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RESUMO

O modelo de Haldane numa rede honeycomb é um dos exemplos mais simples de

sistemas que apresentam condutividade Hall quantizada na ausência de campos mag-

néticos aplicados - também conhecido como efeito Hall quântico anômalo. Utilizando

cálculos analíticos e numéricos, nós mostramos que esse modelo possui espectros de

energia distintos na presença de campos magnéticos externos de mesma intensidade,

porém com sentidos opostos. Essas diferenças vinham sendo ignoradas em cálculos

anteriores e mostram que aproximações de baixas energias não são sempre apropriadas

para estudar propriedades eletrônicas desse sistema.

Palavras-chave: Haldane model, Tight Binding, Kernel Polynomial Method, Chern

Insulators
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ABSTRACT

The Haldane model in a honeycomb lattice is one of the simplest examples of systems

that present a quantized Hall conductivity in the absence of an external magnetic field -

also known as quantum anomalous Hall effect. By means of analytical and numerical

calculations, we show that this model presents different energy spectrum and Hall

conductivity in the presence of positive and negative external magnetic fields of same

intensity. This difference was ignored by previous calculations and indicates that the

low-energy approximation is not always sufficient to capture important features of the

electronic properties described by tight-binding Hamiltonians.

Keywords: Haldane model, Tight Binding, Kernel Polynomial Method, Chern Insula-

tors
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1 I NTRODUCT ION

More than a century ago, Edwin Hall discovered the Hall effect [1]. It consists in the

appearance of a transverse voltage difference across a conducting material when an

electric current flows through the system in the presence of a perpendicular applied

magnetic field, as illustrated in fig. 1 (a). One year after his discovery, Edwin Hall also

measured the Hall voltage in paramagnetic metals and found that it was often much

larger than in ordinary metals; this new effect depends on the magnetization of the

system, is also present in ferromagnetic materials, and is called anomalous Hall effect

(see fig 1 (b) ).

Over a century after the discovery of the Hall effect, the first sights of its quantum

version were reported by K. von Klitzing et al. [2]. In their work, they performed careful

measurements of the Hall resistivity in MOSFET transistors at very low temperatures

and high magnetic fields (quantum limit), and observed that the Hall conductivity of a

two dimensional electron gas in the inversion layer of the transistor takes quantized

values of e2

h (see Fig. 1 (d)).

1
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Figure 1: Illustration of different types of Hall effect ( figure taken from Ref. [3])

The discovery of the quantum Hall effect motivated subsequent experimental works,

aiming to find if this new phenomenon depended on both the geometry of the sample

and concentration of impurities. An important result of these experiments is that the

integer values of the quantized Hall conductivity are well defined independently of the

geometry of the system, and in a certain range of disorder [4].

Among the experimental studies of the quantum Hall effect, there was another im-

portant experiment carried out by Tsui et al. [5], where using high mobility samples

detected that the plateaus of the conductivity can acquire multiple fractional values of
e2

h . As the amount of disorder is decreased, the plateaus of the Hall resistivity at integer

values become less prominent, but other plateaus emerge at fractional values. Beside

the existence of the fractional quantum Hall effect, which is due to electron-electron

interactions, the results of Tsui et al. confirms the idea that the robustness of the Hall

conductivity values (both integer and fractional) should be related to a fundamental

principle.

The early experimental data on the quantization of the Hall effect not only motivated

further experimental works, but also a considerable amount of theoretical investigations

aiming to understand this phenomenon. The first theoretical explanation of the integer
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quantum Hall effect was provided by a thought experiment devised by R. Laughlin [6],

which was later extended by B. I. Halperin [7]. To formulate his argument, Laughlin

considered a system with the geometry shown in figure 2. He assumed that the system

had some impurities to broaden the Landau levels, forming bands of extended states

separated by tails of localized states which do not contribute to the Hall conductivity.

The applied magnetic field sketched in figure 2, has a vector potential ~A that modifies

the phase of the wave-functions. Hence, changes in the applied field will produce a

gauge transformation of each wave function of the system. However, to preserve the

coherence of these functions through the loop, these changes on the magnitude of the

potential vector have to be restricted. As a consequence of the limitation of the possible

values of the vector potential, when we pass a quantum of magnetic flux through the

system, the Hamiltonian for this case is mapped to the initial one (see figure 2).

The increment of the field is treated as an adiabatic cycle, and its total effect is the

transfer of charge from one edge of the ribbon to the other. These charges contribute

to the formation of the Hall potential. Nevertheless, due the existence of the localized

states, some of the charges can be hosted by these states, and this explained the existence

of the constant plateaus in the transverse conductivity.

(a) (b)

Figure 2: (a) Ideal model proposed by Laughlin. (b) Diagrammatic representation of the
spectral flow of the Hamiltonian in the space of parameters.
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Although the ingenious though experiment proposed by Laughlin managed to ex-

plain the exactness of the quantization of the Hall effect, a deeper understanding of

the Hall effect in crystalline materials was needed. If Laughlin’s thought experiment

is applied in such a naive way, this can lead to paradoxes. To solve these problems,

Thouless et al. derived a new formula to calculate the Hall conductivity σH, during the

study of the Hall conductivity in a 2 dimensional system of electrons in presence of a

periodic potential. This new formula was derived from the Kubo formula, is completely

general [8] and depends solely on the properties of the wave functions of the system.

A year later, M. V. Berry discovered the existence of a geometric phase in adiabatic

quantum mechanics [9]. In the very same year, B. Simon published a work connecting

the results obtained by M. V. Berry and Thouless et al. [10]. In his article, Simon rec-

ognized the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) invariant as the integral

of the curvature associated with a Berry phase in the Brillouin zone. The importance

of the paper of Thouless et al. is that it provides a general and concrete explanation of

the quantum Hall effect and also opens the possibility of having Hall conductance in

absence of external magnetic fields (anomalous quantum Hall effect) [11].

Following the results of the works of Thouless et al. [10, 11], six years later D. Haldane

took the next conceptual step on the study of the Hall conductance [12]. He proved that

to produce a quantum Hall state, there must exist a time-reversal symmetry breaking,

which in the previous works had been caused by an external magnetic field. In his work,

Haldane took the tight-binding Hamiltonian of "2D graphite" (graphene) previously

investigated by Semenoff [13] and added a complex second nearest-neighbors term

which works as a local magnetic field with zero magnetic flux through the unit cell, in

order to break mathematically the time-reversal symmetry.

The non-trivial topological phase and the gapped state in the Haldane model defined

a new phase of the matter which is now called Chern insulators [14]. The experimental

observations of the so called quantum anomalous Hall effect (QAHE) at zero magnetic
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field in novel materials happened twenty five years after the publication of Haldane.

The QAHE was detected in Cr-doped Bi(Sb)2Te3 films[15]. After these results, more ex-

perimental studies of the Hall conductivity in Chern insulators were performed [16, 17],

but three years ago there was also a novel application using cold atoms techniques: the

Haldane model was realized in optical lattices [18].

The later theoretical and experimental findings make clear that the Haldane model is

an useful tool to study the topological phases of the matter. This model also served as

the cornerstone to study the spin quantum Hall effect, which was proposed initially

by Kane and Mele by adding a spin degree of freedom to the spinless system of the

Haldane model [19]. Further properties of the matter can be described with this model,

but when a high degree of disorder is considered, the approximative analytical calcula-

tions become inviable. To study disordered systems one should recur to the numerical

methods.

Distinct numerical methods may be used to calculate the electronic properties of

different systems, but when translational symmetry is broken (as in disordered systems),

the best approach is to work in real space. Non-interacting electronic properties of

finite systems with D lattice sites are described by a D× D Hamiltonian matrix, and

may be obtained either from its diagonalization, or by a matrix inversion to get the

one-electron Green’s functions. This approach has a downside, because to achieve a

good description of bulk systems one should try to reach the thermodynamic limit

D → ∞ [20]. However, the computational effort required to calculate the eigenvalues

through exact diagonalization usually scales rapidly (with D3), making this approach

intractable for very large systems [21].

An alternative to those exact methods are the O− D algorithms, where the computa-

tional effort scales linearly with the size of the system. In these methods, the spectral

functions are expanded in a base of polynomials and the focus of the computational

effort goes to the calculation of the expansion moments. The major drawback of these
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methods is the error induced by the truncation of the series, which leads to the so called

Gibbs oscillations [21].

The Gibbs oscillations can be controlled by introducing a damping factor, known

as kernel, in the series representation. It smooths the represented functions, eliminate

the Gibbs oscillations and increases the series convergence [22, 23, 24]. There exist a

diversity of kernels for different sets of polynomials. Chebyshev polynomials are one

of the most used sets, due to their trigonometric representation, fast convergence rate

(in comparison with other polynomial bases) and their recurrence relation, which is

useful for iterative schemes. In the early 90s Silver et al. used the Chebyshev expansion

to approximate the spectral properties of tight-binding Hamiltonians [23, 24]. They

considered a set of kernels in their study, finding that the optimal kernel known as

the Jackson kernel minimizes the Gibbs oscillations and improves the resolution. The

combination of this kernel and Chebyshev polynomials today is known as the kernel

polynomial method (KPM). The main advantage of this method is that the computa-

tional cost scales linearly with the size of the system, making the numerical study of

larger systems accessible [23, 24, 21].

In this thesis, we extend the study of the effect of external magnetic fields in the

Haldane model, performed by X.Y. Wang et al [25]. Instead of using the Kubo formula

with the Fukui algorithm [26], we apply the kernel polynomial method with a novel

method developed by J. Garcia et al. [27, 28] to calculate the Hall conductivity. We show

numerically that in the limit of high magnetic fields, the symmetry of the spectrum

between positive and negative fields is broken. The positive and negative spectra have a

shift that depends upon the sign of the field, which has been ignored in the original

work of Haldane and subsequent analyses. We present our numerical calculations of

the Hall conductivity for opposite fields, where magnetic oscillations in the anomalous

contribution of the conductivity are found. We also study the low-energy expansion of

the Haldane model, and extend it to obtain an analytical expression for the shift in the

spectrum, in order to explain the existence of magnetic oscillations in the anomalous



introduction 7

part of the Hall conductivity.

This thesis is organized as follows: In chapter 2, we present a tight-binding description

of the Haldane model. We begin with a brief revision of the basic structural properties

of the honeycomb lattice, then we calculate the eigenvalues of the Haldane model,

and by performing a Taylor series expansion near of the Dirac points we review the

low-energy limit of the spectrum. We classify the topological phases of this model

according to the possible values of the Chern numbers, and we include the effect of the

external magnetic fields in the tight-binding Hamiltonian using the Peierls’ phase. We

also give a short introduction to the Kernel Polynomial Method and highlight some

of the properties of the Chebyshev polynomials. We discuss the errors induced by the

truncation of the Chebyshev series and how the kernels improve its convergence. At

the end of chapter 2, we present the results of the numerical calculations of the density

of states of the Haldane model with external magnetic fields in two different limits:

the case without second nearest-neighbors hopping (graphene) and the case of pure

imaginary hopping. We show that field inversion symmetry is not preserved in this

model.

In chapter 3, we review the low-energy continuum model to identify the origin of

the difference in the spectrum of positive and negative fields. We begin by revising the

low-energy model at zeroth order of the Taylor series expansion of the Haldane term

near the Dirac point. We use the Landau-Peierls substitution together with Landau

quantization, to obtain the energy spectrum. We then consider higher order in the Hal-

dane term expansion in the vicinity of the Dirac points, to find that the energy spectrum

shifts by a constant that depends on the field’s sign. With the corrected expression for

the eigenvalues and the new Hamiltonian, we calculate the Hall conductivity with the

Kubo formula. We present a classification of the transitions that contribute to the Hall

conductivity, and managed to show that the continuum model with the second order

corrections reproduces the oscillations numerically obtained for the anomalous Hall
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conductivity.

Finally in chapter 4, we compare our numerical and analytical results. We discuss

the limits where the low-energy approximation corresponds the numerical results, and

what parameters modify the correspondence between the low-energy approximation

and the numerical results.



2 HALDANE MODEL :T IGHT B IND ING

APPROACH

2.1 introduction

The Haldane model is the simplest realization of a Chern insulator in a honeycomb

lattice [12]. The importance of this model resides on the fact that it exhibits quantum

Hall effect in the absence of external magnetic fields. It was proposed by Haldane in

1988 as a basic theoretical representation for the quantum anomalous Hall effect.

This model represented a remarkable turnaround, because until its formulation, the

quantum Hall effect in two dimensional materials was associated with the presence

of external magnetic fields [1, 2, 6]. Following the results of Thouless et al. [8, 11],

Haldane proved that the existence of a quantum Hall state does not strictly depend

upon the presence of external magnetic fields, but on the symmetries of the system and

its topological phases [8, 14].

In this chapter, we revise the most important properties of the Haldane model. We

calculate its eigenvalues and discuss its topological properties. We also implement the

Peierls substitution to include the electron interaction with external magnetic fields in

the tight-binding Hamiltonian. To improve the conception of our numerical analysis,

we briefly revise the Kernel Polynomial Method, and show our results of the density

of states and Hall conductivity calculated for the Haldane model in the presence of an

external magnetic field.

9
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2.2 lattice vectors

We begin with a brief revision of the structural properties of the honeycomb lattice. It

is widely known that the honeycomb lattice despite having hexagonal form is not an

hexagonal lattice; its structure consists of the interpenetration of two triangular lattices.

An effective way to describe this lattice is to think of it as a triangular lattice with a basis

consisting of two atoms, each belonging to a different sub-lattice. This point of view

enables us to construct mathematically a sheet of honeycomb-arranged sites from two

primitive vectors. The set of primitive vectors with lattice constant a that we use are:

~a1 =
(√

3a, 0
)

, ~a2 =

(√
3a
2

,
3a
2

)
. (1)

Beside the vectors in (1), to fully describe the lattice, we must specify how a crystal

site is connected to its nearest neighbors. For that, we can use the vectorial quantities:

~e1 = (0, a) , ~e2 =

(
−
√

3
2

,− a
2

)
, ~e3 =

(√
3

2
,− a

2

)
. (2)

With the primitive vectors of the lattice and the vectors that indicate how a crystal

site is connected with its nearest neighbors, we have the minimum requirements to

describe the honeycomb lattice. However, to implement the Haldane model [12] we

need to specify also the next-nearest neighbors in the crystal, that are given by

~v1 =
(√

3a, 0
)

, ~v2 =

(
−
√

3
2

a,
3
2

a

)
, ~v3 =

(
−
√

3
2

a,−3
2

a

)
. (3)

In figure 3 we show the primitive vectors of the lattice, the nearest neighbor and the

next-nearest neighbors of the crystal in panels (a), (b) and (c) respectively. Once defined

the vectorial quantities that describe the honeycomb lattice and the vectors that relate a

lattice site with its next-nearest neighbors, we are ready to calculate the eigenvalues of

the Haldane model.
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(a)

(b) (c)

Figure 3: Lattice vectors of the honeycomb lattice: Primitive vectors (a). Nearest neigh-
bors (b). Next-nearest neighbors (c).

2.3 eigenvalues of the haldane model

In the previous section, we have presented the structural properties of the honeycomb

lattice that is used in our study. This section is focused on the calculation of the

eigenvalues of the Haldane model in absence of external magnetic fields and on

discussions of some of its properties. As stated previously, this model was devised by

Haldane to illustrate the materialization of the quantum Hall effect in a honeycomb

lattice without external magnetic fields[12]. To achieve this, Haldane added two terms

to the single-orbital tight binding Hamiltonian that describes the electronic structure of

graphene [29, 30]. The first term describes second nearest-neighbor hoppings that are

complex. The signs of the arguments of the associated hopping integrals depend upon
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the hopping directions and, as a consequence, this term breaks time-reversal symmetry.

The second term introduces an on-site potential energy that breaks inversion symmetry

between the two sub-lattices. The Hamiltonian that characterizes the Haldane model is

given by

H =

−t∑
〈i,j〉

a†
i bj +

M
2 ∑

i=1

(
ai

†ai − bi
†bi

) + h.c + t2 ∑
〈〈i,j〉〉

eiϕa†
i aj + t2 ∑

〈〈i,j〉〉
e−iϕb†

i bj. (4)

Here t and t2 are the amplitudes of the nearest and the next-nearest neighbor hop-

ping integrals, respectively; a†
i and ai designate the creation and annihilation operators

for electrons on sites i and j, respectively, both belonging to one of the sub-lattices.

Similarly, b†
i and bj represent the creation and annihilation operators for electrons on

sites i and j, respectively, both belonging to the other sub-lattice. 〈i, j〉, and 〈〈i, j〉〉

indicate that the sums are restricted to the first and second nearest neighbors sites

only, respectively; ϕ is the phase of t2 (this is equivalent to a Peierls phase with zero

total flux per unit cell), and M is an on-site energy. We notice that the last term in Eq.

(4) leads to a gap of size 2M in the electronic structure described by H, when t2 is absent.

To obtain the eigenvalues of this model, we can write the Hamiltonian (4) in the

momentum space. Performing a Fourier transformation [29] in Hamiltonian (4), we

obtain:

H = ∑
k

(
ak

† bk
†
) H11 H12

H21 H22

 ak

bk

 (5)

From (5), we identify that the properties of the Hamiltonian are contained in:

H =

 H11 H12

H21 H22

 , (6)
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where the factors Hij (i, j = 1, 2) are:

H12 = −t
3

∑
i=1

e−i~k·~ei H21 = −t
3

∑
i=1

ei~k·~ei ,

H11 = −2t2

3

∑
i=1

[
cos

(
~k · ~vi − ϕ

)]
+ M H22 = −2t2

3

∑
i=1

[
cos

(
~k · ~vi + ϕ

)]
−M.

(7)

To obtain a simple expression for the eigenvalues of the system, we may use the Pauli

matrices to rewrite the Hamiltonian (6) as:

H = H0I +Hxσx +Hyσy +Hzσz , (8)

where the factors Hi (i = 0, x, y, z) are:

H0 =
1
2
(H11 +H22) = −2t2 cos(ϕ)

3

∑
i=1

[
cos

(
~k · ~vi

)]
,

Hz =
1
2
(H11 −H22) = M− 2t2 sin(ϕ)

3

∑
i=1

[
sin
(
~k · ~vi

)]
,

Hx = < [H21] = −t
3

∑
i=1

[
cos

(
~k ·~ei

)]
,

Hy = = [H21] = −t
3

∑
i=1

[
sin
(
~k ·~ei

)]
. (9)
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Note that if we set the value of t2 = 0 and M = 0 in (9), the Hamiltonian (8) is

the tight-binding Hamiltonian that describes pristine graphene. Diagonalizing (8), we

obtain the eigenvalues of the Haldane model:

ε±(~k) = H0

(
~k
)
±
√
Hx

(
~k
)2

+Hy

(
~k
)2

+Hz

(
~k
)2

. (10)

In figure 4 we show a plot of the band structure of the Haldane model. In this figure,

the author varies different parameters in the Hamiltonian to see how the energy band

changes. Panel (a) represents the situation where next-nearest neighbor hopping are

zero (graphene). Panel (b) shows the bandstructure for t2 6= 0 and M = 0, where we

can see the opening of a gap in the Dirac points caused by the hopping that connects

the next-nearest neighbors. Panels (c) and (d) depict the cases where the inter-lattice

potential has the same magnitude of the second hopping terms in Hz, which results in

the closure of the gap in one of the Dirac points.

Figure 4: Band structure of the Haldane model with t = 1 and t2 = 0.1. (a) M = 0
and ϕ = 0; (b) M = 0 and ϕ = π

3 ; (c) M = 3
√

3t2 sin(ϕ) and ϕ = π
3 ; (d)

M = −3
√

3t2 sin(ϕ) and ϕ = π
3 . Figure taken from reference [31]
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2.4 topology in the haldane model

Thouless et al. proved that the existence of a non-zero value of the quantum Hall

conductivity depends on the properties of the wave functions [8]. Along the same line

Kohmoto showed that the impossibility to define an unique and smooth wave function

for the system in the whole Brillouin zone is related to the existence of non-trivial

topologies, which are responsible for non-zero quantum Hall effect values [32]. To

illustrate the topological properties of the Haldane Model, we consider the low-energy

limit of this model to obtain the wave functions and study their singularity points.

To obtain the low-energy Hamiltonian, we have performed a Taylor expansion of the

Hamiltonian (8) about the Dirac points. Substituting the explicit expressions for H0, Hx,

Hy and Hz in (10), and expanding them in the vicinity of the Dirac points we obtain:

H(~k) =

 mτ vF(h̄τkx − ih̄ky)

vF(h̄τkx + ih̄ky) −mτ

 , (11)

with eigenvalues

ε±(~k) = ±
√

(h̄vF~k)
2

+ mτ
2 = ±|ε(~k)|, (12)

where τ represents the choice of the Dirac point; for the point ~K =
[

4π

3
√

3a
, 0
]

, we set

τ = 1, and for the point ~K′ =
[
−4π

3
√

3a
, 0
]

, we chose τ = −1. Here, vF = 3ta
2h̄ represents the

Fermi velocity, and the factor mτ = M− 3
√

3τt2 sin (ϕ) is the zeroth order expansion of

the second term added by Haldane and contents the information related to the next

nearest neighbor hopping. In (12) we have omitted the expansion ofH0 near of the Dirac

point because it is a constant that does not affect the relative distance between the bands.
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The eigenfunction associated with ε−(~k) = −|ε(~k)| is given by:

ψ(I)(~k) =
1√

2
(
|ε(~k)|2−|ε(~k)|mτ

)
 mτ − |ε(~k)|

h̄vF
(
τkx + iky

)
 . (13)

Examining equation (13), it is clear that the eigenfunction evaluated at the Dirac

point ~K (τ = 1) does not become singular unless M > 3
√

3t2 sin(ϕ). However, let us

investigate the behavior of this function in the vicinity of ~K′ (τ = −1). To check it, we

set~k = 0 and τ = −1 in (13) to obtain:

ψ(I)(0) =
1√

2 (|ε(0)|2−|ε(0)|m−)

 m− − |ε(0)|

0

 , (14)

where ε−(~0) = −|m−| is the energy of the band in the Dirac point and m− = M +

3
√

3t2 sin(ϕ).

From (14) it is clear that the eigenfunction (13) evaluated in ~K′ turns out to be singular

unless M < −3
√

3t2 sin(ϕ). The impossibility to define the wave function for the

whole Brillouin zone when −3
√

3t2 sin(ϕ) < M < 3
√

3t2 sin(ϕ) force us to redefine this

function in order to describe the ~K′ point. To redefine the wave function at ~K′, we

follow the method devised by Kohmoto. The freedom of choosing the phase of the

wave function, enables us to use a gauge transformation of the kind

u~k(x, y)→ u~k(x, y)ei f (~k) , (15)

where u~k(x, y) represents the periodic part of the Bloch waves and f (~k) is an smooth

function of~k. This transformations does not change the eigenvalues, but allow us to

avoid the singularity. The redefinition of the wave function in the vicinity of ~K′ suggests

a separation of the Brillouin zone in two sectors. The first (named H(I)) contains the

~K points, where ψ(I) is defined, while the second (called H(I I)) contains the ~K′ points
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where ψ(I) becomes singular. Using the transformation (15), the new wave function is

written as:

ψ(I I) = ψ(I) × eiφ(~k) =
1√

2
(
|ε(~0)|2+|ε(~0)|mτ

)
 −h̄vF

(
τkx − iky

)
mτ + |ε(~0)|,

 , (16)

where the phase factor is defined as:

eiφ(~k) =
[

mτ + |ε(0)|
|mτ + |ε(0)||

] [ |h̄vF
(
τkx + iky

)
|

h̄vF
(
τkx + iky

) ] (17)

To calculate the Hall conductivity, we use the expression

σxy =
e2

h
1

2πi

∫
d2k

∫
d2r

(
∂u∗~k
∂ky

∂u~k
∂kx
−

∂u∗~k
∂kx

∂u~k
∂ky

)
(18)

obtained by Thouless et al. using the Kubo formula to calculate the transverse

Hall conductivity. The equation (18) is known as the TKNN invariant of first form;

regrouping the factors in this equation, the Hall conductivity can be expressed as:

σxy =
e2

h
1

2πi

∫
BZ

d2k
[
~∇k × ~A(~k)

]
z

=
e2

h
1

2πi

∫
BZ

d2kΩ~k, (19)

in which the Berry vector potential ~A(~k) is defined as

~A(~k) =
∫

d2ru∗~k
~∇ku~k = 〈u~k| ~∇k|u~k〉. (20)

The equation (19) is known as the TKNN invariant of second form [32]. The equations

(18) and (19) have as a result an integer number which is called Chern number, which

is the integration of the Berry curvature Ω~k in the whole Brillouin zone and gives the

magnitude of the plateaus in the transverse conductivity. Since we have chosen a distinct

wave function in each Brillouin zone sector, one finds two Berry vector potentials ~A(I)

and ~A(I I) associated with them. They are connected by the relation:

~A(I I)(~k) = ~A(I)(~k) + i∇k f (~k). (21)
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As a result, Eq. (19) may be rewritten as:

σxy =
e2

h
1

2πi

[∫
H(I I)

d2k
[
∇k × ~A(I I)(~k)

]
z

+
∫

H(I)
d2k
[
∇k × ~A(I)(~k)

]
z

]
. (22)

To simplify these calculations, we can use the Stokes’ theorem and the connection

between the potential vectors (21) to write the total Hall conductivity

σxy =
e2

h
1

2πi

∮
∂H

d~k
[
~A(I)(k1, k2)− ~A(I I)(k1, k2)

]
= − e2

h
1

2π

∮
∂H

d~k · ~∇kφ(~k) , (23)

where ∂H is the interface between the regions H(I) and H(I I) of the Brillouin zone. An

important remark on the result of (19) is that the Brillouin zone has the shape of a torus.

This means that when the Stokes theorem is applied, the Hall conductivity will be zero

if the vector ~A can be uniquely defined in the whole torus.

To end the calculation of the Hall conductivity, we must determine φ(~k). To do this,

lets recall the expression (17) and simplify it with a little of algebra.

eiφ(~k) =
[

mτ+|ε(~k)|
mτ+|ε(~k)|

] [ |h̄vF(τkx+iky)|
h̄vF(τkx+iky)

]
=
[

h̄vF|~keiτθ |
h̄vF|~k|eiτθ

]
= e−iτθ . (24)

By inserting this result in (23) and considering ∂H as small circle of radius k around

the ~K point (τ = 1), we obtain

σxy = − e2

h̄
1

2π

∫ 2π

0
kdθ

(
−1

k
∂θθ

)
=

e2

h̄
. (25)

Now that we have calculated the Hall conductivity in the Haldane model, lets us

finish this section discussing how the topological index, the wave function and the Berry

curvature (and consequently, the Hall conductivity) change when the parameters of the

Hamiltonian are varied. The phase diagram of the Haldane model, sketched in panel (a)
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of figure 5 was first obtained by Haldane, to classify the different topological phases in

the model as a function of the parameters of the system. The phase diagram has three

regions of interest, each one labeled with a different Chern number ν.

The region that corresponds to the limit |M|> 3
√

3t2 sin(ϕ) has ν = 0, hence does

not present quantum Hall effect. The absence of the Hall conductivity can be viewed

by evaluating the limit |M|> |3
√

3t2 sin(ϕ)| in the explicit forms of the wave functions

ψ(I) and ψ(I I). If we set for example M > 3
√

3t2 sin(ϕ) the wave function ψ(I) becomes

singular at the Dirac point ~K, but the whole Brillouin zone can be described by ψ(I I). As

a result, the vector potential ~A is uniquely defined in the Brillouin zone, leading to a

zero Chern number. Figure (5) (b) illustrates the Berry curvature inside the Brillouin

zone for different ratios t2/M. In the limit M > 3
√

3t2 sin(ϕ) we can see that the Berry

curvature in both Dirac points have opposite values. If we consider M < −3
√

3t2 sin(ϕ)

we have a similar situation, but in this case the whole Brillouin zone will be described

by the function ψ(I). To summarize, we can say that in the limit of |M|> 3
√

3t2 sin(ϕ)

the system behaves as a trivial insulator.

In the region where |M|< |3
√

3t2 sin(ϕ)| we have a non-zero Chern number (ν 6= 0),

but the value of this constant depends on the phase ϕ. If the phase ϕ is positive, the

Chern number ν = 1 (this is the case that we have described through this section). If the

phase ϕ is negative, the domain of validity of the eigenfunctions in the Brillouin zone

is exchanged, which means that ψ(I)(~k) will be valid in H I I and ψ(I I)(~k) will be defined

in H(I), giving a Chern number ν = −1. Observing Figure (5) (b), we can see that the

Berry curvature will be equal in both Dirac points and the sign of the curvature will be

given by sign of ϕ.

In the region where |M|= |3
√

3t2 sin(ϕ)| the gap closes at one of the Dirac points (see

figure 4), hence the Chern number becomes ill defined and as a consequence we cannot

provide a value for the Hall conductivity. Even without a Chern number to classify the

state of the system, it can serve to detect a change in the Berry curvature due to the
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variation of the parameters. To make this more clear, lets make the following thought

experiment. If we consider Figure (5) (b) and now suppose that the system is in the

trivial phase with zero Chern number, and then increase the value of t2 = 0 to t2 = ∆,

where ∆ > 0 and M > 3
√

3t2 sin(ϕ) even with the increment of t2 the value of the

energy offset between the sub-lattices M makes the system behaves as a trivial insulator.

Conversely, if we decrease M the bands close at M = 3
√

3t2 sin(ϕ), and then the gap is

reopened to achieve a topological state with Chern number ν = 1. If the parameters of

the system are varied slowly, the Chern number of the system can only change if there

is a gap closing/gap opening mechanism. The closure and the reopening of the band

gap serves as an intuitive tool to detect the changes on the Chern number ν.
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(a)

(b)

Figure 5: (a) Phase diagram of the Haldane Model. (b) Schematic structure of the berry
curvature in the Haldane model.

As final remark on this topic, we must clarify that the only thing that is physical

about the singularities present in the wave functions across the whole Brillouin zone is

their existence. The localization of the singularities in the Brillouin zone can be altered

by performing a gauge transformation, but their sole existence shows that the system
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presents a non zero topological index.

We obtained the eigenvalues of the Haldane model and used the low-energy approxi-

mation to discuss what are the required conditions for the system to exhibit a quantum

Hall state. Now, to study the behavior of the anomalous part of the conductivity

in the Haldane model when magnetic fields are applied, we need to include in the

tight-binding Hamiltonian of the Haldane model the information of the interaction

between the electrons and the applied magnetic field. The next section will be focused

on the use of the Peierls substitution to include the information related to the interac-

tion between external magnetic fields and the electrons in the tight-binding Hamiltonian.

2.5 peierls phase

In the previous section, we used the structural properties of the honeycomb lattice

together with the tight-binding Hamiltonian (4), to find the band structure for the

Haldane model and discuss some of its topological properties. In this section we modify

the Hamiltonian (4) to include the effect of an external magnetic field. For this purpose,

we use the Peierls substitution [33].

The first step in the implementation of the Peierls substitution consists in the multi-

plication of each hopping term in (4) by a complex phase factor

H =

−t∑
〈i,j〉

eiφij a†
i bj +

M
2

D

∑
i=1

(
ai

†ai − bi
†bi

) + h.c + t2 ∑
〈〈i,j〉〉

[
ei(ϕ+φij)a†

i aj + e−i(ϕ−φij)b†
i bj

]
,

(26)
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where the phase φij holds the information of the interaction between the external

magnetic fields and the electrons while they hop from site i to site j, and is defined as:

φij ≡
2π

Φ0

∫ Rj

Ri

~A · d~l . (27)

Observing (27), it is clear that the Peierls phase depends mainly on two vectorial

quantities: The vector potential ~A, which is related to the external magnetic field and

the differential d~l that is related to the crystalline structure of the system. To adapt the

general formula (27) to the case of our interest, we have to write the vectors ~A and d~l.

First, let us define the vector potential

~A = (−By, 0, 0) , (28)

according to Landau’s gauge. This vector potential is related to the external magnetic

field by ~B = ~∇ × ~A. To write the differential d~l, we have to define the vector that

connects the sites i and j. Using the simplest parametrization, the vector~l is written

like:

~l =
((

Xj − Xi
)

τ + Xi
)

x̂ +
((

Yj −Yi
)

τ + Yi
)

ŷ τ ∈ [0, 1] , (29)

where the pair
(
Xi, Yj

)
represents the coordinates of the site i in the lattice.

To obtain d~l we just have to differentiate (29) with respect to the parameter τ. By

doing this, we obtain:

d~l =
(
Xj − Xi

)
x̂ +
(
Yj −Yi

)
ŷ . (30)

Inserting the results of (28) and (30) in (27), we find that the Peierls phase acquired

by an electron when it hops from i to j is

φij =
2π

Φ0

∫ 1

0
~A · d~l

dτ
dτ = −By2π

Φ0

(
Xj − Xi

)
. (31)
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The expression (31), is the general form of the Peierls phase for two different lattice

sites. The application of this equation to the case of the hopping between the nearest

neighbors and the next nearest neighbors, leads to six different phases. Three of these

phases are related to the nearest neighbors and the other three are associated with the

next-nearest neighbors.

To calculate the Peierls phase either for the nearest neighbors or the next-nearest

neighbors, we have to rewrite some factors in (31). Using the primitive vectors of the

lattice (1), the factor y can be written as the projection of ~a2 in the y axis like y = j~a2 · ŷ,

where the constant j counts the number of sites in the ~a2 direction. For the case of the

nearest neighbors, we have to substitute the term
(
Xj − Xi

)
by the x projection of the

nearest neighbors vectors in (2). Doing this, the Peierls phase for the nearest neighbors

reads:

φi = −2πBj
Φ0

(
3a
2

)
~ei · x̂ with i = 1, 2, 3 . . . . (32)

Substituting ~ei by the explicit form of the vectors (2), the Peierls phases for the nearest

neighbors are:

φ1 = 0 φ2 =
πBjA

Φ0
φ3 = −πBjA

Φ0
, (33)

where A = 3
√

3a2

2 is the area of the unitary cell. Grouping the factors in (33) we obtain:

φ1 = 0 φ2 =
jπφ

Φ0
φ3 = − jπφ

Φ0
. (34)

To calculate the phases acquired by an electron when it hops to the next-nearest

neighbor, we substitute
(
Xj − Xi

)
by the x projection of the next-nearest neighbor

vectors (~vi · x̂). Implementing this change, the Peierls phases are:

φ4 =
−2πBj

φ0

(
3
2

)
a2
√

3, φ5 =
2πBj

φ0

(
3
2

)
a2
√

3
2

, φ6 =
2πBj

φ0

(
3
2

)
a2
√

3
2

. (35)
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To simplify the phases in (35), we use the relation between the field and the flux.

Setting the field B = 2φ

3
√

3a2 , the equation (35) reads:

φ4 =
−2πφj

Φ0
, φ5 =

πφj
Φ0

, φ6 =
πφj
Φ0

. (36)

At this point, we have the expressions of all the Peierls phases that are relevant for

our study, but these are written in terms of φ
Φ0

. To fully determine these phases, we set

periodic boundary conditions to obtain a quantization of the magnetic flux in terms of

Φ0.

The periodic boundary conditions imposes:

φij(y = 0) = φij(y = Ly) , (37)

where Ly is the total length of the system in the y direction. To determine the relation
φ
φ0

, lets pick one of the phases of (34) and insert it in (37). Evaluating the boundary

conditions, we get:

πφNy

φ0
= 2πk with k =1, 2, 3 . . . (38)

In (38), we have used Ly = Ny~a2 · ŷ, where Ny is the maximum number of sites in the

y direction. After some algebra, we obtain the quotient φ
Φ0

φ

Φ0
=

2k
Ny

with k integer, (39)

Inserting this result in (34), the phases for the nearest neighbors are:

φ1 = 0 φ2 =
2πkj
Ny

, φ3 = −2πkj
Ny

, (40)
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Repeating the same process in equation (36), the next-nearest neighbors phases read as:

φ4 =
−4πkj

Ny
, φ5 =

2πkj
Ny

, φ6 =
2πkj
Ny

. (41)

Now that we have calculated the six Peierls phases associated to the hop of electrons,

the tight-binding Hamiltonian of the Haldane model contain the orbital information of

the interaction between the electrons in the material and an external magnetic field. To

calculate the electronic properties of this Hamiltonian in real space, we use the Kernel

Polynomial Method. In the next section we present a brief revision of this method and

how to implement it to calculate the density of states of systems of non-interacting

fermions.

2.6 kernel polynomial method

The Kernel Polynomial Method is a technique that allows approximate calculations

of certain observables with the use of spectral functions. This technique is commonly

employed in its real space formulation [23, 21, 28, 27] due to its parallelizability and low

computational resource consumption that scales linearly with the size of the system,

allowing simulations of large systems. The possibility of considering very large number

of sites makes this method very suitable to study systems with a high degree of disorder

[34, 35].

In this section, we present a brief introduction to the Chebyshev polynomials and

how one may represent spectral functions as a series expansion in terms of them. We

discuss how the truncation of such series generates the so called Gibbs oscillations that

affect the convergence of the method. We also show how to use kernels to smooth these

oscillations and improve the convergence of the Chebyshev series expansions. We close

this chapter presenting an iterative process to calculate the density of states of systems
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described by a tight binding hamiltonian.

2.6.1 Chebyshev Polynomials

The Chebyshev polynomials constitute a set of orthogonal polynomials that serve as

solutions to the differential equations named after the Russian mathematician Panufty

Chebyshev. These polynomials have a wide range of applications that goes from

numerical approximations to signal processing and spectral analysis [36, 37]. These

polynomials can be classified in two groups, the first kind polynomials labeled with

the letter Tn(x) and the second kind Un(x), which can be obtained from the first kind

polynomials using elemental differential calculus.

For polynomial expansions, the most commonly used set is the one comprising those

of the first kind, because they are bounded and do not diverge at their domain bound-

aries, like the polynomials of the second kind. Their finiteness near the boundaries

allow us to avoid problems with the convergence of the approximated functions [21].

Here we shall deal with polynomials of the first kind only, but by appropriate changes

our results may also be extended to polynomials of the second kind.

One of the most remarkable properties of the Chebyshev polynomials is the possibility

of writing them in terms of trigonometrical functions [23, 21]. This property allows to

define the first kind polynomials as:

Tm(x) = cos(m arccos(x)) with x ∈ [−1, 1] (42)
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The Chebyshev polynomials form an orthonormal basis in the [−1, 1] interval. The

orthogonality relation for the polynomials of the first kind is given by

∫ 1

−1

Tn (x) Tm (x)√
1− x2

dx =


0 if m 6= n

π if m = n = 0
π
2 m = n 6= 0

(43)

The results of (43) imply that any function f (x) defined in the interval [−1, 1] may be

expanded in terms of Chebyshev polinomials:

f (x) =
∞

∑
m

µmTm(x) , (44)

where the µm are the coefficients of the expansion. From the orthogonality relations of

(43), the coefficients are defined by

µm =
2

1 + δn,0

∫ 1

−1

f (x)Tm(x)
π
√

1− x2
dx . (45)

When the Chebyshev polynomials are compared with the Jacobi or Legendre polyno-

mials, one finds that their distinctive properties make them more efficient for numerical

calculations. One of the properties responsible for their efficiency is the recurrence

relation

Tm+1(x) = 2xTm(x)− Tm−1(x) , (46)

which allows the construction of any Chebyshev polynomial for m > 1. Another

property is the minimal ∞-norm when compared with the Jacobi polynomials [38, 36].

However, when we apply them in series representations, some difficulties arise. For

example, if the Chebyshev expansion is truncated, it leads to the appearance of the

so-called Gibbs oscillations.
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2.6.2 Chebyshev Expansion and Gibbs Oscillations

More precisely, when a function is represented by an infinite series expansion in terms

of Chebyshev polynomials, the expression (44) is correct. However, when it comes to

numerical calculations, it is necessary to truncate the series at some point. The natural

question that arises is what order of truncation will provide an acceptable convergence?

To answer this question it is useful to establish a link between the Chebyshev and

Fourier expansions.

In the traditional Fourier expansion, the highly oscillating terms contribute less to the

function approximation. The same applies to the Chebyshev polynomial expansions,

where higher order contributions are usually smaller. In figure 6, we show the first four

Chebyshev polynomials. We note that the number of zeros of the Chebyshev polynomi-

als increases linearly with their order, while their oscillatory behaviors intensify. One

then intuitively expects that higher order Chebyshev polynomials will introduce more

oscillatory contributions to the function approximation, though of smaller amplitudes,

since the series converge.

-1 -0.5 0 0.5 1

-0.8

-0.4

0

0.4

0.8

Figure 6: First four order of the Chebyshev polynomials with their roots.

With this idea in mind, we proceed to expand functions in the Chebyshev basis to

check if our intuitive reasoning is correct. In panel (a) of figure 7, we show the expansion
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of cos(x) for 50 moments (M = 50) and we can see that the approximation has converged

to the original function. This fast convergence is a consequence of the smoothness of the

function. According with Wolf et al. [39], the approximation of a k derivable function

converges as 1
mk , where m is the number of moments. When we compare this figure with

the one in panel (b) we note that the expansion of the step function does not converge

properly, even for 200 moments, and presents Gibbs oscillations around its discontinuity.

Unlike the case illustrated in figure 7 (a), the step function is not infinitely differen-

tiable and has a point of discontinuity. This reduces the speed of convergence to 1
m ,

which means that we are going to need many more moments to eliminate the oscillations

in the expansion and obtain optimal convergence. This short example enable us to

verify that the optimal order of truncation will vary according to the properties of the

function that we want to expand; if we expand smooth functions, we are going to need

less polynomials than the required quantity to expand discontinuous functions.
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Figure 7: Comparison between the Chebyshev expansion and the analytical function
for: (a) cos(x) with 50 moments and (b) Step(x) with 200 moments.

In solid state physics, the typical functions of interest, like Green functions or Dirac

distributions are not infinitively derivable and present discontinuities, which means

that if we want to eliminate the Gibbs oscillations in the expansions of these functions

by pure force, we are going to need a huge quantity of moments in our expansion,

increasing the computational costs. An alternative way to treat this problem is the

optimization of the number of moments required in the expansion. Such optimization is
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archived by performing a regularization of the function near of the discontinuity points,

in order to make the approximation more smooth and eliminate the Gibbs oscillations.

The disadvantage of this regularization process is the inclusion of errors caused by

the information loss in the function f (x). An adequate regularization process must

guarantee the recover of the information provided by the original function when

the order of truncation is increased. The regularization process for the Chebyshev

expansion consists in the inclusion of a damping factor that multiplies the coefficients

of the expansion and depends of the total number of moments M. Introducing this

damping factor, the Chebyshev expansion can be rewritten as:

f (x) =
M

∑
m=0

µmTm(x)→ f (x) =
1

π
√

1− x2

(
M

∑
m=0

µmgmTm(x)

)
, (47)

and the coefficients will be calculated following

µm =
∫ 1

−1

f (x)Tm(x)
π
√

1− x2
dx −→ µm =

∫ 1

−1
f (x)Tm(x)dx , (48)

to favor the iterative calculation of the moments.

The factor gm is is called kernel [23, 21] and there are various kernels that can be

used for this set of polynomials. Roughly speaking, all kernels that ensure the optimal

resolution and the preservation of the norm should fulfill three conditions [21]: The

first damping factor should be g0 = 1, the second damping factor when M→ ∞ should

converge to g1 ≈ 1 and the kernel K(x, y) = g0T0(x)T0(y) + 2 ∑M
n=1 gmTn(x)Tn(y) must be

positive in the interval [−1, 1]. There are a wide variety of kernels that can be used with

the kernel polynomial method. In table 1, we present the most used kernels that fulfill

the three conditions.
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Table 1: Kernels that can be used in the KPM. M represents the maximum order of
truncation, m are the current order. The parameter λ is the adjustment factor of
the Lorentz Kernel.

Kernel Numerical Expression

Jackson 1
M+1

[
(M−m + 1) cos( πm

M+1 ) + sin( πm
M+1 ) cot( π

M+1 )
]

Lorentz
sinh(λ(1− m

M ))
sinh(λ)

Fejer 1− m
M

Dirichlet 1

Dirichlet and Fejer kernels are not optimal, but they are used in the deduction of the

Jackson and Lorentz kernels. In this thesis we use the Jackson’s kernel and this choice

is based on the fact that it has better energy resolution than the Fejer kernel, without

adding an extra parameter like the Lorentz kernel. Some of the properties that the

Jackson kernel shares with most of the kernels are its positiveness, its dynamic damping

which varies as a function of the moments m and M, and the capability of preserving

the norm and the integral of the original function.
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Figure 8: (a) Jackson kernel for: 50 (black), 200 (red), 600 (green) and 1000 moments
(blue). (b) Comparison between the step function (solid line) and the approxi-
mation with Jackson kernel for 200 moments.
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In figure 8 (a) , we show how the damping of the Jackson kernel varies as a function

of the expansion moments. From this figure, we can see that the amplitude of the

Jackson kernel decays more slowly when the number of moments is increased, this

behavior is in agreement with the condition for an optimal regularization. In figure 8

(b) we can observe how the introduction of Jackson kernel improves the convergence

of the approximation of the step function and smooths the Gibbs oscillations. After

presenting the use of kernels in Chebyshev expansions, we are ready to perform the

expansion of spectral functions such as the density of states.

2.6.3 Kernel Polynomial Method: Expansion of the Density of States

In previous subsections, we have made a short revision of the Chebyshev polynomials

and how they can be used to expand functions. We discussed the use of kernels to

improve the convergence of truncated expansions in terms of Chebyshev polynomials

in order to optimize the computational resource consumption. In this subsection, we

show the iterative scheme proposed by Silver et al. [23, 24] to calculate the density

of electronic states. First let us define the density of states ρ(E) of a system of non-

interacting fermions:

ρ(E) =
1
D

D−1

∑
k=0

δ(E− Ek) (49)

To expand the density of states in the Chebyshev basis with KPM, one should perform

a rescaling process so that the spectra of the rescaled Hamiltonian is confined to the

interval [−1, 1]. The rescaling of these elements will be given by:

H̃ =
(H − b)

a
Ẽ =

(E− b)
a

, (50)

where

a =
(Emax − Emin)

(2− ε)
b =

(Emax + Emin)
2

(51)



2.7 numerical results 34

After rescaling the density of states, the next step is to calculate the moments. For

this purpose, we use (48), and substitute f (x) by the rescaled density of states to obtain

µn =
∫ 1

−1
ρ(Ẽ)Tn(Ẽ)dẼ =

1
D

D−1

∑
k=0

Tn(Ẽk)

=
1
D

D−1

∑
k=0
〈k|Tn(H̃)|k〉 = Tr

[
Tn(H̃)

]
. (52)

With this we have all the ingredients that we need to perform the description of the

electronic states of a system in the tight binding Hamiltonian [28].

2.7 numerical results

In this chapter, we presented the Haldane model and its topological properties, and

we used the Peierls substitution to include the effects of external magnetic fields in the

tight binding Hamiltonian and we showed how to use the Kernel Polynomial Method to

calculate the density of states in systems of non-interacting fermions. In this section we

present the results of the application of the Kernel Polynomial to study the electronic

properties of the Haldane model in presence of an external magnetic field.

2.7.1 Field Symmetry Breaking

In the past sections, we modified the Haldane tight-binding Hamiltonian to consider the

effect of an external magnetic field acting on the electrons. With this new Hamiltonian

we calculated the density of states (DOS) with the Kernel Polynomial Method (KPM). In

figure 9, we show the results of our numerical calculation of the density of states for the
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case of graphene (t2 = M = 0). In this figure we can note that the spectrum for particles

and holes of the system is the same for both the field configurations. The existence

of the landau level n = 0 at the band center reveals that this state is shared for both

particles and holes (charge conjugation symmetry).
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Figure 9: Density of states of the Haldane model for a system of 2× 100× 600, t2 = 0 in
units of t and for the fields: B = 50T (dashed line) and B = −50T (solid line).

After performing the numerical calculation of the DOS for the case of the graphene,

we have proceeded to calculate the DOS for the Haldane model, shown in figure 10.

Panel (a) presents the DOS of the system with positive and negative magnetic fluxes.

From the panel (a) we see that the numerical calculations reproduce the symmetry

breaking in n = 0, as expected in accordance with the approximations made by Haldane

[12]. However, when we check the landau levels with |n|≥ 1 we note that these eigen-

states are not symmetric under the change of the sign of the field.
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To examine in more detail the lack of symmetry in the spectrum with respect to the

field, we can change the energy scale. In panel (b) we show the density of states for

the same system, but focusing only in the Landau levels n = 1 and n = 2. In this panel,

we can see that the field symmetry breaking seems to be caused by a constant shift

that depends on the sign of the field and was ignored in previous analytical calculations.
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Figure 10: Density of States for Haldane model for a system of 2× 100× 600 atoms,
t2 = 0.2

6
√

3
in units of t and |B|≈ 263T: (a) Comparison between the system

with positive flux (dashed line) and negative flux (solid line). (b) Plot of the
landau levels n = 1 and n = 2 for the system with positive flux (dashed line)
and negative flux (solid line).
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2.7.2 SdH Oscillations on the Hall Conductivity
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Figure 11: Transverse Conductivity for Haldane Model for a system of 2× 100× 600
atoms, t2 = 0.4
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in units of t and B = 263T: Negative Flux (a), Positive Flux

(b). Addition of the conductivities with Positive and Negative Fluxes (c).

In the previous subsection, we observed that the spectrum of our system does not

preserve its symmetry under a change in the sign of the magnetic field. To study the

consequences of this symmetry break in the anomalous part of the Hall conductivity,

we use the KPM to calculate the Hall conductivity with the Kubo-Bastin formula [40]

σαβ(µ, T) =
ie2h̄
Ω

∫ ∞

−∞
dε f (ε)× Tr〈vαδ(ε− H)vβ

dG+(ε)
dε

− vαδ(ε− H)vβ
dG−(ε)

dε
〉 , (53)
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where Ω is the volume of the sample, vα is the α component of the velocity operator,

G(±)(ε, H) = 1
ε−H±i0 are the advanced (+) and retarded (−) Green functions, and f (ε) is

the Fermi-Dirac distribution for a fixed temperature T and chemical potential µ. The

detailed process to expand of the formula (53) with KPM is explained in reference [28].

In figure 11, we show the Hall conductivity for positive (see panel (a)) and negative

fluxes (see panel (b)). To obtain the anomalous part of the transverse conductivity, we

used the symmetry properties of the contributions to the Hall effect, which states that

the anomalous contribution to the Hall conductivity does not change its sign when

the applied field is inverted [41]. Knowing this, we have added the Hall conductiv-

ities with opposite field sign and same magnitude, to obtain the anomalous part of

the Hall conductivity. The anomalous part of the Hall conductivity is plotted in panel (c).

Observing figure 11 (c), we note the persistence of the plateau inside the gap between

the bands. This plateau is characteristic of the Haldane model. We can also note some

oscillations in the anomalous part of the conductivity. If we compare the position of

these oscillations with the position of the energy levels in the density of states of the

figure 10, it is clear that the field dependent shift in the spectrum is responsible for

the oscillations in the anomalous part of the Hall conductivity. This result, shows the

existence of a field dependent shift that was ignored in previous analytical calculations

and have important repercussions in the anomalous part of the Hall conductivity. To

investigate this shift in the energy spectrum, we will study the analytical continuum

model in the next chapter and try to understand the functional form of this shift.



3 CONT INUUM MODEL : LOW-ENERGY

HAMILTON IAN

3.1 introduction

In the previous chapter, we used KPM to find a shift in the spectrum of the Haldane

model under external magnetic field that depends on the sign of the applied field.

This shift was ignored in the original and subsequents theoretical calculations. In this

chapter we investigate the origins of this shift in the spectrum and its properties. For

that purpose, we decided to study the low-energy continuum approximation, first

presented by Haldane [12]. This approximation makes it possible to calculate the energy

spectrum analytically to analyse the role of different parameters in the appearance of

this energy shift.

It has been shown that considering higher order terms in the expansion of the tight-

binding Hamiltonian of graphene near of the Dirac points, provides corrections to the

Landau energy spectrum [42, 43]. Motivated by this analysis, in this chapter we consider

the next order of the approximation in the expansion of the Haldane tight-binding

Hamiltonian near of the Dirac points and use the Landau-Peierls substitution to model

the shift in the spectrum. Once the corrected Hamiltonian is obtained, we calculate

the Hall conductivity using the formula derived from the movement equations (see A.

Ferreira et al. [44]) to investigate analytically the dependence of the spectrum on the

sign of the external magnetic field and the existence of the oscillations in the anomalous

part of the Hall conductivity.

39
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3.2 zeroth order approximation

Before studying the effects of higher order terms in the expansion of the Haldane

tight-binding Hamiltonian near of the Dirac points, let us review the properties of the

original version of this low-energy Hamiltonian. To this end, we can use the low-energy

Hamiltonian for the Haldane model that was presented in the chapter 2:

H(~k) =

 mτ vF(h̄τkx − ih̄ky)

vF(h̄τkx + ih̄ky) −mτ

 , (54)

To include the effects of an external magnetic field in (54), we use the Landau-Peierls

substitution πi = pi − qe Ai to represent the momentum of charged particles in magnetic

fields, where we used qe = −e < 0. Substituting ~p = h̄~k in (54) by ~π we obtained:

H = vF
(
τzλπxσx + πyσy

)
+ ∆τz σz , (55)

The Hamiltonian (55) holds the information of the couplings between the momentum

of the particles, the energetic scale (given by the Fermi velocity (vF = 3ta
2h̄ )), the isospin

in the honeycomb lattice, the choice of the Dirac point (τz = 1 for ~K and τz = −1 for ~K′)

and the direction of the perpendicular field (λ = 1 for B̂ = ẑ and λ = −1 for B̂ = −ẑ).

The term ∆τz in (55) holds the information of the second nearest neighbor hopping

and the inter-lattice potentials. The explicit form of ∆τz is the zeroth order expansion of

Hz(~k) = M− 2t2 sin(φ) ∑
i

(
sin(~k ·~vi)

)
with i = 1, 2, 3 , (56)
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in the vicinity of the Dirac points. The vectors ~vi in (56) describe the relative position

between the three inequivalent second-nearest neighbors in the honeycomb lattice, these

vectors are:

~v1 =
(√

3a, 0
)

, ~v2 =

(
−
√

3
2

a,
3
2

a

)
, ~v3 =

(
−
√

3
2

a,−3
2

a

)
(57)

Performing a Taylor series expansion of (56) centered in the Dirac point, we note that

the major contribution to this expansion is given by the zeroth order term. Considering

pure imaginary second neighbor hopping (φ = π
2 ) and zero inter-lattice potential (M = 0),

the zeroth order of the expansion (56) reads:

∆τz = τz3
√

3t2. (58)

Now, that we defined the term ∆τz , we proceed to calculate the eigenstates of the

system and their eigenvalues. To do this, we use the Landau quantization to rewrite the

Hamiltonian (55) in terms of the ladder operators:

πx =

√
h̄e|B|

2c
λ
(

a + a†
)

, πy =

√
h̄e|B|

2c
1
i

(
−a + a†

)
(59)

and

σx = (σ+ + σ−) , σy =
1
i
(σ+ − σ−) (60)

Inserting the explicit form of these operators and the expansion (58) in (55), we obtain:

H =

√
eh̄|B|

2c
vF

[
τzλ(aσ+ + aσ− + a†σ+ + a†σ−)− a†σ+ − aσ− + a†σ− + aσ+

]
+ ∆τz σz. (61)



3.2 zeroth order approximation 42

A valid basis to diagonalize (61) is the basis of the operator N̂ = a†a + σ+σ−, that

counts the excitations of the system. The choice of this basis is motivated by the fact

that N̂ commutes with the effective Hamiltonian [45].

An important feature of (61) is the additional dependence on the direction of the field.

This dependence on the field direction is usually ignored, but when it is included, the

relative sign between τz and λ affects how the linear combinations of the states that

diagonalize the Hamiltonian are formed.

The eigenstates of (61) for every n ≥ 1 are:

|Ψn〉 =

 αn|(n− 1)A〉 + βn|(n)B〉, When λ and τz have the same sign

ᾱn|(n)A〉 + β̄n|(n− 1)B〉, When λ and τz have different signs
(62)

The eigenstates for n = 0 are:

|Ψ0〉 =

 |(0)B〉, When λ and τz have the same sign

|(0)A〉, When λ and τz have different signs
(63)

Writing (61) as a matrix in the space spanned by (62), the Hamiltonian for the Nth

Landau level is:

Hτzλ =

 ∆τz τzλ
√

2|n| h̄vF
lB

τzλ
√

2|n| h̄vF
lB

−∆τz

 , (64)

where łB =
√

h̄c
e|B| .

Diagonalizing (64), the energy for the nth level reads as:

En = η

√
∆2

τz +
(√

2|n| h̄vF

lB

)2

(65)
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Where η will serve to describe the electrons (η = 1) and the holes (η = −1).

3.2.1 Ground State Symmetry Breaking

It was shown by Haldane [12] that the energy of the ground state of this system depends

on the relative signal between the magnetic field, the phase of the complex hopping

and the choice of the valley. To study this dependence we used the previous model,

where we set the valley index τz = 1 to make more clear the dependence on the sign of

the field. Considering this, the Hamiltonian matrix for the ground state (n = 0) is:

• For the positive field (λ = 1):

H =

 0 0

0 −∆+

 (66)

• For the negative field (λ = −1):

H =

 ∆+ 0

0 0

 (67)

and the eigenvalues of (66) and (67) are:

E0 = −λτz (∆+) (68)

3.3 second order corrections

Further refinements in the analytical model of the later section can be archived by

including the next two terms in the Taylor series expansion of (56). Expanding the~k

dependent term up to second order in the vicinity of one of the Dirac points, we get:

sin((~K +~q) ·~vi) ≈
(

sin(~K ·~vi)
)

+ (~q ·~vi)
(

cos(~K ·~vi)
)
− 1

2
(~q ·~vi)

2
(

sin(~K ·~vi)
)

. (69)
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Using the vectors (57), the second order expansion of Hz(~k) is given by.

∆(I I)
τz = M− 2t2

(
−τz

3
√

3
2

+ τz
9
√

3
8

(~ka)
2
)

= ∆τz − τzt2
9
√

3
4

(~ka)2 (70)

The expression (70) can be rewritten as

∆(I I)
τz = M + τzt23

√
3− τz

h̄2~k2

2m′
, (71)

to get a "Kinetic Energy like" term that help us to simplify the notation. In (71) all the

numeric pre-factors were grouped inside of the constant m′, which is defined as:

m′ ≡ 2h̄2

t29
√

3a2
. (72)

Using the Landau-Peierls substitution to include the effects of the external magnetic

field and neglecting the existence of inter lattice potentials M = 0, we rewrite (71) as:

∆(I I)
τz = τzt23

√
3− τz

(
π2

x + π2
y

)
2m′

. (73)

After inserting the second order corrections of (73) in (55), the Hamiltonian read

H = v f (λτzπxσx + πyσy) +

(
∆τz − τz

(π2
x + π2

y)
2m′

)
σz. (74)

To study the effects of the direction of the external magnetic field on the energy

spectrum, let us focus on the ~K point (τz = 1). The matrix representation of the

Hamiltonian for positive fields (λ = 1) is written like:

H11 =

 ∆+ − h̄e|B|
m′c (a†a + 1

2 )
√

2 h̄vF
lB

a
√

2 h̄vF
lB

a† −∆+ + h̄e|B|
m′c (a†a + 1

2 )

 , (75)

and for negative fields (λ = −1) the Hamiltonian is:

H1−1 =

 ∆+ − h̄e|B|
m′c (a†a + 1

2 ) −
√

2 h̄vF
lB

a†

−
√

2 h̄vF
lB

a −∆+
h̄e|B|
m′c (a†a + 1

2 ).

 (76)
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From (75) and (76), we note that the inversion of the field direction exchanges the

position of the off diagonal terms of the Hamiltonian operator and includes a negative

sign on each one of them. This modification in the Hamiltonian changes the Hilbert

space that describes the system in the same way that the Hilbert space that describes

pristine graphene is altered by the valley inversion.

Evaluating the Hamiltonian matrices (75) and (76) in their respective space of states

(62), (63) we get:

• For the positive field (λ = 1):

H =

 ∆+ − h̄e|B|
m′c (n− 1

2 )
√

2|n| h̄vF
lB√

2|n| h̄vF
lB

−∆+ + h̄e|B|
m′c (n + 1

2 )

 (77)

• For the negative field (λ = −1):

H =

 ∆+ − h̄e|B|
m′c (n + 1

2 ) −
√

2|n| h̄vF
lB

−
√

2|n| h̄vF
lB

−∆+ + h̄e|B|
m′c (n− 1

2 )

 . (78)

Diagonalizing (77) and (78), we obtain the the energy for the nth level, with n ≥ 1 :

Enλ = λ
h̄e|B|
2m′c

±

√(
∆+ −

h̄e|B|
m′c
|n|
)2

+
(√

2|n| h̄vF

lB

)2

= λ
h̄2

2m′lB
2 ±

√√√√(∆+ −
h̄2

m′lB
2 |n|

)2

+
(√

2|n| h̄vF

lB

)2

. (79)

If we compare the results of (65) and (79), we note that the inclusion of the second

order terms in the expansion of ∆(I I)
τz produces two mayor corrections. The first is the

apparition of a constant factor whose sign is dependent on the field direction, this

factor shifts the whole energy spectrum and breaks the symmetry between positive and
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negative fields. The second correction is the inclusion of a term which grows linearly

with |n| and corrects the contribution of ∆τz to the energy of each Landau level.

3.3.1 Ground State Symmetry Breaking

Just like the case of the zeroth order expansion, the model reproduces the ground state

symmetry breaking for electrons and holes. If we repeat the same process that was used

in the case of the zeroth order expansion of ∆τz , we can write the Hamiltonian matrices

for the n = 0 level:

• For the positive field (λ = 1):

H =

 0 0

0 −∆+ + h̄2

m′lB
2 (1

2 )

 (80)

• For the negative field (λ = −1):

H =

 ∆+ − h̄2

m′lB
2 (1

2 ) 0

0 0

 (81)

Diagonalizing (80, 81), we get:

E0λτz = −λτz

(
∆+ −

h̄2

2m′lB
2

)
. (82)

Comparing the results of (68) and (82), we note that the second order corrections

produce a shift in the energies, even for n = 0.

To check if this model represents the special case of the graphene (t2 = 0), we plot

(79) for t2 = 0 and B = 17T in figure 12.
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Figure 12: Spectrum of the graphene for: B = 17T

In figure 13 we show the Landau levels of the Haldane model for t2 = 0.4
6
√

3
t and

B = 263T. In the panel (a) we show the comparison between the spectrum of the zeroth

order expansion of the Haldane Hamiltonian and the expansion with the second order

corrections, for two different field configurations. Panel (b) shows the three first landau

levels in an enlarged scale. In the level n = 1 we can see the effect of the constant

shift that separates the spectrum of positive and negative fields, observing the landau

levels n = 2 and n = 3 we can see the contribution of the term in (79) that corrects the

amplitude of ∆τz and grows linearly with |n|.
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Figure 13: Comparison between the zeroth order expansion of the Haldane model
spectrum (black line) and the spectrum with corrections of the order O(~k)2

for positive (blue line) and negative fields (red line), with t2 = 0.4
6
√

3
t and

|B|= 263T. (a) Landau levels from n = −4 to n = 4. (b) Enlarged scale of the
Landau levels n = 1, n = 2 and n = 3.

From the later results, it is clear that the second order corrections introduce a constant

shift in the spectrum. In the following section, we are going to calculate the Hall con-

ductivity for the two field configurations to observe if the oscillations in the anomalous

part of the conductivity are captured by this extended analytical model.

3.4 calculation of the conductivity

In the previous section we observed that the inclusion of second order corrections in

~k makes the low-energy model introduce a field dependent constant that shifts the

spectrum. In this section, we calculate the Hall conductivity for the two different field

configurations, to observe if the oscillations in the anomalous contribution of the Hall

conductivity are captured by this extended model.
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3.4.1 Eigenstates and Matrix elements of σxand σy

To calculate the Hall conductivity, we use the Kubo formula in the bubble approximation.

For the calculations, we need the normalized eigenstates. From equations (62), (63) and

(77) we write the normalized eigenstates as:

|Ψn〉 =
1√

1 + (αn)
2
(|(n− 1)A〉 + αn|(n)B〉) , (83)

Where αn is:

αn =
Ess(n)− ∆+ + h̄2|n|

lB
2m′√

2|n| h̄vF
lB

(84)

and Ess(n):

Ess(n) = Sign(n)

√√√√(∆+ −
h̄2

lB
2m′
|n|
)2

+
2h̄2vF2

lB
2 |n|. (85)

With the eigenfunctions defined, we need to compute the matrix elements of σx and

σy in this basis. The elements of these matrices are:

〈σx〉nm = 〈n|σx|m〉 =
1√

1 + (αn)
2

1√
1 + (αm)

2
[αnδ|n|,|m|−1 + αmδ|n|−1,|m|] (86)

and

〈σy〉mn = 〈m|σy|n〉 = i
1√

1 + (αn)
2

1√
1 + (αm)

2
[−αnδ|m|−1,|n| + αmδ|m|,|n|−1]. (87)

Transition Rules

Equations (86) and (87) hold an important piece of information: these matrices contain

the transitions rules between the states that contributes to the conductivity Hall con-
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ductivity. To make emphasis on these rules, let us consider equation (86). The matrix

〈σx〉nm will have non zero elements when |m|−|n|= ±1. This relation gives rise to two

specific cases:

• When m and n have the same sign the transition rule connects two states that

belongs to the same band, these transitions are called intra-band.

• When m and n have opposite sign, the transitions connects states that belongs to

different bands, because of this property these transitions are called inter-band.
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Figure 14: Schematic representation of the transitions that contribute to the conductivity
in the Haldane model with B = 157T and t2 = 0.1
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In Figure 14, we show a schematic representation of the possible transitions that

contribute to the conductivity in the Haldane model for a given Fermi energy.
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3.4.2 Kubo Formula

To calculate the Hall conductivity, we use the equation of motion method proposed by

A. Ferreira et al. [44], which after the proper regularization, provides results that are

equivalent to the Kubo formula. According to this method, the conductivity is given by

σxy =
e2

h

Nc

∑
n 6=m=−Nc

Λxy
nm

iEnm

nF(En)− nF(Em)
Enm + iΓ

(88)

where (t ≈ 2.7eV = ENc) so that we only consider states that have energy that is lower

than the cutoff energies where the low-energy approximation is valid. Λxy
nm is given by:

Λxy
nm =

h̄2v2
f

l2
B
〈σy〉mn〈σx〉nm =

h̄2v2
f

l2
B

[i

 1√
1 + (αn)

2

1√
1 + (αm)

2

2

(αm
2δ|n|−1,|m|− αn

2δ|m|−1,|n|)],

(89)

where Enm represent the energy difference between the n and m levels, Γ represents

the broadening of the states and ω is the frequency of an incident photon ( we are not

considering optical properties of the system, hence ω → 0).

In figure 15 we show the conductivity for the graphene at fixed field B. One can note

that the calculations with the Kubo formula reproduces the structure of the conductivity

in the graphene σxy = 2 e2

h

(
N + 1

2

)
.
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Figure 15: Conductivity for the graphene with B = 50T and broadening Γ = 0.
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Figure 16: Calculation of σxy for the Haldane model with a field |B|= 50T, with t2 =
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In figure 16, we show the analytical calculations of the transverse Hall conductivity

for the Haldane model with the second order corrections. In panels (a) and (b) we plot

the conductivity for a system with positive and negative magnetic fields respectively.

Comparing 15 and 16, we note that the plateaus of the conductivity in the Haldane

model have the half-integer Hall steps, which are present on the case of the graphene.

We can also see the plateau with Chern number n = 0, which is present in the gap that

is characteristic of the Haldane model.

With the analytical calculations of the transverse conductivity in hands, we are able

to verify if the theoretical model can capture the existence of the SdH oscillations in the

anomalous Hall conductivity. To investigate this, we use the symmetry properties of

the Hall conductivity. According with Tsaran et al. [41], we can filter the anomalous

contributions of the Hall conductivity by adding the net conductivities of the same

system, but exposed to opposite magnetic fields.

In figure 17 we show the transverse conductivity for two opposite magnetic fields and

their anomalous Hall contribution. In the panels (a) and (b) we show the conductivities

for the Haldane model when the second order corrections are included. In the panels

(c) and (d) we show the conductivities for the original Haldane model. Comparing

the graphics of the panels (a) and (b) with the ones in (c) and (d), we note that the

oscillations in the anomalous Hall conductivity are present only in the cases where the

second order corrections are considered.
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Figure 17: Calculation of the transverse Hall conductivity in the original Haldane model
((c) and (d)) and the Haldane model with second order corrections ((a) and
(b)), in a system with t2 = 0.2
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fields: B = 50T (blue line) and B = −50T (red line).

In the next final chapter, we compare the theoretical results with the numerical cal-

culations. We compare the energy spectrum of the low-energy model with the second

order corrections and the numerical calculations, to verify if the expression that we

obtained for the constant term that breaks the field symmetry of the spectrum models

the numerical results. We also discuss the limits where the theoretical calculations with

the second order correction are valid.



4 COMPAR ISON : THE NUMER ICAL AND

ANALYT ICAL RESULTS

In the previous chapter, motivated by the results of Y. Supurenko et al. [42] and A.

Kretinin et al. [43], we decided to include terms of order O(~k)2 to the low-energy

expansion of the Haldane model tight-binding Hamiltonian. This extension was aimed

to give a theoretical explanation to the difference between the spectrum for positive

and negative fields observed in the numerical calculations of chapter 2. We found

that the new terms added to the Hamiltonian produce a field-dependent shift in the

spectrum, which was ignored in previous works. We calculated the Hall conductivity

with this novel Hamiltonian, finding that the oscillations in the anomalous part of the

Hall conductivity, found in the numerical calculations of chapter 2, are produced by

this constant shift in the spectrum.

In this chapter, we compare the numerical results of the chapter 2 and the analytical

results of the chapter 3. We begin by comparing the position of the energy levels in the

numerical density of states with the energy of the spectrum of the corrected Hamiltonian

with the O(~k)2 terms. Then, we compare the separation observed between the positive

and negative spectrum of the numerical calculations, with the field-dependent shift

in (79). By the end of the chapter, we show how the variations of the parameters of

the Hamiltonians affect the correspondence between the numerical simulations, the

Haldane model and the Haldane model with second-order corrections.
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4.1 comparison between theoretical and nu-

merical energy offsets.

In this section, we compare the energy spectrum of the original and the extended

models with the numerical simulations. In figure 18 we show the comparison between

the simulation, the analytical model with the zeroth order terms and the analytical

model with second order corrections. In the panels (a) and (b), we show the comparison

for the Landau levels n = 1 and n = −1, respectively. From these plots, we observed that

the original model only represents the energy of one of the possible field configurations,

meanwhile when the O(~k)2 terms are included, the extended analytical model gives a

good approximation of the energies for both field configurations.
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Figure 18: Comparison between the analytical model for the zeroth order expansion
(black line), the second order expansions for positive (blue line) and negative
(red line) flux, and the numerical calculation for a system of 2× 100× 600
sites, t2 = 0.2
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and B = 263T. (a) comparison for the Landau level with n = 1.

(b) Comparison for the Landau Level with n = −1.
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Now that we checked that the eigenvalues of the extended model improves the

description of the energy spectrum, we need to check if the field dependent shift that

appears in (79) models the field symmetry break in the spectrum. To verify this, we

measured the shift between the numerical density of states for different values of t2 and

compared it with the constant term in (79). Figure 19 shows the comparison between the

analytical shift and the numerical shift measured as a function of the gap size in the spec-

trum. From this figure, it is clear that the second-order corrections captures the energy

offset that breaks the field symmetry in the spectrum in the limit of high magnetic fields.
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Figure 19: Comparison between the numerical shift (black solid line) and the analytical
shift (red dashed line) for a system of 2× 1000× 1000 atoms and a field of
B = 157T.

These results confirms that considering second-order corrections in the low-energy

approximation improves the description of the spectrum, making it possible to model
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the field-dependent energy offset that breaks the field symmetry in the spectrum. How-

ever, this is not the only change in the spectrum caused by the second order corrections.

These corrections also include a factor that alters the "Haldane mass" (∆τz = 3
√

3t2) in

(79) that instead of being constant, increases linearly with the landau-level count |n|.

To investigate the effect of this correction, we took the Landau levels with |n|= 2

and compared the original model, the model with the second order corrections and

the numerical results for this specific level. In Figure 20, we show the comparison

between the original model, the simulation and our extension to the original model for

the Landau levels n = 2 (panel (a)) and n = −2 (panel (b)). Comparing the results of

those figures with the ones in figure 18, we can see that for increasing values of |n|, the

novel terms correct the position of the eigenvalues with respect to the numerical results.
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(black line), the second order expansions for positive (blue line) and negative
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(b) Comparison for the Landau Level with n = −2.
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From figures 18, 19 and 20, it is clear that even with the improvement of the addi-

tion of second-order corrections, when |n| increases, the analytical method reproduces

poorly the results obtained with the numerical calculations. In the next section, we

discuss how the correspondence between the numerical and the analytical methods is

affected by the changes of the parameters of the Hamiltonian.

4.2 range of validity of the analytical ap-

proximation

In the previous section, we compared the results of the spectrum of the original and

extended low-energy expansions with our numerical calculations. We found that the

second-order corrections introduce a field dependent constant that models the shift

between the spectrum of opposite field configurations. We also noted that the second-

order corrections in the low-energy Haldane model improve the description of the

energy spectrum, but they do not reproduce exactly the results of the numerical sim-

ulations, mainly for higher order of |n|. In this section, we study how changes in

the parameters |B| and t2 affect the correspondence between the analytical and the

numerical results. To study the influence of these two parameters, we plotted in fig-

ures 21 and 23, a comparison of the spectrum for different values of t2 and B respectively.

In figure 21 we show how the convergence of the model decreases as t2 increases.

The poor representation of the eigenvalues in the limit of high values of t2 have a strong

relation with the band structure of the Haldane model in the absence of magnetic field.

In figure 22 we show the comparison between the bands of the Haldane model for two

values of t2 and t2 = 0 (graphene). In this plot, beside the obvious enlargement of the

band gap with the increase of t2, we can appreciate other important feature. In the limit

of high values of t2, the band structure near of the Dirac points does not present the
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conical shape that is found in the graphene, but a more parabolic shape.
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Figure 21: Comparison between the theoretical model and the numeric calculations of
a system with 2× 100× 10000 sites, B = 15.78T and different values of t2:
t2 = 0.05

6
√

3
(a), t2 = 0.1

6
√

3
(b), t2 = 1.5

6
√

3
(c) and t2 = 0.2

6
√

3
(d).

The change in the shape of the band structure gives rise to a zero point energy when

the system is exposed to an external magnetic field, in contrast to what is observed in

a Dirac-like Hamiltonian. This energy is captured by the low energy model when the

second order corrections are included. Beside the appearance of the zero point energy,

the increment of t2 also reduces the number of states that can be exactly described.

The low-energy model treats the contribution of the next nearest neighbors terms as a

perturbation of pure graphene, so when high values of t2 are considered the eigenstates

required to describe the system must be more complicated linear combinations of states,

than the ones used in our approximation.
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In figure 23, we show how the correspondence between the theoretical model and

the numerical calculations varies when the magnetic field applied on the system is

modified. From these results we can observe that the decrement of the magnetic field

improves the convergence between the analytical and numerical calculations. The effect

of the magnetic field variations in the convergence can be studied in the limit of low

values of t2. Roughly speaking, the difference between two landau levels in this limit

will be of the order of
h̄
lB

√
2. This means that the higher the fields the greater the

separation between levels. The increment of the separation between levels will set some

levels in the region where the band structure cannot be approximated as a cone, and

consequently this reduce the quantity of levels that the theoretical model represents

correctly.
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Figure 23: Comparison between the theoretical model and the numerical calculations
with t2 = 0.15
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(B = 157.78T) (a), 2× 100× 1700 (B = 92.87T) (b), 2× 100× 5000 (B = 31.57T)
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In this chapter we have demonstrated that the introduction of the second-order correc-

tions in the low-energy Hamiltonian of the Haldane model reproduces the shift between

the spectrum of opposite field configurations. However, we showed that even with the

improvements in the low-energy model, the correspondence is affected by the choice

of the parameters. We have shown that both the intensity of the field and the value of

the next nearest neighbor hopping affects the correspondence between the analytical

and numerical spectrum. We observed that increments in the parameter t2 modify the

shape of the band structure and make more notable the zero point energy when the

magnetic field is applied to the system.
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Also we checked that when high magnetic fields are considered, the correspondence

of the analytical model is also affected. To summarize, we can say that the low-energy

model reproduces the field dependent shift in the spectrum and is in agreement with

the numerical spectrum in the limit of weak magnetic fields and small values of t2, as

should be expected in the case of a perturbative approach.



5 CONCLUS IONS

In this work we have revisited the quantum Hall effect for the Haldane model, motivated

by the behavior of the anomalous part of the Hall conductivity in the high magnetic

field limit. In chapter 2, we showed the results of numerical calculations of the density

of states and Hall conductivity of the Haldane model under perpendicular magnetic

fields using the kernel polynomial method (KPM) for opposite field configurations.

From previous calculations, we expected one of the energy levels to be dependent of the

sign of the magnetic field but based on low-energy approximations, all the other levels

was supposed to remain symmetric under changes of the external field signs. However,

we noted a shift between the spectrum of opposite fields together with oscillations in

the anomalous part of the Hall conductivity. Both of these results were not predicted by

the low-energy expansion implemented by Haldane.

Aiming to explain analytically these results, in chapter 3, we investigated the low-

energy expansion of the tight-binding Hamiltonian of the Haldane model. Using the

Landau quantization along with the Landau-Peierls substitution, we found the eigen-

states and the eigenvalues of the system. Then, motivated by the results of Supurenko

et al. [42] and Kretinin et al. [43] we incorporated the terms of order O(~k2) in the Taylor

expansion near of the Dirac point, to the terms related with the next nearest neighbor

hopping in the low-energy Hamiltonian.

We calculated the eigenstates and the eigenvalues of this new Hamiltonian and ob-

tained an expression for the energy spectrum which contains a field dependent shift

in the spectrum, and a term that adjusts the position of the energy levels and grows
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linearly with |n|. With these results, we calculated the Hall conductivity and found that

the field dependent shift in the spectrum produces oscillations that are similar to the

ones observed in the numerical calculations.

After proving that the field dependent shift is responsible for the oscillations in

the anomalous part of the conductivity, we proceeded to compare the results of the

analytical models (the original and the one with the O(~k2) terms) and the numerical

calculations obtained with KPM, to study the improvements in the description of the en-

ergy spectrum. By comparing these results, we found that the field-dependent constant

in the spectrum of the corrected Hamiltonian reproduces exactly the shift observed in

the numerical calculations. Also, it was observed that the effect of the corrections of

the terms that adjusts the position of the energy levels becomes more significant when

|n|� 1 .

The main result of this thesis is the correction of the energy spectrum of the Haldane

model in the limit of high magnetic fields. Unlike the approximative methods that are

commonly used in analytical approaches, the numerical calculations performed with

KPM allowed us to detect and correct the low-energy Hamiltonian to take into account

the differences between the energy spectrum for opposite fields that affect the Hall

conductivity and were previously ignored.

Recently the Haldane model has been realized in optical lattices using ultra cold

fermionic atoms in a periodically modulated honeycomb lattice [18]. Knowing this

we believe that these corrections an be observed in optical lattices where high pseudo

magnetic fields can be archived (due the limitation of the lattice size) and the next

nearest neighbor hopping intensity (t2) can assume arbitrary values.
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