967, when Weinberg in [35] and Salam in [36] incor-
porated the Higgs mechanism to S. Glashow’s unified model of weak and electromagnetic
interactions [37]. In the Glashow-Salam-Weinberg (GSW) electroweak model, the W± and
Z0 massive bosons as well as the massless photon γ could be seen as the result of a partial
spontaneous symmetry breaking, via the Higgs mechanism, of a SU(2)L × U(1)Y YM theory.
In particular, the theory predicted a new kind of weak interaction among matter fields. An in-
teraction in which the electric charge remained unchanged; very much like electromagnetism.
The experimental discovery of the weak neutral current in 1973 confirmed this prediction
[38]. For all of these contributions GSW were jointly awarded the 1979 Nobel Prize in Physics.

In despite of all of these results, the scientific community remained largely ignoring YM
theories only until 1971. The turning point came in a series of two papers by ’t Hooft in

1BCS stands for Bardeen-Cooper-Schrieffer.
2A symmetry is said to be spontaneosly broken when it is present in the action functional but not in the

vacuum state of the theory.
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which he worked out their renormalization for the massless and massive case, including
the GSW electroweak model [39, 40]. Particular importance should be given to the general
method of regularizing gauge theories, named dimensional regularization, developed by him
and Veltman, his Ph.D. advisor, in [41]. But which was also independently developed by
J. J. Giambiagi and C. G. Bollini in that same year [42]. QFT was finally reborn as a consistent
framework. For their work ’t Hooft and Veltman were awarded the 1999 Nobel Prize in
Physics.

The final and definite step was taken in 1973, when D. Gross, F.Wilczek and, independently,
D. Politzer evaluated the β-functions of several YM theories [43, 44]. They discovered that they
are always negative defined. In other words, that YM theories always exhibit asymptotically
free behavior for large scales of field momenta, i.e., in their ultraviolet (UV) limit. This
remarkable and very unexpected feature meant that YM theories did not possess Landau
poles and thus the QFT framework could once again be seen as able to actually describe
fundamental interactions.

The SU(3)c YM theory in particular remained asymptotically free even when coupled to
up to 16 different fermions in the fundamental representation of this gauge group. This led
Gross and Wilczek to propose it, with chiral flavor symmetry3 SU(3)L × SU(3)R, as the QFT
for the strong interactions. In an effort to describe hadrons as quarks interating via gluons,
similar conclusion was reached by H. Fritzsch, Gell-Mann and H. Leutwyler in [47] at that
same year: QCD was then born. For the discovery of asymptotic freedom in the theory of
strong interactions Gross, Wilczek and Politzer were jointly awarded the 2004 Nobel Prize in
Physics.

Asymptotic freedom also meant that the infrared (IR) limit of YM theories was highly
nonperturbative. In this complicated dynamics, we suppose that quarks and gluons condensate
in a process known as color confinement [48–50]. This completely changes the QCD vacuum,
generating all kinds of bound states: mesons, baryons, gluball, etc. For example, if the
nonperturbative QCD vacuum breaks the chiral flavor symmetry SU(3)R × SU(3)L into its
diagonal subgroup SU(3)V, we can describe all eight pseudoscalar mesons as Nambu-Goldstone
bosons.

3Actually, the full chiral global symmetry is U(3)L ×U(3)R. It decomposes as SU(3)L × SU(3)R ×U(1)V ×U(1)A.
The subscript letter L, as we already explained, means that this group acts only on left-handed fermions. Letter
R means this sector only acts on right-handed ones. Letter V stands for vectorial, this U(1) copy does not
distinguish between left or right-handed fermions and it is related to the conservation of baryon number. On the
other hand, letter A stands for axial and this U(1) copy does distinguish between left and right. The latter does
not define any quantum number though, since it is anomalous; related to the U(1) problem of YM theories [45].
Anyhow, the chiral symmetry is only approximate since quarks top, down and strange do have nonvanishing
masses. Nonetheless, these are very small when compared to ΛQCD. This philosophy is part of M. Gell-Mann’s
eightfold way in describing hadrons via the representations theory of the SU(3) group [46], to which he was
awarded the 1969 Nobel Prize in Physics.
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Unfortunately, an analytic proof of color confinement is still lacking4. In fact, little is
rigorously known about the IR regime of YM theories. We actually do not even have a precise
definition of a quantum gauge theory in four dimensions. This challenge, together with the
existence of a mass gap5, constitute one of the Millenium Problems in Mathematics, as stated
by the Clay Mathematics Institute, which offers a bounty of one million US dollars for its
solution.

In this thesis, however, we will pretend that such hard facts do not exist and we will move
on as if the perturbative framework worked flawlessly everytime.

2.2 Mathematical framework

The YM theories and gauge theories in general are not only physically but mathematically
beatiful as well. This is because they have a natural geometrical interpretation in the language
of fiber bundle theory. For instance, consider a principal G-bundle π : P → M where G is the
structure group, π the projection, P the total space and M the base space6. Also, consider a
G-connection 1-form ω on P, a local section σ over x ∈ M as well as the Lie algebra g of G. In
this enlarged geometrical arena, the gauge field Aab

µ(x) can be seen as the components of a
g-valued 1-form A on x ∈ M, which is itself the result of ω being locally “pulledback” by σ
from P to M. Mathematically,

A = σ∗ω , (2.1)
4Confinement has been solved in other contexts, however. For example, it was discovered that the strongly

coupled regime of four-dimensional N = 2 Super-Yang-Mills theory with gauge group SU(2) is dual to a theory
of weakly coupled monopoles. Confinement could then be exactly described by the physics of monopole
condesation [51]. Surprisingly, this result also had deep impact on Mathematics, Differential Topology in
particular, with the discovery of the Seiberg-Witten invariants. Confinement can also be described in d = 3 GSW
electroweak model by considering nonperturbative contributions coming from instantons [52].

5A mass gap is an energy difference between the QCD vacuum and its first excited state. Its existence relies
on this difference being strictly positive. In other words, it relies on the first excited state having a lower mass
bound. This is, of course, in direct relation with color confinement: if gluballs exists as a consequence of color
confinement, they are massive and such a mass gap is expected.

6If the reader is not familiar with this concept, the author recommends references [53, 54] as introductory,
[55, 56] as intermediated and [57] as advanced. It can also be added that, loosely speaking, a fiber bundle can be
seen as a larger geometrical arena that locally looks like a Cartesian product P = M × G, but globally it usually
has a much more complicated topological structure. In our particular context, the construction of a fiber bundle
structure over spacetime can be seen, even more loosely speaking, as the process of adding extra, nonphysical,
dimensions to M, provided by the structure group manifold G, that allow us to geometrize the force described by
the gauge field. This idea is very reminiscent to T. Kaluza and O. Klein hypothesis of a fifth dimension that allow
us to unify gravity and electromagnetism in a single geometrical setting [58]. Comments on the advantages of
this formalism will be made before the end of this section.
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where σ∗ denotes the pullback by σ,

A = Aab
µ(x)Jab ⊗ dxµ , (2.2)

dxµ is a local basis on x ∈ M and Jab is a local basis on G near its unity, i.e., the generators of
g satisfying

[Jab, Jcd] = f
e f

abcd
Je f , (2.3)

where [ , ] is a Lie bracket. More simply stated, A can be seen as a local representation of the
globally defined connection form ω. Similar occurs with the curvature 2-form Ω of ω given by

Ω = dPω + ω ∧P ω , (2.4)

where ∧P is the wedge product and dP the exterior derivative on P. It can also be “pulledback”
to M, resulting in

σ∗Ω = dA + A ∧ A , (2.5)

where ∧ is the wedge product and d the exterior derivative on M. We say that this g-valued
2-form on M is the curvature F of A,

F = dA + A ∧ A . (2.6)

It can be expanded as
F =

1
2

Fabµν(x)Jab ⊗ (dxµ ∧ dxν) , (2.7)

and its components Fabµν(x) are the usual YM field strength

Fabµν(x) = ∂µA
ab
ν(x) − ∂νA

ab
µ(x) + f ab

cde f Acd
µ(x)A

e f
ν(x) , (2.8)

that we are so used to. Moreover, the curvature form Ω satisfies, as any curvature must,
Bianchi identity

DωΩ = 0 , (2.9)

where Dω ≡ dP + [ω, ] is the exterior covariant derivative on P. This identity can also be
“pulledback” to M by means of section σ, i.e., it can be locally represented by

DF = 0 , (2.10)

where D ≡ d + [A, ] is the exterior covariant derivative on M.
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So, this will be the basic language that we will adopt in this thesis. The reason for this
choice is fourfold: i) as already mentioned, this is the natural mathematical framework of
gauge theories; ii) ω has a global meaning. Thus, understanding A as its local representation
has greater interest when topology matters (as it does); iii) treating gauge theory geometrically
represents an obvious step towards its connection to graviy and; iv) aesthetics: equations
looks much more clean. In what follows, we will introduce some more concepts of gauge
theory that are of much importance.

2.2.1 Gauge transformations

The group of gauge transformations G is defined as the group of equivariant automorphisms
on P which induces the identity on M. An automorphism f : P → P is a diffeomorphism
on P to itself. Note that this f induces an automorphism f ′ : M → M on M given by
f ′ (π (p)) = π (f (p)) where p ∈ P. A gauge transformation is then an automorphism such
that: i) f (pд) = f (p)д for all p ∈ P and д ∈ G and; ii) f ′ = 1M. Schematically,

P
f

−−−−→ P

π
y yπ
M −−−−→

f ′
M

As a consequence, if ω is a connection on P then so it is its pullback f ∗ω by f . This is the
global, geometrical concept of a gauge transformation. Surely, it is more abstract than the
reader might be used to. Nonetheless, one can still see it carries our familiar notion of what

a gauge transformation is: a change of fields (ω
f
−→ f ∗ω) that leaves the spacetime intact

(M
1

−→ M). Moreover, this definition is well suited to work with nontrivial bundles, i.e., when
topology matters, due to its independence on local sections or trivializations.

If the reader remains unconfortable, the usual definition of a gauge transformation can be
obtained if we think of f as acting on sections. For instance, consider a new section σ̄ = f ◦σ

in P to pullback ω to M resulting in
Ā = σ̄∗ω . (2.11)

Therefore, a change of sections σ
f
−→ σ̄ due to the gauge transformation f ∈ G will amount

to a change
Ā = f −1Af + f −1d f , (2.12)

in the local representation A of ω. Equation (2.12) is, of course, the well-known gauge
transformation of the YM gauge field that we are used to.



2.2 Mathematical framework 11

2.2.2 Observables

Moving on, the definition of a connection ω on P allows us to introduce the notion of parallel
transport. As we know, there is no canonical way to compare vectors lying on different fibers
of a vector bundle over M. But if we pick a connection and a path, there is a canonical way
to drag a vector from one fiber to another. For instance, consider such a path the smooth
loop c(t) : [0, 1] → M based at x ∈ M. Also consider a point p ∈ P in the fiber π−1 above x ,
i.e., π(p) = x . A connection ω on P then defines an unique horizontal lift of c(t), given by
c̃(t) : [0, 1] → P, such that c̃(0) = p. In other words, given a path on M, we can lift it up to
the fibers above spacetime and the result is uniquely selected by the connection form ω. The
lifted curve c̃(t), however, is not, in general, closed. Its end point c̃(1) will not, in general, be p
but rather some other point q = pд ; д ∈ G in the fiber π−1(x). See figure 2.1 for a more visual
description. This д is what we call the holonomy of ω around c , which is usually denoted

x

c(t)

M

π−1(x)p
q

c̃(t)

Figure 2.1 The curve c(t) on M with endpoints c(0) = c(1) = x and the the lifted curve c̃(t) on
P with endpoints c̃(0) = p , c̃(1) = q on the fiber π−1(x) above x .

as Hol (c,ω). If we consider all possible loops based on x , the holonomies of connection ω
around them will form a subgroup of G called the holonomy group of ω.

The holonomy of ω around a loop c is very important when we are considering the
observables of YM theories. Accordingly to the gauge principle, these are gauge-invariant
quantities [27]. Perhaps the simplest of such quantities can be extracted from Hol (c,ω) by
taking its trace

W (c,ω) = Tr [Hol (c,ω)] . (2.13)

This is known as a Wilson loop and it is common among physicists to express it in its local
version

W (c,ω) = P Tr
(
e
∫
c A

)
, (2.14)

where P is the path-ordering operator.
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Other observables of YM theories can be constructed from F. For instance, the Pontryagin
density

LPontr = Tr (FF) , (2.15)

the YM lagrangian density
LYM = Tr (F⋆ F) , (2.16)

as well as observables with higher order in the curvature

Om,n = Tr

(F⋆ F)⋆ (F⋆ F) · · ·⋆ (F⋆ F)︸                     ︷︷                     ︸
m-times

⋆ (FF)⋆ (FF) · · ·⋆ (FF)︸              ︷︷              ︸
n-times

 , (2.17)

where m,n ∈ �, ⋆ is the spacetime Hodge dual star operator7. In particular, the wedge
product ∧ was and will be omitted from now on.

It is important for us to notice that observables like W (c,ω) and LPontr carry global
information about spacetime, i.e., they are topological and differential invariant, respectively,
that, of course, do not dependent on a metric structure - notice that they lack ⋆: the metric
dependent operation in the exterior algebra. Nonetheless, when we insert such topological
observables in the path integral to obtain their vevs we, in general, metric-contaminate the
result. The reason is that, in general, the path integral itself depends on a metric (the metric is
usually present in the kinect terms, for example). In special cases though, it does not and the
topological nature of these observables is preserved. These are exactly the cases for TQFT’s,
which will be introduced in chapter 3 of this thesis.

2.2.3 Moduli space

To finish this section, we will introduce some spaces which are of most importance in gauge
theories. First, we will denote the set of all connection forms by A. This is an affine,
contractible manifold that thus has a trivial topology. The quotient space A/G, however, has
not due to the usual nontrivial topology of G. In factA/G, usually denoted asM and refered
to as the moduli space, may not even be a manifold. It is generally classified as an orbifold
due to the presence of canonical singularities. This feature makes M very hard to work with,

7The spacetime Hodge dual acts exclusively on a local coordinate basis dxµ as

⋆F = Fµν ⋆ (dxµdxν) = Fµν
1
2
ϵ
µν
αβ
dxαdxβ .

where ϵ is the (metric dependent) permutation tensor.
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though there are a few very special exceptions - the moduli space of instantons being one
example.

The moduli space has much importance when one attempts to quantize gauge theories.
Ideally, one should evaluate the path integral on M in order to avoid the so-called Gribov
ambiguities [59, 50]. In practice, however, this is a very hard task (as already mentioned).

In non-Abelian gauge theories, in which G definitely has a nontrivial topology, the G-
bundle π : A → M is nontrivial, i.e., A cannot be globally seen asM × G. In other words,
the fibers of this bundle are twisted in such a messy way that it is actually impossible to cross
each one of them only once, i.e., it is impossible to trace a global section in A. Physically, this
amounts on the impossibility to exclusively select only physically inequivalent gauge field
configurations. In summary, it is not possible to completely fix the gauge field redundancies.

The persistent gauge ambiguities described above were discovered by V. N. Gribov in
1978 [59]. In his work, he argued that such configurations might play a very important role
in the IR limit of YM theories. In particular, that a refined gauge fixing procedure might lead
to a theory of confined quarks and gluons [59, 60, 50, 61, 62].

In this thesis, again, we will not worry about such issue. Since we will stay within the
limits of perturbation theory, a local section on A, i.e., a local gauge fixing will be enough.
More precisely, we will only take into account field configurations that live within a very
small region of A, namely, the neighborhood of the classically trivial configuration A = 0.
There, a local section is enough to pick only physically inequivalent configurations. We can
then define a kind of perturbative version of the moduli space via the gauge fixing process
and the Gribov obstruction is nonexistent.

2.3 BRST quantization

We start this section by asking the reader to consider M as the Euclidean 4-manifold �4 and
G as any compact and simply-connected Lie group. These assumptions are very standard
in the QFT framework. By considering M = �4 we avoid the discussion on how to evaluate
singular momentum integrals in Minkowski spacetime by analytically extending them to the
complex Euclidean space - where they become regular. Keep in mind though, that this is only
a confortable position if we are going to employ perturbation theory (as we will).

The assumption of a compact and simply-connected Lie group, also called a semi-simple
Lie group, ensures a positive-defined Killing metric. Thus, the kinect term of the YM gauge
field is strictly positive and, as a consequence, the energy functional is bounded from below.
In fewer words, this translates to the possibility of stable bound states.
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2.3.1 Yang-Mills dynamics

Under the above conditions, the most general action functional that is polynomial in A and
its first derivative, local, parity-preserving and power-counting renormalizable is

SYM [A] =

∫
�4

Tr (F⋆ F) , (2.18)

famously known as the YM action. It, of course, is invariant under gauge transformations:
henceforth denoted by its infinitesimal form

δA = −Dα , (2.19)

where α is a g-valued 0-form on M, more commonly known as the infinitesimal gauge
parameter. The extremization of the YM action (2.18) with respect to A leads to the YM field
equation

D⋆ F = 0 , (2.20)

that, together with Bianchi identity (2.10), encompass the on-shell dynamics of YM theories.

2.3.2 Pause for an instanton

We should pause for a moment to talk about a special class of solutions to the YM equations.
These are self- and anti-self-dual solutions,

F± = ±⋆ F± , (2.21)

known as instantons. They represent classical field configurations that have a nontrivial
topology. Indeed, a good example of when topology matters. In particular, they minimize the
YM action (2.18) to

SYM
[
A±

]
= ±

∫
Tr

(
F±F±

)
, (2.22)

which, as it was already mentioned, is a topological invariant8. In this context, (2.22) is
also called the instanton number. It classifies the topology of a particular instanton field
configuration.

Instantons are important because they play a vital role in YM theories. This is specially
true due to their nonperturbative nature. For instance, in QCD, they amount for the huge
degeneracy of perturbative QCD vacuum. This led to the idea of the more general θ-vacuum

8Notice that the integration domain was omitted. This will be the case henceforth whenever it is clear, due
to the context, that the integral is performed over spacetime �4.
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structure. In fact, instantons can be understood, in this context, as quantum tunneling
processes among these topologically inequivalent vacua [27]. Moreover, this kind of process
can change the chirality of fermions. In this way, instantons can explain why the axial chiral
symmetry U(1)A is anomalous, resulting in a hugh mass for the η′ meson. This is the famous
solution of the U(1) problem given mainly by ’t Hooft in the mid seventies [63, 45].

Instantons also break CP in the theory of strong interactions. This is yet to be observed
in experiments and, for the moment, is regarded as an open problem in particle physics.
Attempts to restore CP include the prediction of a new field, whose excitations are known as
axions [64, 65]. In particular, axions may have a huge impact in the large scale structure of
our Universe and they are also regarded as a strong candidate for cold dark matter component.
For a review on axion cosmology see reference [66].

Most important here, instantons were the responsables for the development of TQFT’s. In
fact, it was their discovery that started major insertions of QFT into Differential Topology
and vice-versa. Clearly, (2.22) represents this bridge: the absolute minimum of the YM action
is a topological invariant: the 2nd Chern number. Indeed, it was exactly this fact that Witten
explored, culminating in his 1988 papers [67–69]. We will leave the more detailed discussion
to the next chapter. For now, let us get back to the understanding of BRST quantization.

2.3.3 Need of fixing gauge

The formal quantization of YM theories can be achieved by defining the path integral as

Z [J] =
∫
A

DA e−(SYM+
∫

A⋆J) (2.23)

where DA is the (ill-defined) functional measure on A and J is an external source. From
this point on, the perturbative QFT framework dictates the steps to follow: i) to turn off the
interactions and solve the free theory by obtaining the tree-level propagator of the gauge
field; ii) turn on interactions and use perturbation theory to evaluate the quantum corrections
these will impose upon this propagator, order by order in the loop expansion and; iii) abstract
the results to a n-point Green function, i.e., to construct the Feynman’s rules of YM theories.
However, as soon as we try to fulfill step i) we stumble across a severe difficulty.

When interactions are turned off, the YM dynamics is given by the quadratic part of (2.18),
a.k.a.,

S(2)YM [A] =

∫
Tr (Ad ⋆dA) . (2.24)



16 Yang-Mills theories

Its quite easy to see, specially because d squares to zero, that the functional form of the
so-called wave operator d ⋆d , garantees the invariance of (2.24) under gauge transformations

δA = −dα . (2.25)

For this very same reason, we can see that this wave operator develops zero modes

d ⋆dδA = 0 . (2.26)

It thus does not possess a well-defined inverse. In other words, we are unable to solve the
free theory due to the presence of ambiguities in the gauge field.

2.3.4 Faddeev-Popov in a nutshell

A solution to the above impediment seems obvious: we have to find a way to fix the gauge.
Gauge fixing non-Abelian gauge theories, however, is a very subtle procedure. If not done
correctly, it might result in gauge anomaly, nonunitarity, nonrenormalizability, etc. The
correct way was elucidaded in 1967 by physicists L. Faddeev and V. Popov [70].

The Fadeev-Popov (FP) procedure modifies the YM action, explicitly breaking its gauge
invariance, by introducing a pair of unphysical scalar fields with fermionic statistics, known
as the FP ghosts. In particular, the FP ghosts appear only as internal legs, i.e., virtual processes
in the loop expansion. Their contributions exactly cancel the gauge anomaly, also preserving
the unitarity and renormalizability of the theory.

The success of FP quantization in the perturbative framework contrasts itself to the very
unnatural, ghostly recipe the procedure really is. After all, one might ask, i) why the introduc-
tion of such weird fields renders the theory so perfectly anomaly-free and renormalizable? ii)
where these ghostly fields came from, in the first place?

2.3.5 BRST geometry

The answer to question i) only started clearing in 1975, by the works of physicists C. Becchi,
A. Rouet, R. Stora [71] and, independently, I. Tyutin [72]. They understood that the FP
procedure gauge fixes the action functional in such a way that a reminiscent global symmetry
remained, the now-called Becchi-Rouet-Stora-Tyutin (BRST) symmetry. In particular, the
BRST symmetry translates to a very strong set of Ward identities in the quantum gauge theory.
For instance, its direct representative, the Slavnov-Taylor identity, forbids gauge anomalies
and is pivotal to prove its renormalizability.
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The answer to question ii), however, took longer. Indeed, it only cleared after the fiber
bundle reformulation of non-Abelian gauge theory in the early eighties [56]. Only then, the
meaning of the BRST operator s as well as the ghost field c , as natural geometrical objects
within this mathematical setting, became apparent [73–76]. More recent developments can
be found in [77, 78]. Indeed, the gauge field A and the ghost field c , as well as the exterior
derivatired and the BRST operator s , can be unified in a single geometrical object. Respectively,

Ã = A + c , (2.27a)

d̃ = d + s . (2.27b)

On the principal (G × G)-bundle π : P×A → M×M, the object Ã can be seen as a connection
1-form and d̃ as an exterior derivative on the base space M ×M. Much like the previous case,
they are actually the result of a pullback, via some section, of the connection form and exterior
derivative defined on the fibers P ×A. Notice that since d̃ squares to zero, the nilpotency of s
is a natural consequence.

For practical purposes, one should notice that the exterior algebra over M ×M is graded
by the form rank on M and the form rank on M. The latter is known by physicists as the
ghost number. For example, A is the (1, 0) component of Ã, accordingly to the cross product
M ×M. This means that A is an 1-form on M, but a 0-form on M (zero ghost number). The
sum of both ranks tells us that A has odd statistics. The ghost field, on the other hand, is the
(0, 1) component. It is a 0-form on M, but an 1-form on M. In other words, it is a scalar field
with ghost number 1. The sum of its ranks tell us that it also has odd statistics.

To Ã we can associate a curvature

F̃ = d̃Ã + ÃÃ , (2.28)

which, as always, has to satisfy the corresponding Bianchi indentity

D̃F̃ = 0 , (2.29)

where D̃ ≡ d̃ +
[
Ã,

]
and [ , ] now should be seen as Lie supercommutator, i.e., a com-

mutator graded by the form rank on M and onM9. By substituting (2.27) into (2.28) we can
9The statistics of a field is given by the sum of its form and ghost ranks. If field X has statistics sX and field

Y has statistics sY, then [X, Y] = XY − (−1)sXsY YX. In physics, this is mostly known as a Lie superbracket or
supercommutator due to its common use in supersymmetric field theories. Notice that it encompasses not only
the tradicional notion of the commutator, but also of the anticommutator as well - depending on the statistics of
the fields being evaluated.
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write F̃ in a decomposed form

F̃ = F + (sA + Dc) + (sc + cc) , (2.30)

where F is its (2, 0), (sA +Dc) its (1, 1) and (sc + cc) its (0, 2) component. The Bianchi identity
(2.29) also decomposes, leading to

sF + DsA = 0 , (2.31)

i.e., it is a constrait that forces the (2, 1) component to be zero while the others vanish on
their own. The BRST symmetry transformations of YM theories can then be obtained by the
so-called horizontal condition

F̃ = F , (2.32)

i.e., that F̃ has nonvanishing components only in the direction of M. This choice makes com-
ponent (1, 1) reproduce the form of an infinitesimal gauge transformation, while component
(0, 2) gives c the meaning of a Maurer-Cartan form on G

sA = −Dc , (2.33a)

sc = −cc . (2.33b)

On the other hand, Bianchi identity tell us the redundant fact that

sF = − [c, F] . (2.34)

Notice that the horizontal condition in (2.32) represent a restriction of the BRST structure.
Clearly, the BRST has amuchmore general setup then the particular case of YM theories. In the
next chapter, we will investigate the case in which no components of F̃ vanish. Consequently,
the BRST transformations will change and the resulting theory will drastically differ from
YM.

2.3.6 BRST cohomology

The BRST quantization is much more than the differential geometric approach to the FP
procedure. For instance, consider the cohomological groups10 of M × M defined by the

10Cohomological groups are topological invariants. They classify the particular topology of the manifold on
which the correspondent nilpotent operator is defined. For completeness, let us make these definitions more
explict. Consider d the nilpotent operator and Λp (M) the space of all globally defined p-forms on M. The kernel
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nilpotency of d̃ ,
�

p,q
(
M ×M, d̃

)
∼ �p (M,d) ⊕ �q (M, s) , (2.36)

where ∼ is a group isomorphism, �p (M,d) is the p-th cohomological group of M defined
by the nilpotency of d and �q (M, s) is the q-th cohomological group of M defined by the
nilpotency of s . These groups have the information of all relevant gauge invariant objects
of the theory: physical observables, anomalies, counterterms, etc. For instance, in the BRST
formalism, gauge invariance translates to s-closeness. Observables that are s-exact are trivial
because their vevs will vanish. This is due to the fact that s |0⟩ = 0 in the absence of a
spontaneous symmetry breaking. Therefore, all nontrivial physical observables are indeed
contained within �(p,q)

(
M ×M, d̃

)
. In practice, one can write

d̃Op,q = 0 , (2.37)

where Op,q ∈ Λp,q (M ×M) are such observables. To find explict solutions one can decompose
it in form and ghost rank, resulting in descent equations. Similar occurs for gauge anomalies,
governed by�4,1

(
M ×M, d̃

)
, and counterterms, governed by�4,0

(
M ×M, d̃

)
. In particular,

if M = �4 then �4 (M,d) is trivial and the (4,q)-th cohomology is isomorphic to the q-th
cohomology of the moduli space alone, i.e.,

�
4,q

(
M ×M, d̃

)
∼ �q (M, s) . (2.38)

A very complete review on the BRST cohomology of gauge theories can be found in [79].

of d ,
Ker(d) ≡

{
dα = 0, ∀ α ∈ Λp (M)

}
,

has a group structure and its elements are said to be d-closed forms. The image of d ,

Im(d) ≡
{
α = dβ, ∀ α ∈ Λp (M) and β ∈ Λ(p−1)(M)

}
,

also has a group structure and its elements are said to be d-exact forms. The p-th cohomological group of M is
then the group of all global p-forms on M which are d-closed but not d-exact, i.e.,

�
p (M,d) ≡

Ker(d)
Im(d)

. (2.35)

Whenever �p (M,d) = {1}, i.e., it only contains the neutral element accordingly to the group operation, then it
is said to be trivial. This means that M, at least accordingly to these topological invariants, has a trivial topology.
In practice, this means that all d-closed p-forms on M are also d-exact.
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2.3.7 BRST gauge fixing

We are now finally ready to put the BRST quantization into practice. Let us consider the
Landau gauge condition

d ⋆A = 0 . (Landau gauge)

To implement this restriction on the YM action in a BRST-invariant fashion, we have to add
to our theory a pair of fields, c̄ and b, in a so-called BRST doublet structure

sc̄ = b , (2.39)

sb = 0 . (2.40)

Mathematically, c̄ is g-valued 0-form on M with ghost number -1 and b is also a g-valued
0-form on M, but with ghost number 0. In physicists’ terms, they are respectively known as
the FP anti-ghost and the Lautrup-Nakanishi field11. The so-called doublet theorem ensures
that fields introduced in such a way cannot belong to �p,q

(
M ×M, d̃

)
and thus do not alter

the physical content of the theory [80].
The gauge fixing action for the Landau condition is then given by

Sgf = s
∫

Tr (c̄d ⋆A) ,

=

∫
Tr (bd ⋆A − c̄d ⋆Dc) , (2.41)

where, in the first line, s was applied to an integraded functional of fields A and c̄ , which was
polynomial, power-counting renormalizable, local and had ghost number -1. The gauge fixing
action, constructed in that way, is garanteed to be s-invariant since s2 = 0.

Looking at (2.41) one can clearly see that the Landau condition is now derived as a field
equation for b. In other words, the Landau gauge condition has been promoted from on-shell
to off-shell configurations of the gauge field. Further, −d ⋆D is clearly the FP operator which
introduces not only the ghost-anti-ghost propagator but also the 3-vertex −c̄d ⋆ [A, c]. The
latter is exactly the one responsable for a perfect cancellation of the unphysical contributions
to the S-matrix coming from the naturally occuring 3-vertex Ad ⋆ [A,A]. In return, we end
up with a perfectly unitary quantum YM theory.

11The watchful reader might be wondering, how can c̄ have a negative form rank onM? Well, it does not.
It actually has an anti-BRST rank 1 onM. The anti-BRST transformations, usually denoted as s̄ , are the twin
sister of s . Actually, the geometrical setup of the BRST is better understood when one includes the anti-BRST.
Nonetheless, this was only recently understood and involves a somewhat intricated double copying of G. To
avoid unnecessary complexity, this discussion was not included it in this thesis. Nonetheless, if the reader
remains interested, the author suggests reference [78].
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To end this section, we explictly write the path integral that defines such an unitary
perturbative quantum YM theory, namely,

Z [J] =
∫
Mpert

DADcDc̄Db e−(SYM+Sgf+
∫

A⋆J) . (2.42)

where Mpert is the perturbative, truncated version ofM.

2.4 Perturbative renormalizability

A consistent perturbative QFT not only has to be unitary but also has to renormalizable. The
latter ultimately means that the theory has to be falsifiable: it has to have a finite set of free
physical parameters that will, or will not, allow it to fit experimental data.

A perturbatively nonrenormalizable QFT, on the other hand, is not falsifiable. In order to
extract finite predictions, one is forced to add to it new couplings order by order in perturbation
theory. The resulting theory ends up with an arbitrarily large number of free parameters. Such
immense freedom allows nonrenormalizable theories to literally fit any set of experimental
data. They, therefore, should be dismissed as sensible physical theories12.

In this section, it is our goal to show that quantum YM theories are physically sound
QFTs in arbitrarily high energy scales. To achieve this, we have to prove that they are indeed
renormalizable to all order in perturbation theory. The method of algebraic renormalizability
[80, 61, 81] constitutes one of the most powerful tools one can choose to achieve this goal. The
reason is twofold: i) it is independent of any regularization and/or renormalization scheme13

and; ii) it is recursive by design, thus conclusions at 1-loop, for instance, can be extended to
all order in perturbation theory.

The general idea basically consists of extending classical symmetries to quantum ones,
order by order in perturbation theory, mainly to restrict the possible counterterms that might
arise due to quantum corrections. In this paradigm, a QFT is renormalizable when it is stable,
i.e., when all counterterms allowed by the quantum symmetries can be reabsorved back into

12Perhaps this last phrase was a little bit too extreme. Nonrenormalizable theories are not always useless.
Sometimes they can be understood as effective QFTs, i.e., UV incomplete theories that are not physically sound
in arbitrarily high energy scales, but are still able to produce sensible results below some threshold energy
scale. A particularly interesting example is pure General Relativity as a perturbative QFT in d = 4. It surely is a
nonrenormalizable theory but, from an effective perspective, it can be applied, below Planck energy, to give a
sensible 1-loop correction to the Newtonian potential [17].

13The philosophy behind the algebraic renormalizability method is to prove that a QFT can, or cannot, be
renormalizable. Within this method, we do not actually renormalize the theory, i.e., we do not have to explicitly
evaluate the divergent loop integrals. Therefore, there is no need to introduce any kind of regularization and/or
renormalization scheme. This represents a great advantage since we avoid the danger of introducing artificial
anomalies into the theory that might potentially cripple its renormalizability.
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the original action functional by a finite number of redefinitions of parameters, fields and
external sources. In this way, no indefinte number of free parameters has to introduced and
the renormalized QFT ends up predictive and falsiable.

The algebraic renormalizability technique, of course, assumes a number of conditions for
its results to be valid. In fact, it is only trustworthy when employed on local perturbative QFTs
that are power-counting renormalizable and anomaly-free. We will assume these conditions
to be true from now on.

2.4.1 Quantum action

One of the most important objects when renormalizability is at stake is the vertex functional
Γ
[
⟨A⟩J

]
, where ⟨A⟩J ≡ ⟨0| A |0⟩ [J] is basically the vev of A in the presence of an external

source J. Mathematically, the vertex functional is defined as the Legendre transformation

Γ
[
⟨A⟩J

]
≡

(
Zc [J] −

∫
A⋆ J

)����
A=⟨A⟩J

, (2.43)

of the functional generator of connected Feynman graphs,

Zc [J] ≡ − ln (Z [J]) , (2.44)

evaluated when A equals ⟨A⟩J. Physically, the vertex functional generates one-particle
irreducible Feynman graphs, i.e., only connected graphs, amputated from their external legs,
and which remain connected after we cut any of their internal legs, if present. More loosely
speaking, Γ

[
⟨A⟩J

]
is a stripped down version of the path integral Z [J], generating only the

most elementary parts of the Feynman graphs: their vertexes and divergent loops. This is
why the vertex functional is the preferred object to work with within this context.

Another very important fact about Γ is that it can be loop-expanded,

Γ = Σ(0) + ϵΣ(1) + ϵ2Σ(2) + · · · , (2.45)

where ϵ is the small expansion parameter, and its tree-level term Σ(0) exactly equals the action
functional of the classical theory,

Σ(0) = SYM + Sgf . (2.46)
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In other words, the vertex functional Γ as a whole can be seen as the classical action corrected
by all the quantum effects. For this reason, it is more commonly called the quantum or
effective action.

2.4.2 Quantum Action Principle

As already mentioned, one of our main objectives in the algebraic renormalizability technique
is to extend classical (tree-level) symmetries to quantum ones. In other words, we would like
to extended the symmetries of Σ(0) to symmetries of Γ.

The Quantum Action Principle (QAP) [80, 61] is particularly useful for this purpose. This
principle is based on a series of formal results in QFT, independent of any regularization
and/or renormalization scheme [82–87]. It can be seen as the quantum analog of Hamilton’s
principle, in the sense that it establishes a well-defined version of the quantum equations of
motion, known as the Dyson-Schwinger equations.

On the other hand, the QAP can also be interpreted as a recipe on how classical operators
can be extended to quantum ones. For instance, in the Γ representation, the QAP states that

δΓ

δA
= ∆ · Γ , (2.47)

i.e., it tell us that the action of δ/δA on Γ is exported to the quantum theory as an insertion14

of a local field operator ∆ into Γ itself. In particular, ∆ · Γ, at lowest order, has to coincide
with its classical counterpart,

∆ · Γ =
δΣ(0)

δA
+ O (ϵ) . (2.48)

In other words, the QAP states that a classical operator enters the quantum realm by suffering
all possible quantum corrections since it ends up literally inserted into the correlation functions
evaluated from ∆ · Γ.

This is precisely what we need to properly extend classical symmetries, written in their
functional form, to quantum ones. We will do this in the next section. Before, however, we
must deal with a peculiarity when nonlinear symmetries are present.

Accordingly to the QAP, nonlinear symmetry operators, such as the BRST, when acting
upon Γ, end up being inserted into correlation functions as polynomials of the fields evaluated

14The notation ∆ · Z stands for

∆ · Z =
∫
Mpert

DADcDc̄Db∆e−(SYM+Sgf+
∫

A⋆J) ,

i.e., ∆ is literally inserted into the correlation functions evaluated from ∆ · Z [J].
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at the same point of spacetime. In other words, as new vertexes in the Feynman graphs that
carry divergencies not accounted for by the path integral (2.42).

In order to remedy the above situation, we have to explicitly add these nonlinearities to
the classical action. This must be done in a BRST invariant fashion, of course. For the case of
the BRST nonlinearities themselves, we introduce two pairs of external sources in a BRST
doublet structure

sτ = Ω , sΩ = 0 , (2.49a)

sE = L , sL = 0 . (2.49b)

A summary of all the fields introduced in this chapter, together with their gradings, can now
be found in table 2.1. We thus define the so-called external action as

Sext = s
∫

Tr (τDc + Ecc) ,

=

∫
Tr (ΩDc + Lcc) . (2.50)

The full classical action of interest is now

Σ ≡ SYM + Sgf + Sext . (2.51)

The new path integral, now accounting for all divergent objects, is given by

Z [J] =
∫
Mpert

DADcDc̄Db e−(Σ+
∫

A⋆J) , (2.52)

and the corresponding quantum action Γ now expands as

Γ = Σ + ϵΣ(1) + ϵ2Σ(2) + · · · . (2.53)

Table 2.1 The fields of quantum YM theory and their grading as differential forms on M and
on M, respectively.

Fields A c c̄ b τ Ω E L

M 1 0 0 0 3 3 4 4

M 0 1 -1 0 -2 -1 -3 -2
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2.4.3 Ward identities

We will now start the process of exporting symmetries of Σ to symmetries of Γ using, of
course, the QAP. We will, at all times, assume that no anomalies are present. Let us begin
with the gauge fixing equation

δΣ

δb
= d ⋆A , (2.54)

which can be seen as a local symmetry of the classical action Σ broken by a linear term d ⋆A
in the field A. Accordingly to the QAP, this “symmetry” is exported to Γ as

δΓ

δb
= d ⋆A + O (ϵ) , (2.55)

which, as we are assuming no anomalies are present, resumes to

δΓ

δb
= d ⋆A . (2.56)

Though the gauge fixing equation does not represent an actual symmetry of either Σ or Γ,
we will see in the next section that it will be a symmetry for the counterterms. Thus its
importance.

Another local symmetry is the FP antighost equation

Gc̄ (Σ) = 0 , (2.57)

where
Gc̄ ≡

(
δ

δc̄
+ d ⋆

δ

δΩ

)
. (2.58)

At this time, the symmetry is exact. It translates to

Gc̄ (Γ) = 0 , (2.59)

if, again, no anomalies are present (this conditional has been repeated too many times and
will be ommited from now on).

Now we display the global (integrated) symmetries. We start with the BRST symmetry

S (Σ) = 0 , (2.60)

where
S ≡

∫
Tr

(
−
δ

δΩ

δ

δA
−
δ

δL
δ

δc
+ b

δ

δc̄

)
, (2.61)
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is the so-called Slavnov-Taylor operator, which is nothing but the BRST operator s written in
a functional form. It translates to the quantum action as

S (Γ) = 0 , (2.62)

which is the well-known Slavnov-Taylor identity.
All the symmetries displayed above are algebraically related to each other. Consider, for

instance, a functional Θ of the fields and external sources. It is then true that

δ

δb
S (Θ) − SΘ

(
δΘ

δb
− d ⋆A

)
= Gc̄ (Θ) , (2.63)

where

SΘ ≡

∫
Tr

(
−
δΘ

δΩ

δ

δA
−
δΘ

δA
δ

δΩ
−
δΘ

δL
δ

δc
−
δΘ

δc

δ

δL
+ b

δ

δc̄

)
(2.64)

is the so-called linearized Slavnov-Taylor operator. In particular, whenever S (Θ) = 0, then
SΘSΘ = 0 and thus it defines a cohomology. This operator is specially important in the
renormalizability of YM theories. As wewill see in the next section, due to the perturbative and
recursive nature of the algebraic renormalizability technique, it is the (4, 0)-th cohomological
group of SΓ , not of the full nonlinear BRST operator s , that will be responsible to effectively
restrict the possible counterterms. This, however, does not contradict what has been said
in section 2.3.6. The reason is that, by a redefition of fields, one can show that the (4, 0)-
th cohomological group of s and the (4, 0)-th cohomological group of SΓ are actually one
isomorphic to the other.

The last relevant symmetry is the linearly broken FP ghost equation

Gc (Σ) = ∆c , (2.65)

where
Gc ≡

∫ (
δ

δc
−

[
c̄,
δ

δb

] )
(2.66)

and
∆c ≡

∫
([A,Ω] + [c, L]) . (2.67)

As expected, it extends to the quantum theory as

Gc (Γ) = ∆c . (2.68)
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From now on, wewill collectively call equations (2.56, 2.59, 2.62, 2.68) as theWard identities
of quantum YM theories in the Landau gauge.

2.4.4 Counterterms

For theWard identities to hold true, they must be satisfied order by order in the loop expansion.
Indeed, at loop orders higher than the tree-level, one explicitly finds that

δΣ(n)

δb
= 0 , (2.69a)

Gc̄

(
Σ(n)

)
= 0 , (2.69b)

SΓ(n−1)

(
Σ(n)

)
= 0 , (2.69c)

Gc

(
Σ(n)

)
= 0 , (2.69d)

∀ n ∈ �∗, where
Γ(n) ≡ Σ + ϵΣ(1) + · · · + ϵnΣ(n) (2.70)

is the quantum action truncated at order ϵn. As antecipated in the previous sections, the
linear breakings are gone, i.e., they occur and remain at a classical level15. Here the recursive
nature of the algebraic renormalizability method also becomes apparent. Since (2.69) are valid
at any n, conclusions extrated from them at a particular loop order can be extended to any
loop order, and thus to all orders in perturbation theory. For convenience, the usual choice is
to work at n = 1. Also, it is usual to denote Σ(1) as Σct.

Our task is then to find the most general Σct that is compatible with the Ward identities
(2.69). In particular, equation (2.69c) for n = 1 states that Σct belongs to the kernel of SΣ. Most
generally, this means that it has a piece that belongs to the (4, 0)-th cohomological group of
SΣ and another piece that belongs to the image of SΣ. Explicitly,

Σct = ∆0 + SΣ∆
−1 , (2.71)

where ∆0 must be an integrated element of �(4,0)
(
M ×M, d̃

)
and ∆−1 must also be a in-

tegraded element of �(4,−1)
(
M ×M, d̃

)
. Here the isomorphism among the cohomological

groups of s and SΣ was used.
15The same cannot be said about nonlinear breakings. These propagate beyond the tree-level and, therefore,

will not translate to perturbative symmetries of the quantum theory.
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The most general ∆0 can only be the YM action itself,

∆0 = a0SYM , (2.72)

while the most general ∆−1 is

∆−1 =

∫
Tr (a1c̄d ⋆A + a2c̄ ⋆b + a3τDc + a4Ecc + a5AΩ + a6c̄c̄ ⋆ c + a7cL) . (2.73)

The parameters ai are arbitrary.
The application of SΣ on ∆−1 kills coupling a3 and a4. What is also forbidden to appear in

Σct is b, due to Ward identity (2.69a). As a result, a5 = −a1 and a6 = a2 = 0. Further, Ward
identity (2.69d) restricts the possible couplings of c . It couples only with d-exact 4-form (with
ghost number -1). As a consequence, a7 = 0. The final result is

Σct = a0SYM − a1

∫
Tr [2AD⋆ F + c (d ⋆dc̄ − dΩ)] . (2.74)

This is the most general counterterm allowed by the Ward identities (2.69) of the quantum
YM theories. It was evaluated as an 1-loop correction to classical action but, since the method
is recursive, it is actually the most general n-loop correction of Γ(n−1).

2.4.5 Quantum stability

Finally, one can show that Σct can be absorved by Σ by a redefinition

Φ0 ≡ zΦΦ , (2.75a)

д0 ≡ zдд , (2.75b)

J0 ≡ zJJ , (2.75c)

of fields Φ ∈ {A, c, c̄,b}, parameter д and external sources J ∈ {Ω, L}. In other words, that

Σ [Φ,д,J] + ϵΣct [Φ,д,J] = Σ [Φ0,д0,J0] . (2.76)

To clarify, д is the coupling parameter of the self-interacting YM field A. Until now, we have
omitted it from the equations. Nevertheless, it can be easily introduced back by considering
the curvature of A as F = dA + дAA.
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The nontrivial z-factors are

zд = 1 − ϵ
a0

2
, (2.77a)

zc = 1 + ϵ
a1

2
, (2.77b)

zA = z−1
д z−2

c , (2.77c)

zΩ = zc̄ = zc . (2.77d)

Clearly, there are only two independent renormalizations. In particular, the only physical
renormalization is the renormalization of д. This is due to the fact that д renormalizes with
the nontrivial counterterm ∆0.

We now have firm grounds to state that quantum YM is stable under quantum corrections
and, therefore, is predictive and falsifiable in arbitrarily high energies. Hopefully, this review
was enough for the reader to understand the algebraic renormalizability technique and its
importance in determining the quantum consistency of a given QFT. If not, the reader should
follow the references cited along this chapter. From now on, the algebraic renormalizability
technique will be used in a much less descriptive manner.





Chapter 3

Topological Yang-Mills theories

3.1 Introduction

The interaction between Topology and Physics started in relatively recent times1. One of the
first conscient uses of topological concepts in physical models appeared in 1955, in a paper
entitled “Geons” by J. A. Wheeler [89].

In his work, Wheeler resurrected a program started by A. Einstein and N. Rosen twenty
year before [90]. The idea was to remove undesirable singularities not only from General
Relativity but from all classical field theories. To this aim, Wheeler considered, for instance,
the possibility of a nontrivial spacetime topology being the agent responsable for electric
monopoles, see figure 3.1. The concept of an electric field with singularities would then be
replaced by an everywhere smooth field on a multiply connected space. By the way, this was
the first time a sketch of the modern notion of a wormhole appeared in literature.

On the other hand, topological objects were present in many physical models developed
before Wheeler’s work. Their particular nature, however, was only realized much later on. A
typical example is the magnetic monopole, proposed by P. A. M. Dirac in the thirties [91]. Only
in mid seventies, however, it was understood as a natural solution of Maxwell’s equations
over a sphere [92].

There is no doubt that Topology joined mainstream Physics after the rise of gauge theory.
Physicists learned that gauge theories had a formulation in terms of fiber bundles, as reviewed
in the last chapter. Moreoever, G. ’t Hooft and A. M. Polyakov, independently, discovered
nonsingular topological solutions of the YM equations, now known as ’t Hooft-Polyakov
monopoles [93, 94].

1For a much more detailed and accurated historical account on the interplay between Topology and Physics,
see [88].
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Figure 3.1 Extracted from “Geons” by J. A. Wheeler [89].

At about the same time, A. A. Belavin et al discovered another class of topological solu-
tions to the YM equations in Euclidean spacetime: instantons [95]. As discussed in the last
chapter, they are of major importance in the nonperturbative regime of YM theory and also
in Differential Topology.

Due to instantons, mathematicians started appreciating the connection between Physics
and Mathematics. The works of R. S. Ward and M. F. Atiyah were crucial in this direction.
They were able to show that information contained in these (anti-)self-dual solutions of the
YM equations could be enconded in certain vector bundle structures [96, 97]. This made the
hard analytical problem of solving the YM equations into a topological, more accessible one.
It would not take long for a large number of mathematicians and physicists to be working on
very closely related problems.

The full extent in which QFT overlaps Topology, and vice-versa, was only unveiled in the
eighties, after the works of S. K. Donaldson [98–102]. In them he used the YM instantons to
make important breakthroughs in the classification of smooth 4-manifolds. More specifically,
he realized that the instanton moduli space Mins and the spacetime 4-manifold M had a very
close relation, namely, it was possible to express differential invariants2 of M as integral of
differential forms onMins. These are the famous Donaldson invariants.

2While topological invariants classify the topological structure of a topological space, differential invariants
classify the differential structures, a.k.a., C∞-atlases or smooth structure, that we can endow a topological space
with. So, two smooth manifolds can be homeomorphic to (same topology) but not diffeomorphic to (different
smooth structure) each other. This is not so relevant in d < 4, since in these dimensions the smooth structure
is unique. But the situation drastically changes for d ⩾ 4 and is particularly difficult in d = 4. For instance,
there are an uncoutable number of “exotic" R4, i.e., manifolds homeomorphic to the Euclidean space, R4, but not
diffeomorphic to it.
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The next great advance was due to mathematical-physicist E. Witten, which himself
described the historical scenario in [67]:

“In a lecture at the HermannWeyl Symposium last year, Michael Atiyah proposed
two problems for quantum field theorists. The first was to give physical interpretation
to Donaldson theory. The second problemwas to find an intrisically three dimensional
definition of the Jones polynomials of knot theory.”

Witten was able to solve both problems in his 1988 papers [67, 69, 68]. He demonstrated that
both Donaldson and Jones invariants, as well as others invariants, could be obtained from
a special kind of quantum gauge field theories, now known as topological quantum field
theories.

These QFTs can be very generally defined as the ones whose vevs of physical observables
necessarily satisfy equation (3.1),

δ⟨O⟩

δдµν
= 0 , (3.1)

where
⟨O⟩ ≡ O · Z [J] . (3.2)

In other words, they are are metric-independent quantities: topological or differential invari-
ants classifying global features of the spacetime manifold.

The absence of a metric indicates that there is no usual local dynamics: observables are not
measured by local rods and clocks. Moreover, the Hilbert space of TQFTs is specially simple:
usually finite dimensional, containing only degenerated vacuum states. TQFTs, however, have
a nontrivial global dynamics, consisting of tunneling processes among these topologically
inequivalent vacua. This is the main physical content of such theories.

Examples of TQFTs are: i) d = 2 topological sigma models related to Gromov-Witten
invariants classifying holomorphic maps between a Riemannian surface and a target space
[68]; ii) d = 3 Chern-Simons theory, related to link and knot invariants (Jones polynomials)
of submanifolds embedded in R3 [67]; iii) d = 4 topological Yang-Mills theory (TYM), related
to Donaldon invariants of smooth 4-manifolds [69] and finally; iv) gravity itself, in lower
spacetime dimensions: two-dimensional gravity can be associated to Mumford-Morita-Miller
invariants [103] and three-dimensional gravity was shown to be perturbatively equivalent to
a Chern-Simons theory in [104].

In this thesis, we are interested in four spacetime dimensions. We will thus concentrate
our discussion on the four-dimensional TYM theory, whose partition function, as already
said, gives an exact integral representation to Donadson invariants.
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There are actually many equivalent ways to construct such a theory. Due to its intricated
construction, we will only briefly comment on Witten’s original approach. A much clear
and easy-to-understand formulation was given only two months after by L. Baulieu and
I. M. Singer in [76]. Thus, for pedagogical reason we will stick to the latter. I should also add
that there is a more mathematical and, possibly, the most geometrical approach of all, which
is the construction via the Mathai-Quillen formalism [105].

3.2 Witten approach in a nutshell

Witten first formulated a TQFT for the Donaldson invariants as a “twisted” version3 ofN = 2
Super-YM theory [69]. Its dynamics is defined by path integral

Z [J] =
∫
A

DΦ e(Stwisted[Φ]+
∫

A⋆J) , (3.3)

where

Stwisted [Φ] =
∫

Tr (F⋆ F + FF + ϕD⋆Dλ + ηD⋆ ψ + Dψ ⋆ χ + ϕ [χ,⋆χ] + λ [ψ,⋆ψ] +

+ ϕ [η, η]⋆ 1 + [ϕ, λ]2 ⋆ 1
)
, (3.4)

and Φ ∈ {A, ϕ, λ, ψ, η, χ}.
We will not try to fully understand Witten’s intricated construction and, if the reader is

interested in a review, he or she may check references [106, 107]. Rather, we will focus on
two key aspects of (3.3). The first is that it satisfies

δZ
δдµν

= 0 , (3.5)

which means that the path integral itself is a topological invariant. The second is that

δZ
δд
= 0 , (3.6)

where д is the same д as in F = dA + дAA. These two properties were the key ingredients in
Witten’s reasoning.

The first one is a necessary condition for the vevs of observables to be topological, i.e.,
for (3.1) to hold4. The second one means that the theory is insensitive to the values of the

3The “twist” is a linear map that associates spinorial degrees of freedom to vectorial ones [? ]. Further, the
fermionic generator of the sypersymmetric algebra behaves much like a BRST operator of the twisted theory.

4A metric dependent path integral contaminates with a metric every vev evaluated from it.
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coupling parameter д. In other words, the weekly and strongly coupled regime are the same.
Witten used this latter fact to argue that the semi-classical approximation is actually exact.
Since this regime is dominated by the classical minima, a.k.a., instantons, the path integral
overA could then be replaced, without loss, by a path integral overMins. This is howWitten
could reproduce Donaldson invariants.

3.3 Baulieu-Singer approach

At the concluding section of his intricated construction, Witten states

“The fermionic symmetry that we have used is very reminiscent of BRST sym-
metry. Its use is quite similar to the use of BRST symmetry in string theory. So it
is natural to think that in a suitable framework, this symmetry arises upon BRST
gauge fixing of an underlying gauge invariant theory.”

Witten was not able, however, to propose such underlying gauge theory, he continues

“One of the real mysteries is how to exhibit a manifestly generally covariant
theory whose BRST gauge fixing (at least in some approximation) gives “topological
quantum field theory” we have considered.”

The general covariance Witten refers to is related to equation (3.1), i.e., a gauge theory whose
observables are metric-independent.

Witten suspicion was confirmed only two month after, by the work of L. Baulieu and
I. M. Singer [76]. The Baulieu-Singer approach greatly simplified Witten’s original construc-
tion. It is much more geometrical in nature and gave valuable insights on the meaning of the
BRST operator.

3.3.1 BRST structure

Let us consider again the principal (G × G)-bundle π : P × A → M ×M in which the gauge
field A and the ghost field c as well as the exterior derivative d and the BRST operator s are
unified in a single mathematical object, respectively,

Ã = A + c , (3.7a)

d̃ = d + s . (3.7b)
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As we saw, to Ã we can associate the curvature

F̃ = d̃Ã + ÃÃ ,

= F + (sA + Dc) + (sc + cc) . (3.8)

The YM BRST can be obtained from (3.8) by imposing horizontal condition F̃ = F. This
BRST, however, is no good for TQFTs since it allows for observables to be metric-dependent.
It turns out that the BRST Witten was looking for, and that was found by Baulieu and Singer,
is the unrestricted, general one, that emerges naturally from the fiber bundle geometry and
provides F̃ all of its components. In other words, the one that do not obey - at all - the
horizontal condition

F̃ = F + ψ + ϕ , (3.9)

where ψ ≡ sA + Dc is the (1, 1) and ϕ ≡ sc + cc the (0, 2) component of F̃. The full set of
transformations can then be written as

sA = −Dc + ψ , (3.10a)

sc = −cc + ϕ , (3.10b)

sψ = −Dϕ − [c, ψ] , (3.10c)

sϕ = − [c, ϕ] , (3.10d)

where ψ as well as ϕ also have to transform in order to maintain the nilpotency of s . Further,
Bianchi identity D̃F̃ = 0, tell us the redudant fact that

sF = −Dψ − [c, F] . (3.11)

What is then, the gauge theory behind Witten’s twisted construction? Well, (3.10a) is the
BRST gauge fixed version of the gauge transformation

δA = −Dα + β , (3.12)

where α is the usual infinitesimal gauge parameter and β is a novel one associated with a
general transformation of the gauge field A. This is clearly a much stronger symmetry than
the traditional gauge one. The only action functional that remains invariant under it is the
one which is a number or, better, a topological invariant - if α and β belong to the same
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topological sector as A. For instance, the integral of the Pontryagin density

STYM =
∫

Tr (FF) , (3.13)

giving the 2nd Chern class or, if the gauge group is (pseudo-)orthogonal, the integral of the
Gauss-Bonnet density

STYM =
∫

Tr
(
FF⋆

)
, (3.14)

where F⋆ is the Lie dual5 of F, giving Euler invariant.
A very clear picture now starts to emerge. Full BRST invariance under (3.10) forbids the

presence of the metric дµν, via the spacetime Hodge dual ⋆, in the starting action. Then, the
YM lagrangian Tr (F⋆ F) must be replaced by Tr (FF) or Tr

(
FF⋆

)
. The metric will end up

being inserted into the theory, due to the necessity of a gauge fixing, but, since this is done
in a s-exact way, the observables will not be contaminated, i.e., they will remain topological.
This is why the name of Topological YM theory is justified.

3.3.2 Observables

In this approach, the Donaldson invariants can be understood as Chern classes classifying
the inequivalent vector bundle structures one can construct over M ×M,

On = Tr
(
F̃ · · · F̃︸︷︷︸
n-times

)
. (3.15)

where n ∈ N and On is the n-th Chern class. In particular,

O2 = 2 Tr
[
1
2

FF + ψF +
(
ϕF +

1
2
ψψ

)
+ ψϕ +

1
2
ϕϕ

]
(3.16)

is exactly the one evaluated by Witten in [69]. For more details on Donalson’s work, the
relation of Chern classes and the smooth structure of spacetime, the author highly recommends
reference [108].

5The Lie dual ⋆ acts exclusively on the Lie algebra generators

F⋆ = Fabσ⋆ab = Fab
1
2
ϵ cd
ab σcd .

It is a Hogde dual on G, a “color” Hodge dual, and should not be confused with the usual Hodge dual ⋆ on
spacetime M, introduced in chapter 2.
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3.4 Equivalence of approaches

Notice in (3.10) and (3.11) that not only A transformas as a gauge field, but also ψ and F as
well. We thus need three gauge fixing conditions for the BRST quantization of STYM: one
for A, one for ψ and one for F. Baulieu and Singer showed that the DW action (3.4) can be
obtained (plus some extra ghostly interactions) from the BRST gauge fixing of STYM using the
nonlinear constraits

d ⋆A = −ξ1 ⋆b , (3.17a)

D⋆ ψ = 0 , (3.17b)

F ±⋆F = −ξ2 ⋆ B , (3.17c)

where ξi are gauge fixing parameters and B is the analogous of b for the gauge condition of F.
This scenario is exactly the one Witten suspected but could not show.

3.5 Perturbative renormalizability

We will now employ the algebraic renormalizability technique to show that the TYM theory
renormalizable to all orders in perturation theory and thus represents a consistent QFT to
arbitrarily high energies.

We will not use the nonlinear gauge given in (3.17). Rather, we will use a simpler, linear
one, given by

d ⋆A = 0 , (3.18a)

F ±⋆F = 0 , (3.18b)

d ⋆ ψ = 0 . (3.18c)

which we will call the (anti-)self-dual Landau [(A)SDL] gauge. To implement it, we will
introduce three pairs of BRST doublets

sc̄ = b , sb = 0 , (3.19a)

s χ̄ = B , sB = 0 , (3.19b)

sϕ̄ = η̄ . s η̄ = 0 . (3.19c)
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The gauge fixing action is then given by

Sgf = s
∫

Tr
[
c̄d ⋆A + χ̄ (F ±⋆F) + ϕ̄d ⋆ ψ

]
,

=

∫
Tr

{
bd ⋆A − c̄d ⋆Dc +

(
c̄ + η̄ +

[
c, ϕ̄

] )
d ⋆ ψ + ϕ̄d ⋆Dϕ +

+ dc
[
⋆ψ, ϕ̄

]
+ (B + [χ̄, c]) (F ±⋆F) + χ̄ (D ±⋆D)ψ

}
. (3.20)

As we will see, our quantum TYM enjoys a very strong set of Ward identities. Some of
them are nonlinear, such as the Slavnov-Taylor identity, and, as discussed in the last chapter,
these nonlinearities must be explicitly included in the action. To this aim, we introduce three
more pairs of BRST dublets, namely,

sτ = Ω , sΩ = 0 , (3.21a)

sE = L , sL = 0 , (3.21b)

sλ = K , sK = 0 . (3.21c)

The external action is then

Sext = s
∫

Tr (τDc + Ecc + λ [c, χ̄]) ,

=

∫
Tr {ΩDc + τ (Dϕ + [c, ψ]) + Lcc + E [c, ϕ] + K [c, χ̄] + λ ([c, B] +

+ [cc − ϕ, χ̄])} . (3.22)

Finally, the total action of interest is given by

Σ = STYM + Sgf + Sext (3.23)

and the gradings of all fields can be found in table 3.1.

Table 3.1 Gradings of the fields as differential forms on M and onM.

Fields A c ψ ϕ c̄ b χ̄ B ϕ̄ η̄ τ Ω E L λ K

M 1 0 1 0 0 0 2 2 0 0 3 3 4 4 2 2

M 0 1 1 2 -1 0 -1 0 -2 -1 -2 -1 -3 -2 -1 0
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3.5.1 Ward identities

As already mentioned a couple of times by now, TYM theories are very symmetric. This
translates to the quantum theory to a very rich set of Ward identities that we will now display.

We first start with the traditional gauge fixing equation

δΓ

δb
= d ⋆A , (3.24)

followed by the FP antighost equation

Gc̄ (Γ) = d ⋆ ψ , (3.25)

the topological ghost gauge fixing equation,

δΓ

δη̄
= d ⋆ ψ , (3.26)

the bosonic antighost equation,
Gϕ̄ (Γ) = 0 , (3.27)

where
Gϕ̄ ≡

(
δ

δϕ̄
− d ⋆

δ

δτ

)
, (3.28)

and Slavnov-Taylor identity
S (Γ) = 0 , (3.29)

where the Slavnov-Taylor operator is now given by

S ≡

∫
Tr

[(
ψ −

δ

δΩ

)
δ

δA
+

(
ϕ −

δ

δL

)
δ

δc
−
δ

δτ

δ

δψ
−
δ

δE
δ

δϕ
+ b

δ

δc̄
+ B

δ

δχ̄
+

+ η̄
δ

δϕ̄
+ Ω

δ

δτ
+ L

δ

δE
+ K

δ

δλ

]
, (3.30)

and its linearized version by

SΓ ≡

∫
Tr

[(
ψ −

δΓ

δΩ

)
δ

δA
−
δΓ

δA
δ

δΩ
+

(
ϕ −

δΓ

δL

)
δ

δc
−
δΓ

δc

δ

δL
−
δΓ

δτ

δ

δψ
−
δΓ

δψ

δ

δτ
+

−
δΓ

δE
δ

δϕ
−
δΓ

δϕ

δ

δE
+ b

δ

δc̄
+ B

δ

δχ̄
+ η̄

δ

δϕ̄
+ Ω

δ

δτ
+ L

δ

δE
+ K

δ

δλ

]
. (3.31)
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Finally, we also have the topological ghost equation

Gϕ (Γ) = ∆ϕ , (3.32)

where
Gϕ ≡

∫ (
δ

δϕ
−

[
ϕ̄,
δ

δb

] )
(3.33)

and
∆ϕ ≡

∫
([A, τ] + [c, E] + [χ̄, λ]) , (3.34)

and the first FP ghost equation
G1
c (Γ) = ∆c , (3.35)

where
G1
c ≡

∫ (
δ

δc
−

[
c̄,
δ

δb

]
−

[
χ̄,
δ

δB

]
−

[
ϕ̄,
δ

δη̄

]
−

[
λ,
δ

δK

] )
, (3.36)

and

∆c ≡

∫
([A,Ω] + [τ, ψ] + [c, L] + [E, ϕ] + [χ̄,K] + [B, λ]) , (3.37)

and the second one
G2
c (Γ) = ∆c , (3.38)

where

G2
c ≡

∫ (
δ

δc
−

[
ϕ̄,
δ

δc̄

]
+

[
A,
δ

δψ

]
+

[
c,
δ

δϕ

]
+

[
η̄,
δ

δb

]
+

[
E,
δ

δL

]
+

[
τ,
δ

δΩ

] )
, (3.39)

and has exactly the same linear breaking ∆c of G1
c . We continue with the vectorial supersym-

metry
W(Γ) = 0 , (3.40)

where

W ≡

∫
Tr

[
dA

δ

δψ
+ dc

δ

δϕ
+ d χ̄

δ

δB
+ dϕ̄

(
δ

δη̄
+
δ

δc̄

)
+ d (c̄ + η̄)

δ

δb
+ dτ

δ

δΩ
+

+ dE
δ

δL
+ dλ

δ

δK

]
, (3.41)

followed by the bosonic nonlinear supersymmetry

T (Γ) = 0 , (3.42)
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where
T ≡

∫
Tr

[
δ

δΩ

δ

δψ
+
δ

δL
δ

δϕ
+
δ

δK
δ

δB
+ (c̄ + η̄)

(
δ

δc̄
+
δ

δη̄

)]
, (3.43)

and its linearized version is given by

TΓ ≡

∫
Tr

[
δΓ

δΩ

δ

δψ
+
δΓ

δψ

δ

δΩ
+
δΓ

δL
δ

δϕ
+
δΓ

δϕ

δ

δL
+
δΓ

δK
δ

δB
+
δΓ

δB
δ

δK
+

+ (c̄ + η̄)

(
δ

δc̄
+
δ

δη̄

)]
. (3.44)

Finally, we complete the set of Ward identities of TYM with the ghost supersymmetry

Gs (Γ) = 0 , (3.45)

where
Gs ≡

∫ [
ϕ̄

(
δ

δη̄
+
δ

δc̄

)
+ c

δ

δϕ
+ τ

δ

δΩ
+ 2E

δ

δL
+ λ

δ

δK

]
, (3.46)

It is important to state the Ward identities (3.42) and (3.45) are novel results obtained
by the author and collaborators in [109] and which result in a simplification of the renor-
malizability features of TYM theory in the (A)SDL gauge. More specifically, the bosonic
nonlinear supersymmetry kills three counterterms present in previous works [110, 21, 22].
As a consequence, the number of independent renormalizations drops from 4 to just 1.

3.5.2 Counterterms

Considering the quantum action at 1-loop

Γ(1) = Σ + ϵΣct , (3.47)
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the set of Ward identities resume to

δΣct

δb
= 0 , (3.48a)

Gc̄
(
Σct

)
= 0 , (3.48b)

δΣct

δη̄
= 0 , (3.48c)

Gϕ̄
(
Σct

)
= 0 , (3.48d)

SΣ
(
Σct

)
= 0 , (3.48e)

Gϕ
(
Σct

)
= 0 , (3.48f)

G1
c

(
Σct

)
= 0 , (3.48g)

G2
c

(
Σct

)
= 0 , (3.48h)

W
(
Σct

)
= 0 , (3.48i)

TΣ
(
Σct

)
= 0 , (3.48j)

Gs
(
Σct

)
= 0 . (3.48k)

Its solution
Σct = a

∫
Tr (B⋆ F + 2χ̄⋆Dψ + χ̄⋆ [c, F]) (3.49)

is the most general counterterm allowed. Again, this is a novel result due to the discovery of
the nonlinear bosonic supersymmetric T -symmetry given by (3.42)

3.5.3 Quantum stability

Finally, one can show that Σct can be absorved in Σ by a redefinition

Φ0 ≡ zΦΦ , (3.50a)

д0 ≡ zдд , (3.50b)

J0 ≡ zJJ , (3.50c)

of fieldsΦ ∈
{
A, c, ψ, ϕ, c̄,b, χ̄, B, ϕ̄, η̄

}
, parameterд and external sourcesJ ∈ {τ,Ω, E, L, λ,K}.

In other words, that

Σ [Φ,д,J] + ϵΣct [Φ,д,J] = Σ [Φ0,д0,J0] . (3.51)
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In particular, the nontrivial z-factors can be evaluated as

zBzA = zczχ̄ = 1 + ϵa , (3.52a)

zE = z−2
д z−3

c , (3.52b)

zA = zb = z−1
д , (3.52c)

zK = z−1
д z−1

c z−1
χ̄ , (3.52d)

zΛ = z−2
д z−2

c z−1
χ̄ , (3.52e)

zc̄ = zΩ = zψ = zη̄ = z−1
c , (3.52f)

zϕ = zϕ̄ = zL = zτ = z−1
д z−2

c , (3.52g)

clearly, the theory has only one independent renormalization. Nontheless, this constitute a
system of fifteen equations and seventen unknowns, making it impossible to unambiguosly
determine each z-factor.

3.6 Absense of radiative corrections

We end up this chapter by stating another novel result obtained by the author and collaborators
in [111]. It was shown in [109], the propagator of the gauge field vanishes exactly

⟨A(x)A(y)⟩ = 0 , (3.53)

to all orders in the loop expansion. This is a direct consequence of the vectorial supersymmetry
W, which is very characteristic of TQFTs in general [112].

Let us now consider the Feynman rules of TYM in the (A)SDL gauge,

⟨AA⟩ = , ⟨cc̄⟩ = , ⟨χ̄ψ⟩ = , ⟨Ab⟩ = ,

⟨η̄ψ⟩ = , ⟨AB⟩ = , ⟨ϕϕ̄⟩ = . (3.54)
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where the relevant vertexes are represented by:

B

A
A
,

χ̄

A

c
,

A

ψ

χ̄

,
A

c

c̄
,

A

ϕ̄

ϕ

,
ϕ̄

ψ

c

,

A

χ̄

A

c

. (3.55)

To show the absence of radiative corrections, it is convenient to split the argumentation into
propositions.

Proposition 1 Any connected loop diagram containing an internal A-leg vanishes unless the
branch generated by the A-leg ends up in external B- or b-legs.

To prove this proposition, we must consider a combination of two facts: 1) ⟨AA⟩ = 0 to all
orders and 2) the gauge field only propagates through the non-vanishing mixed propagators
⟨BA⟩ and ⟨bA⟩. Hence, from an internal A-leg arising from an arbitrary vertex, denoted by
a black dot, , we only have two possibilities: and . In the same way, the
fields B and b only propagate through A. Graphically, we now have and .

Nonetheless, the former is not at our disposal since there is no vertex containing b, vide (3.55).
The latter, on the other hand, must be a BAA vertex since it is the only one containing B.
Thus, an internal A-leg in any loop diagram will propagate to B and the latter will end up in
a BAA vertex,

. (3.56)

Applying the above reasoning for the two newly created A-legs, we end up with two more
BAA vertexes and four A-legs. Since the number of A-legs only increases, we can continue
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this process ad infinitum leading to a cascade effect of exponential proliferation of A-legs:

...

· · ·

· · ·

... .

(3.57)

There are three possibilities here: 1) trying to close a loop in the diagram (3.57) requires an
⟨AA⟩ internal propagator, which would result in a vanishing diagram; 2) to consider external
A-legs, which also requires a ⟨AA⟩ propagator, resulting in a vanishing diagram and; 3) one
could consider that all remaining A-legs end up in external B- or b-legs.

We should note that all vertexes, except one, contain at least one A-leg, therefore the
cascade effect always occur for these cases. The only exception is the vertex ϕ̄cψ.

Corollary 1.1 In a connected loop diagram, any branch arising from the vertex ϕ̄cψ results in
a vanishing diagram unless this branch ends up in external B- or b-legs.

Let us start with the vertex of interest, i.e. ϕ̄cψ. To construct a loop diagram from this
three-vertex we have to propagate it to another vertex. The ϕ̄-leg could only propagate
to the vertex ϕ̄Aϕ through ⟨ϕ̄ϕ⟩; the c-leg only to c̄Ac through ⟨c̄c⟩ and; the ψ-leg to the
vertexes χ̄Aψ, χ̄cA or χ̄cAA through ⟨ψχ̄⟩ (⟨η̄ψ⟩ is not considered because there is no vertex
containing η̄). Graphically, the possibilities of completing the legs arising from this vertex are

, , . (3.58)
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But all possible branches contain at least one remaining A-leg. By evoking Proposition 1, the
proof is completed.

Corollary 1.2 Any connected loop diagram containing a (Φi , {B,b})-external leg vanishes.

There are two steps toward this proof: 1) consider the external leg joined to a vertex
containing an A field. In this case, A is an internal leg. Thus, Proposition 1 takes place and
the graph either vanishes or generates a branch with external B- or b-legs and no loop can
be constructed; 2) now, consider the external leg joined to a vertex not containing A, i.e. the
vertex ϕ̄cψ. The field ϕ̄ only propagates through ⟨ϕ̄ϕ⟩, c through ⟨c̄c⟩, and ψ only through
⟨χ̄ψ⟩ or ⟨η̄ψ⟩. For this reason, it is impossible to propagate the vertex ϕ̄cψ to another vertex
ϕ̄cψ. In other words, from the vertex ϕ̄cψ, we should necessarily propagate it to the vertexes
containing an A field. Now, Corollary 1.1 takes place and the graph, again, either vanishes or
generates a branch with external B- or b-legs and no loop can be constructed.

Proposition 2 Any connected n-point function of the form ⟨B(x1)B(x2)...b(xn−1)b(xn)⟩ van-
ishes.

Due to the doublet strucute of B and b, and the fact that expectation values of any BRST-
exact terms vanish. One can write these n-functions as BRST-exact correlators, namely,

⟨BBB . . .bb⟩ = ⟨s χ̄BB . . .bb⟩ = ⟨s(χ̄BB . . .bb)⟩ = 0 , (3.59)

and
⟨BBB . . .bb⟩ = ⟨BB . . . sc̄b⟩ = ⟨s(BBB . . . c̄bb)⟩ = 0 , (3.60)

which vanish due to BRST-invariance.

Proposition 3 All connected n-point Green functions are tree-level exact.

Let us take a connected loop diagram with n external legs with arbitrary fields Φi . From
Corollary 1.2, if there is at least one field different from B or b, the graph either vanishes or is a
tree-level graph. Then, there remains the possibility of a graph with n external legs formed by
B or b fields. In this case Proposition 2 takes over and the Green function ⟨BB . . .bb⟩ vanishes,
meaning that this Green function is zero and receive no radiative corrections. Hence, all
connected n-point Green functions are tree-level exact.

This result should not strike the reader as a surprise. Remember that the path integral of
TYM theory in independent of the coupling parameter д. Thus, it is to be expected that the
tree-level approximation is actually exact.





Chapter 4

Gravity

4.1 Einstein’s General Theory of Relativity

4.1.1 Introduction

The year 1905 was A. Einstein’s annus mirabilis. This is a latin phrase that translates to
“miraculous year”1. In this year, Einstein published a series of four geniuses papers that
revolutionized our understanding of Nature.

The first one, about the photoelectric effect [113], was pivotal to the early develpment of
quantum theory. The second one, about the Brownian motion [114], gave credible evidence
on the existence of molecules and the discreteness of matter. On the third, he proposed a
reconciliation between the laws of motion and the Maxwellian electrodynamics [115] and,
finally, on the fourth, he derived the mass-energy equivalence [116] relation2. In particular,
these last two papers represent the birth of his Special Theory of Relativity (STR) and of
relativistic field theories in general.

The STR has origin in Einstein’s realization that Maxwell’s equations hold valid in an
equivalence class of frames of references that more accurately captured the isometries of
space and time in the absence of gravity. Differently from Newtonian physics, frames in
this equivalence class were connected by representations of the Lorentz group SO(1, 3).
Consequently, relativistic lawsweremore adequatelywritten in an explicitly SO(1, 3) covariant
fashion.

1This expression was originally used to refer to 1666. This was the year Sir Isaac Newton developed the
fundations of his corpuscular theory of light, calculus, his laws of mechanics and gravitation, while isolated for
two year in his country home, near Lincolnshire, due to the Great Plague that devastated England during 1665
and 1666.

2These four articles can be found translated to english in reference [117].
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In the following years, the search for the deeper meaning behind Einstein’s kinematic
statements caught a lot of attention. By the works of H. Minkowski, V. Ignatowsky, P. Frank,
H. Rothe, A. D. Aleksandrov and others3, it became clear that the STR could be understood in
a purely geometrical way. The STR is nothing but the adoption of a background arena that
fundamentally differs from the tradicional Galilean space(time). In particular, its geometry
determines a causal structure that allows only for local interactions4. Nonlocal interactions,
like the action at a distance from Newtonian mechanics, were approximations valid in a
regime in which light signals travel instantaneously, i.e., the speed of light is infinite.

The incompatibility between STR and Newton’s law of universal gravitation was very
clear from the begining. Einstein, in particular, immediately started working out the problem.
In 1907, his great physical intuition allowed him to realize that the Galilean equivalence
principle5 implied that, locally, a body could not physically distinguish gravity from inertial
forces and vice-versa. He then drew the conclusion that any frame of reference is as good as
Lorentzian ones in the local description of relativistic physics.

Einstein developed his relativistic theory of gravity with such principle in mind, making
it manifestly covariant under general coordinate transformations. This is why he gave it the
name of General Theory of Relativity or General Relativity (GR), for short. After eight year
of trial and error, he finally concluded his quest and published his results in the November
1915 paper [119].

4.1.2 Background independence

The deeper meaning behind GR, however, was still an open debate. In 1917, it was very clear
for physicist E. Kretschmann [120] that Einstein’s “principle of general covariance” could not
be used as the defining feature of GR, nor any physical theory for that matter.

The reason behind Kretschmann’s criticism is that coordinate systems are just labels that
we give to small regions of spacetime. Coordinate transformations are just the relabelling of
these regions. This alone cannot carry any physicality. Every respectable physical theory
must be independent of how we decide to label spacetime events. Therefore, all physical
theories, relativistic or not, must be able to be written in a generally covariant form.

E. Cartan did exactly that to Newtonian gravity in his 1922 and 1923 papers [121, 122],
for example. In its generally covariant form, Newtonian gravity can also be understood as the

3A brief historical account on the axiomatic formulation of STR can be found in [118], chapter 2.
4An interaction is said to be local when it immediately affects only its neighbourhood.
5Also known as the universal principle of free fall, it states the equality between inertial and gravitational

mass. Two bodies, or arbitrary masses, subjected to the same gravitational field will experience the same
acceleration.



4.1 Einstein’s General Theory of Relativity 51

curvature of an affine connection: it is just a different (non-Riemannian) one6. Again, the real
difference between nonrelativistic and relativistic theories does not lie on the geometrical
framework, but on their causal structure: the latter has light cones, event horizons, etc, while
the former does not.

Many authors7 argue today that Einstein’s ideas about spacetime, gravity and general
covariance, should be more modernly understood as an equivalence class of 4-manifolds M,
related by the action of the nonabelian group of diffeomorphisms Di f f (M). In other words,
that the symmetry principle of diffeomorphism invariance8 is the key ingredient of GR. This
symmetry is undoubtly present in GR. Nonetheless, as it is very well argued in [123], we can
also write any physical theory in a diffeomorphism invariant fashion, making this another
physically trivial symmetry.

If not general covariance nor diffeomorphism invariance, what is then so special about GR?
Well, differently from its predecessors, GR actually lacks a formulation that is not generally
covariant and diffeomorphism invariant. In fact, Einstein’s realization that a family of bilinear
forms (a metric) exists in spacetime that determines all of its geometric properties and, in
particular, that gravity is its curvature9. Had, as an immediate consequence, that (almost) no
aspects of the (Riemannian) geometry of spacetime is left fixed or immutable: they are all
dynamically determined by an action principle. This (partial) lack of an à priori geometry is
now known as background independence.

In despite of Einstein’s intent and modern misconceptions, GR is not the pinacle of a
symmetry principle (these are gauge theories!). It is de facto the first prototype of a background
indepedent theory. General covariance and diffeomorphism invariance are just inevitable
consequences of this fact, not the other way around. Inadvertently, Einstein painted all
these concepts with a thick brush of “general covariance” and, as C. Misner, K. Thorne and J.
Wheeler put it, “fathered half a century of confusion” [125].

To be clear, full background independence means a total lack of “a background”, i.e., fixed
features of spacetime. This includes dimension, topology, smooth structure and geometry of
the manifold M: all must be dynamically determined. In this sense GR, as well as TQFT, are
only partially background independent theories: GR for it only determines geometry; TQFT
for it only determines smooth structure or topology.

6See [? ] for a detailed review.
7Mainly C. Rovelli and L. Smolin. But it seems to be a widespread believe in the community, see [123] and

references therein.
8Here we adopt the precise definition of diffeomorphism invariance as given by [124]. In particular, the

reader should take special care to not mistakenly exchange it for diffeomorphism covariance, also defined in
[124], which is just a fancy name for the old general covariance.

9GR is now classified as a “metric theory of gravity” because of that fact.
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4.1.3 Riemannian geometry

If, on one hand, Einstein’s understanding of the metric tensor дµν as the only dynamical field
responsable for gravitational effects paved the road to background independence. On the
other, this very assumption carried consequences that unecessarily crippled this very concept.

For дµν to determine the affine structure of spacetime, enconded in the affine connection
Γαµν , one has to assume that i) the nonmetricity tensor Qαµν is zero

Qαµν ≡ ∇αдµν = 0 , (4.1)

and ii) the torsion tensor Tαµν is zero

Tαµν ≡ Γαµν − Γανµ = 0 . (4.2)

These equations do not come from an action principle. In fact, they have to be assumed or
imposed. Therefore, they constitute a fixed part of the geometry, i.e., “a background”. In
the following sections, we will discuss theories that naturally generalize GR by removing
such background. In this sense, they represent a better implementation of the background
independence principle.

In the presence of a (pseudo-)Riemannianmetricдµν, the affine connection admits a general
splitting

Γαµν = Γ̊
α
µν + Kα

µν , (4.3)

where
Γ̊αµν ≡

1
2
дαβ

(
−∂βдµν + ∂µдνβ + ∂νдβµ

)
, (4.4)

is its Riemannian part10, known as Levi-Civita connection or Christoffel symbols, and

Kα
µν ≡

1
2

Qα
µν − Q α

(µν) + 2T α
(µν) + Tαµν , (4.5)

is its non-Riemannian part, known as the distortion tensor11. Again, the presence of the
background (4.1) and (4.2) vanishes the distortion tensor Kα

µν, making the affine connection
Γαµν purely Riemannian, as envisioned Einstein.

10From now on, we will use the overhead symbol ˚ to denote purely Riemannian quantities.
11Here we should clarify the notation:

Q α
(µν) ≡

1
2!

(
Q α
µν + Q α

νµ

)
(4.6)

and so on.
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4.1.4 Dynamics

To determine the dynamics of the Riemannian geometries, we evoke a simple but very powerful
theorem by D. Lovelock [126]: under the assumption of iii) locality, iv) polynomiality and; v)
that the resulting Euler-Langrange equations consists of a Cauchy problem, it states the most
general action functional for дµν, in d dimensions12. For d = 4, in particular, we have

S
[
дµν

]
=

∫
d4x

√
−д

[
α0 + α1R̊ + α2

(
R̊2 − 4R̊µνR̊µν + R̊αβµνR̊αβµν

)
+

+ α3ϵµνλσR̊αβµνR̊ λσ
αβ

]
, (4.7)

where the α’s are arbitrary coupling parameters of mass dimension 4, 2 and 0, respectively. It
should be clear that R̊α

βµν
are the components of the Riemannian curvature tensor, R̊µν its

partial trace and R̊ its full trace.
The coupling α2 and α3 in (4.7) are the spacetime representation of the Gauss-Bonnet and

Pontryagin densities, respectively. As we already discussed, these terms are characteristic
classes that classify the smooth structure of 4-manifolds. Consequently, their integrals are
global invariant that do not contribute to the local dynamics enconded in the Euler-Lagrange
equations13.

The α1 coupling in (4.7) is the well-known Einstein-Hilbert (EH) term, first derived by D.
Hilbert in November 1915 [127], and α0 is the cosmological constant term. In summary, the
EH and cosmological constant term

S
[
дµν

]
=

∫
d4x

√
−д

(
α0 + α1R̊

)
, (4.8)

encode all the local dynamics of GR.
The universality of gravity contained within the Galilean equivalence principle is, of

course, inherited by GR. In fact, matter fields - here collectively denoted by Φµ - couple
minimally to Γ̊αµν as a consequence of the mathematical formalism alone; no additional
physical principle is needed. If the Lagrangian L(Φa, ∂bΦa) describes the dynamics of the field
Φ in an inertial coordinate system xa , then general covariance demands this same dynamics to
be described by Lagrangian L(Φµ, ∇̊νΦµ) in a noninertial coordinate system xµ. The dynamics

12This theorem defines the the Lovelock family of gravity theories. It consists of the most natural generaliza-
tions of GR for higher spacetime dimensions. In particular, it coincides with GR dynamics for dimensions lower
than five.

13This result is very peculiar to 4-manifolds. In general, the integral of the Gauss-Bonnet density is not a
topological invariant. Indeed, for higher dimensional manifolds it represents an important ultraviolet correction
to Einstein-Hilbert dynamics.
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of the gravitational and matter fields coupled together is given by

S
[
дµν,Φµ

]
= S

[
дµν

]
+

∫
d4x

√
−дL

(
Φµ, ∇̊µΦν

)
. (4.9)

The Euler-Lagrange equations for the gravitational field described by action (4.9) are

−
1
2
α0дµν + α1

(
R̊µν −

1
2

R̊дµν
)
−

1
2
τµν = 0 , (4.10)

where τµν is the total energy-momentum tensor of matter field Φµ. We can cast them in their
most standard form by evoking the Correspondence Principle14. This will fix α1 in term of
Newton’s constant G; indeed, α1 = (16πG)−1. We can also define −α0/2α1 as Λ2, which we
call the cosmological constant, and R̊µν − (1/2)R̊дµν as G̊µν, which we call the Einstein’s tensor.
The result is

G̊µν + Λ
2дµν = 8πGτµν , (4.11)

also known as Einstein’s field equations15.
On the other hand, the Euler-Lagrange equations for the matter field Φ are

∂L

∂Φµ
− ∇̊ν


∂L

∂
(
∇̊νΦµ

)  = 0 , (4.12)

which is nothing but the traditional Euler-Lagrange equations written in a generally covariant
form.

Field equations (4.11) and (4.12) are coupled together and cannot be solved separately
because of their nonlinearities. Indeed, they are extremely difficult to solve. Even if Φµ is
not considered part of the system, so we can disregard (4.12) and interpret τµν as an external
source, a general analytical solution still lacks.

The main difficult in solving Einstein’ field equations is exactly because GR lacks a
noncovariant formulation. Differently from Newtonian gravity’s covariant field equations,

14It states that the Newtonian gravity should be recovered from GR in some appropriated limit. The correct
limiting procedure, however, is much more tricky than the reader might imagine. It was first clarified by the
works of E. Cartan [122, 128] and K. Friedrichs [129] in the twienties. It does not envolve a weak field limit since,
as already mentioned, Newton’s theory itself can be casted in a generally covariant form. Again, a detailed
discussion can be found in [? ].

15They were published by Einstein in November 1915 [119], but also by Hilbert [127]. Historically, it is not
clear who derived them first. However, a few year later, Hilbert gave all the credits to Einstein and any major
controversy about this issue ceased.
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(4.11) must be solved as it stands: a nonlinear coupled set of 10 partial differential equations
of second order.

Particular solutions, on the other hand, can be obtained fairly easy - specially for highly
symmetric cases - such as the Schwarzschild metric, the Friedmann-Lemaître-Robertson-
Walker metric, and so on. In fact, one can arguably say that every Lorentzian manifold16 is a
solution to Einstein’s field equation with an appropriated τµν as external source17.

4.2 The Einstein-Cartan theory

4.2.1 Introduction

Geometric concepts such as length, angle, area, volume, etc only exist in spaces with a well
defined metric. On the other hand, geometric concepts such as parallelism need an affine
connection.

Mathematician E. Cartan was the first to segregate these concepts into two logically
independent classes, namely, metricity and affinity [121]. Of course, we are not forbidden to
reduce parallelism to just a mere measurement of angles. In fact, this is the essence of the
Riemannian geometry: all geometric features reduced to metricity. It, nonetheless, represents
a very particular scenario.

The distinction between metricity and affinity started a debate between Einstein and
Cartan. On one side, Einstein advocated for the economy of fundamental fields and thus for a
Riemannian geometry for spacetime. On the other, Cartan argued for the logical independence
of the metric tensor and affine connection [121].

In Cartan’s view, it is not necessary to assume à priori a vanishing torsion and/or non-
metricity tensor. Though less economic in fundamental fields, Cartan’s approach is more
economic in assumptions about geometrical features of spacetime. Indeed, it eliminates the
background (4.1) and (4.2) of GR and, as such, represents an improved implementation of the
background independence principle.

16A Lorentzian manifold is a special kind of (pseudo-)Riemannian manifold in which the signature of the
metric is (1,n − 1) in n dimensions. Indeed, this is the only kind of (pseudo-)Riemannian manifold that we are
considering here.

17The reasoning is the following: given a Lorentzian metric, evaluate its Einstein’s tensor - which is purely
a mathematical operation. Divide the result by 8πG and declare it the external source τµν. The “arguably”
comes from the debate about this scenario being physically relevant or not. More precisely, if the resulting
energy-momentum τµν describes a physically reasonable matter content.
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4.2.2 Non-Riemannian geometry

Let us consider then the case of дµν and Γαµν as independent fundamental fields. This opens
up the possibility of removing background (4.1) and/or (4.2) which, in general, means a
non-Riemannian geometry for spacetime.

In these scenarios, the gravitational field has more degrees of freedom than in the previous
case. In particular, these extra degrees of freedom can be coupled to alternative kinds of
conserved currents coming from the matter sector, e.g., spin, dilation and shear currents [130].

Perhaps the simplest examples is the Einstein-Cartan (EC) theory of gravity, in which
torsion is nonvanishing and can be coupled with the spin current of matter. Let us concentrate
in this theory.

In the EC theory, the background (4.2) is removed while (4.1) is kept. In other words, the
affine connection Γαµν has a nonvanishing Kαµν, which is given by purely the torsional terms,

Γαµν = Γ̊
α
µν + 2T α

(µν) + Tαµν . (4.13)

Spacetimes endowed with a metric дµν and the above affine connection Γαµν are called
Riemann-Cartan manifolds. These manifolds fundamentally differ from Riemannian ones
by the fact that infinitesinal paralellograms fail to close. In particular, this failure is exactly
proportional to the nonvanishing torsion tensor Tαµν.

We can easily verify the existence of extra degree of freedom in Riemann-Cartan manifolds.
This can be done by interpreting equations (4.1) and (4.2) as actual constraints. In particular,
Riemannian 4-manifolds have only 10 degrees of freedom, all coming from дµν. This is exactly
because the 64 extra degrees of freedom coming from a general Γαµν were all eliminated by
the backgrouns (4.1) and (4.2), each representing 40 and 24 constraints, respectively.

On the other hand, there is no background (4.2) in Riemann-Cartan manifolds, which
means 24 less constraints and thus 24 surviving degrees of freedom coming from Γαµν . These
24 extra degrees of freedom are exactly the degrees of freedom enconded in the torsion tensor
Tαµν, which is the antisymmetric part of Γαµν . In particular, these can be coupled with the
antisymmetric sector of conserved currents of matter, e.g., the spin current density.

4.2.3 Dynamics

The dynamics of these degrees of freedom, in pure EC theory, is determined by a generalized
version of the EH action (with possibly a cosmological constant term). Explicitly,

SEH

[
дµν, Γ

α
µν

]
=

1
16πG

∫
d4x

√
−д

(
−2Λ2 + R

)
. (4.14)
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Equation (4.14) can be seen as a generalization of (4.8) becauseR is now the non-Riemannian
scalar curvature. It differs from R̊ by torsional contributions. In fact, following Cartan’s in-
terpretation, the curvature and Ricci tensors are affine concepts. In this way, they should be
viewed as a function of Γαµν and ∂αΓ

β
µν alone; not of the metric дµν. In other words, we must

consider R = Rµν (Γ, ∂Γ)дµν, which is considerably different from the Riemannian counterpart
R̊ = R̊µν (д, ∂д, ∂∂д)дµν.

Again, gravity naturally couples minimally to matter as a consequence of the mathematical
formalism

S
[
дµν, Γ

α
µν ,Φµ

]
= SEH

[
дµν, Γ

α
µν

]
+

∫
d4x

√
−дL

(
Φµ, ∇µΦν

)
, (4.15)

where it should be clear that ∇µ is the covariant derivative operator with respect to the
non-Riemannian connection Γαµν .

The Euler-Lagrange equations for the gravitational field, now described by дµ and Γαµν ,
are, respectively,

Gµν + Λ
2дµν = 8πGτ̃µν , (4.16a)

T̃αµν = 8πGsαµν , (4.16b)

where some definitions18 were used. In particular, Gµν is the non-Riemannian generalization
of Einstein’s tensor and τ̃µν the modified energy-momentum tensor. Both of these tensors are,
in general, asymmetric. On the other hand, the tensor T̃αµν, known as the modified torsion,
only differs from torsion itself in its trace. Further, sαµν are the component of the spin density
of matter.

Equations (4.16a) are clearly Einstein-like field equations in which τ̃µν acts as source of
curvature. Equations (4.16b), on the other hand, are known as Cartan’s field equations and
have the spin density sαµν acting as source of torsion.

Cartan’s field equations (4.16b) fundamentally differ from (4.16a) by its algebraic nature.
In other words, the torsion degrees of freedom do not propagate outside of the spin density:
if sαµν = 0, then T̃αµν = 0 and, consequently, Tαµν = 0. We can also use (4.16b) to substitute
T̃αµν for 8πGsαµν everywhere. This effectively eliminates torsion from all equations, resulting

18

T̃αµν ≡ Tαµν + δ
α
µT

β
νβ
− δανT

β
µβ
,

τ̃µν ≡ τµν −
1

8πG
∇̃αT̃αµν ,

∇̃µ ≡ ∇µ − T̃νµν .
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in

G̊µν + Λ
2дµν = 8πGτµν + (8πG)2

[
−4s[α

βµ
s
β]
αν − 2sαβµsαβν + s

αβ
µ sναβ +

+
1
2
дµν

(
4s[α

βλ
s
λ]β

α + s
αβλsαβλ

)]
. (4.17)

4.2.4 Advantages

Equation (4.17) is particularly useful when one wishes to compare EC theory with GR. Indeed,
at the level of the field equations, the EC theory can be microscopically understood as GR
corrected in its energy-momentum tensor by second order contributions of the spin density.
Clearly, GR dynamics is recovered if sαµν vanishes.

Macroscopically, the spin density of matter tends to average to zero, ⟨s⟩ = 0, due to the
random orientation of its microscopic components. Its variance, ∆s = ⟨s2⟩, however, may not.
Then even for a macroscopically vanishing spin density tensor, we do not exactly recover
GR from the averaged version of (4.17). Rather, we get ⟨τ⟩ corrected by ⟨s2⟩. This correction
is negligible at normal densities of matter19. In the early stages of our Universe, however,
extremely high matter densities may have been present.

Cosmological models based on the EC theory such as [131–134] avoid the initial singularity
due to a negative pressure contribution coming from ⟨s2⟩. In fact, at these extremely high
densities this contribution tends to overhelm the usually attractive force of gravity. The end
result is generally a bounce.

The compelling features of EC theory convinced physicists F. Hehl, P. von der Heyde and
G. Kerlick to go as far as claming, in reference [135], that

“(...) the field equations (4.17) are, at a classical level, the correct microscopic
gravitational field equations. Einstein’s field equations (4.11) ought to be considered
a macroscopic phenomenological equation of limited validity, obtained by averaging
equation (4.17).”

they continue,

“Thus, we would propose that EC theory is a more natural starting point for a
quantization program.”

which is the issue we want to address.
19For comparison, consider a spin fluid made out of neutrons. In this case, this correction only becomes

significat at densities ∼ 1054 g cm−3. The typical density of a neutron star, one the most compact objects of the
Universe, is ∼ 1015 g cm−3.
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It is important to point out to the reader that the EC theory is the simplest modification of
GR by including a nonvanishing torsion. More general theories of gravity exist for Riemann-
Cartan spacetimes and beyond. For example, there exists the so-called metric-affine theories
of gravity [130], in which background (4.1) is also dropped. We will, however, not present
these theories on this thesis. We will restrict ourselves to the Riemann-Cartan spacetimes
only.

4.3 Gauge theoretical framework

4.3.1 Introduction

The first attemps to describe gravity as a gauge theory began in the fifities and sixties. In
his 1956 paper [136], R. Utiyama arrived in a gravity theory by gauging the Lorentz group
SO(1, 3). His approach, however, was not satisfactory.

The current conserved due to the SO(1, 3) gauge symmetry is of angular momentum
and/or intrinsic spin. We very well know, however, that these are not the only sources of
gravity. Thus, there was an expectation that a more complete theory of gravity could be
obtained by also considering spacetime translations R4, i.e., by gauging the Poincaré group,
ISO(1, 3) = SO(1, 3) × R4, instead.

The 1961 paper by T. Kibble [137] and the 1962 paper by D. W. Sciama [138] pointed
exactly on that direction. In his work, Kibble directly gauged the Poincaré group while Sciama
achieved similar result by following an analogy between electrical charge and spin. The
resulting gravity, as expected, did have energy-momentum as one of its sources.

In gauging the Poincaré group ISO(1, 3), we are forced to introduce 40 new fields in order
to maintain covariance. 24 of them form an 1-form Aab = −Aba related to the Lorentz sector,
while the remaining 16 combine in the 1-form ea related to the translational sector. We thus
have

Aab = Aab
µ(x)dx

µ , (4.18a)

ea = eaµ(x)dx
µ , (4.18b)

where the latin indexes also run from 0 to 3.
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The disconnected nature of the Poincaré Lie group manifold20 lead us to consider Aab as
the SO(1, 3) piece and ea as the R4 piece of the full Poincaré connection A, i.e.,

A = Aabσab + e
aPa , (4.19)

where σab are the generators of the Lorentz algebra

[σab, σcd] = δ
[e
(a
δ
f ]
c
η
bd)
σe f , (4.20)

Pa are the generators of the translational algebra

[Pa, Pb] = 0 , (4.21)

and ηab ≡ diag (−1, 1, 1, 1) is the Minkowski metric. Together they satisfy

[σab, Pc] = ηc[aPb] , (4.22)

thus closing the full Poincaré algebra.
In the search of an invariant 4-form, we associate to A the curvature

F = dA + AA ,

= F + de + [A, e] , (4.23)

where F = dA + AA is the curvature of A, de is the (Abelian) curvature of e and [A, e] is
the mixture. Besides the Pontryagin density, the only 4-form that we can built out of F on
4-manifolds is the YM lagrangian density,

LYM = Tr (F⋆ F) ,

= Tr (F⋆ F + T⋆ T + 2F⋆ T) , (4.24)

where the definition T ≡ de + [A, e] was used.
The last term in (4.24), however, breaks both Lorentz and translational symmetry. There-

fore, there exists no invariant action functional for the ISO(1, 3) gauge theory on 4-manifolds.
In this way, the Scima-Kibble approach cannot be considered as a proper ISO(1, 3) gauge
theory for gravity. Again, this fact has origins on the disconnected nature of the Poincaré
group, which produced the mixing 2F⋆ T.

20The SO(1, 3) Lie group is a 6-manifold while R4 is a 4-manifold. Thus, ISO(1, 3) = SO(1, 3)×R4 is necessarily
a disconnected manifold since the dimensions of its components do not match.
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It is clear from (4.24), however, that if we consider each connected sector of the Poincaré
group at a time, we would have invariant 4-forms at our disposal. Thus, the Sciama-Kibble
approach is able to provide two distinct gauge scenario to describe gravity: i) a R4 gauge
theory in which ea is a connection form while Aab is just an invariant field and; ii) a SO(1, 3)
gauge theory in which Aab is the connection form while ea behaves as a Lorentz vector.

The first scenario above can reproduce GR as an YM theory for translations in which
the field strength is the torsion tensor and the curvature is actually zero. It is known as the
teleparallel gravity [139] which, though very interesting, will be not explore in this thesis.

The second scenario is actually able to reproduce the Einstein-Cartan theory - nonva-
nishing curvature and torsion - in a gauge theoretical framework. This is the case we are
interested in.

4.3.2 The Einstein-Cartan-Sciama-Kibble theory

The Einstein-Cartan-Sciama-Kibble (ECSK) theory is an SO(1, 3) gauge theory for gravity in
which the gauge space is “soldered” to spacetime. In other words, that the internal gauge
symmetries and the external spacetime symmetries are intertwined.

Consider a general coordinate transformation in a small region x of spacetime

x′µ = x′µ (xν) . (4.25)

A 1-forms on the cotangent bundle TM∗ of spacetime will feel this coordinate transformation
and transform accordingly to

dx′µ = Jµ
′

ν(x)dx
ν , (4.26)

where Jµ
′

ν ≡ ∂x′µ/∂xν is the Jacobian of the transformation (4.25). Clearly, Jµ
′

ν is a 4 × 4
invertible matrix, i.e., a representation of GL (4,R) acting on the fibers of TM∗. It is then
natural to suppose that the gauge structure of gravity is of a GL(4,R)-bundle in which TM∗ is
an associated vector bundle.

The principal bundle of linear frames LM is such a GL(4,R)-bundle π : P → M in which
the total space P is the space of all linear frames21 over spacetime M. A typical fiber π−1(x)

over x consists of all frames θA that can be defined over x . A section on P is a local assignment
of a frame θA to each point x ∈ M, i.e., a field of frames θA(x) over spacetime.

21A linear frame θA is an ordered set of four linearly independent vectors that carry a linear representation of
GL(4,R) in the vector bundle V associated to LM, i.e., θ′B = M A

B θA ; M A
B ∈ GL(4,R) and θA spams V. Capital

latin indexes also run from 0 to 3 but they do not feel general coordinate transformations since they are gauge
(internal) indexes.
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If V is a vector bundle associated to LM, then there exists a natural isomorphism e : TM →

V. This is the map responsable for “soldering” the gauge vector space V to the tangent bundle
TM of spacetime. Thus mixing internal to external symmetries and making gravity such a
peculiar gauge theory.

Using the local basis θA(x) of V and dxµ of TM∗, we can express e as the V-valued 1-form
on M

e(x) = eA
µ(x) (θA ⊗ dxµ) , (4.27)

more commonly known as the soldering form or the vierbein. The matrix-valued function

eA
µ(x) ≡ θA (

e
(
∂µ
) )
, (4.28)

is invertible and is the agent responsable for “changing” holonomic (external, spacetime)
indexes to nonholonomic (internal, gauge) ones. This is the geometrical interpretation of the
field eaµ(x) introduced by Kibble when gauging the Poincaré group.

When a Lorentzian metric exists on P, we can always choose to trace a section that selects
only orthogonal frames in relation to this metric. Remember that a change of section is nothing
but a change of gauge. These frames will transform accordingly to the Lorentz subgroup of
GL(4,R) instead. This actually represents a bundle contraction GL(4,R) → SO(1, 3) and it is
this contracted bundle the principle frame bundle underlying the ECSK theory.

In the ECSK approach, A is a connection on the contracted SO(1, 3)-bundle of linear
frames and e is a soldering form. They should be regarded as independent fields - here
Cartan’s philosophy starts to emerge. In this contexts, the spacetime metric дµν and the affine
connection Γαµν are just composite field

дµν(x) = eaµ(x)e
b
ν(x)ηab , (4.29a)

Γαµν (x) = e α
a

(
Aa

bµe
b
ν + ∂µe

a
ν

)
, (4.29b)

where e µ
a is the inverse soldering form.

The curvature F of A is actually related to the spacetime curvature tensor Rα
βµν

,

F =
1
2
дλβRαβµνe

a
αe

b
λ (σab ⊗ dxµdxν) . (4.30)

The existence of the soldering e - absent in traditional gauge theories - allow us to define the
so-called torsion 2-form

T ≡ De , (4.31)
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which is related to the spacetime torsion tensor Tαµν,

T =
1
2

Tαµνe
a
α (θa ⊗ dxµdxν) . (4.32)

Finally, the curvature F as well as the torsion T satisfy Bianchi identities

DF = 0 , (4.33a)

DT = [F, e] . (4.33b)

In this gauge theoretical formulation the generalized Einstein-Hilbert action (4.14) can be
written as

SEH [e,A] =
1

32πG

∫
Tr

[
F⋆ (ee) −

Λ2

12
ee ⋆ (ee)

]
, (4.34)

in which the EH term looks suspiciously YM-like, except from the fact it is not power-counting
renormalizable since e has canonical dimension−1 and that it involves only the first derivatives
of the fields.

The minimal coupling to matter fields Φ do not naturally follow from this formalism, but
has to be imposed as an extra physical principle,

S [e,A,Φ] = SEH [e,A] +

∫
L (e,Φ,DΦ) . (4.35)

Finally, the Euler-Lagrange equations can be obtained by varying (4.35) independently with
respect to e and A. Respectively, we have[

F⋆ −
Λ2

12
(ee)⋆ , e

]
= −32πGτ̃ , (4.36a)[

T⋆, e
]
= −32πGs , (4.36b)

where ⋆, remember, is the “color” Lie dual, τ̃ is the energy-momentum 3-form related to the
modified energy-momentum tensor of Einstein-Cartan theory,

τ̃ ≡
δL

δe
= e

µ
a τ̃µν (θ

a ⊗ ⋆dxν) , (4.37)

and s is the spin density 3-form related to the spin density tensor,

s ≡
δL

δA
= eaαe

µ
b
sαµν

(
σ b
a ⊗ ⋆dxν

)
. (4.38)
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Field equations (4.36), again, display the first order feature. This is actually a feature very
characteristic of the Scima-Kibble approach. For this reason, this gauge theoretical approach
is sometimes refered to as the first order formalism for gravity.

When expanded in a basis, (4.36) exactly reproduce the Einstein-Cartan field equations
(4.16). In other words, the ECSK theory is, as already mentioned, the Einstein-Cartan theory
written in the gauge theoretical framework of fiber bundles.

4.3.3 The Lovelock-Cartan-Sciama-Kibble theory

The Lovelock-Cartan-Sciama-Kibble (LCSK) theory of gravity consists of the most general
SO(1, 3) gauge theories of gravity for Riemann-Cartan spacetimes. It can be seen as a gen-
eralization of the ECSK theory, in the sense that it includes all possible coupling that can
be add to the action functional without spoiling its first order feature as well as locality and
polynomiality.

In a 4-manifolds it reads

S [e,A] =

∫
Tr

[
α1FF + α2FF⋆ + α3F⋆ (ee) + α4ee ⋆ (ee) + α5Fee

]
, (4.39)

where α1 and α2 have vanishing canonical dimension, α3 has dimensions −2, α4 −4 and α5

−2. This was first obtained by J. Zanelli and A. Mardones in the early nineties [140].
The α1 and α2 couplings are recognizable as the Pontryagin and Gauss-Bonnet density,

respectively, and, again, we stress that they are topological in nature. The α3 coupling is the
EH term. In particular, α3 = (32πG)−1 by the Correspondence Principle. The д4 coupling is
usually associated to the cosmological constant, α4 = (−Λ2/384πG). Finally, д5 coupling is
novel; associated to the torsion tensor T,

d Tr (eT) = Tr (TT − Fee) , (4.40)

where d Tr(eT) is the Nieh-Yang density.
The vacuum field equations are[

α3F⋆ − 2α4 (ee)
⋆ + α5F, e

]
= 0 , (4.41a)[

α3T⋆ + α5T, e
]
= 0 . (4.41b)

Notice that, differently from (4.16b), (4.41b) is not algebraic for the T anymore. In other words,
the LCSK theory has a propagating torsion field thus its dynamics vastly differs from the ECSK
counterpart and thus from GR. Particular Riemannian solutions, of course, can be obtained
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by setting T = 0.

F = Λ2ee , (4.42a)

T = 0 , (4.42b)

for instance, is the de Sitter spacetime.

4.3.4 Advantages

The ECSK as well as LCSK theories, of course, shares the same advantages that the Einstein-
Cartan theory has over GR (less background, avoidance of singularities, etc). Moreover, these
theories are formulated in frames that are completely independent of coordinate systems -
the so-called nonholonomic frames. This means that this formalism is generally covariant by
design, which makes explict the fact that invariance under general coordinate transformations
is a physically trivial requirement.

Being formulated in the same mathematical language of YM theories, that of fiber bundles,
the Sciama-Kibble approach presents the most appropriated formalism for which to compare
gravity to traditional gauge theories. This is particularly important when one wishes to
understand perturbative QG, specially its relation to topological gauge theories in dimensions
lower than four.

Clearly, what makes gravity so peculiar is the soldering form. By soldering the gauge space
to spacetime we are left with no alternative but to consider disconnected and/or noncompact
gauge groups such as GL(4,R), ISO(1, 3), SO(1, 3), R4, etc. Not only that, but its nonvanishing
canonical dimension jeopardizes the power-counting renormalizability of gravity.

Finally, the gauge symmetry is one of the most powerful symmetry in Theoretical Physics.
As we saw in chapter 2, it translates to very strong set of Ward identities in the quantum
theory that prevents a lot of pathologies that a QFT might have otherwise.

The LCSK theory is particularly advantageous in the issue of perturbative renormalizability
since it considers more couplings allowed by the gauge symmetry. Of course, YM-like
couplings such as F⋆F and T⋆T are still missing and will probably appear in the counterterm.
These are considered as high derivative terms and usually lead to issues in the unitarity. In
despite of these problems, the gauge theoretical approach is, if any, the most compelling
framework to develop a consistent pertubative QFT for gravity.





Chapter 5

Renormalizable TQFT for gravity

5.1 Introduction

Witten, in his seminal 1988 papers [68, 68, 67] about TQFTs, raised the intriguing possibility
that such theories could perhaps describe a symmetry-restaured phase of gravity. This
possibility has been explored him andmany authors with particular success in lower spacetime
dimensions.

For instance, d = 2 models of topological gravity were studied in [68, 103, 141–145] as
well as their coupling to topological σ-models and relation to Matrix Models and topological
strings. In d = 3, gravity turns out to be perturbatively related to Chern-Simons theory
[146, 104, 147, 148]. And, in d = 4, topological models of gravity were proposed in [149–152].
A more general discussion about the relation of TQFTs and QG can be found in [153].

Here, we will propose a renormalizable TYM that can generate gravity if its topological
symmetry is explicitly broken.

5.2 Unbroken phase

Let us consider the most general local, polynomial and power-counting renormalizable
topological theory with gauge group SO(1, 3) on a 4-manifold. Its action functional is given
by

S0 [A] =

∫
Tr

(
д1FF + д2FF⋆

)
, (5.1)

which is clearly TYM-like.
The first term in (5.1) is Pontryagin invariant and the second term is Euler’s topological

invariant. Both of the coupling parameters д1 and д2 are dimensionless. The gauge symmetry
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enjoyed by (5.1) is, of course, the same as TYM’s, namely,

δA = −Dξ + ζ , (5.2a)

δζ = −Dλ , (5.2b)

δF = −Dζ − [ζ, F] , (5.2c)

where ξ is the usual algebra-valued 0-form gauge parameter; ζ is algebra-valued 1-form gauge
parameter which characterizes all other possible transformations that leave (5.1) invariant
and λ is also a algebra-valued 0-form gauge parameter which describes redundancies of ζ.

In the BRST technology, the infinitesial transformations is promoted to the nilponent
BRST operator and each gauge parameter is promoted to a ghost field. The ghost fields
themselves transform, resulting in the set of topological BRST transformations

sA = −Dc + ψ , (5.3a)

sψ = −Dϕ − [c, ψ] , (5.3b)

sc = −cc + ϕ , (5.3c)

sϕ = − [c, ϕ] , (5.3d)

sF = −Dψ − [c, F] . (5.3e)

To remind the reader, s is the nilpotent topological BRST operator; c is the FP ghost 0-form; ψ
is the topological ghost 1-form and; ϕ is the topological ghost 0-form. The grading of these
fields can be found in Table 5.1.

5.2.1 Adding a s-exact term

As reviewed in chapter 3, the observables of a theory will not be altered by the addition of
s-exact terms to the original action. Observables live in the cohomological groups of the BRST
operator s while s-exact terms do not. Moreover, the doublet theorem ensures that fields in a
BRST doublet structure cannot be present in gauge invariant quantities.

Let us introduce a pair of field Y and X in a BRST doublet structure

sY = X , (5.4a)

sX = 0 , (5.4b)

whose gradings are also displayed in Table 5.1, and consider the most general action functional
that, again, is local, power-counting renormalizable and polynomial, which incorpotares Y
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and X in a BRST trivial fashion. This is

Striv = s
∫

Tr
[
Y
(
д3F + д4 ⋆ F + д5F⋆ + д6 ⋆ F⋆ + д7X + д8 ⋆X + д9X⋆ + д10 ⋆X⋆

) ]
,

=

∫
Tr

{(
д3F + д4F⋆+д5F⋆ + д6F⋆⋆+д7X + д8X⋆+д9X⋆ + д10X⋆⋆

)
X +

+ Y
[
д3 (Dψ + [c, F]) + д4 ⋆ (Dψ + [c, F]) + д5 (Dψ + [c, F])⋆+

+ д6 ⋆ (Dψ + [c, F])⋆
]}
, (5.5)

where, remember, ⋆ is the spacetime Hodge dual while ⋆ is the “color” Hodge dual or Lie
dual, for short. We remark that the presence of the Hodge dual in Striv does not spoil the
topological nature of our theory since it is introduced within a s-exact term. In other words,
the BRST symmetry prevents such contamination.

Finally, the full action to be considered is

S = S0 + Striv , (5.6)

which, of course, is physcally indistinguishable to the theory defined by S0 alone. After all,
they share the same set of physical observables.

5.2.2 Observables

The topological BRST operator in consideration is the virtually the same as the one of the
traditional TYM theory introduced in chapter 3. Thefore, this operator defines the same
cohomological groups over the moduli space. In other words, the theory defined by action
(5.6) also has Donalsdon invariants as its set of physical observables.

The scenario we ask the reader to consider in this chapter thus consists of d = 4 QG being
fundamentally described by such TQFT. The reason for such consideration, i.e., the relation of
such TYM theory to gravity, will be clarified in the following sections. The point here is that,
if we assume such scenario, the observables of d = 4 QG are, of course, Donaldson invariants:
polynomials topological in nature classifying the different smooth structures one may have
over the spacetime manifold.

We stress the paradigm shift: there is no propagation of light signals, no gravitions, or local
degrees of freedom whatsoever. In such approach to d = 4 QG, our knowledge is restricted to
the global dynamics and features of the “quantum spacetime”.
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5.3 Broken phase

A dynamical theory of gravity can be obtained from the action (5.6) if sources Y and X attain
the physical values

Y
��
phys. = 0 , (5.7a)

X
��
phys. = µ

2ee , (5.8a)

where µ is a mass parameter and e is the vierbein field. Indeed, if such, action (5.6) becomes

S
��
phys. =

∫
Tr

{
д1FF + д2FF⋆ + µ2 [(д4 + д5)F⋆ (ee) + µ2(д8 + д9)ee ⋆ (ee) +

+ (д3 + д6) Fee]} , (5.9)

which can be immediately recognized as the Lovelock-Cartan theory of gravity on a 4-manifold
- vide (4.39).

In particular,

д1 = α1 , (5.10a)

д2 = α2 , (5.10b)

µ2 (д4 + д5) = α3 , (5.10c)

µ4 (д8 + д9) = α4 , (5.10d)

µ2 (д3 + д6) = α5 . (5.10e)

where αi ’s are the gravitational coupling parameters in (4.39). It is interesting to point out to
the reader that the traditional QFT toolbox, such as the renormalization group equation, could
be used here to evaluate the behavior of the renormalized couplings дi ’s and thus predict the
effective values of αi ’s, i.e., of the classical LCSK gravitational couplings. Particular importance
should be given to α3, related to Newton’s constant and α4, related to the cosmological
constant.

5.3.1 Symmetry breaking

The topological BRST operator s can be splitted into two pieces

s = sYM + sT (5.11)
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where sYM is the traditional YM BRST and sT the topological shift part. In particular, they
satisfy

sYM
2 = 0 , (5.12a)

[sYM, sT] = 0 , (5.12b)

and act on the fields, individually, accordingly to

sYMA = −Dc , sTA = ψ , (5.13a)

sYMc = −cc , sTc = ϕ , (5.13b)

sYMψ = − [c, ψ] , sTψ = −Dϕ , (5.13c)

sYMϕ = − [c, ϕ] , sTϕ = 0 , (5.13d)

sYMF = − [c, F] , sTF = −Dψ . (5.13e)

Clearly, sT is nilpotent up to a gauge transformation. For instance,

sT
2A = −Dϕ . (5.14)

Thus, it only defines a cohomology in the space of gauge invariant objects - which represents
no obstruction whatsoever since this is the space where observables live. Such peculiar
cohomology is known as the “equivariant” cohomology. Such BRST operator was the one
obtained by Witten when twisting N = 2 Super-YM theory. In particular, he used this special
cohomology to construct the Donaldson invariants from his twisted YM-like theory [69, 154].

Equations (5.7), on the other hand, actually represent a explict break of sT while sYM is
kept intact. In other words,

sTS
��
phys. , 0 (5.15)

while
sYMS

��
phys. = 0 . (5.16)

Thus, as promised, the LCSK theory can be generated by (5.6) via a (partial) breaking of its
topological BRST symmetry.

The actual mechanism responsable for this breaking will be left for a future work. Nonethe-
less, this issue has already being tackled by some authors. For instance, in [155] the breaking
occurs due to cotributions coming from the coupling to a “topological matter” sector and in
[151, 156] it occurs due to a Higgs-like mechanism.
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5.4 Perturbative renormalizability

Here we will employ again the algebraic renormalizability technique to prove that such TYM
theory for gravity, defined by action (5.6), is stable under quantum corrections to all orders in
perturbation theory.

We will follow the same steps of chapter 3, where the renormalizability of the usual TYM
theory was worked out in the (anti-)self-dual Landau gauge. For the convenience of the reader,
we repeat the main equations that will be used.

The gauge constraints are

d ⋆A = 0 , (5.17a)

F ±⋆F = 0 , (5.17b)

d ⋆ ψ = 0 , (5.17c)

which will be implement to the action with the helps of the BRST doublets

sc̄ = b , sb = 0 , (5.18a)

s χ̄ = B , sB = 0 , (5.18b)

sϕ̄ = η̄ , s η̄ = 0 . (5.18c)

The gauge fixing action is then

Sgf = s
∫

Tr
[
c̄d ⋆A + χ̄ (F ±⋆F) + ϕ̄d ⋆ ψ

]
,

=

∫
Tr

{
bd ⋆A − c̄d ⋆Dc +

(
c̄ + η̄ +

[
c, ϕ̄

] )
d ⋆ ψ + ϕ̄d ⋆Dϕ +

+ dc
[
⋆ψ, ϕ̄

]
+ (B + [χ̄, c]) (F ±⋆F) + χ̄ (D ±⋆D)ψ

}
. (5.19)

The nonlinearities of the symmetries enjoyed by the theory will be introduced to the action
with the help of the BRST dublets

sτ = Ω , sΩ = 0 , (5.20a)

sE = L , sL = 0 , (5.20b)
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The external action is then

Sext = s
∫

Tr (τDc + Ecc) ,

=

∫
Tr [ΩDc + τ (Dϕ + [c, ψ]) + Lcc + E [c, ϕ]] (5.21)

The gradings of all these fields are displayed in table 5.1.
Finally, the total action of interest is given by

Σ = S + Sgf + Sext (5.22)

where S is given by (5.6), of course.

Table 5.1 Gradings of the fields as differential forms on M and on M.

Fields A c ψ ϕ Y X c̄ b χ̄ B ϕ̄ η̄ τ Ω E L

M 1 0 1 0 2 2 0 0 2 2 0 0 3 3 4 4

M 0 1 1 2 -1 0 -1 0 -1 0 -2 -1 -2 -1 -3 -2

5.4.1 Ward identities

This set of Ward identities will differ slightly from the one of traditional TYM due to the
presence of Striv. This, however, will not jeopardize the renormalizability.

We start with the traditional gauge fixing equation

δΓ

δb
= d ⋆A , (5.23)

followed by the FP antighost equation

Gc̄ (Γ) = d ⋆ ψ , (5.24)

the topological ghost gauge fixing equation,

δΓ

δη̄
= d ⋆ ψ , (5.25)

the bosonic antighost equation,
Gϕ̄ (Γ) = 0 , (5.26)
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and Slavnov-Taylor identity
S (Γ) = 0 , (5.27)

where the Slavnov-Taylor operator is now given by

S ≡

∫
Tr

[(
ψ −

δ

δΩ

)
δ

δA
+

(
ϕ −

δ

δL

)
δ

δc
−
δ

δτ

δ

δψ
−
δ

δE
δ

δϕ
+ b

δ

δc̄
+ B

δ

δχ̄
+

+ +η̄
δ

δϕ̄
+ Ω

δ

δτ
+ L

δ

δE
+ X

δ

δY

]
, (5.28)

and its linearized version by

SΓ ≡

∫
Tr

[(
ψ −

δΓ

δΩ

)
δ

δA
−
δΓ

δA
δ

δΩ
+

(
ϕ −

δΓ

δL

)
δ

δc
−
δΓ

δc

δ

δL
−
δΓ

δτ

δ

δψ
−
δΓ

δψ

δ

δτ
+

−
δΓ

δE
δ

δϕ
−
δΓ

δϕ

δ

δE
+ b

δ

δc̄
+ B

δ

δχ̄
+ η̄

δ

δϕ̄
+ Ω

δ

δτ
+ L

δ

δE
+ X

δ

δY

]
. (5.29)

Finally, we also have the topological ghost equation

Gϕ (Γ) = ∆ϕ , (5.30)

where the breaking is now given by

∆ϕ ≡

∫
([A, τ] + [c, E]] , (5.31)

the first FP ghost equation
G1
c (Γ) = ∆c , (5.32)

where it is now given by

G1
c ≡

∫ (
δ

δc
−

[
c̄,
δ

δb

]
−

[
χ̄,
δ

δB

]
−

[
ϕ̄,
δ

δη̄

]
+

[
Y,
δ

δX

] )
, (5.33)

and the breaking by

∆c ≡

∫
([A,Ω] + [τ, ψ] + [c, L] + [E, ϕ]) , (5.34)

and the second FP ghost equation
G2
c (Γ) = ∆c , (5.35)
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where

G2
c ≡

∫ (
δ

δc
−

[
ϕ̄,
δ

δc̄

]
+

[
A,
δ

δψ

]
+

[
c,
δ

δϕ

]
+

[
η̄,
δ

δb

]
+

[
E,
δ

δL

]
+

[
τ,
δ

δΩ

] )
. (5.36)

5.4.2 Counterterms

Considering the quantum action at 1-loop

Γ(1) = Σ + ϵΣct , (5.37)

the set of Ward identities resume to

δΣct

δb
= 0 , (5.38a)

Gc̄
(
Σct

)
= 0 , (5.38b)

δΣct

δη̄
= 0 , (5.38c)

Gϕ̄
(
Σct

)
= 0 , (5.38d)

SΣ
(
Σct

)
= 0 , (5.38e)

Gϕ
(
Σct

)
= 0 , (5.38f)

Gc
(
Σct

)
= 0 . (5.38g)

Its solution

Σct = SΣ

∫
Tr

[
a1

(
ΩA + A⋆dc̄ + τψ + ψ ⋆dϕ̄

)
+ a2

(
τdc + ϕ̄d ⋆dc

)
+

+ a3χ̄dA + a4χ̄AA] (5.39)

is the most general counterterm allowed.

5.4.3 Quantum stability

Finally, one can show that Σct can be absorved in Σ by a redefinition

Φ0 ≡ zΦΦ , (5.40a)

д0 ≡ zдд , (5.40b)

J0 ≡ zJJ , (5.40c)
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of fieldsΦ ∈
{
A, c, ψ, ϕ, Y,X, c̄,b, χ̄, B, ϕ̄, η̄

}
, parameterд and external sourcesJ ∈ {τ,Ω, E, L}.

In other words, that

Σ [Φ,д,J] + ϵΣct [Φ,д,J] = Σ [Φ0,д0,J0] . (5.41)

In particular, the nontrivial z-factors can be evaluated as

zAzB = zχ̄zc = zχ̄zψ = 1 + ϵa4 , (5.42a)

zдzczχ̄ = zдzϕzχ = z2
дzτzczψ = zдzBzczϕ = 1 + ϵa2 , (5.42b)

zΩzc = zτzϕ = zдzτzczψ = zдzLzc = zдzEzczϕ = 1 + ϵa3 , (5.42c)

zAzд = zczc̄ = zbzA = zη̄zψ = zc̄zψ = zдzϕ̄zczψ = 1 + ϵa1 . (5.42d)



Chapter 6

Conclusions and perspectives

Witten’s hypothesis of a d = 4 TQFT describing an unbroken phase of gravity motivated this
thesis. In order to propose a novel scenario that implements such idea in a consistent way,
a detailed study of the renormalizability properties of TYM theories in the (anti-)self-dual
Landau gauge was made by the author and collaborators. In chapter 3, a review of TYM
theory was made and the main results of such efforts were highlighted.

TYM theory have a particularly strong set of Ward identities. As shown in chapter 3,
it renormalizes with only one (unphysical) parameter [109]. This is an improvement over
previous results that were avaliable in the literature [110, 21, 22].

The propagator ⟨A(x)A(y)⟩, in particular, vanishes exactly [109]. This is due to the
presence of the vectorial supersymmetryW. As a consequence, TYM theory in the (anti-)self-
dual Laudau gauge is tree-level exact [111]. In other words, it suffers no radiative corrections
whatsoever and the path integral is exactly soluable in the semi-classical approximation.

TQFTs in general are defined as theories whose observables are global invariants and do not
depend on the metric structure of spacetime. They are generally covariant and diffeomorphism
invariant by design and cannot be formulated otherwise. In this sense, they are background
independent, providing us information about the topology or smooth structure of spacetime.

These features are indeed very appealing for a quantum theory of gravity. Hence Witten’s
speculation. In chapter 5, a proposal of QG model was made which consists of a TYM that can
generate the family of LCSK gravities. In particular, the local degrees of freedom of gravity
are enprisioned by the topological BRST symmetry and are only unleashed after its explicit
breaking.

The breaking mechanism was not worked out in this thesis and will be left for future
investigation. Some proposals have been made concerning this issue. In [155], for instance,
the breaking can happen due to the coupling to a topological matter sector. In [151] and
[157], it happens via a Higgs-like mechanism. In particular, it is of most importance that it
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happens in the vicinity of Planck energy scale. In this way, the topological description would
be restricted to the trans-Planckian regime. Then again, we can only speculate about that at
the present moment.

We have shown that this particular TYM theory is physically consistent. At least in the
sense that it is renormalizable to all orders. The observables can be evaluate as the Donaldson’s
invariants, classifying the smooth strucute of spacetime. A consistent scenario then builds, of
a perturbative QFT describing the “quantum structure” of spacetime via its global invariants.
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