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Resumo

As estrelas de nêutrons são um dos objetos astrofísios mais ompatos e mais densos

onheidos na natureza. Estes resultaram da explosão da supernova de uma estrela massiva.

A massa destes objetos situa-se entre uma e duas massas solares, normalmente tem raios de

10 km e muitas vezes giram rapidamente. Muitas das estrelas de nêutrons têm ampos mag-

nétios intensos, que levam à emissão de rádio e radiação de raios-X. Essas araterístias,

juntamente om o progresso ontínuo na astrofísia observaional e a observação reente de

ondas gravitaionais provenientes da olisão de estrelas de nêutrons, tornam esses objetos

poderosos laboratórios astrofísios para uma ampla gama de fen�menos físios interessantes.

Este trabalho é dediado a estudar os efeitos de ampos magnétios fortes na estrutura das

estrelas de nêutrons, no âmbito da teoria da relatividade geral. O primeiro passo é estudar os

aspetos formais do ampo magnétio na estrutura estelar e as equações do ampo gravita-

ional usando duas abordagens diferentes, o que nos permite introduzir novas quantidades e

sua possível interpretação físia. O segundo passo é apresentar o teorema do virial relativista

omo uma integral que fornee uma veri�ação de onsistênia das soluções numérias. Como

tereiro passo, estudamos o formalismo teório que desreve as estrelas de nêutrons om ro-

tação não nula e altamente magnetizadas no ontexto das equações de Einstein-Maxwell.

Espei�amente, para estrelas de nêutrons magnetizadas, estudamos ampos magnétios

poloidais e on�gurações estátias. São apresentadas as quantidades físias relevantes que

desrevem esses objetos e uma disussão sobre a ontribuição da energia eletromagnétia

para a massa gravitaional. Finalmente, enontramos o espaço-tempo que desreve estrelas

de nêutrons om rotação não nula e magnetizadas. A distribuição dos diferentes termos que

ontribuem para a massa gravitaional e a relação massa-raio é apresentada. Os resultados

obtidos mostram que para estrelas om ampo magnétio entral ∼ 1018 G os efeitos ele-

tromagnétios inrementam a massa em um 10.1% em relação à on�guração sem ampo

magnétio. Os estudos realizados neste trabalho são fundamentais para a ompreensão dos

objetos astrofísios onheidos omo Soft-Gamma Repeaters e Anomalous X-Ray Pulsars,
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que são entendidos omo sendo uma lasse de estrelas de nêutrons hamadas de magnetares.

Palavras-have: Estrelas de nêutrons, magnetars, ampo magnétio, estrutura.
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Abstrat

Neutron stars are one of the most ompat and densest astrophysial objets known

in nature, they result from the supernova explosion of a massive star. The mass of these

objets lies between one and two solar masses, they typially have radii of 10 km and often

spin very rapidly. Many of the neutron stars have very strong magneti �elds, whih lead to

the emission of radio and X-ray radiation. The density inside these objets is many times

higher than the density of atomi nulei. These features, together with the ongoing progress

in observational astrophysis and the reent observation of gravitational waves oming from

the ollision of neutron stars, make these objets superb astrophysial laboratories for a wide

range of interesting physial phenomena. This work is devoted to study the e�ets of strong

magneti �elds in the struture of neutron stars, within the framework of the general rela-

tivity theory. The �rst step is to study the formal aspets of the magneti �eld in the stellar

struture and gravitational equations using two di�erent approahes, whih allow us to intro-

due new quantities and their possible physial interpretation. The seond step is to present

the relativisti virial theorem as an integral that provides a onsisteny hek of numerial

solutions. As third step, we study the theoretial formalism desribing rotating and highly

magnetized neutron stars within the ontext of Einstein-Maxwell's equations. Spei�ally,

for magnetized neutron stars, we study poloidal magneti �elds and stati on�gurations.

The relevant physial quantities desribing these objets are presented and a disussion about

the ontribution of the eletromagneti energy to the total gravitational mass. Finally, we

�nd the spaetime desribing rotating and magnetized neutron stars. The distribution of the

di�erent terms that ontribute to the total gravitational mass and the mass-radius relation

is presented. The results show that for stars with magneti �eld ∼ 1018 G the eletromag-

neti e�ets inrease the mass in 10.1% with respet to the on�guration without magneti

�eld. The studies performed in this work are key for the understanding the astrophysial

objets known as a Soft-Gamma Ray Repeaters and Anomalous X-Ray Pulsars, whih are

understood as being one lass of neutron stars alled as magnetars.
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Chapter 1

Introdution

Neutron stars, whih are the remnant of ore ollapse supernova, are one of the

most ompat objets known in nature. The �rst modest observation of this phenomenal

explosion was in 1054 when Chinese astronomers saw and reorded the spetaular explosion

of a supernova, the guest star, as the Chinese alled it, was so bright that people saw it in

the sky during the day for almost a month and remained visible in the evening sky for more

than a year [1℄. The idea of neutron stars was proposed in 1934 by Walter Baade and Fritz

Zwiky, only two years after the disovery of the neutron by the English physiist Sir James

Chadwik [2℄. They tentatively proposed that in a supernova explosion ordinary stars are

turned into stars that onsist of extremely losely paked neutrons that they alled neutron

stars.

Compat stars are in fat the remnant of massive stars, typially have radii of

10 km and masses that lie between one and two solar masses. The density inside these

objets is many times higher than the density of atomi nulei (possibly up to 10 times

denser). Neutron stars are generally assoiated with three lasses of astrophysial objets:

Pulsars [3℄, whih are generally aepted to be rotating neutron stars, ompat X-ray soures,

and magnetars, whih are objets with very high magneti �elds. These objets are very

dense and as suh, its struture must be desribed in the framework of Einstein´s general

relativity. In this theory, gravity is seen as urvature of spaetime, aused by mass-energy.

The problem of desribing the struture of ompat stars onsists of �nding the spaetime
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geometry both inside and outside of the star for a given mass distribution.

It is ommon the use of the spherially symmetri solution to desribe a wide range

of astrophysial objets, this assumption implies a lot of mathematial simpli�ations and

allows the use of Birkho�´s theorem [4℄ whih states that the spaetime outside of a spheri-

al, nonrotating, gravitating body must be given by the Shwarzshild metri. This theorem

led Tolman-Openheimer-Volko� [5�7℄ to alulate the hydrostati equilibrium equations de-

sribing spherially symmetri �uids, known as TOV-equations. For dissipative �uid spheres

it is possible to math the interior and exterior spaetime with the Vaidya metri (known

as the radiating Shwarzshild metri) [8℄ allowing a physial interpretation of the dynamial

equations in terms of the dissipative variables [9℄ and a de�nition of the gravitational arrow

of time [10℄.

In the study of self gravitating ompat objets it is usually assumed that small

deviations from spherial symmetry are likely to take plae. Suh small deviations are not

appropriate for stars with strong magneti �elds where a full axially symmetri treatment

is neessary to properly desribe the system. Sine the detetion of soft gamma repeaters

(SGRs) in 1979 and an anomalous X-ray pulsar (AXPs) in 1981, there has been great interest

in neutron stars that ould be powered by their strong magneti �eld. In 1992 and 1993,

Dunan and Thompson proposed the magnetar model [11,12℄ and, sine then, approximately

30 SGRs and AXPs have been observed [13℄. In reent years, several measurements have

estimated surfae magneti �elds to be of the magnitude of 1015 G for the soures 1E 1048.1-

5937 and 1E 2259+586 [14℄. Furthermore, the observed X-ray luminosities of the AXPs may

require a �eld strength B & 1016 G [15℄, in addition the observational data for the soure

4U 0142+61 suggests internal magneti �elds to be on the magnitude 1016 G with a possible

toroidal on�guration [16℄. The population statistis of SGRs suggest that magnetars may

onstitute a signi�ant fration & 10% of the neutron star population [17℄. Hene it seems

likely that some mehanism is apable of generating large magneti �elds in nasent neutron

stars.

The above onsiderations motivate the study of the e�ets of magneti �eld on

neutron star properties. Suh study an be arried out from three points of view: the e�ets
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in the omposition of the neutron star matter, evolution and struture. The �rst point

is related to how magneti �elds may hange the equation of state of dense matter, for

example generating anisotropies, and a�eting the matter omposition. The seond point

is related to the e�ets on neutron stars´temporal evolution, for example the in�uene of

a time dependent magneti �eld in the true age of neutron stars. The last point is related

to the strutural aspets, for example how magneti �elds hange the mass and radius of

neutron stars.

The goal of this work is to study, within a totally general relativisti framework, the

e�ets of magneti �elds in the struture of neutron stars, i.e. how magneti �elds a�et the

spaetime geometry of these ompat objets. Me and my oworkers developed a omplete

study of the three aspets, i.e. mirosopial, strutural and evolutionary, suh study an

be found in [18℄.

We begin our goal studying the formal aspets of the magneti �eld in the stellar

struture and gravitational equations using two di�erent approahes. The �rst one uses

Weyl spherial oordinates from whih onservation equations will be derived taking into

aount the magneti �eld ontribution. The resulting equations will be ompared with a

previous work where no magneti ontribution was onsidered and doing so, new quantities

with possible physial interpretation will be introdued. The seond approah is based in

the study of Cook et al. [19℄ who onsidered rotating neutron stars and write the Einstein´s

equations in terms of �at spae ellipti operators and the soure terms oming from the

matter and others ontaining non linear quadrati terms in the metri potentials. In this

setion we will derive the Einstein´s equations following the method of Shapiro, but taking

into aount the eletromagneti ontribution. These equations will be written in terms of

the introdued new quantities with the idea to give the same physial interpretation and

disuss the eletromagneti ontribution to the gravitational mass.

The next step to ahieve our goal is to study the relativisti virial theorem. The

usefulness of the Newtonian virial theorem in physis and astrophysis is well known, mainly

within the ontext of the equilibrium and stability properties of dynamial systems. The

virial theorem relates the time average of kineti energy of a generi partile with the time
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average of the work exeuted by the fores with whih the partiles interat. In general

relativity, it is ommon to use the virial theorem derived from a onservation law. In hapter

III we present a relativisti version of the virial theorem as an integral identity (and not as

a onservation law) for a stationary and asymptotially �at spaetime, based in the 3 + 1

formalism. The resulting virial integral onsists on terms that depend on the gravitational

soure, rotational properties and metri potential. The idea behind disussing this important

theorem as a hapter in this thesis is beause the virial theorem is used as a onsisteny hek

in numerial solutions.

In hapter IV the theoretial formalism desribing rotating and highly magnetized

neutron stars will be presented using a full axially symmetri treatment within the ontext

of Einstein-Maxwell equations. The hydrostati equilibrium equations will be derived within

the assumption of in�nite ondutivity matter and the relevant quantities desribing the

struture of rotating and highly magnetized neutron stars will be presented.

In hapter V we will deal with the numerial solution of the Einstein-Maxwell equa-

tions presented in hapter IV. We �rst onsider a rotating neutron star without magneti

�eld, modelled as a rotating isotropi �uid distribution. However, it is important to draw

attention to the role that is played by the pressure anisotropy in selfgravitating objets as

me and my oworkers showed in [20℄. Seond, we will study a highly magnetized neutron

star modelled as a perfet �uid oupled with a poloidal magneti �eld, in this last ase we

restrit to the stati solutions (although both are stationary). As we mentioned our goal is

to study only the strutural onsequenes of the magneti �eld in neutron stars and not the

mirosopial or evolutionary aspets, beause of that we assume as the matter omposition

a traditional equation of state that is independent of the magneti �eld at the mirosopial

level.

Finally, the onlusions and perspetives for future works are given in hapter VI.



Chapter 2

Formal aspets of the magneti �eld on

the struture of neutron stars

We disuss the formal aspets of the magneti �eld in the stellar struture and grav-

itational equations in the ontext of Einstein's general relativity. The highly magnetized

star is desribed as a perfet �uid oupled with a poloidal magneti �eld using two di�erent

approahes, the �rst one uses Weyl spherial oordinates from whih onservation equations

will be derived. The seond approah is based in the study of Shapiro et al. [19℄ in whih

Einstein �eld equation will be derived taking into aount the eletromagneti ontribution.

New quantities and their possible physial interpretation will be presented in the following

setions.

2.1 Neutron star struture using Weyl spherial oordi-

nates

We begin by onsidering a bound, stati and axially symmetri soure. The line

element may be written in ylindrial oordinates as

ds2 = −A2(dx0)2 +B2[(dx1)2 + (dx2)2] +D2(dx3)2, (2.1)
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where we identify x0 = t, x1 = ρ, x2 = z, x3 = φ and A,B,D are positive funtions of

the oordinates ρ and z. Here and throughout we set G = c = 1. In the Weyl spherial

oordinates, the line element (2.1) is

ds2 = −A2(dt)2 +B2[(dr)2 + r2(dθ)2] +D2(dφ)2, (2.2)

where ρ = rsinθ and z = rcosθ. We denote the oordinates as xµ = (t, r, θ, φ), and note

that A(r, θ), B(r, θ), D(r, θ) are three independent funtions.

The soure of urvature in Einstein's general relativity is represented by the energy-

momentum tensor. For a magnetized neutron star, we desribe the system as a perfet �uid

oupled to a poloidal magneti �eld. The perfet �uid assumption simpli�es the mathe-

matial treatment dramatially. One must note, however, that there has also been researh

onsidering spherially symmetri dissipative and anisotropi �uid distribution (see for in-

stane refs. [9,10℄). As mentioned in the introdution, highly magnetized neutron stars with

poloidal �elds should be modeled using an axially symmetri metri tensor whih inreases

the omplexity of the problem onsiderably.

The motivation behind the assumption of a poloidal magneti �eld is that suh

assumption is ompatible with the irularity of the spae-time [21℄. It is important to note,

however, that non-negligible toroidal magneti �elds are likely to exist in neutron stars,

making the study onsiderably more ompliated. The study of toroidal magneti �elds, in

addition to poloidal ones is beyond the sope of this work.

Following the senario disussed above, the energy-momentum tensor for the sys-

tem is written as that of a perfet-�uid in addition to the energy-momentum tensor of the

eletromagneti �eld,

Tµν = T PF
µν + TEM

µν . (2.3)

The perfet �uid (PF) ontribution is

T PF
µν = (ρ+ P )uµuν + Pgµν , (2.4)

where ρ and P are, respetively, the rest-frame energy density and pressure, uµ
is the �uid



CHAPTER 2. FORMAL ASPECTS OF THE MAGNETIC FIELD ON THE

STRUCTURE OF NEUTRON STARS 7

4-veloity with uµuµ = −1. The eletromagneti part (EM) in (4.2) is

TEM
µν =

1

4π

(
F α
µ Fνα − 1

4
gµνF

αβFαβ

)
, (2.5)

where the Maxwell tensor Fµν is de�ned in terms of the eletromagneti 4-potential Aµ as

Fµν = Aν,µ − Aµ,ν . (2.6)

We are interested in desribing a distribution without free-harge and with only poloidal

magneti �eld, thus the eletromagneti 4-potential is redued to

Aµ = (0, 0, 0, Aφ(r, θ)). (2.7)

whih leads to the following Fµν (in matrix form)

Fµν =




0 0 0 0

0 0 0
∂Aφ

∂r

0 0 0
∂Aφ

∂θ

0 −∂Aφ

∂r
−∂Aφ

∂θ
0




, (2.8)

with the assumptions above the eletromagneti energy-momentum tensor is

TEMµ
ν =




TEM0
0 0 0 0

0 TEM1
1 TEM1

2 0

0 1
r2
TEM1

2 −TEM1
1 0

0 0 0 −TEM0
0




, (2.9)

where the non-vanishin omponents, in terms of the eletromagneti 4-potential, are given

by

TEM0
0 = − 1

8π
gφφ

[
grr

(
∂Aφ

∂r

)2

+ gθθ
(
∂Aφ

∂θ

)2
]
, (2.10)
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TEM1
1 =

1

8π
gφφ

[
grr

(
∂Aφ

∂r

)2

− gθθ
(
∂Aφ

∂θ

)2
]
, (2.11)

TEM1
2 =

1

4π
grrgφφ

(
∂Aφ

∂r

)(
∂Aφ

∂θ

)
. (2.12)

Now, inspired in equation (2.10) we de�ne the following eletromagneti quantities

Bθ =
√
grr

(
∂Aφ

∂r

)
, (2.13)

Br =
√
gθθ

(
∂Aφ

∂θ

)
. (2.14)

It is important to realize that these omponents are not exatly the omponents measured

by the Eulerian observer, but rather onvenient de�nitions of eletromagneti funtions that

allow us to write the omponents of TEM
in a more intuitive manner, as

TEM0
0 = − 1

8π
gφφ

(
B2

r +B2
θ

)
, (2.15)

TEM1
1 = − 1

8π
gφφ

(
B2

r − B2
θ

)
, (2.16)

TEM1
2 =

1

8π
2gφφ

√
grr

gθθ
BrBθ. (2.17)

In here, if we want to fully omprehend the physial meaning of the omponents of

the eletromagneti energy-momentum tensor, we must draw a parallel with its �at-spae
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ounterpart, given (in S.I. units) as [22℄

TEMµν =




1
2
(ǫ0E

2 + 1
µ0

B2) Sx/c Sy/c Sz/c

Sx/c −σxx −σxy −σxz

Sy/c −σyx −σyy −σyz

Sz/c −σzx −σzy −σzz




, (2.18)

where

~S = 1
µ0

~Ex ~B is the Poynting vetor and the omponents σij are given by

σij = ǫ0EiEj +
1

µ0
BiBj −

1

2

(
ǫ0E

2 +
1

µ0
B2

)
δij . (2.19)

The �rst term in (2.18) is easily identi�ed as the eletromagneti energy density,

the other terms in the diagonal, i.e. σxx, σyy, σzz an be read as the eletromagneti pressure

and the terms σij for i 6= j represent shear stress.

Inspired in the eletromagneti energy-momentum tensor for �at spae-time, we

de�ne the following quantities

W ≡ 1

8π
gφφ

(
B2

r +B2
θ

)
, (2.20)

Π ≡ 1

8π
gφφ

(
B2

r − B2
θ

)
, (2.21)

σ ≡ 1

8π
2gφφBrBθ. (2.22)

With these de�nitions, the matrix form of the eletromagneti energy-momentum

tensor looks like

TEMµ
ν =




−W 0 0 0

0 −Π rσ 0

0 1
r
σ Π 0

0 0 0 W




. (2.23)
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From (2.23) we an extrat the following properties for T µEM
: it is symmetri, the

omponent TEM00
is positive de�nite and the tensor is traeless, whih are the expeted

properties of an eletromagneti energy-momentum tensor. One must note that equation

(2.23) orresponds to the mixed omponents of the eletromagneti energy-momentum ten-

sor, whereas the �rst two properties (TEM00
positive de�nite and symmetri) are related to

the ontravariant omponents.

Combining (2.4) and (2.23), the matrix form of the energy-momentum tensor de-

sribing a perfet �uid oupled with a poloidal magneti �eld for the line element (2.2)

is

T µν =




1
A2 (ρ+W ) 0 0 0

0 1
B2 (P − Π) 1

rB2σ 0

0 1
rB2σ

1
(Br)2

(P +Π) 0

0 0 0 1
D2 (P +W )




. (2.24)

The �rst term, i.e. T 00
in (2.24) represents the total energy density of the system

whih omes from the perfet �uid distribution and the eletromagneti �eld, through the

quantity W ; the other diagonal terms orrespond to the pressure and as we an see the

quantities Π and W , whih depend on the eletromagneti four potential, make part of the

pressure of the system. Finally, the o�-diagonal terms depend only on the eletromagneti

four potential and represent the shear stress of the system σ.

The Einstein �eld equations Gµ
ν = 8πT µ

ν for the spaetime desribed by (2.2) and

the soure given by (2.24) are

G0
0 = 8πT 0

0 (2.25)

⇒ 1

B3

(
B,rr +

1

r
B,r +

1

r2
B,θθ

)
+

1

B2D

(
D,rr +

1

r
D,r +

1

r2
D,θθ

)
= −8π(ρ+W ) + (2.26)

+
1

B4

[
(B,r)

2 +
1

r2
(B,θ)

2

]
,

G1
1 = 8πT 1

1 (2.27)
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⇒ 1

r2B2

(
1

A
A,θθ +

1

D
D,θθ

)
+

1

rB2

(
1

A
A,r +

1

D
D,r

)
= 8π(P − Π) + (2.28)

− 1

AB3

(
A,rB,r −

1

r2
A,θB,θ

)
+

− 1

AB2D

(
A,rD,r +

1

r2
A,θD,θ

)
+

− 1

B3D

(
B,rD,r −

1

r2
B,θD,θ

)
,

G2
2 = 8πT 2

2 , (2.29)

⇒ 1

B2

(
1

A
A,rr +

1

D
D,rr

)
= 8π(P +Π) + (2.30)

+
1

AB3

(
A,rB,r −

1

r2
A,θB,θ

)
+

− 1

AB2D

(
A,rD,r +

1

r2
A,θD,θ

)
+

+
1

B3D

(
B,rD,r −

1

r2
B,θD,θ

)
,

G3
3 = 8πT 3

3 , (2.31)

⇒ 1

AB2

(
A,rr +

1

r
A,r +

1

r2
A,θθ

)
+

1

B3

(
B,rr +

1

r
B,r +

1

r2
B,θθ

)
= 8π(P +W ) + (2.32)

+
1

B4

[
(B,r)

2 +
1

r2
(B,θ)

2

]
,

G1
2 = 8πT 1

2 , (2.33)

⇒ 1

r2B2

(
1

A
A,θ +

1

D
D,θ

)
= 8πσ − 1

rAB3
(A,rB,θ + A,θB,r) + (2.34)

− 1

rDB3
(B,rD,θ +B,θD,r) +

1

rB2

(
1

A
A,rθ +

1

D
D,rθ

)
,
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where the subsript f,r =
∂f
∂r
, f,θ =

∂f
∂θ

and f,rr =
∂2f
∂r2

, f,θθ =
∂2f
∂θ2

.

With the goal of providing a physial interpretation to the quantities W,Π and σ we

now derive the onservation equations for a perfet �uid oupled with a poloidal magneti

�eld and ompare these equations with those obtained in [23℄ where no eletromagneti

ontribution was onsidered.

The non-vanishing omponents of the onservation equations T µν
;ν = 0 whih rep-

resent energy-momentum onservation for the energy-momentum tensor (2.24) are

For µ = 0

ρ̇+ Ẇ = 0 (2.35)

where the dot denotes derivative with respet to t. Equation (2.35) is a onsequene of the

statiity.

The other non-vanishing omponents are

µ = 1

(P − Π),r +
A,r

A
(ρ+W + P − Π) − B,r

B
2Π− D,r

D
(W +Π) + (2.36)

+
1

r

[
σ,θ +

(
A,θ

A
+ 2

B,θ

B
+

D,θ

D

)
σ − 2Π

]
= 0,

µ = 2

(P +Π),θ +
A,θ

A
(ρ+W + P +Π) +

B,θ

B
2Π− D,θ

D
(W −Π) + (2.37)

+ r

[
σ,r +

(
A,r

A
+ 2

B,r

B
+

D,r

D

)
σ

]
+ 2σ = 0,

Equations (2.36) and (2.37) represent the hydrostati equilibrium onditions. In the speial

ase of no magneti �eld and an isotropi �uid, these equations redue to the Tolman-

Openheimer-Volko� equations [5�7℄.

At this point it is important to refer to the work of Herrera et al. [23℄ in whih

axially symmetri, anisotropi bound soures were studied. The matter ontent onsidered
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by the authors in loally Minkowski oordinates (τ, x, y, z) is given by

T̂αβ =




µ 0 0 0

0 Pxx Pxy 0

0 Pyx Pyy 0

0 0 0 Pzz




, (2.38)

where µ, Pxx, Pyy, Pzz, Pxy = Pyx denote the energy density, pressure and shear stress, re-

spetively, measured by a loally Minkowskian observer. In a spaetime desribed by (2.2),

the energy-momentum tensor is

Tαβ = (µ+ P )VαVβ + Pgαβ +Παβ , (2.39)

with

Παβ = (Pxx − Pzz)

(
KαKβ −

hαβ

3

)

+ (Pyy − Pzz)

(
LαLβ −

hαβ

3

)
+ 2PxyK(αLβ), (2.40)

P =
Pxx + Pyy + Pzz

3
, hαβ = gαβ + VαVβ, (2.41)

where Vα, Kα and Lα are 4-vetors in the time, radial and angular diretions, respetively.

Vα = (−A, 0, 0, 0), Kα = (0, B, 0, 0), Lα = (0, 0, Br, 0). (2.42)

The onservation equations alulated in ref. [23℄ are

Pxx,r +
A,r

A
(µ+ Pxx) +

B,r

B
(Pxx − Pyy) +

D,r

D
(Pxx − Pzz) + (2.43)

+
1

r

[
Pxy,θ +

(
A,θ

A
+ 2

B,θ

B
+

D,θ

D

)
Pxy + Pxx − Pyy

]
= 0,
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Pyy,θ +
A,θ

A
(µ+ Pyy) +

B,θ

B
(Pyy − Pxx) +

D,θ

D
(Pyy − Pzz) + (2.44)

+ r

[
Pxy,r +

(
A,r

A
+ 2

B,r

B
+

D,r

D

)
Pxy

]
+ 2Pxy = 0.

Comparing equations (2.36) and (2.37), whih desribe a perfet �uid oupled with

a poloidal magneti �eld, with the hydrostati equations (2.43) and (2.44), alulated in

ref. [23℄, whih desribe an anisotropi �uid (without eletromagneti ontribution), we an

read the quantity ρ+W as the total energy density of our distribution. In fat, the de�nition

of W given by eq. (2.20) reminds us of the typial de�nition of the eletromagneti energy

density. The quantity 2Π an be read as the anisotropy of the distribution, and it is a diret

onsequene of the poloidal magneti �eld. The quantity σ given by (2.22) an be identi�ed

as the shear stress experiened by the �uid. The quantities W + Π and W − Π an be

read as an anisotropy de�ned with respet to z-axis and P +Π and as terms related to the

pressure. In onlusion, if we apply the Bondi approah [24℄ then a loally Minkowskian

observer measures, for the perfet �uid oupled with a poloidal magneti �eld, ρ + W as

the total energy density, 2Π as the anisotropy aused by the di�erent omponents of the

magneti �eld and σ as the shear stress of the distribution.
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2.2 Neutron star struture using Shapiro's approah

Shapiro et. al. [19℄ studied the spin-up of a rapidly rotating star by angular momen-

tum loss. In this setion we use the same metri tensor used by Shapiro et al. but instead

of rotational e�ets, we onsider magneti �eld e�ets on the neutron star struture. The

goal is to write the general relativisti �eld equations determining the metri potentials in

terms of the quantities introdued in the previous setion, i.e. W,Π and σ and give the same

physial interpretation as before.

The spae-time onsidered by Shapiro et al. is written for rotating equilibrium

models onsidered as stationary and axisymmetri and given by the following metri tensor,

ds2 = −e(γ+ρ)(dt)2 + e2α[(dr)2 + r2(dθ)2] + e(γ−ρ)r2sin2θ(dφ− ωdt)2, (2.45)

where the oordinates are xµ = (t, r, θ, φ) and the metri funtions γ, ρ, α and ω depend

only on the oordinates (r, θ).

We onsider a perfet �uid distribution oupled with a poloidal magneti �eld with-

out rotation, i.e. in the equations of [25℄ the metri potential ω = 0. The energy momentum

tensor T µν
is

T µν = T PFµν + TEMµν , (2.46)

with

T PFµν = (ρ0 + ρi + P )uµuν + Pgµν (2.47)

where ρ0 is the rest energy density, ρi is the internal energy density, P is the pressure and

uµ
is the matter four veloity with uµuµ = −1. The term TEM

is given by eq. (2.5).

The Einstein �eld equations Gµν = 8πT µν
for the distribution desribed by the

energy-momentum tensor (2.46) using (2.45) following the Cook-Shapiro-Teulkosky approah

(whih is inspired by the method of Komatsu-Eriguhi-Hahisu [25℄) in whih all nonlinear

and oupling terms from Gµν
(hene terms assoiated with geometry) are onsidered as part
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of the soure, named as e�etive soure Sγ and Sρ.

(
∇2 +

1

r
∂r −

µ

r2
∂µ

)
(γeγ/2) = Sγ(r, µ) (2.48)

∇2
(
ρeγ/2

)
= Sρ(r, µ) (2.49)

where ∇2
is the �at-spae, spherial oordinate Laplaian, µ = cosθ. The e�etive soure

terms are given by

Sγ(r, µ) = eγ/2
[
16πe2αP +

γ

2

(
16πe2αP − 1

2
∇γ.∇γ

)]
, (2.50)

Sρ(r, µ) = eγ/2
[
8πe2α(ρ0 + ρi + P ) +

γ,r
r

− µ

r2
γ,µ +

ρ

2

(
16πe2αP − 1

2
∇γ.∇γ − γ,r

r
+

µ

r2
γ,µ

)]

+ eγ/2
e−(γ−ρ)

r2(1− µ2)
2∇Aφ.∇Aφ, (2.51)

where f,r =
∂f
∂r

and f,µ = ∂f
∂µ

and ∇f.∇f = (f,r)
2 + (1−µ2)

r2
(f,µ)

2
.

Comparing equation (2.51) with expression (6) in [19℄ (with ω = 0) we realize the

soure Sρ for a perfet-�uid oupled with a poloidal magneti �eld an be written as

Sρ(r, µ) = SPF
ρ + SEM

ρ (2.52)

where SPF
ρ orresponds to the perfet �uid ontribution and SEM

ρ is the eletromagneti

soure for the metri potential ρ. They are given by

SPF
ρ = eγ/2

[
8πe2α(ρ0 + ρi + P ) +

γ,r
r

− µ

r2
γ,µ +

ρ

2

(
16πe2αP − 1

2
∇γ.∇γ − γ,r

r
+

µ

r2
γ,µ

)]
,

(2.53)

SEM
ρ (r, µ) = eγ/2

e−(γ−ρ)

r2(1− µ2)
2∇Aφ.∇Aφ. (2.54)

Hene we an see the e�etive soure for the metri potential ρ is the superposition
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of the soure orresponding to the perfet �uid distribution plus the in�uene of the poloidal

magneti �eld whih depends on Aφ, while omparing Sγ soure (2.50) with expression (7)

in [19℄ we realize no magneti ontribution is present in the γ e�etive soure.

The third �eld equation determines the metri potential α and is given by

α,µ =− 1

2
(γ,µ + ρµ)− {(1 + rγ,r)

2(1− µ2) +
[
µ− (1− µ2)γ,µ)

]2}−1×

×
[
− 1

2
{3µ2 − 4µ(1− µ2)γ,µ + (1− µ2)2(γ,µ)

2}(γ,µ + ρ,µ)+

− 1

2
rγ,r(1 + rγ,r)(1− µ2)(γ,µ + ρ,µ) +

1

2
µr(1 + rγ,r)(γ,r − ρ,r)+

− r(1 + rγ,r)(1− µ2)(γ,rµ + γ,rγ,µ) +
1

2
r(1 + rγ,r)(1− µ2)(γ,rγ,µ − ρ,rρ,µ)+

+
1

2
[µ− (1− µ2)γ,µ](3µρ,µ + rρ,r)−

1

2
[µ− (1− µ2)γ,µ][r

2γ,rr − (1− µ2)γ,µµ]+

− 1

4
r2[µ− (1− µ2)γ,µ]

{
∇γ.∇γ +∇ρ.∇ρ− 2(1− µ2)

r2
[(γ,µ)

2 + (ρ,µ)
2]

}]
+

+ {(1 + rγ,r)
2(1− µ2) +

[
µ− (1− µ2)γ,µ)

]2}−1×

× e−(γ−ρ)

{
[µ− (1− µ2)γ,µ]

(1− µ2)

[
∇Aφ.∇Aφ −

2(1− µ2)

r2
(Aφ,µ)

2

]
+

2(1 + rγ,r)

r
(Aφ,r)(Aφ,µ)

}
.

(2.55)

If we onsider no magneti dipole in�uene, i.e. Aφ = 0 then equation (2.55) is equation

(11) in [19℄ with ω = 0.

A possible physial interpretation for quantities related to energy, anisotropy and

shear stress named as W, Π, σ, respetively, was given in [18℄ as we disussed in the previous

setion. Now, we write Einstein-Maxwell �eld equations for eah metri potential in terms

of these quantities and give them a similar interpretation. We begin writing these quantities

as follow

W =
1

8π
gφφ(B2

r +B2
θ)

=
1

8π
gφφ

(
gθθ(Aφ,θ)

2 + grr(Aφ,r)
2
)

=
1

8π

e−(γ−ρ)e−2α

r2(1− µ2)
∇Aφ.∇Aφ, (2.56)



CHAPTER 2. FORMAL ASPECTS OF THE MAGNETIC FIELD ON THE

STRUCTURE OF NEUTRON STARS 18

Π =
1

8π
gφφ(B2

r − B2
θ)

=
1

8π
gφφ

(
gθθ(Aφ,θ)

2 − grr(Aφ,r)
2
)

= − 1

8π

e−(γ−ρ)e−2α

r2(1− µ2)

[
∇Aφ.∇Aφ −

2(1− µ2)

r2
(Aφ,µ)

2

]
, (2.57)

σ =
1

8π
2gφφBrBθ

=
1

8π
2gφφ

√
gθθ

√
grr(Aφ,r)(Aφ,θ)

= − 1

8π

2e−(γ−ρ)

r

e−2α

r2(1− µ2)1/2
(Aφ,r)(Aφ,µ). (2.58)

Comparing expressions (2.54) with (2.56), we an write for the soure of the metri

potential ρ

SEM
ρ (r, µ) = eγ/216πe2αW. (2.59)

Therefore the �eld equation for the metri potential ρ an be written in terms of the quantity

W

∇2(ρeγ/2) = eγ/2
[
8πe2α(ρ0 + ρi + P + 2W ) +

ρ

2

(
16πe2αP − 1

2
∇γ.∇γ − γ,r

r
+

µ

r2
γ,µ

)]

(2.60)

We an see the eletromagneti in�uene in the term 2W and that appears as a

sum of the energy density and pressure assoiated to the perfet �uid distribution, hene

this result allows us to take this term as part of the total energy density and pressure,

spei�ally eletromagneti energy density in agreement with the interpretation given in the

previous setion and as me and my oworkers shown in [18℄ where the authors use a metri

tensor di�erent from (2.45). The fator two in (2.60) is not entirely unexpeted sine this

fator is known to our in relating eletromagneti to mehanial energy as Papapetrou

and Bonnor showed [26,27℄ and as we will show later in hapter IV when we write the total

gravitational mass expression and the fator two appears with the eletromagneti energy

density. This fator presumably arises from the fat that non-Maxwellian stresses are present
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in addition to purely eletromagneti ones, and these ontribute to the gravitational mass.

Writing equation (2.55) for the metri potential α in terms of the introdued quan-

tities we �nd,

α,µ = −1

2
(γ,µ + ρµ)− {(1 + rγ,r)

2(1− µ2) +
[
µ− (1− µ2)γ,µ)

]2}−1 ×

×
[
− 1

2
{3µ2 − 4µ(1− µ2)γ,µ + (1− µ2)2(γ,µ)

2}(γ,µ + ρ,µ) +

− 1

2
rγ,r(1 + rγ,r)(1− µ2)(γ,µ + ρ,µ) +

1

2
µr(1 + rγ,r)(γ,r − ρ,r) +

− r(1 + rγ,r)(1− µ2)(γ,rµ + γ,rγ,µ) +
1

2
r(1 + rγ,r)(1− µ2)(γ,rγ,µ − ρ,rρ,µ) +

+
1

2
[µ− (1− µ2)γ,µ](3µρ,µ + rρ,r)−

1

2
[µ− (1− µ2)γ,µ][r

2γ,rr − (1− µ2)γ,µµ] +

− 1

4
r2[µ− (1− µ2)γ,µ]

{
∇γ.∇γ +∇ρ.∇ρ− 2(1− µ2)

r2
[(γ,µ)

2 + (ρ,µ)
2]

}]
+

− {(1 + rγ,r)
2(1− µ2) +

[
µ− (1− µ2)γ,µ)

]2}−1 ×

×
{
8πr2e2α

{[
µ− (1− µ2)γ,µ)

]
Π + (1− µ2)1/2(1 + rγ,r)σ

}}
. (2.61)

From (2.61) we realize when we write the equation for the metri potential α in terms

of the introdued quantities the fator e2α appears in the right side of equation making the

solution assoiated to this metri potential more di�ult than (2.55), where α only appears

in the left side of the equation.

The physial interpretation of Π and σ is related to anisotropy and the shear stress,

respetively. In equation (2.61) the magneti ontribution appears in the last term through

the quantities Π and σ and these two quantities only appear in the equation related to the

metri potential α, whih is the fator assoiated to the oordinates r and θ in our metri

(2.45), through e2α, and these two oordinates, i.e. radial and polar, are the diretions where

the symmetry is broken.

In our system the breaking of spherial symmetry is due to the poloidal magneti

�eld whih has two omponents Br and Bθ, quantities Π and σ are written in terms of these

omponents.

We an understand that Π is related to anisotropy (two di�erent omponents of the

magneti �eld) and σ is related to the shear stress. These two quantities are responsible for
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breaking the symmetry of the system. This interpretation of Π and σ is in agreement with

the interpretation given in the previous setion and in [18℄ where the metri tensor is written

in the Weyl spherial oordinates and another approah was used.

In onlusion, the eletromagneti ontribution has been studied modelling a highly

magnetized neutron star as a perfet �uid oupled with a poloidal magneti �eld, using

two di�erent oordinates desribing axially-symmetri spaetimes. The two approahes used

in order to give possible physial interpretation for three introdued quantities, named as

W,Π and σ, are in agreement on understanding these quantities as eletromagneti energy,

anisotropy and shear stress, respetively.



Chapter 3

The 3 + 1 formalism and the virial

theorem

The utility of the virial theorem in di�erent areas of physis is well known. In many studies

of astrophysis and general relativity it is ommon to use the virial theorem derived from a

onservation law. This hapter is devoted to present a relativisti version of the virial theorem

as an integral identity (and not as a onservation law) for a stationary and asymptotially

�at spaetime, based on the 3+1 formalism. The derived identity will be use in hapter V as

a onsisteny hek of numerial solution of Einstein equations for a rotating and magnetized

neutron star.

3.1 The 3 + 1 formalism

It is ommon to assume stationary models as an initial (unstable) ondition in axisymmetri

ollapse problems [21℄, in this ase the hosen oordinates must be adapted to the dynamial

evolution whih is expressed within the 3 + 1 formalism.

The 3+1 formalism supposes that the spaetime is foliated into a family of spaelike

hypersurfaes Σt, levelled by a salar funtion: the time oordinate, in that way the real

parameter t may be onsidered as a oordinate assoiated to the Killing vetor ξ: ξ = ∂/∂t

(a stationary spaetime). The time-like 4 vetor �eld orthogonal to the hypersurfae Σt and
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oriented in the diretion of inreasing t is given by

nα = −Nt,α (3.1)

where nαn
α = −1 (normalized) and N is the lapse funtion, whih is positive for spaelike

hypersurfaes and is interpreted as the proper time measured by an Eulerian observer Oo

whose 4-veloity is nα

dτ = Ndt. (3.2)

The positive de�nite 3-metri indued by g on Σt is

hαβ = gαβ + nαnβ. (3.3)

The metri tensor h and the normal vetor n provide two useful tools to deompose any

4-dimensional tensor into a purely spaelike part (hene in Σt) and a purely timelike part

(orthogonal to Σt and aligned with n).

In general, the Killing vetor is not orthogonal to the hypersurfae Σt; leading to

the de�nition of shift vetor Nα
whih means the orthogonal projetion of ξ onto Σt and is

interpreted as a measure of the hanges in the spatial oordinates xi
t0+δt = xi

t0
−N idt, where

Nα := −hα
σξ

σ, (3.4)

a non zero shift vetor means that the Eulerian observer does not follow the xi =onst. lines

The relationship between these vetors is

ξα = Nnα −Nα. (3.5)

The omponents of the 4-metri tensor g an be written as

ds2 = −(N2 −NiN
i)dt2 − 2Nidtdx

i + hijdx
idxj . (3.6)

The 3+1 formalism onsists of writing the Einstein equations, whih form a system
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of seond order partial di�erential equations (PDE

′

s) into a system of �rst order (with respet

to the oordinate t) PDE
′

s, in the form of a Cauhy evolution problem, subjet to ertain

onstraints. The method onsists in projeting the Einstein equations into the hypersurfae

Σt whih means

hαβ

(
Rαβ −

1

2
Rgαβ

)
= 8πhαβTαβ (3.7)

and using (3.3)

Rαβn
αnβ − 1

2
R = 8πSα

α , (3.8)

where the stress energy tensor in the hypersurfae Σt is

Sαβ = hα
µh

β
νT

µν . (3.9)

Due to the Einstein tensor projetion into Σt we will have a 3-dimensional Riemann

and Rii tensor,

˜Rα
βγδ and R̃αβ , respetively, whih are purely spatial (spatial derivatives

of the spatial metri h) whereas the 4-dimensional Riemann and Rii tensors ontain also

time derivatives of the metri g.The information present in Rα
βγδ and missing in

˜Rα
βγδ an

be found in another spatial and symmetri tensor Kαβ alled extrinsi urvature whih is

de�ned as:

Kαβ = −hµ
αh

ν
βn(ν;µ) = −nβ;α − nαaβ, (3.10)

where aβ = nαnβ;α is the aeleration of normal observers. The extrinsi urvature measures

the hanges in the normal vetor under parallel transport, hene it measures how the 3-

dimensional hypersurfae Σt is bent with respet to the 4-dimensional spaetime. The trae

of the extrinsi urvature tensor is linked to the ovariant divergene of the 4-veloity through

K = −nα
;α. (3.11)

Gauss equation enable one to express the Rii tensor Rαβ of the metri g, in terms
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of the Rii tensor R̃αβ of the 3-metri hαβ , the lapse funtion N and the extrinsi urvature

tensor Kαβ of the hypersurfae Σt [28℄

hijν;ij −
1

4
R̃ + hijν;jν;i −

3

4
(KijK

ij −K2) + (Knα);α = 4πS i
i (3.12)

where ν = lnN .

In ollapse problems, it is ommon [29℄ to hoose maximal sliing hypersurfaes Σt

whih are de�ned by the requirement of a trae-free extrinsi urvature tensor

K = 0. (3.13)

The world lines of Eulerian observers are normal to the maximal hypersurfaes

Σt, they oinide with the loally nonrotating observers introdued by Bardeen [30℄ in the

stationary axisymmetri ase, the well known zero-angular momentum observers (ZAMO)

[31℄.

3.2 The Virial theorem

The term "virial" omes from the latin vires whih means strength, fore or energy. The

virial theorem relates the time average of kineti energy of a generi partile with the time

average of the works exeuted by the fores with whih the partiles interat. This important

theorem is thanks to Clausius who in 1870 delivered the leture "On a Mehanial Theorem

Appliable to Heat" to the Assoiation for Natural and Medial Sienes of the Lower Rhine,

following a 20-years study of thermodynamis.

The Newtonian version of the virial theorem is widely used in astrophysis, mainly

within the ontext of the equilibrium and stability properties of dynamial systems. One

example of this usefulness is the fat that the virial theorem has been used to derive the

Chandrasekhar limit for the stability of white dwarf stars [32℄. On another hand, in astron-

omy the virial theorem, and related onepts, provide an often onvenient means by whih

to quantify the mass and size of a galaxy [33℄, whih are often de�ned in terms of the "virial
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radius" and "virial mass", respetively.

Bonazzola [34℄ has derived a general relativisti version of the virial theorem in

the stationary axisymmetri ase. The Bonazzola identity proved to be very useful as a

onsisteny hek for numerial omputation of steady-state rotating star models [21, 35℄

and it will be the validity riteria to �nd numerial solutions in the present work, as we

will see in hapter V. In the ase of spherial symmetry, a general relativisti formulation

of the non-stationary virial theorem has been found by Vilain [36℄ and applied to stability

problems. Katz [37℄ proposed a general formulation of the relativisti virial theorem without

supposing any symmetry. His formulation involves "virial vetor �elds" whih are de�ned

with respet to a given �at bakground metri. His original goal was to obtain the virial

theorem as a surfae integral at in�nity, so that it would have been independent of the hoie

of the virial vetor �elds. The result was "0 = 0" and the onlusion is the virial theorem

has to be formulated as a spae integral, involving some extra struture, like the virial vetor

�elds. In the next setion we are going to present a brief disussion about the relativisti

version of the virial theorem.

3.2.1 The relativisti virial theorem

We onsider a stationary and asymptotially �at spaetime. As mentioned in the

previous setion, stationary means that there exists a Killing vetor �eld, ξ, whih is time-

like. This vetor is de�ned up to sale fator, whih is �xed by the requirement that the

salar produt ξµξ
µ = −1. Asymptotially �at spaetime means:

� A spaetime with spatial setions Σt ontaining a ompat region B suh that Σt−B is

di�eomorphi to R
3−0. For an ordinary star, B may be redued to one point, whereas

for a blak hole, B shall enlose the event horizon.

� On eah Σt, there exists a oordinate system xi
suh that the omponents gαβ of

the metri di�er from diag(−1, 1, 1, 1) only by terms O(1/r) as r → ∞ and the �rst

derivatives gαβ,γ are O(1/r2).



CHAPTER 3. THE 3 + 1 FORMALISM AND THE VIRIAL THEOREM 26

The relativisti Virial Theorem is based on the 3+1 formalism desribed in the previ-

ous setion [38,39℄; the starting point onsists in integration over the spae-like hypersurfae

Σt of equation (3.12)

∫

Σt

√
hd3x

[
4πSi

i − hijν;jν;i +
3

4
(KijK

ij −K2)

]
= (3.14)

=

∫

Σt

√
hd3x(Knα);α +

∫

Σt

√
hd3xhijν;ij −

1

4

∫

Σt

√
hd3xR̃.

If we onsider the stationary ase, the term of the �rst integral of the right hand

side of (3.14) an be write as

(Knα);α =
1

N
(KN i);i =

1

N
KN iν;i +

(
K

N i

N

)

;i

, (3.15)

and with the use of the Gauss theorem,

∫

Σt

√
hd3x(Knα);α =

∫

Σt

√
hd3x

1

N
KN iν;i + lim

S→∞

∮

S

dSi
K

N
N i =

∫

Σt

√
hd3x

1

N
KN iν;i,

(3.16)

where the asymptoti �atness ondition was onsidered.

For the seond integral of the right hand side of (3.14) we use Gauss theorem and

then write this integral in terms of the total energy in the hypersurfae Σt whih is known

as the Komar mass [40℄ de�ned for a stationary spaetime,

m :=
1

8π
lim
S→∞

∮

S

dSαβξ
[α;β], (3.17)

sine the spae is asymptotially �at (see appendix of [41℄ for further details)

∫

Σt

√
hd3xhijν;ij = lim

S→∞

∮
dSih

ijν;j = 4πm. (3.18)

The last integral in (3.14) onsists in the integration of the Rii salar of the

hypersurfae Σt. This integral an be omputed using the bimetri formalism whih onsists

in introduing into the hypersurfae a �at bakground metri γ (for further details see [41℄



CHAPTER 3. THE 3 + 1 FORMALISM AND THE VIRIAL THEOREM 27

and referenes therein). The introdued metri is �at everywhere in the ase of ordinary

stars and oinide at in�nity with the non-�at 3-metri h by virtue of the asymptoti �atness

hypothesis. Using this bimetri formalism, the Rii salar integral an be written as [42℄

∫

Σt

√
hd3xR̃ = 16πMADM +

∫

Σt

√
hd3xhij [∆l

im∆
m

jl −∆l
lm∆

m
ij ], (3.19)

with

∆i
jk =

1

2
hij [hlk‖j + hjl‖k − hjk‖l], (3.20)

where the double vertial stroke ‖ denotes ovariant derivation assoiated with the metri

γ [42℄ and MADM is the Arnowitt-Deser-Misner mass-energy [39℄.

Taking into aount that in the ase of stationary and asymptotially �at spaetime,

Komar mass and ADM mass do oinide [43, 44℄, expression (3.14) is

∫

Σt

√
hd3x

[
4πSi

i − hijν;jν;i +
1

4
hij(∆l

im∆
m
jl −∆l

lm∆
m
ij) + (3.21)

+
3

4
(KijK

ij −K2)− K

N
Nih

ijν;j

]
= 0.

Equation (3.21) is the general relativisti virial theorem, named in that way beause

in the Newtonian limit this expression redues to the lassial virial theorem. The Virial

theorem integral an be read as ontaining terms related to the gravitational soure, seond

derivatives of the metri potential ν and terms assoiated to the extrinsi urvature tensor.



Chapter 4

Neutron star struture

The theoretial formalism desribing a rotating and highly magnetized neutron star

is presented in this hapter. As mentioned in the introdution, in order to properly de-

sribe this kind of astrophysial objets it is neessary a full axially symmetri treatment

within the ontext of Einstein-Maxwell equations. First, we desribe the spaetime and the

Einstein-Maxwell equations within the approah used by Bonazzola et al. [21℄ whih allows

us to write these equations in terms of a �at spae ellipti operator and the soure terms

ontaining matter, eletromagneti and non linear quadrati terms in the metri potentials.

Seondly, the hydrostati equilibrium equations will be derived within the assumption of

in�nite ondutivity matter. Finally, the relevant physial quantities desribing the system

will be presented.

4.1 Struture equations

In this study we assume that spaetime is stationary, axis-symmetri and irular,

whih means the urrent 4-vetor and �uid 4-veloity are parallel to a general ombination

of the Killing vetors [45℄. Most authors studying rapid rotation based their works in the

approah of Bardeen et. al. [46℄ whih expliitely assumes an isotropi stress tensor and is

thus inompatible with eletromagneti �elds. The authors of [21,35,47℄ present a formula-
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tion whih allows suh spaetime for the most general energy-momentum tensor. The metri

that desribes suh spaetime is given by

ds2 = −e2νdt2 + e2(ζ−ν)(dr2 + r2dθ2) + e−2νG2r2sin2θ(dφ−Nφdt)2, (4.1)

where the oordinates are xµ = (x0, x1, x2, x3) = (t, r, θ, φ) and the metri funtions ν, ζ, G

and Nφ
depend on the oordinates (r, θ).

The energy-momentum tensor desribing a perfet �uid oupled with eletromag-

neti �eld is

T µν = T PFµν + TEMµν , (4.2)

the perfet �uid (PF) and the eletromagneti (EM) ontributions are given by

T PFµν = (ǫ+ P )uµuν + Pgµν , (4.3)

TEMµν =
1

4π

(
F µαF ν

α − 1

4
gµνF αβFαβ

)
, (4.4)

where ǫ and P are the rest frame energy density and pressure, respetively, uµ
is the �uid

4-veloity, gµν is the metri tensor and

Fµν = Aν,µ −Aµ,ν (4.5)

is the Maxwell tensor where Aµ is the eletromagneti 4-potential. Stationarity, axisym-

metry and irularity properties for the spaetime desribed by (4.1) imply that the non

vanishing omponents of the urrent 4-vetor are jµ = (jt, 0, 0, jφ) and onsequently the

eletromagneti potential omponents are Aµ = (At, 0, 0, Aφ) [45℄.

We are going to use the Bonazzola approah [21℄ whih is based on the 3+1 formalism

disussed in hapter III. From the Einstein �eld equations, Bonazzola et al. derive a Poisson

equation for eah of the metri variables. The determination of the gravitational �eld is

redued to the integration of a system of four oupled ellipti partial di�erential equations
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(hereafter PDE) of the form

∆fu = σmatter
u + σquad

u (4.6)

where ∆f is a �at spae ellipti operator (namely a two or a three dimensional �at spae

Laplaian), u a metri potential, σmatter
u is the soure term involving all matter terms (suh as

�uid, eletromagneti �elds, et.) and σquad
u is an expression ontaining only non linear terms

in the metri potentials. We use the Bonazzola's formalism to derive equations governing

the equilibrium of rotating neutron stars with strong magneti �elds. This approah may

be useful in the study of systems based on other types of anisotropi stress-energy tensor

di�erent of (4.2) suh as the energy momentum tensor studied in [10℄.

The equations that desribe a perfet �uid oupled with eletromagneti �eld are

the Einstein-Maxwell equations

Gµν = 8πTµν . (4.7)

Fαβ;γ + Fγα;β + Fβγ;α = 0, (4.8)

F αβ
;β = 4πjα, (4.9)

where equations (4.8) and (4.9) are the homogeneous (Faraday´s law and non-magneti

monopole) and inhomogeneous (Gauss and Ampere-Maxwell laws) Maxwell equations.

Using the approah suggested by (4.6) for the metri tensor de�ned in (4.1) and

onsidering the matter de�ned by the energy-momentum tensor (4.2), Einstein-Maxwell

equations are written as [48℄

∆3ν = σν , (4.10)
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∆̃3Ñφ = σ
Ñφ , (4.11)

∆2G̃ = σG̃, (4.12)

∆2ζ = σζ , (4.13)

∆3At = σAt
, (4.14)

∆̃3Ãφ = σÃφ
, (4.15)

where

Ñφ ≡ rsinθNφ, (4.16)

G̃ ≡ rsinθG, (4.17)

Ãφ ≡ Aφ

rsinθ
, (4.18)

and ∆2,∆3 and ∆̃3 are respetively the two-dimensional �at spae Laplaian, the three-

dimensional �at spae Laplaian, and the φ omponent of the three-dimensional �at spae

vetor Laplaian and they are given by

∆2 ≡
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
, (4.19)

∆3 ≡
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

1

r2 tan θ

∂

∂θ
, (4.20)
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∆̃3 ≡ ∆3 −
1

r2sin2θ
. (4.21)

The soure terms σmatter
u are given by

σν = 4πe2(ζ−ν)(E + Si
i) +

1

2
e−4νG2r2sin2θ(∂Nφ)2 − ∂ν∂(lnG), (4.22)

σ
Ñφ = −16πe2ζ+ν

G2

Iφ
rsinθ

− rsinθ∂Nφ∂[ln(e−4νG3)], (4.23)

σG̃ = 8πe2(ζ−ν)Grsinθ(Sr
r + Sθ

θ ), (4.24)

σζ = 8πe2(ζ−ν)Sφ
φ +

3

4
e−4νG2r2sin2θ(∂Nφ)2 − (∂ν)2, (4.25)

σAt
=− 4πe2(ζ−ν)(gttj

t + gtφj
φ) + e−2νgtφ∂At∂N

φ − (2 + e−2νgtt)∂Aφ∂N
φ

− (∂At + 2Nφ∂Aφ)∂[ln(e
−2νG)]− 2Nφ

r

(
Aφ,r +

1

r tan θ
Aφ,θ

)
,

(4.26)

σÃφ
=− 4πe2ζ−4νG2rsinθ(jφ −Nφjt) + e−4νG2rsinθ∂Nφ(∂At +Nφ∂Aφ)

+
1

rsinθ
∂Aφ∂[ln(e

−2νG)].
(4.27)

In these expressions the notation ∂f∂g denotes

∂f∂g ≡ ∇f.∇g ≡ f,rg,r +
1

r2
f,θg,θ. (4.28)

The ontributions from the energy-momentum tensor are

E = Tµνn
νnµ, (4.29)

Iµ = −hµνnγT
νγ, (4.30)
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Sµν = hµγhνρT
γρ, (4.31)

where the physial meaning of nµ
and hµν = gµν + nµnν are the same as presented in

hapter III. In the oordinates xµ = (t, r, θ, φ) the omponents of the timelike four vetor

are nµ = (−N, 0, 0, 0) where N = eν is the lapse funtion. For the energy-momentum tensor

(4.2) we have

E = EPF + EEM , (4.32)

Iµ = IPF
µ + IEM

µ , (4.33)

Sµν = SPF
µν + SEM

µν . (4.34)

For the perfet �uid we have

EPF = Γ2(ǫ+ P )− P, (4.35)

(IPF )φ = e−νGrsinθ(EPF + P )U, (4.36)

(SPF )rr = P, (SPF )θθ = P, (SPF )φφ = P + (EPF + P )U2, (4.37)

where Γ is the Lorentz fator linking the Eulerian observer Oo and the �uid omoving

observer O1 with veloity uµ
,

Γ = −nαu
α ⇒ Γ2 =

1

1− U2
, (4.38)

being U the physial �uid veloity in the φ diretion, as measured by the Eulerian observer,



CHAPTER 4. NEUTRON STAR STRUCTURE 34

and it is given by

U =
1

Γ
−→eφ .−→u , (4.39)

where

−→eφ is the unit spatial vetor in the φ diretion.

The non-vanishing omponents of the four veloity are related by

uφ = Ωut, (4.40)

where Ω is the angular veloity as seen by an inertial observer at in�nity, who is at rest with

respet to the star's enter. We obtain for U

U = e−2νGrsinθ(Ω−Nφ). (4.41)

Note that if the �uid were at rest with respet to the loal Eulerian observer, then U = 0

and Ω = Nφ 6= 0, hene it would not be at rest for an inertial observer at in�nity: this is

the well known phenomena of dragging of the inertial frame [49�52℄.

For the eletromagneti part of the energy-momentum tensor we have

EEM =
1

8π
(EiE

i +BiB
i), (4.42)

(IEM)φ =
1

4π
e2ζ−3νGr2sinθ(ErBθ − EθBr), (4.43)

(SEM)rr =
1

8π
(EθE

θ − ErE
r +BθB

θ −BrB
r), (4.44)

(SEM)θθ = −(SEM)rr, (4.45)

(SEM)φφ = EEM . (4.46)
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Note that the only non vanishing omponent of the Poynting vetor is (IEM)φ, whih

is onsistent with the irularity assumption. In the above expressions Ei and Bi are the

omponents of the eletri and magneti �elds as measured by the Eulerian observer Oo [38℄,

and given by

Eα = nβFαβ

=
[
0, e−ν(At,r +NφAφ,r), e

−ν(At,θ +NφAφ,θ), 0
]
,

(4.47)

Bα = −1

2
ǫαβρσn

βF ρσ

=

[
0,

eν

Gr2sinθ
Aφ,θ,−

eν

Gsinθ
Aφ,r, 0

]
,

(4.48)

where ǫαβρσ is the Levi-Civita tensor assoiated with the metri gµν given by (4.1).

The theorem of Cowling [53℄ states that an axisymmetri magneti �eld annot be

generated or maintained by the motion of a �uid, sine �nite resistivity involves dissipation,

leading to magneti �eld deay. Hene stationary models of neutron stars in magneti �elds

require a separation of dynamial and dissipative timesales, enoded in an assumption

of in�nite ondutivity (magneti �elds "frozen in" and arried with the �uid, a ommon

assumption in astrophysis [54℄). In the ase of neutron stars matter studies indiate [54℄

that ohmi dissipation timesale is larger than the age of the universe [55℄, so the in�nite

ondutivity assumption is well justi�ed.

Aording to Ohm's law, and assuming that the matter has in�nite ondutivity,

the eletri �eld as measured by the �uid observer must be zero. This ondition leads to the

following relation between the two omponents of the potential 4-vetor inside the star [21℄

At,i = −ΩAφ,i. (4.49)

From this equation we have either Ω = const, or Aφ = Aφ(Ω), but the latter ondition

annot be ful�lled in general sine Aφ has to satisfy the Maxwell-Ampere equation, thus

we retain only the ase Ω = const and onlude that a stationary on�guration with some
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magneti �eld is neessarily rigidly rotating. Equation (4.49) is integrated and yields

At = −ΩAφ + constant (4.50)

where the onstant is determined by the total eletri harge of the star.

4.2 Hydrostati equilibrium equations

The hydrostati equilibrium equations are provided by the onservation of the energy-

momentum tensor

T µν
;ν = 0. (4.51)

Applying the above equation to the energy-momentum tensor of our system we obtain

1

(ǫ+ P )
P,i + ν,i − (ln Γ),i −

1

(ǫ+ P )
fi = 0, (4.52)

from left to right, the above equation an be understood as (by analogy with the Newtonian

ase) the pressure fore, gravitational fore, entrifugal fore and Lorentz fore given by

fi = Fiαj
α = jtAt,i + jφAφ,i. (4.53)

Considering a one parameter EoS, ǫ = ǫ(n), P = P (n), where n is the baryon

density, the �rst integral of the �rst term in equation (4.52) is identi�ed as the heat funtion

H

H(n) =

∫ n

0

1

(ǫ(n′) + P (n′))

dP (n′)

dn′
dn′, (4.54)

whih is a regular funtion of n when ǫ and P tend to zero. For example, at zero temperature

and in hemial equilibrium, the �rst law of thermodynamis allows to write H(n) = ln g(n),

where g is the enthalpy per baryon g := (ǫ+P )
n

or the total of possible states [56, 57℄. In the
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ase of old stars, the EoS parameter n is the proper baryon density, at zero temperature.

The star surfae orresponds to H(0) = 0 whih will be an important ondition in order to

�nd numerial solutions as we will see in the next hapter.

Introduing (4.49), (4.53) and (4.54) in (4.52), we have

(H + ν − ln Γ),i −
1

(ǫ+ P )
(jφ − Ωjt)Aφ,i = 0. (4.55)

The above equation suggests that there exists a funtion M(r, θ) suh that

− 1

(ǫ+ P )
(jφ − Ωjt)Aφ,i = M,i. (4.56)

with the adoption of a urrent funtion

f(Aφ) =
1

(ǫ+ P )
(jφ − Ωjt) (4.57)

we an write

−f(Aφ)Aφ,i = M,i, (4.58)

and hene equation (4.55) an be written as

(H + ν − ln Γ +M),i = 0. (4.59)

The �rst integral of motion is

H(r, θ) + ν(r, θ)− ln Γ(r, θ) +M(r, θ) = C = constant (4.60)

with

M(r, θ) = M(Aφ(r, θ)) = −
∫ Aφ(r,θ)

0

dxf(x). (4.61)

Besides there is a freedom of hoie for funtion f(Aφ), the integrability ondition
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(4.57) represents a signi�ant restrition on the form of the eletromagneti urrent that

allows the existene of stationary solutions. The onstant C is determined by an input

parameter, e.g. the pressure spei�ed at some point in the star.

The eletri and magneti �elds are linked by the in�nite ondutivity assumption

(4.50), so equations (4.42)-(4.46) an be written in terms of the eletromagneti potential

Aφ and the �uid veloity U

EEM =
1

8π

e4ν−2ζ

G2r2sin2θ
(1 + U2)

(
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

)
, (4.62)

IEM
φ =

1

4π

e3ν−ζ

Grsinθ
U

(
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

)
, (4.63)

(SEM)rr =
1

8π

e4ν−2ζ

G2r2sin2θ
(1− U2)

(
(Aφ,r)

2 − 1

r2
(Aφ,θ)

2

)
, (4.64)

(SEM)θθ =− (SEM)rr

= − 1

8π

e4ν−2ζ

G2r2sin2θ
(1− U2)

(
(Aφ,r)

2 − 1

r2
(Aφ,θ)

2

)
,

(4.65)

(SEM)φφ =EEM

=
1

8π

e4ν−2ζ

G2r2sin2θ
(1 + U2)

(
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

)
.

(4.66)

In summary, the formalism of stationary neutron stars with poloidal magneti �elds

onsists of a losed system of:

� Eleven variables:

� Four metri variables: ν,G,Nφ, ζ .

� Energy density: ǫ.

� Pressure: P .

� Two omponents of the eletromagneti potential: At, Aφ.

� Two omponents of the eletromagneti urrent: jt, jφ.

� The heat funtion: H(r, θ).
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� Eleven equations:

� Four Poisson equations for the metri variables: (4.10)-(4.13).

� Two Poisson equations for the omponents of the eletromagneti potential: (4.14)

and (4.15).

� The relation between the omponents of the eletromagneti potential (in�nity

ondutivity assumption): equation (4.50).

� The equation of state: P = P (ǫ).

� The relation between the heat funtion H , ǫ and P .

� The �rst integral of the equations of hydrostati equilibrium: equation (4.60).

� The restrition on the eletromagneti urrent: equation (4.57).

� Three input parameters:

� Angular veloity Ω.

� Total eletri harge Q.

� Central density ǫc or entral pressure Pc.

� One input funtion: f(Aφ).

� The relevant boundary onditions.

4.3 Physial quantities desribing the system

In this setion we alulate some relevant physial quantities that desribe the rotating or

magnetized neutron star, these quantities are the irumferential radius, total gravitational

mass, angular momentum and the magneti moment.

The stellar equator is de�ned as the losed line at the surfae of the star de�ned by

t = const and θ = π/2 (equatorial plane). It has a onstant value of the oordinate r, that



CHAPTER 4. NEUTRON STAR STRUCTURE 40

we identi�ed as req. A haraterization of the stellar equator is the irumferential radius

de�ned as [58℄

R :=
l

2π
(4.67)

where l is the irumferene of the star in the equatorial plane, i.e. the proper length of the

equator as given by the metri tensor. For the line element (4.1) that means

ds2 = e−2νG2r2 sin2 θdφ2 ⇒ l =

∫ 2π

0

e−νGreqdφ, (4.68)

onsidering the symmetry in the φ diretion

R = e−νeqGeqreq, (4.69)

where νeq = ν(req, π/2) and Geq = G(req, π/2). As we an see, di�erently from the spherially

symmetri ase, for an axially symmetri spaetime the oordinate r does not oinide with

the irumferential radius.

For a stati matter distribution or in slow evolution regime [10℄, the energy (mass)

onept is well de�ned. For the spherially symmetri and non dissipative ase, the exterior

spaetime is desribed by the Shwarzshild metri and as a onsequene of the oupling

onditions, the total energy of the system is equal to the Shwarzshild parameter M [59℄.

However, the de�nition of the energy distribution of a part of the �uid is not unique.

This ambiguity in the energy loalization, that is present even in lassial eletrodynam-

is [60℄, has been objet of several disussions leading to di�erent energy de�nitions, for

example for spherially symmetri relativisti �uids is ommon the use of the mass fun-

tion [59℄ to alulate the numerial solution of relativisti gravitational ollapse [61℄. How-

ever, another interesting energy de�nition for stati or sloswly evolving distribution is the

Tolman-Whittaker mass [62,63℄ whih plays the role of the ative gravitational mass (see [64℄

for more details).

The Komar mass [40℄ is another de�nition of the mass and it is ommonly used for
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stationary asymptotially �at spaetimes as we mentioned in hapter III. Beause we are

interested in desribing a rotating or magnetized neutron star we will use the Komar mass

expression to alulate the mass of the system.

The Komar mass m is given by [65℄

m =

∫

Σt

(T i
i − T t

t )
√−gdx1dx2dx3. (4.70)

In the following, we will alulate m for two di�erent ases: �rst, for a rotating �uid without

magneti �eld and seond, for a perfet �uid (without rotation) oupled with a poloidal �eld.

4.3.1 Mass and angular momentum for a rotating star

For a rotating �uid without magneti �eld the extrinsi urvature is part of the

Komar mass,

m =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφr2sinθe2(ζ−ν)G

[
(E + Si

i) +
1

2π
(κ2

1 + κ2
2)

]
. (4.71)

where the omponents of the extrinsi urvature Kαβ for the metri tensor (4.1) are

κ1 = −1

2
e−(ζ+ν)GrsinθNφ

,r κ2 = −1

2
e−(ζ+ν)GsinθNφ

,θ. (4.72)

Considering (4.37) we have,

Si
i = Γ2(ǫ+ P )U2 + 3P (4.73)

hene

E + Si
i = Γ2(ǫ+ P )(1 + U2) + 2P. (4.74)

Then, onsidering the above equations, the total gravitational mass for a rotating �uid
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(without magneti �eld) is

m =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφr2sinθe2(ζ−ν)G

[
Γ2(ǫ+ P )(1 + U2) + 2P +

1

2π
(κ2

1 + κ2
2)

]
. (4.75)

so part of the energy of a rotating neutron star without magneti �eld arises from a term

whih is not assoiated to the omponents of the extrinsi urvature tensor (later in hapter

V we will all as a perfet �uid ontribution, beause it oinides with the energy density

assoiated with a perfet �uid in the nonrotating ase), and a term oming from the extrinsi

urvature ontribution.

To ompute the total angular momentum of the rotating star we use the fat that

the spaetime is asymptotially �at whih, mathematially, means when r → ∞

ν(r, θ) → 0, (4.76)

Nφ(r, θ) → 0, (4.77)

ζ(r, θ) → 0, (4.78)

G(r, θ) → 1. (4.79)

The solution of (4.11) satisfying these onditions has a leading term when r → ∞ of the

form

Nφ(r, θ) ∼ 2J

r3
(4.80)

where J is a onstant independent of r and θ and is identi�ed as the total angular momentum

of the star [66℄. Integrating equation (4.11) on a sphere of large radius, transforming the left

hand side into a surfae �ux integral of ∇Nφ
, thanks to Gauss theorem, using the asymptoti

behavior of Nφ
(4.80) (see [21℄ for more details) the expression for J orresponding to the
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metri (4.1) is

J =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφr2sinθGe2ζ−3νIφ (4.81)

and taking into aount (4.35) and (4.36), we have

J = 2π

∫ ∞

0

dr

∫ π

0

dθr3sin2θG2e2(ζ−2ν)Γ2(ǫ+ P )U (4.82)

where the symmetry in the φ diretion was onsidered.

In the next hapter the mass, angular momentum and the angular veloity will be

used to desribe a rotating neutron star without magneti �eld.

4.3.2 Mass and magneti moment for a magnetized star

For a perfet �uid oupled with a poloidal magneti �eld we have for the energy-momentum

tensor (4.70),

T i
i = T PF i

i + TEMi
i, T t

t = T PFt
t + TEMt

t (4.83)

For the perfet �uid ontribution, onsidering uµ = (u0, 0, 0, 0) and uµuµ = −1, we

have

T PF i
i = 3P, T PFt

t = −ǫ (4.84)

For the eletromagneti �eld ontribution,

TEMi
i =

1

4π

(
F iρFiρ −

1

4
δiiF

ρσFρσ

)
, (4.85)

taking into aount that Aµ = (0, 0, 0, Aφ(r, θ)),

F ρσFρσ = F iρFiρ = 2
e4ν−2ζ

G2r2sin2(θ)

[
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

]
(4.86)
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hene,

TEMi
i =

1

8π

e4ν−2ζ

G2r2sin2(θ)

[
(Aφ,r)

2 +
1

r2
(Aφ,θ)

2

]
= EEM

(4.87)

TEMt
t = − 1

16π
F ρσFρσ = −EEM

(4.88)

The expression in parenthesis in (4.70) is,

T i
i = 3P + EEM T t

t = −(ǫ+ EEM) (4.89)

For the line element (4.1) the fator

√−g = e2(ζ−ν)Gr2sinθ, and the Komar mass is

m =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφr2sinθe2(ζ−ν)G(ǫ+ 3P + 2EEM). (4.90)

It is worth noting that in this hapter we are using di�erent oordinates and metri

tensor ompared with hapter II, where we used the Cook-Shapiro-Teukolsky metri tensor

and again we realize the presene of the fator 2 multiplying the eletromagneti energy

density in the expression of the total gravitational mass, hene we verify the onlusion of

Papapetrou [26℄, this fator appears as a fundamental property of eletro-gravitational �eld

and hene is independent on the oordinates hoie. This result is a onsequene of the fat

that there is no possibility of formulating the law of onservation of energy without using

the potential energy of gravitation.

Another important point to mention is the fat that omparing expressions (4.90)

and (4.75) we notie an analogy between the roles of the eletromagneti energy and the

total extrinsi urvature, however the distributions of these energies through the star are

di�erent as we will show in the next hapter.

The magneti moment of the star is de�ned in terms of the asymptoti behaviour of

the magneti �eld as measured by the Eulerian observer Oo [48℄, and onsidering the poloidal



CHAPTER 4. NEUTRON STAR STRUCTURE 45

nature of the �eld

B̃r =
2µcosθ

r3
, (4.91)

onsidering that this is the r-omponent of

~B in the orthonormal basis assoiated to (r, θ, φ).

The relation between B̃r and Br, whih is the r-omponent of Bα, is

Br = eζ−νB̃r, (4.92)

using equation (4.48), we have

(
eζ−ν 2µcosθ

r3

)
= Br |r→∞=

(
eν

Gr2 sin θ

)
(Aφ,θ) |r→∞, (4.93)

and hene

µ =
e2ν−ζ

2G

r

sinθcosθ
(Aφ,θ) |r→∞ . (4.94)

In the next hapter the mass, magneti dipole moment, magneti �eld at the pole

and in the enter will be used to desribe the numerial solution of a magnetized neutron

star without rotation.



Chapter 5

Numerial proedure and Results

Numerial relativity is one of the branhes of the general relativity theory that allows physi-

ists to solve the non linear equations that desribe systems like the highly magnetized

neutron stars. This hapter deals with the numerial solution of the Einstein-Maxwell equa-

tions presented in hapter IV. In this study we onsider a rotating neutron star without

magneti �eld and highly magnetized neutron star modelled as a perfet �uid oupled with

a poloidal magneti �eld, in this last ase we restrit to the stati on�guration (although

both are stationary). In terms of the potential observability of the e�ets of large magneti

�elds, relevant situations appear to be for nonrotating or slowly rotating neutron stars, for

example on June 2016 a team of researhers led by Antonino D'Alì from Italy's National

Institute of Astrophysis [67℄ piked up strange X-ray bursts oming from the supernova

remnant RCW 103, known as 1E 1613, based on their data another team of researhers lead

by Nanda Rea [68℄ from the University of Amsterdam in the Netherlands onluded that

this objet is likely a magnetar whih is rotating one every 6.67 hours, muh slower than

the slowest magnetars known, whih spins around one every 10 seonds.

5.1 Equation of state of the matter onsidered

The link between the mirosopi and marosopi properties of a system is given by the

equation of state (EoS), P = P (ǫ), whih is derived from a mirosopi model of the matter

that hypothetially omposes the system.
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The goal of this work is to study the e�ets of the magneti �eld in the struture

of neutron stars and not at the mirosopi level, beause of that we onsider as the matter

omposition a traditional model of EoS known as G300 [69℄, whih is based on a relativisti

quantum �eld theory desribing the nulear matter present in the neutron star using the

relativisti mean �eld approximation, where the �elds are replaed by their mean values.

The model supposes that the neutron stars are omposed by hadrons and studies

the system in the framework of �eld theory of interating nuleons, hyperons and mesons.

The parameters of the theory are adjusted to reprodue the bulk properties of the nulear

matter, summarized in table 5.1

Saturation Energy E/N -16 MeV

Saturation Density ρ0 0.16 fm−3

Compressibility K 265 MeV

Symmetry Energy asym 32.5 MeV

Nuleon E�etive Mass m∗/mN 0.796

Table 5.1: Bulk nuleus properties used to onstrain neutron star matter model, mN =
938MeV is the average nuleon mass

The method stars from a Lagrangian model whih is written in terms of a group

of oupling parameters, the barions and mesons are the fermioni and bosoni �elds, re-

spetively [69, 70℄. The next step is to make use of the Euler-Lagrange equations for eah

�eld and with the use of some approximations, the expeted value of the energy momen-

tum tensor in the fundamental state is alulated in terms of the Lagrangian. Finally, the

energy-momentum tensor of a perfet �uid in a �at spaetime is used and the result is the

desired relationship between pressure and energy density P = P (ǫ). Figure 5.1 shows this

relationship.
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Figure 5.1: Pressure as a funtion of energy density for the G300 model

5.2 Numerial solution for the metri potentials.

To solve the Poisson equations for the metri potentials (4.10 - 4.15) we use Green's funtions,

similar to the method of Komatsu, Eriguhi and Hahisu (KEH) [25℄ and Cook, Shapiro and

Teukolsky [19℄, but with a di�erent treatment to �nd the solution for the metri potential

α, this point will be disussed in more details in the next subsetion.

Equations (4.10), (4.11) and (4.15), for the metri potentials ν,Nφ
and Aφ, respe-

tively, are of the form

∆3u = σu, (5.1)

where ∆3 is the three-dimensional �at spae Laplaian and σu is the soure of the funtion

u. The solution of this equation is

u(~r) =

∫
dV ′σu(~r

′)G3D(~r, ~r
′), (5.2)

where dV is the volume element. The Green´s funtion G3D is given by

G3D(~r, ~r
′) = − 1

4π

1

| ~r − ~r′ | (5.3)
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Equations de�ning the metri potentials G and ζ are of the form

∆2u = σu, (5.4)

where ∆2 is the two-dimensional �at spae Laplaian, the solution of this equation is

u(~r) =

∫
dA′σu(~r

′)G2D(~r, ~r
′), (5.5)

where dA is the area element and G2D the two-dimensional Green´s funtion given by

G2D(~r, ~r
′) =

1

2π
ln | ~r − ~r′ | (5.6)

To �nd numerial solution for the metri potentials the radial domain 0 ≤ r ≤ ∞ is

ompati�ed using the following hange of variable

r = R

(
s

1− s

)
(5.7)

where R is some length sale and the new domain is then 0 ≤ s ≤ 1, hene s maps radial

in�nity to the �nite oordinate loation s = 1. The omputational domain is divided into

"inner" and "outer" grids, where the equatorial surfae is loated at the radial position

s = 0.5, hene the equatorial radius is set at r = R.

For the angular variable, one an hoose the oordinate hange presented in hapter

II where µ = cos θ, however in the next equations we will make use of the variable θ for

writing the solution of the metri potentials.

Taking into aount the azimuthal and equatorial symmetries present in the on-

�gurations, imposing the boundary onditions [all metri funtions �nite at the origin and

(ν,Nφ, ζ, Aφ) |r→∞→ 0, G |r→∞→ 1℄, and using the expansion series for the Green´s funtion

given by equations (28) - (32) in referene [25℄, the solution of the elliptial �eld equations
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(4.10), (4.11), (4.12) and (4.15) in terms of variables (s, θ) are

ν(s, θ) =−
∞∑

n=0

P2n(cos θ)

×
[(

1− s

s

)2n+1 ∫ s

0

ds′
s′2n

(1− s′)2n+2

∫ π/2

0

dθ′ sin θ′P2n(cos θ
′)σ̃ν(s

′, θ′)

]

+

[(
s

1− s

)2n ∫ 1

s

ds′
(1− s′)2n

s′2n+1

∫ π/2

0

dθ′ sin θ′P2n(cos θ
′)σ̃ν(s

′, θ′)

]
,

(5.8)

Nφ(s, θ) =− 1

R

∞∑

n=1

P 1
2n−1(cos θ)

2n(2n− 1) sin θ

×
[(

1− s

s

)2n+1 ∫ s

0

ds′
s′2n−1

(1− s′)2n+1

∫ π/2

0

dθ′ sin θ′P 1
2n−1(cos θ

′)σ̃
Ñφ(s

′, θ′)

]

+

[(
s

1− s

)2n−2 ∫ 1

s

ds′
(1− s′)2n−2

s′2n

∫ π/2

0

dθ′ sin θ′P 1
2n−1(cos θ

′)σ̃
Ñφ(s

′, θ′)

]
,

(5.9)

G(s, θ) =1− 2

π

∞∑

n=1

sin[(2n− 1)θ]

(2n− 1) sin θ

×
[(

1− s

s

)2n ∫ s

0

ds′
s′2n−1

(1− s′)2n+1

∫ π/2

0

dθ′ sin[(2n− 1)θ′]σ̃G̃(s
′, θ′)

]

+

[(
s

1− s

)2n−2 ∫ 1

s

ds′
(1− s′)2n−3

s′2n−1

∫ π/2

0

dθ′ sin[(2n− 1)θ′]σ̃G̃(s
′, θ′)

]
,

(5.10)

Aφ(s, θ) =− R

∞∑

n=1

P 1
2n−1(cos θ)

2n(2n− 1)
sin θ

×
[(

1− s

s

)2n−1 ∫ s

0

ds′
s′2n−1

(1− s′)2n+1

∫ π/2

0

dθ′ sin θ′P 1
2n−1(cos θ

′)σ̃Ãφ

]

+

[(
s

1− s

)2n ∫ 1

s

ds′
(1− s′)2n−2

s′2n

∫ π/2

0

dθ′ sin θ′P 1
2n−1(cos θ

′)σ̃Ãφ

]
,

(5.11)

where σ̃f = r2σf = R2

(
s

1−s

)2

σf , is the dimensionless soure of the potential f , Pn is the

Legendre polynomial and Pm
n is the assoiated Legendre funtion. The solution for the

omponent At is not presented in this hapter beause we will deal only with the stati

on�guration for a magnetized star.
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5.2.1 Speial ase: solution of the metri potential ζ

In the hapter II we studied a perfet �uid oupled with a poloidal magneti �eld inspired in

the work of Shapiro et al. [19℄. As we have seen the equations de�ning the metri potentials

ρ and γ are of the form of (5.1) and (5.4), respetively, but the equation de�ning the metri

potential α is of the form

∂α

∂θ
= S(r, θ) (5.12)

where S is a ompliated expression ontaining �rst and seond order derivatives, quadrati

terms of these derivatives and even terms like γ,rµ [see equation (2.55)℄.

In the urrent formalism the role of the metri potential α is taken by ζ , but the

equation de�ning it is of the form ∆2ζ = σζ , whih looks simpler than equation (5.12).

The solution of the metri potential ζ however, should be handled with are beause its

may result in a logarithmi divergene at in�nity during iteration proedure. To avoid this

problem we use the virial theorem disussed in the hapter III.

The starting point is to remember that the Green's funtion of the 2D Laplaian is

given by equation (5.6) hene the solution for the metri potential ζ is

ζ(r, θ) =
1

2π

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σζ(r
′, θ′) ln | ~r − ~r′ | (5.13)

where the soure σζ is given by equation (4.25). Sine the regularity onditions at r = 0

imply that all salar funtions may be expanded into a series of cos(nθ), the analytial

ontinuation satis�es

∀θ ∈ [π, 2π], σζ(r, θ) = σζ(r, 2π − θ). (5.14)

On the other hand, when r → ∞, the term ln | ~r− ~r′ |∼ ln r, so that ζ(r, θ) ∼ I ln r,

where

I :=
1

2π

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σζ(r
′, θ′). (5.15)
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Taking into aount the asymptoti �atness ondition at in�nity ζ = 0,the integral

should be zero

1

2π

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σζ(r
′, θ′) = 0 (5.16)

Using the expression of σζ given by equation (4.25),

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′
[
8πe2(ζ

′−ν′)Sφ
φ +

3

4
e−4ν′G′2r′2 sin2 θ′(∂Nφ′)2 − (∂ν ′)2

]
= 0. (5.17)

where the primes over the metri funtion u means u = u(r′, θ′), for example ν ′ = ν(r′, θ′).

The above equality orresponds to the virial theorem expressed by equation (3.21),

taking into aount that for the present study we hoose the hypersurfae Σt to be maximal

sliing [29℄, usually used in numerial relativity, so that the trae of the extrinsi urvature

tensor is zero K = 0. The term (∂Nφ′)2 is related to the omponents of the extrinsi

urvature, through equations

κ1 = −1

2
e−(ζ+ν)Gr sin θNφ

,r κ2 = −1

2
e−(ζ+ν)G sin θNφ

,θ. (5.18)

As we an see, the integral (5.17) has three terms, one related to the soure, seond

assoiated to the extrinsi urvature and the last term ontaining seond derivatives of the

metri potential ν, just the struture of the virial integral (3.21) presented in hapter III.

The soure σζ an be written as

σζ = σm
ζ + σf

ζ , (5.19)

where the presriptions m and f mean matter and �eld, so σm
ζ ontains the "matter terms"

(those involving omponents of the stress-energy tensor) and σf
ζ ontains the "�eld terms"

(those involving only the metri variables), in agreement with equation (4.6). Considering

this, the integral I for σζ an be written as I = Im + If = 0, whih in terms of the
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ompati�ed variable s is

∫ 1

0

ds
s

(1− s)3
σm
ζ,0(s) +

∫ 1

0

ds
s

(1− s)3
σf
ζ,0(s) = 0 (5.20)

where

σζ,0(s) =

∫ 2π

0

dθσζ(s, θ). (5.21)

Equation (5.20) is a solution of Einstein´s equations, however it may blow up, due

to the logarithm fator, spoiling onvergene. In order to avoid the logarithmi divergene

aused by the violation of (5.20) and to guarantee the onvergene of the iteration, the

tehnique is to write the equation for the metri potential ζ as [35℄

∆2ζ = σm
ζ + λσf

ζ (5.22)

where the parameter λ is

λ = −
∫ 1

0
ds s

(1−s)3
σm
ζ,0(s)∫ 1

0
ds s

(1−s)3
σf
ζ,0(s)

. (5.23)

At the end of the iteration proess λ must approah to 1 for the omputed metri funtions

to represent a valid solution to Einstein's equations.

Finally, the solution of the metri potential ζ is then given by

ζ(s, θ) =
2

π

[
ln r(s)

∫ s

0

ds′
1

(1− s′)2

∫ π/2

0

dθ′σ̃ζ(s
′, θ′) +

∫ 1

s

ds′
1

(1− s′)2
ln r(s′)

∫ π/2

0

dθ′σ̃ζ(s
′, θ′)

]

− 2

π

∞∑

n=1

cos(2nθ)

2n

[(
1− s

s

)2n ∫ s

0

ds′
s′2n

(1− s′)2n+2

∫ π/2

0

dθ′cos(2nθ′)σ̃ζ(s
′, θ′)

+

(
s

1− s

)2n ∫ 1

s

ds′
(1− s′)2n−2

s′2n

∫ π/2

0

dθ′cos(2nθ′)σ̃ζ(s
′, θ′)

]
,

(5.24)

where the soure σ̃ζ = Rr(σm
ζ + λσf

ζ ) = R2( s
1−s

)(σm
ζ + λσf

ζ ). At the end of the iteration the

quantity | 1 − λ | appears to be a good indiator of the disrepany between the ahieved
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solution and the exat one.

A valid question would be why one does not use the virial theorem for the metri

funtion G̃ as equation (4.12) also involves the two dimensional Laplaian in a similar way

than the equation de�ning the metri potential ζ? Suh proedure is not needed sine the

sin θ fator present in the soure σG̃ guarantees that the ln r term vanishes. The key issue

here is that the analytial ontinuation on [π, 2π] of the soure term σG̃ is not satis�ed, sine

σG̃ = σGrsinθ ⇒ σG̃(r, θ) 6= σG̃(r, 2π − θ) (5.25)

but, instead, the soure σG satis�es the analytial ontinuation and hene,

∀θ ∈ [π, 2π], σG̃(r, θ) = σG(r, 2π − θ)rsinθ. (5.26)

The integral I for the soure σG̃ is

I :=
1

2π

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σG̃(r
′, θ′). (5.27)

Now using the analytial ontinuation (5.26)

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σG̃(r
′, θ′) =

∫ ∞

r′
r′dr′

∫ 2π

0

dθ′σG(r
′, 2π − θ′)r′sinθ′, (5.28)

hene the integral I = 0 everywhere.

5.3 Results

In the following we show the results orresponding to the solution for rotating neutron

stars without magneti �eld and for nonrotating neutron stars with a poloidal magneti

�eld. The terms that allow us to alulate the virial fator λ, i.e. σm
ζ and σf

ζ will be

written in terms of the physial variables and the oordinate s for eah ase. The results

for the mass, radius, angular momentum, magneti �eld at the pole and enter as well the

magneti moment will be presented. The ontour plots of some quantities like the extrinsi
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urvature and eletromagneti energy density will shed light on how the high rotation or

high magneti �eld a�et the system. Finally, the mass-radius relation will be shown for the

ase of magnetized neutron stars with di�erent entral densities and magneti �eld.

5.3.1 Results for a rotating neutron star without magneti �eld

A rotating neutron star without magneti �eld is studied for three values of the angular

veloity, de�ned in terms of the relation between the polar and equatorial radius rratio =

rpole/req. The �rst value orresponds to rratio = 1.00 whih de�nes the spherially symmetri

ase, the seond value is rratio = 0.80 whih generates an intermediate deformation and the

last one rratio = 0.70 generating the largest deformation with an aeptable value of the virial

parameter λ for a star with entral density ǫc = 500 MeV/fm3
. In table 5.2 we show the

results for the total gravitational mass m, the irumferential radius R, the perfet �uid

1

ontribution to the mass MPF
, the ontribution of the extrinsi urvature to the total mass

Mκ
, the angular veloity Ω, the total angular momentum J and the virial fator | 1− λ |.

The perfet �uid and the extrinsi urvature ontributions to the gravitational mass

of the system in table 5.2 are given by

MPF = 4πR3

∫ 1

0

ds
s2

(1− s)4

∫ π/2

0

dθsinθe2(ǫ−ν)G

[
Γ2(ǫ+ P )(1 + U2) + 2P

]
, (5.29)

Mκ = 4πR3

∫ 1

0

ds
s2

(1− s)4

∫ π/2

0

dθsinθe2(ǫ−ν)G

[
1

2π
(κ2

1 + κ2
2)

]
. (5.30)

The terms for alulate the virial fator λ in this ase are given by

σm
ζ = 8πGNe

2(ζ−ν)

[
P + (ǫ+ P )

U2

1− U2

]
(5.31)

σf
ζ =

3

4
e−4νG2sin2θ[s2(1− s)2(Nφ

,s)
2 + (Nφ

,θ)
2]− (1− s)2

R2

[
(1− s)2(ν,s)

2 +
1

s2
(ν,θ)

2

]
(5.32)

1

we use this name beause this term remember us the expression of the total gravitational mass of the

perfet �uid for a nonrotating star
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Figures 5.2 - 5.9 show the distribution of eah term that ontributes to the gravi-

tational mass, i.e. MPF
and Mκ

and the pressure ontour, for a star with a �xed entral

density ǫc = 500 MeV/fm3
and di�erent values of the angular veloity orresponding to the

table 5.2. The red solid line shows the star surfae. The values reported in the table forMPF

and Mκ
, orrespond to equations (5.29) and (5.30), respetively, while the values showed

in the legend of the �gures 5.2 - 5.6 orrespond to expressions within the brakets in these

equations, i.e. the ontour plots of the perfet �uid ontribution to the total mass in �gures

5.2 -5.4 are the ontour plots of the term within the brakets in equation (5.29),while the

ontour plots of the extrinsi urvature ontribution to the total mass in �gures 5.5 and 5.6

are the ontour plots of the term within the brakets in equation (5.30), in units of energy

density g/cm3
.

Comparing the graphis that show the energy density oming from MPF
, pressure

and the extrinsi urvature ontribution, for the di�erent values of rratio, we realize the rota-

tional e�ets in the shape of the star surfae and the distribution of the extrinsi urvature

energy, while the distribution of the energy assoiated to MPF
is onentrated around the

enter of the star, as we an see from �gure 5.2, 5.3 and 5.4, the energy oming from Mκ

has its biggest values near to the star's surfae, as show �gures 5.5 and 5.6, atually we an

see values between (0.5 − 1.5) × 1012 g/cm3
outside of the star´s surfae. In the sense of

the maximum values reahed by the perfet �uid ontribution to the energy density (�gures

5.2, 5.3 and 5.4) and the maximum pressure (�gures 5.7, 5.8 and 5.9), there are no di�er-

ene between the three ases, i.e. the maximum energy density or the maximum pressure

reahed for stars with di�erent angular veloities remain the same, but for the plots showing

the extrinsi urvature ontribution, the maximum value grows up from zero (the spherial

symmetri on�guration) to ∼ 4.5×1012g/cm3
orresponding to a star with angular veloity

Ω = 0.585× 104s−1
, i.e a star for whih rpole = 70%req.
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rratio m R MPF Mκ Ω J | 1− λ |
M⊙ km M⊙ (10−2

)M⊙ (104) s−1
(1071) erg.s (10−2

)

1.00 1.543 12.841 1.543 0.000 0.000 0.000 1.454

0.80 1.645 14.205 1.632 1.302 0.493 4.642 2.356

0.70 1.728 15.331 1.706 2.259 0.585 6.428 4.368

Table 5.2: Properties for rotating neutron stars with entral energy density ǫc =
500 MeV/fm3
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Figure 5.2: Contour plot of the energy density oming from the perfet �uid ontribution

to the total mass for a star with rratio = 1.00 and ǫc = 500 MeV/fm3
. The �gure shows the

distribution of the term within the brakets in equation (5.29). The red solid line represents

the star's surfae.
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Figure 5.3: Contour plot of the energy density oming from the perfet �uid ontribution

to the total mass for a star with rratio = 0.80 and ǫc = 500 MeV/fm3
. The �gure shows the

distribution of the term within the brakets in equation (5.29). The red solid line represents

the star's surfae.
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Figure 5.4: Contour plot of the energy density oming from the perfet �uid ontribution

to the total mass for a star with rratio = 0.70 and ǫc = 500 MeV/fm3
. The �gure shows the

distribution of the term within the brakets in equation (5.29). The red solid line represents

the star's surfae.
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Figure 5.5: Contour plot of the energy density oming from the extrinsi urvature ontri-

bution to the total mass for a star with rratio = 0.80 and ǫc = 500 MeV/fm3
. The �gure

shows the distribution of the term within the brakets in equation (5.30). The red solid line

represents the star's surfae.
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Figure 5.6: Contour plot of the energy density oming from the extrinsi urvature ontri-

bution to the total mass for a star with rratio = 0.70 and ǫc = 500 MeV/fm3
. The �gure

shows the distribution of the term within the brakets in equation (5.30). The red solid line

represents the star's surfae.
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Figure 5.7: Contour plot of the pressure for a star with rratio = 1.00 and ǫc = 500 MeV/fm3
.

The red solid line represents the star's surfae.
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Figure 5.8: Contour plot of the pressure for a star with rratio = 0.80 and ǫc = 500 MeV/fm3
.

The red solid line represents the star's surfae.
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Figure 5.9: Contour plot of the pressure for a star with rratio = 0.70 and ǫc = 500 MeV/fm3
.

The red solid line represents the star's surfae.
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5.3.2 Results for a highly magnetized neutron star

As we mentioned in the introdution of this hapter we restrit attention to stati on�gura-

tions, whih involves a number of simpli�ations, inluding the vanishing of Nφ, At, and J t
,

and the absene of surfae harges. Moreover, we have hosen the urrent funtion de�ned

by equation (4.57) to be a onstant f(Aφ) = fo, hene the 4-urrent density has only one

omponent given by

jφ = (ǫ+ P )fo, (5.33)

hene the azimutal omponent of jµ in an orthonormal basis is

j̃φ = e−νGr sin θ(ǫ+ P )fo, (5.34)

In the following, neutron stars with a poloidal magneti �eld are studied for di�erent

values of the urrent funtion f0 whih will help us to study from the spherial symmetri

on�guration (fo = 0.00) as well as a highly magnetized star (fo = 3.26) in whih the strong

magneti �eld a�ets the matter distribution in the system, as we will see. In table 5.3

we show the results for the total gravitational mass m, the irumferential radius R, the

perfet �uid

2

ontribution to the mass MPF
, the eletromagneti ontribution to the mass

MEM
, the magneti �eld magnitude at the enter Bc and at the pole Bpole, the magneti

moment µ at θ = π/4 and the virial fator | 1 − λ | for stars with a �xed entral density

ǫc = 350 MeV/fm3
.

The perfet �uid and the eletromagneti ontributions to the gravitational mass

are given by

MPF = 4πR3

∫ 1

0

ds
s2

(1− s)4

∫ π/2

0

dθsinθe2(ǫ−ν)G(ǫ+ 3P ), (5.35)

2

we use this name beause this term remember us the expression of the gravitational mass of the perfet

�uid for a nonmagnetized star
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MEM = 4πR3

∫ 1

0

ds
s2

(1− s)4

∫ π/2

0

dθsinθe2(ǫ−ν)G(2EEM). (5.36)

In terms of the oordinates (s, θ) the expression (4.94) for the magneti moment is

µ(s, θ) =
e2ν−ζ

2Gcosθsinθ
R

s

1− s
(Aφ,θ) |s→1 . (5.37)

For the ase of a perfet �uid oupled with a poloidal magneti �eld, the terms that

allow us to alulate the virial quantity λ are

σm
ζ = 8πGNe

2(ζ−ν)P +GN
e2ν

R4G2sin2θ

(1− s)4

s2

[
(1− s)2(Aφ,s)

2 +
1

s2
(Aφ,θ)

2

]
, (5.38)

and

σf
ζ = −(1− s)2

R2

[
(1− s)2(ν,s)

2 +
1

s2
(ν,θ)

2

]
. (5.39)

Figures 5.10 - 5.23 show the distribution of eah term that ontributes to the

gravitational mass, i.e. MPF
and MEM

, the ontour of the pressure and the eletromag-

neti potential Aφ with magneti �eld lines, for stars with a �xed entral energy density

ǫc = 350 MeV/fm3
and di�erent values of the urrent funtion orresponding to the table

5.3. The red solid line shows the star surfae. The values reported in the table for MPF

and MEM
, orrespond to equations (5.35)and (5.36), respetively, while the values showed

in the legend of the �gures 5.10 - 5.16 orrespond to the expressions within the parenthesis

in these equations, i.e. the ontour plots of the perfet �uid ontribution to the total mass

in �gures 5.10 - 5.13 are the ontour plots of the term within parenthesis in equation (5.35),

while the ontour plots of the eletromagneti ontribution to the total mass in �gures 5.14

- 5.16 are the ontour plots of the term within parenthesis in equation (5.36), in units of

energy density g/cm3
.

Comparing the graphis that show the energy distribution assoiated to the perfet

�uid ontribution for fo = 1.00 with the spherially symmetri on�guration (�gures 5.11

and 5.10, respetively), we see no signi�antly di�erenes, however when the urrent funtion
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is fo = 2.50 the shape of the star's surfae shows a deviation from the spherially symmetri

on�guration (�gure 5.12) showing the e�ets of the inrease of magneti �eld. The same

observations are valid for �gures that show the ontour plot of the pressure, �gures 5.17,

5.18 and 5.19, where the maximum values reahed for P remains in 5.5 dyn/cm2
, but

for fo = 2.50 as before the inrease of the magneti �eld a�ets the shape of the star.

The eletromagneti e�ets beome more dramati when the magneti �eld inreases from

Bc = 1.844×1017 G to Bc = 1.240×1018 G whih orresponds to fo = 3.26, the e�ets of this

higher magneti �eld are re�eted not only in the shape of the star but also in the matter

distribution, for this value of fo the magneti fores push the matter o�-enter, showing the

transition to a toroidal topology (�gures 5.13 and 5.20), similar results were reported by

Lattimer et. al. [71℄. The eletromagneti energy at the enter experiments a growth from

∼ 14 × 1011 g/cm3
for fo = 1.00, ∼ 12 × 1012 g/cm3

for fo = 2.50 to the highest value

∼ 6× 1013 g/cm3
for fo = 3.26 as we an see in �gures 5.14,5.15 and 5.16, respetively. The

inrease in the magneti �eld is shown in �gures 5.21, 5.22 and 5.23 where we an see the

hange in the order of magnitude of Aφ between the di�erent values of the urrent funtion,

from Aφ,max ∼ 4.5 × 1028 G.cm to Aφ,max ∼ 6.0 × 1029 G.cm. The red line hanges from

spherial to ellipsoidal, showing the e�ets in the shape of the star of the growing magneti

�eld. From these �gures we an onlude that the only omponent of the 4-urrent density

is jφ whih vanishes at the enter and in the surfae of the star. The urrent measured by a

loal observer in the equatorial plane j̃φ peaks somewhere inside the star and vanishes at the

origin and the surfae, as equation (5.34) suggests, generating the poloidal magneti �eld.

Another onlusion that these �gures allow us to draw is the fat that the highest magnitude

of the magneti �eld is at the enter of the star in ontrast to �gure 1 of Lattimer et. al. [71℄

in whih the magneti �eld strength an not be dedued from the lines distribution. After

the value fo = 3.26 for a star with ǫc = 350 MeV/fm3
, onvergene annot be ahieved. In

that sense, the transition to a toroidal topology is suggestive of possible dynamial outomes

that may be onsidered for future works.

It is important to draw attention to the fat that the maximum values of the pressure

in the ase of a rotating stars without magneti �eld (�gures 5.7, 5.8 and 5.9) are ∼ 11 ×
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1034 dyn/cm2
and for magnetized stars without rotation (�gures 5.17, 5.18 and 5.19) the

maximum pressure values are ∼ 5.5 × 1034 dyn/cm2
, the �rst value mentioned orresponds

to a star with entral density ǫc = 500 MeV/fm3
while the seond one orresponds to

ǫc = 350 MeV/fm3
, but when the urrent funtion is set at fo = 3.26 these maximum values

beome similar as we an see in �gure 5.20. It would be interesting for future works, to

ompare the e�ets of high entral densities for rotating neutron stars and high magneti

�elds in the magnitude of the total pressure.

Another important point to be mentioned is that besides the expressions for the

gravitational mass for the rotating star with no magneti �eld and the magnetized star

without rotation, equations (4.75) and (4.90), respetively, suggest an analogy between the

roles of the energy density oming from the extrinsi urvature and the eletromagneti

ontribution in the gravitational mass, �gures 5.5 and 5.6 for a rotating star and �gures 5.14,

5.15 and 5.16 for a magnetized star, show that the distribution in the star of these energies

are di�erent, while the energy assoiated to the extrinsi urvature tensor is onentrated

near to the surfae of the star, the eletromagneti energy has its maximum values near to the

enter. Another di�erene between these two urvature soures is assoiated to the maximum

values they reah, while for the extrinsi urvature its maximum value is ∼ 4.5× 1012g/cm3

for the eletromagneti energy the maximum value is ∼ 6× 1013g/cm3
, being only one order

of magnitude less than the maximum values reahed for the perfet �uid ontribution.

f0 m R MPF MEM Bc Bpole µ | 1− λ |
M⊙ km M⊙ (10−3

)M⊙ (1017) G (1017) G (1035) Gaussian (10−3
)

0.000 1.275 13.257 1.275 0.000 0.000 0.000 0.000 7.164

1.000 1.303 13.367 1.300 2.342 1.844 0.242 3.028 9.744

2.500 1.562 14.211 1.535 26.714 5.535 0.879 10.089 10.938

3.260 2.986 15.541 2.745 241.7 12.400 2.995 32.797 130.600

Table 5.3: Properties of magnetized stars with entral energy density ǫc = 350 MeV/fm3
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Figure 5.10: Contour plot of the energy density oming from the perfet �uid ontribution

to the total mass for a star with fo = 0.00 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.35). The red solid line

represents the star's surfae.
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Figure 5.11: Contour plot of the energy density oming from the perfet �uid ontribution

to the total mass for a star with fo = 1.00 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.35). The red solid line

represents the star's surfae.
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Figure 5.12: Contour plot of the energy density oming from the perfet �uid ontribution

to the total mass for a star with fo = 2.50 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.35). The red solid line

represents the star's surfae.
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Figure 5.13: Contour plot of the energy density oming from the perfet �uid ontribution

to the total mass for a star with fo = 3.26 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.35). The red solid line

represents the star's surfae.
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Figure 5.14: Contour plot of the energy density oming from the eletromagneti ontribution

to the total mass for a star with fo = 1.00 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.36). The red solid line

represents the star's surfae.
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Figure 5.15: Contour plot of the energy density oming from the eletromagneti ontribution

to the total mass for a star with fo = 2.50 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.36). The red solid line

represents the star's surfae.
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Figure 5.16: Contour plot of the energy density oming from the eletromagneti ontribution

to the total mass for a star with fo = 3.26 and ǫc = 350 MeV/fm3
. The �gure shows

the distribution of the term within the parenthesis in equation (5.36). The red solid line

represents the star's surfae.
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Figure 5.17: Contour plot of the pressure for a star with fo = 0.00 and ǫc = 350 MeV/fm3
.

The red solid line represents the star's surfae.
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Figure 5.18: Contour plot of the pressure for a star with fo = 1.00 and ǫc = 350 MeV/fm3
.

The red solid line represents the star's surfae.



CHAPTER 5. NUMERICAL PROCEDURE AND RESULTS 71

r sinθ (km)

r 
co

sθ
 (

km
)

 

 

−20 −10 0 10 20

−25

−20

−15

−10

−5

0

5

10

15

20

25

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

34

dyn/cm2

Figure 5.19: Contour plot of the pressure for a star with fo = 2.50 and ǫc = 350 MeV/fm3
.

The red solid line represents the star's surfae.
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Figure 5.20: Contour plot of the pressure for a star with fo = 3.26 and ǫc = 350 MeV/fm3
.

The red solid line represents the star's surfae.
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Figure 5.21: Contour plot of the eletromagneti potential for a star with fo = 1.00 and

ǫc = 350 MeV/fm3
. The white lines show the magneti �eld (in Gauss) and the red solid

line represents the star's surfae.
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Figure 5.22: Contour plot of the eletromagneti potential for a star with fo = 2.50 and

ǫc = 350 MeV/fm3
. The white lines show the magneti �eld (in Gauss) and the red solid

line represents the star's surfae.
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Figure 5.23: Contour plot of the eletromagneti potential for a star with fo = 3.26 and

ǫc = 350 MeV/fm3
. The white lines show the magneti �eld (in Gauss) and the red solid

line represents the star's surfae.
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5.3.3 Stellar sequenes

Figures 5.24 and 5.25 show the gravitational mass as a funtion of the irumferential radius

and the mass as a funtion of the entral density, respetively, for stati stars eah of them

with onstant urrent funtions. The range onsidered for the entral energy density is

between (120 − 1860) MeV/fm3
whih allow us to study stars with low and high values of

ǫc. The lower line represents the spherially symmetri on�guration with fo = 0.00 (no

magneti �eld) with the lowest value of the virial fator | 1 − λ |∼ 10−4
orresponding to

a entral density ǫc = 186.273 MeV/fm3
(see table 5.5). The blak urve orresponds to

fo = 1.00 whih has similar values of the spherially symmetri on�guration as the �gures

show, this fat allow us to onlude that stars with this value of the urrent funtion an be

studied as a perturbation of the spherially symmetri on�guration.

The e�ets of higher magneti �eld are shown by the red and violet urves whih

exhibit more di�erenes than the blue and blak ones. When the urrent funtion grows to

fo = 2.00 or fo = 2.50 the e�ets of the magneti �eld are onsiderable, as we onluded for

a star with a �xed value of the entral energy density in the previous setion. In fat, for the

value of ǫc = 400 MeV/fm3
for example, the mass of the star hanges from m = 1.534M⊙ to

m = 1.662M⊙ and the magneti �eld at the pole hanges from the order of Bpole ∼ 1016G

to Bpole ∼ 1017 G. The largest value of the magneti �eld at the enter reported in table

5.5 orresponds to a mass of m = 2.016M⊙ and R = 10.351km with Bc = 1.065 × 1018 G,

for ǫc = 1498.705 MeV/fm3
. Note that for this last value reported for ǫc the radius of the

star dereases with the growing of the urrent funtion value, but eah of them being higher

than its orresponding spherial star.

Figure 5.26 shows the irumferential radius as a funtion of the entral density. For

a range of ǫc ∈ (200−1350) MeV/fm3
the radius of the star grows with the magneti �eld, but

for ǫc ∼ 1400 MeV/fm3
this situation begins to be di�erent for ultra relativisti situations,

as �gure 5.27 shows for high values of the entral density, stars with higher values of fo have

smaller radii, even for ǫc ∈ (1500− 1860) MeV/fm3
the red and violet urves orresponding

to fo = 2.00 and fo = 2.50, respetively, are below the blue one whih orresponds to the

spherially symmetri on�guration, similar results were reported by Boquet et. al. [48℄. In
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this setion we have not studied the stellar sequene for fo = 3.26 beause for this value of

the urrent funtion onvergene annot be ahieved for densities around ∼ 400 MeV/fm3
.

The maximummass on�guration properties for stati stars with a poloidal magneti

�eld are summarized in table 5.4. The mass inreases with the magneti �eld, reahing max-

imum values similar to that reported by Lattimer et al. [71℄ for the EoS taken from Prakash,

Cooke and Lattimer (PCLhyp) [72℄ whih is based on a relativisti �eld-theoretial desrip-

tion of dense matter starting from the Lagrangian proposed by Zimanyi and Moszkowski [73℄

with the inlusion of hyperons. The mass reported by Lattimer et. al. [71℄ is m = 2.04M⊙

with a radius R = 11.8 km, orresponding to a entral density ǫc = 20.09×1014 g/cm3
whih

are very similar to that reported in table 5.4 where the maximum mass is m = 2.038M⊙

with R = 11.094km orresponding to ǫc = 20.41 × 1014 g/cm3
. However, the values of the

magneti �eld at the enter and in the pole reported by Lattimer et. al. Bc = 23.5× 1017 G

and Bpole = 13.0 × 1017 G, are higher than the one omputed with our ode. A possible

explanation for this result is the fat that in the EoS PCLhyp the authors onsider the

presene of quarks as part of the mirosopial omposition of the neutron star.

A �nal point to be mentioned is the fat that the magneti �eld values reported in

this work are smaller than the limit value estimation of Lattimer et. al. [71℄

Blim ≃ 8× 1018
(
1.4M⊙

M

)
G (5.40)

for whih a blak hole formation is inevitable. This limiting �eld is not muh larger than

the maximum �elds reported by Lattimer et. al. who studied di�erent EoS.

f0 ǫc m R Bc Bpole µ | 1− λ |
MeV/fm3 M⊙ km (1017) G (1017) G (1035) Gaussian (10−2

)

0.000 1436.267 1.937 10.468 0.000 0.000 0.000 4.109

1.000 1416.038 1.963 10.518 3.959 0.469 1.931 4.597

2.000 1246.328 2.000 10.854 7.881 0.995 4.394 4.893

2.500 1144.644 2.038 11.094 9.929 1.324 6.042 5.240

Table 5.4: Properties of magnetized stars for the maximum mass on�guration
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ǫc f0 m R Bc Bpole µ | 1− λ |
MeV/fm3 M⊙ km (1017)G (1017) G (1035) Gaussian (10−2

)

186.273 0.000 0.519 13.166 0.000 0.000 0.000 0.073

1.000 0.530 13.226 0.810 0.709 1.064 0.199

2.000 0.575 13.465 1.749 0.170 2.546 0.785

2.500 0.629 13.731 2.332 0.244 3.771 2.258

350.000 0.000 1.275 13.257 0.000 0.000 0.000 0.716

1.000 1.300 13.367 1.844 0.242 3.028 0.974

2.000 1.416 13.776 4.029 0.582 7.222 2.042

2.500 1.562 14.211 5.535 0.879 10.89 3.294

375.000 0.000 1.341 13.230 0.000 0.000 0.000 0.880

1.000 1.369 13.332 1.975 0.263 3.159 1.114

2.000 1.478 13.674 4.391 0.643 7.482 1.809

2.500 1.610 14.014 6.075 0.973 11.07 2.826

400.000 0.000 1.397 13.186 0.000 0.000 0.000 0.989

1.000 1.426 13.284 2.072 0.277 3.237 1.238

2.000 1.534 13.606 4.601 0.677 7.607 1.982

2.500 1.662 13.916 6.352 1.018 11.13 2.998

425.000 0.000 1.447 13.132 0.000 0.000 0.000 1.085

1.000 1.476 13.226 2.163 0.291 3.290 1.359

2.000 1.582 13.528 4.798 0.706 7.669 2.145

2.500 1.705 13.807 6.607 1.057 11.09 3.145

450.000 0.000 1.492 13.071 0.000 0.000 0.000 1.184

1.000 1.521 13.159 2.250 0.303 3.323 1.475

2.000 1.626 13.441 4.983 0.733 7.683 2.308

2.500 1.742 13.692 6.843 1.091 10.99 3.286

475.000 0.000 1.534 13.002 0.000 0.000 0.000 1.268

1.000 1.563 13.087 2.334 0.314 3.339 1.583

2.000 1.659 13.344 5.056 0.739 7.576 2.331

2.500 1.775 13.572 7.064 1.120 10.84 3.421

500.000 0.000 1.572 12.929 0.000 0.000 0.000 1.345

1.000 1.547 13.002 2.392 0.321 3.324 1.604

2.000 1.693 13.247 5.216 0.759 7.522 2.473

2.500 1.804 13.450 7.273 1.147 10.67 3.547

1498.705 0.000 1.935 10.346 0.000 0.000 0.000 2.548

1.000 1.962 10.380 4.024 0.471 1.844 4.793

2.000 1.992 10.369 8.297 1.007 3.746 5.254

2.500 2.016 10.351 10.655 1.334 4.728 5.556

Table 5.5: Properties of magnetized stars for di�erent values of ǫc and fo



CHAPTER 5. NUMERICAL PROCEDURE AND RESULTS 77

10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

R (km)

m
 (

M
su

n)

 

 
f
o
=0.00 

f
o
=1.00

f
o
=2.00

f
o
=2.50

Figure 5.24: Mass vs irumferenial radius for di�erent urrent funtions.
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Figure 5.25: Mass vs entral energy density for di�erent urrent funtions.



CHAPTER 5. NUMERICAL PROCEDURE AND RESULTS 78

0 200 400 600 800 1000 1200 1400 1600 1800
9

10

11

12

13

14

15

∈
c
 (MeV/fm3)

R
 (

km
)

 

 

fo=0.00

fo=1.00

fo=2.00

fo=2.50

Figure 5.26: Cirumferential radius vs entral energy density for di�erent urrent funtions.
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Figure 5.27: Cirumferential radius vs entral energy density for di�erent urrent funtions.

This plot is a zoom of �gure 5.26. It shows that from around ǫc = 1500MeV/fm3
the stars

with higher magneti �eld, orresponding to fo = 2.00 and fo = 2.50, have smaller radius.



Chapter 6

Conlusions

The three main fronts of ompat star researh are the mirosopial omposition

and equation of state, relativisti struture, and evolution. The purpose of this researh was

to study, within a totally general relativisti framework, the e�ets of magneti �elds in the

struture of neutron stars, i.e. how a magneti �eld a�ets the spaetime geometry of these

ompat objets. We started by studying the formal general relativity aspets involving

the equations that desribe a perfet �uid oupled with a poloidal magneti �eld using two

di�erent approahes, the �rst one uses Weyl spherial oordinates onsidered by Herrera

et. al. [23℄ to desribe an anisotropi relativisti �uid and the seond one is based in the

study of Shapiro et al. [19℄ who derived the �eld equations for a rotating neutron star. We

introdued three quantities, namely W , Π and σ, and derived the onservation equations of

a magnetized neutron star. Comparing with the equations presented by Herrera et. al. we

onluded that these quantities ould be identi�ed as the eletromagneti energy density,

anisotropy and the shear stress expiriened by the �uid, respetively [18℄.

Inspired by the work of Shapiro et. al. [19℄, the �eld equations desribing a perfet

�uid oupled with a poloidal magneti �eld were derived. The results show that the eletro-

magneti e�ets are only present in the soure assoiated with the metri potential ρ and in

the equation de�ning the metri potential α. When the equations are written in terms of the

4-potential Aφ, the soure Sρ an be written as a superposition of the soure oming from the

perfet �uid ontribution SPF
ρ and the eletromagneti soure SEM

ρ . No diret ontribution
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from the eletromagneti �eld is present in the soure of the metri potential γ.

With the physial interpretation for the introdued quantities W, Π and σ in mind,

we wrote the �eld equations for the metri potentials ρ and α in terms of these three quanti-

ties. The right hand side of the equation assoiated to the metri potential ρ, orresponding

to the soure Sρ, shows the eletromagneti in�uene in the term 2W whih appears as a

sum of the energy density and pressure of the �uid. Moreover, the fator 2 appears again in

the expression of the gravitational mass in hapter IV, in whih another approah was used

to study the neutron star struture and where the term EEM
de�nitely represents the ele-

tromagneti energy density. These results allow us to onlude two important points: one is

the fat that the quantity W an be understood as the eletromagneti energy density as is

onluded in [18℄. The seond point is, we on�rm the onlusions of Papapetrou in 1947 [26℄

who studied the stati solution of the equations of the gravitational �eld for an arbitrary

harge distribution, the fator 2 appears as a fundamental property of eletro-gravitational

�eld and hene is independent on the oordinates hoie. Later, in 1960 Bonnor [27℄ studied

the ontribution to the gravitational mass of a irular wire arring a steady urrent. Bonnor

showed that to obtain a physially reasonable solution, within general relativity, for the �eld

of a loop steady urrent, it is neessary to endow the wire with a gravitational mass whih

orresponds to the energy of the magneti �eld reated. The result of Bonnor was the grav-

itational mass is twie the magneti energy M = 2W (see equation (7.16) in referene [27℄).

In the present work, we have studied the ontribution of the eletromagneti energy to the

gravitational mass for a perfet �uid oupled with a poloidal magneti �eld and our results

are in agreement with the onlusions of Papapetrou and Bonnor.

In the Shapiro approah no soure is assoiated to the metri potential α beause the

method used by the authors to solve this metri funtion does not imply a Poisson equation.

Writing the expression that de�nes α in terms of the 4-potential, the eletromagneti e�ets

appear as an addition of the equation found by Shapiro et. al. [19℄ if is onsidered a non

rotating �uid. But more interesting issues arise when this expression is written in terms of the

introdued quantities. First of all, no in�uene ofW is present in the equation. Seondly, the

quantities Π and σ appear as the eletromagneti e�ets in the equation of α. For the metri
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onsidered, α is the fator assoiated to the oordinates r and θ whih are the diretions

where the symmetry is broken. In our system the breaking of spherial symmetry is due to

the poloidal magneti �eld whih has two omponents Br and Bθ, quantities Π and σ are

written in terms of these omponents. We an onlude that Π is related to anisotropy (two

di�erent omponents of the magneti �eld) and σ is related to the shear stress experiened

by the �uid. These two quantities are responsible to breaking the symmetry of the system.

Having in mind the future numerial solution, in hapter III we studied the relativis-

ti virial theorem, but instead of the usual derivation from a onservation law, this important

theorem was derived from a projetion of the Einstein �eld equations in the hypersurfae

Σt thanks to the 3 + 1 formalism. The equations presented in this hapter are based in the

pioneer work of Bonazzola and Gourgoulhon [41℄ who derived a relativisti generalization of

the virial theorem for any stationary and asymptotially �at spaetime. The result of this

work is a virial integral whih onsists of a term related to the gravitational �eld soure (suh

as energy density, pressure, eletromagneti �eld, et.), a term taking into aount seond

derivatives of the metri potential ν, whih plays the role of the gravitational potential in the

Newtonian limit and �nally, a term assoiated with the extrinsi urvature. The motivation

to present the virial theorem in a hapter of this work was twofold: �rst, the usefulness as

a onsisteny hek of numerial solutions of the Einstein equations and seondly the fat

that in the works in whih we based to model numerially the solutions found in hapter V,

the virial integral looks unlear for the reader.

In hapter IV, we presented the theoretial formalism desribing rotating and highly

magnetized neutron stars using a full axially symmetri treatment, we wrote the Einstein-

Maxwell equations in terms of a �at spae ellipti operator and denoted the soure as the

terms ontaining matter, eletromagneti and non linear terms in the metri potentials. The

hydrostati equilibrium equations were derived within the assumption of in�nite ondutivity

matter and the relevant physial quantities desribing the system were derived. We found

that the formalism of stationary neutron stars with poloidal magneti �elds onsists of

a losed system of eleven variables (four metri variables, energy density, pressure, two

omponents of the eletromagneti potential, two omponents of the eletromagneti urrent,
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and the heat funtion); eleven equations (four Poisson equations for the metri variables, two

Poisson equations for the omponents of the eletromagneti potential, a relation between

these omponents, the equation of state, the relation between the heat funtion, energy

density and pressure, the �rst integral of the equations of hydrostati equilibrium, and the

restrition on the eletromagneti urrent); three input parameters (angular veloity, total

eletri harge, and the maximum density); and one input urrent funtion.

The disussions developed in hapter IV, aided us in onstruting the numerial solu-

tion presented in hapter V, where we studied both rotating neutron stars without magneti

�eld and magnetized neutron stars without rotation, modelled as a perfet �uid oupled with

a poloidal magneti �eld in stationary on�gurations. As fous was the study of magneti

�eld e�ets in the struture of neutron stars, the mirosopial omposition used to desribe

neutron star matter was based on a traditional model of EoS known as G300 whih supposes

that the neutron stars are omposed by hadrons and studies the system in the framework of

�eld theory of interating nuleons, hyperons and mesons.

To desribe global properties of a rotating neutron star without magneti �eld we

alulated the total gravitational mass, the irumferential radius, the angular veloity, an-

gular momentum and two quantities that ontribute to the total gravitational mass, the �rst

one depends on matter and the kineti energy, and the seond measures the ontribution of

the extrinsi urvature to the total energy of the system. The results show that the rota-

tional e�ets inrease the spherial on�guration mass in 18.5% for the maximum rotation

studied and hange the star´s surfae from the spherial to ellipsoidal shape.

To desribe magnetized neutron stars without rotation with onstant urrent fun-

tions we alulated the total gravitational mass, the irumferential radius, the magneti

�eld at the enter, magneti �eld in the pole, the magneti moment and two quantities that

ontribute to the total gravitational mass, the �rst one expresses the perfet �uid ontribu-

tion, and the seond measures the ontribution of the eletromagneti energy to the total

mass. The results show that for a star with the lowest value of the urrent funtion, whih

means lower magneti �elds, the deviations from the spherially symmetri on�guration are

not signi�ant. In fat, for the maximum mass on�guration the magneti �eld inreases
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the spherial mass only in 2.6%, hene the spherial perturbation method would be used to

desribe these magnetized neutron stars. This perturbation approah was followed by Ioka

et. al. [74℄ who onsidered poloidal and toroidal magneti �elds with meridional �ow.

When the urrent funtion is set at fo = 2.50, the ontribution of the eletromag-

neti energy inreases the mass in 28.7% for a star with entral energy density equal to

350 MeV/fm3
whih orresponds to a magneti �eld at the pole of 8.79 × 1016 G. For this

ase the shape of the star´s surfae has a lear deviation from spherial symmetry, showing

the e�ets of the eletromagneti energy.

The eletromagneti e�ets beome more dramati for a star with a magneti �eld

in the enter of 1.240 × 1018 G, for this ase not only the shape of the star´s surfae is

a�eted but also the magneti fore pushes a su�ient amount of mass o�-enter, showing

the transition to a toroidal topology. For the maximum mass on�guration, the results

showed that for stars with entral magneti �eld ∼ 1018 G eletromagneti e�ets inrease

the mass in 10.1% with respet to the on�guration without magneti �eld.

The pressure ontours studied suggest similar e�ets in the magnitude of the pres-

sure between rotating and nonmagnetized neutron stars with high entral densities and

nonrotating neutron stars with high magneti �elds and lower entral densities.

Another important point to be mentioned is that besides the expressions for the

gravitational mass for a rotating star with no magneti �eld and the magnetized star without

rotation, suggest an analogy between the roles of the energy density oming from the extrinsi

urvature and the eletromagneti ontribution in the gravitational mass, the results show

that the distribution through the star of these gravitational soures are di�erent, while the

extrinsi urvature energy density has its largest values near and even beyond to the star's

surfae, the eletromagneti energy density maximum values are near the enter of the star.

The mass-radius and mass-entral energy density relations for the stellar sequenes

show that for stars with values of the urrent funtions fo = 2.00 and fo = 2.50, the

deviation from the spherial symmetry is more dramati, this allows us to onlude that it is

not appropriate to adopt the spherial perturbation approah for these stars and hene the

full axially symmetri treatment used in this work brings the suitable desription for these
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highly magnetized neutron stars. As expeted we see that as the magneti �elds inrease the

maximum mass and the radius also inrease. Similar results an be found in Lattimer et. al.

[71℄, atually the largest maximum mass founded by our study is similar to that reported by

Lattimer, although in our work the magneti �eld at enter and in the pole are smaller than

that reported by Lattimer. This result indiates the role of the mirosopial omposition of

the matter in magnetized neutron stars, while Lattimer onsidered the presene of quarks,

the EoS adopted in this work only onsiders hadrons.

An interesting e�et that we found was that for lower entral energy densities the

radius inreases with magneti �eld, but for stars with entral energy density between (1500−

1860) MeV/fm3
the radius of the stars with higher magneti �eld are smaller, even ompared

with the spherially symmetri on�gurations. This e�et is not present for stars with

fo = 1.00 whose radii have similar values ompared to the nonmagnetized stars.

In summary, in hapter V we showed results of the numerial solution desribing

rotating and highly magnetized neutron stars onsidering the stati on�gurations. The ode

that allowed us to found the numerial solution ombined the methods used by Shapiro et.

al. [19℄ and Lattimer et. al. [71℄. Our method is on par with that of the other authors.

A few topis to be onsidered for future investigations:

� Investigate if the fator two present in the gravitational mass expression for the ele-

tromagneti energy, i.e. 2W , for a perfet �uid oupled with a poloidal magneti �eld

and disussed in hapter II, (identi�ed by Papapetrou [26℄ as a fundamental property

of the stati eletro-gravitational �eld) appears in the ase of non poloidal magneti

�eld, for example toroidal on�gurations.

� Study the relation between the extrinsi urvature ontribution to the total gravita-

tional mass as well its ontour plot near to the Kepler frequeny.

� Compare the e�ets of the extrinsi urvature in the orbits of di�erent kind of partiles

with the results founded by Alfradique et. al. [75℄.

� Compare the redshift e�ets of the magneti �elds founded in our solution with the

results reported by Troonis et. al. [76℄ who adopted the analytial solution for the
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metri proposed by Bonnor [50℄ and measures the redshift e�et for neutron stars with

magneti �eld at the enter ∼ 1016 G.

� As we saw in hapter V, after the value fo = 3.26 for a star with entral density equal

to 350MeV/fm3
, onvergene annot be ahieved. In that sense, the transition to a

toroidal topology is suggestive of possible dynamial outomes that may be onsidered

for future works.

� Investigate the e�ets of the mirosopial omposition in the extrinsi urvature and

eletromagneti energy distribution onsidering more realisti equations of state.

� The magneti �eld evolution, non onstant urrent funtions, the magneti �eld role

in the ooling proesses and the onsequenes in the neutron star struture are other

issues that an be onsidered as the next step of the present work.



Chapter 7

Appendix

7.1 Appendix of hapter II

Thinking in future works devoted to �nd numerial solutions of the equations presented in

hapter II, we are going to write Einstein �eld equations in terms of dimensionless oordinate

s whih is related to radial oordinate r, through

r = R

(
s

1− s

)
(7.1)

so if s = 0 ⇒ r = 0 and s = 1 ⇒ r −→ ∞ and in this way we over all r oordinate domain.

In terms of s we have that

∇f.∇g =
(1− s)2

R2

[
(1− s)2f,sg,s +

(1− µ2)

s2
f,µg,µ

]
(7.2)

Sγ(s, µ) = eγ/2
{
16πe2αP +

γ

2

[
16πe2αP − (1− s)2

2R2

(
(1− s)2(γ,s)

2 +
(1− µ2)

s2
(γ,µ)

2

)]}
.(7.3)
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Nonetheless, equation (7.3) has dimension of

1
[L]2

, so our dimensionless e�etive soure S̃ will

be de�ne as

S̃γ(s, µ) =r2Sγ(s, µ)

= R2 s2

(1− s)2
Sγ(s, µ)

= eγ/2
{
16πe2αP̃ +

γ

2

[
16πe2αP̃ − 1

2

(
s2(1− s)2(γ,s)

2 + (1− µ2)(γ,µ)
2
)]}

.

(7.4)

where the dimensionless quantity C̃ is de�ned as

C̃ = r2C

= R2 s2

(1− s)2
C (7.5)

then P̃ = r2P , ρ̃0 = r2ρ0 and ρ̃i = r2ρi.

The expression for Sρ(s, µ) is

Sρ(s, µ) = eγ/2
[
8πe2α(ρ0 + ρi + P ) +

(1− s)3

R2

γ,s
s

− µ

R2

(1− s)2

s2
γ,µ + (7.6)

+
ρ

2

(
16πe2αP − 1

2
∇γ.∇γ − (1− s)3

R2

γ,s
s

+
µ

R2

(1− s)2

s2
γ,µ

)]
+

+ eγ/2
e−(γ−ρ)

R2(1− µ2)

(1− s)2

s2
2∇Aφ.∇Aφ,

The expression for the dimensionless soure (or e�etive soure) S̃ρ(s, µ) is
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S̃ρ(s, µ) = r2Sρ(s, µ)

= R2 s2

(1− s)2
Sρ(s, µ)

= eγ/2
[
8πe2α(ρ̃0 + ρ̃i + P̃ ) + s(1− s)γ,s − µγ,µ + (7.7)

+
ρ

2

(
16πe2αP̃ − 1

2
R2 s2

(1− s)2
∇γ.∇γ +

− s(1− s)γ,s + µγ,µ

)]
+ eγ/2

e−(γ−ρ)

(1− µ2)
2∇Aφ.∇Aφ,

where ∇γ.∇γ and ∇Aφ.∇Aφ are given by (7.2) and we have to remember the dimensions

of quadripotential in our oordinates are [Aφ] = [Lenght], so the �nal term of (7.7) is

dimensionless.

The dimensionless introdued quantities, i.e. dimensionless energy, anisotropy and

shear stress are given by

W̃ (s, µ) = r2W (s, µ)

= R2 s2

(1− s)2
W (s, µ)

= R2 s2

(1− s)2
1

16π

e−(γ−ρ)e−2α

R2(1− µ2)

(1− s)2

s2
2∇Aφ.∇Aφ

=
1

16π

e−(γ−ρ)e−2α

(1− µ2)
2∇Aφ.∇Aφ, (7.8)

Π̃(s, µ) = r2Π(s, µ)

= R2 s2

(1− s)2
Π(s, µ)

= R2 s2

(1− s)2

{
− 1

8π

e−(γ−ρ)e−2α

R2(1− µ2)

(1− s)2

s2

[
∇Aφ.∇Aφ −

2(1− µ2)

R2

(1− s)2

s2
(Aφ,µ)

2

]}

= − 1

8π

e−(γ−ρ)e−2α

(1− µ2)

[
∇Aφ.∇Aφ −

2(1− µ2)

R2

(1− s)2

s2
(Aφ,µ)

2

]
, (7.9)
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σ̃(s, µ) = r2σ(s, µ)

= R2 s2

(1− s)2
σ(s, µ)

= R2 s2

(1− s)2

{
− 1

8π

2e−(γ−ρ)e−2α

R4(1− µ2)1/2
(1− s)5

s3
(Aφ,s)(Aφ,µ)

}

= − 1

8π

2e−(γ−ρ)e−2α

R2(1− µ2)1/2
(1− s)3

s
(Aφ,s)(Aφ,µ). (7.10)

Taking into aount (7.8) and (7.7) we write the expression for S̃ρ(s, µ) in terms of

the dimensionless introdued quantities,

S̃ρ(s, µ) = eγ/2
[
8πe2α(ρ̃0 + ρ̃i + P̃ + 2W̃ ) + s(1− s)γ,s − µγ,µ + (7.11)

+
ρ

2

(
16πe2αP̃ − 1

2
R2 s2

(1− s)2
∇γ.∇γ − s(1− s)γ,s + µγ,µ

)]
.

Expression for S̃γ is given by (7.4) and it does not depend on the possible physial

quantities.

Finally, the equation for γ in a dimensionless way is
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α,µ = −1

2
(γ,µ + ρµ)− {[1 + s(1− s)γ,s]

2(1− µ2) +
[
µ− (1− µ2)γ,µ)

]2}−1 × (7.12)

×
[
− 1

2
{3µ2 − 4µ(1− µ2)γ,µ + (1− µ2)2(γ,µ)

2}(γ,µ + ρ,µ) +

− 1

2
s(1− s)γ,s[1 + s(1− s)γ,s](1− µ2)(γ,µ + ρ,µ) +

1

2
µs(1− s)[1 + s(1− s)γ,s](γ,s − ρ,s) +

− s(1− s)[1 + s(1− s)γ,s](1− µ2)(γ,sµ + γ,sγ,µ)

+
1

2
s(1− s)[1 + s(1− s)γ,s](1− µ2)(γ,sγ,µ − ρ,sρ,µ)

+
1

2
[µ− (1− µ2)γ,µ][3µρ,µ + s(1− s)ρ,s]

− 1

2
[µ− (1− µ2)γ,µ]{s2(1− s)[(1− s)γ,ss − 2γ,s]− (1− µ2)γ,µµ}+

− 1

4
R2 s2

(1− s)2
[µ− (1− µ2)γ,µ]

{
∇γ.∇γ +∇ρ.∇ρ− 2(1− µ2)(1− s)2

R2s2
[(γ,µ)

2 + (ρ,µ)
2]

}]
+

+ {[1 + s(1− s)γ,s]
2(1− µ2) +

[
µ− (1− µ2)γ,µ)

]2}−1 ×

× e−(γ−ρ)

[
[µ− (1− µ2)γ,µ]

(1− µ2)

[
∇Aφ.∇Aφ −

2(1− µ2)(1− s)2

R2s2
(Aφ,µ)

2

]
+

+
2(1− s)3[1 + s(1− s)γ,s]

R2s
(Aφ,s)(Aφ,µ)

]
.

Using equations (7.9) and (7.10) we write,
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α,µ = −1

2
(γ,µ + ρµ)− {[1 + s(1− s)γ,s]

2(1− µ2) +
[
µ− (1− µ2)γ,µ)

]2}−1 × (7.13)

×
[
− 1

2
{3µ2 − 4µ(1− µ2)γ,µ + (1− µ2)2(γ,µ)

2}(γ,µ + ρ,µ) +

− 1

2
s(1− s)γ,s[1 + s(1− s)γ,s](1− µ2)(γ,µ + ρ,µ) +

+
1

2
µs(1− s)[1 + s(1− s)γ,s](γ,s − ρ,s) +

− s(1− s)[1 + s(1− s)γ,s](1− µ2)(γ,sµ + γ,sγ,µ)

+
1

2
s(1− s)[1 + s(1− s)γ,s](1− µ2)(γ,sγ,µ − ρ,sρ,µ) +

+
1

2
[µ− (1− µ2)γ,µ][3µρ,µ + s(1− s)ρ,s] +

− 1

2
[µ− (1− µ2)γ,µ]{s2(1− s)[(1− s)γ,ss − 2γ,s]− (1− µ2)γ,µµ}+

− 1

4
R2 s2

(1− s)2
[µ− (1− µ2)γ,µ]

{
∇γ.∇γ +∇ρ.∇ρ− 2(1− µ2)(1− s)2

R2s2
[(γ,µ)

2 + (ρ,µ)
2]

}]
+

− {[1 + s(1− s)γ,s]
2(1− µ2) +

[
µ− (1− µ2)γ,µ)

]2}−1 ×

×
{
8πe2α

{[
µ− (1− µ2)γ,µ)

]
Π̃(s, µ) + (1− µ2)1/2[1 + s(1− s)γ,s]σ̃(s, µ)

}}
.
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