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"Music washes away from the soul

the dust of everyday life."

Berthold Auerbach
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Resumo

Podemos estudar o poder computacional de modelos restritos de computação para
ajudar a esclarecer a natureza do speedup computacional. Do ponto de vista teórico,
pode ajudar a determinar que recursos são necessários e/ou su�cientes para computação
quântica universal. Essa questão também é de interesse no caso de implementações exper-
imentais em que haja restrições nas operações ou recursos disponíveis. Esta tese dedica-se
ao estudo de dois modelos restritos de computação quântica, provenientes da descrição
da evolução de partículas idênticas não interagentes em Mecânica Quântica.

A dinâmica de férmions não interagentes corresponde a um conjunto restrito de por-
tas de dois qubits conhecidas como matchgates. Circuitos de matchgates são simuláveis
classicamente se os qubits estão organizados em um grafo linear e as portas só atuam
entre primeiros vizinhos, e universais para computação quântica se as portas podem at-
uar entre qubits distantes ou, de forma equivalente, se a porta SWAP está disponível.
Nesta tese, eu generalizo esses resultados de duas formas. Primeiro, mostro que a SWAP
pertence a uma família contínua de portas capazes de tornar matchgates universais. Mais
especi�camente, mostro que qualquer porta de dois qubits que preserve a paridade (e não
seja um matchgate) pode ser adicionada ao conjunto completo de matchgates para se
obter computação universal e, além disso, dou uma interpretação desse fato em termos
de invariantes locais de portas de dois qubits. Em seguida, estudo o poder computacional
de matchgates entre qubits em grafos de conectividade arbitrários. Mostro que match-
gates podem realizar computação universal em qualquer grafo que não seja um ciclo ou
um caminho, e que eles são simuláveis classicamente se o grafo é um ciclo. Essa dico-
tomia persiste se restringimos o conjunto somente à interação XY, um subconjunto de
matchgates diretamente relacionado a diversas implementações de computação quântica.

Bósons não interagentes (e.g. ótica linear) dão origem a um modelo, proposto recente-
mente, conhecido como amostragem bosônica (BosonSampling). A tarefa de amostragem
bosônica consiste em: (i) preparar um estado de Fock de n fótons, (ii) evoluí-lo de acordo
com um interferômetro linear de m modos e (iii) medir as saídas do interferômetro na
base de Fock. Pode-se mostrar que, partindo de algumas conjecturas razoáveis relativas
a classes de complexidade, não é possível produzir, de forma e�ciente em um computa-
dor clássico, uma amostra da distribuição resultante desse sistema, nem de forma aproxi-
mada. Nesta tese mostro que, sob conjecturas semelhantes, a versão exata da amostragem
bosônica é difícil mesmo se o circuito ótico tem profundidade constante. Também descrevo
alguns experimentos, realizados em colaboração com grupos experimentais de Roma e
Milão, em que foi observada a interferência de três fótons em chips fotônicos de vários
tamanhos. Esses experimentos estão entre as primeiras implementações de amostragem
bosônica nesse regime. Os experimentos também evidenciam o efeito de agrupamento
(bunching) bosônico em interferômetros multimodo e a aplicação de protocolos de vali-
dação desses dispositivos. Esta tese contém descrições detalhadas de análises numéricas
realizadas sobre os dados experimentais, que foram omitidas das respectivas publicações.



Abstract

We can study the computational power of restricted models of computation in or-
der to shed light on the nature of quantum computational speedup. From a theoretical
perspective, it can help determine what resources are necessary and/or su�cient for uni-
versal quantum computation. This issue is also relevant in experimental settings where
the available operations or resources may be restricted. In this thesis, I study two dif-
ferent restricted models of quantum computation that stem from the behavior of free
indistinguishable quantum-mechanical particles.

The dynamics of noninteracting fermions correspond to a restricted set of two-qubit
gates known as matchgates. Matchgates are known to be classically simulable when acting
on nearest-neighbor qubits on a path, but are universal for quantum computation when the
gates can also act on more distant qubits or, equivalently, when SWAP gates are available.
Here, I generalize these known results in two ways. First, I show that SWAP is only one
in a large family of gates that can uplift matchgates to full quantum universality. More
speci�cally, I show that the set of all matchgates plus any nonmatchgate parity-preserving
two-qubit gate is universal, and I give an interpretation of this fact in terms of local
invariants of two-qubit gates. Second, I investigate the power of two-qubit matchgates
between qubits in an arbitrary connectivity graph, showing that they are universal on any
connected graph other than a path or a cycle, and that they are classically simulable on a
cycle. This same dichotomy holds for the XY interaction, a proper subset of matchgates
that arises naturally in several implementations of quantum computing.

Noninteracting bosons (e.g. linear optics) give rise to a recently proposed restricted
model known as BosonSampling. The BosonSampling task consists of (i) preparing an
initial Fock state of n identical photons, (ii) interfering these photons in an m-mode linear
interferometer, and (iii) measuring the resulting output distribution in the Fock basis. It
can be shown that sampling approximately from the resulting distribution should be
classically hard, under reasonable complexity assumptions. Here I show, under similar
assumptions, that exact BosonSampling remains hard even if the linear-optical circuit
has constant depth. I also report several experiments performed in collaboration with
Quantum Optics groups in Rome and Milan, where three-photon interference was observed
in integrated interferometers of various sizes, providing some of the �rst implementations
of BosonSampling in this regime. The experiments also focus on the bosonic bunching
behavior in multimode interferometers, and on the validation of BosonSampling devices.
This thesis also contains detailed descriptions of the numerical analyses done on the
experimental data, and which were omitted from the corresponding publications.
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1

1 Introduction and thesis outline

Quantum computing is a new computing paradigm, in which the basic components

that make up the computer work in a regime (e.g. they are su�ciently small) where

they behave according to the laws of Quantum Mechanics. One could expect the coun-

terintuitive properties of the quantum world to hinder the engineering of our electronic

devices�this is true, in a sense, as it imposes limitations on the miniaturization of elec-

tronic components, and conventional computer processors will soon reach a fundamental

limit on the number of transistors that can be packed on a silicon chip. However, quan-

tum computing is based on viewing the unusual properties of quantum systems not as a

hindrance, but rather as a resource to be exploited for the performance of computational

tasks.

The idea of using quantum systems to process information was put forth in the 1980s,

most notably by the work of Feynman [41]. It was known that classically simulating a

quantum system was a very hard problem, especially because (but not only because) the

Hilbert space used to describe a system of n particles grows exponentially with n, and

the runtime of any naive algorithm quickly blows up for systems composed of more than

a few particles. It was then suggested that, rather than using a classical computer to

simulate a quantum system, it might be simpler to use a suitably-controllable quantum

system to simulate another. This became known as a quantum simulator, and was the

�rst candidate of a task in which a quantum processor can, in principle, outperform a

classical one. As a matter of fact, to this day quantum simulation remains one of the

most prominent expected applications for a quantum computer [87].

After Feynman's original proposal, quantum computing gathered further momentum

with the works of Deutsch [37], Simon [124], Shor [123, 122], Grover [51], Lloyd [87],

and many others. Most notably, two contributions of Shor in the 1990s helped gather

attention to this then-developing �eld: Shor's algorithm for factoring [122] and the concept

of quantum error-correcting codes [123]. The factoring algorithm consists of a routine

to obtain the prime factorization of an n-digit number exponentially faster than any
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known classical algorithm (and, in fact, faster than any classical algorithm is conjectured

to be). This algorithm was the �rst example of a practical and �non-academic� task

with a quantum computational speedup, and it remains the quantum algorithm most

well-known by the general public, given that it has drastic consequences to modern day

cryptography. However, even then there was still a lot of skepticism regarding quantum

computing, mostly due to the belief that imperfections in real-world systems would make

it impossible to achieve the high level of precision necessary for quantum computing,

and that errors would acumulate fast enough to disrupt any useful computation. The

answer to these fears came with the works of Shor [123] and Steane [130] on quantum

error correction, which showed that it is, in fact, possible to measure and correct errors

that happen during the quantum computation. The several advances made since then,

including improved error correcting techniques [49], fault-tolerance and the threshold

theorem [7], and the development of several alternative models of quantum computation,

such as adiabatic [146, 8], topological [99], and measurement-based [109, 108] quantum

computation, have been making the skeptics' job progressively harder, as one needs to

formulate error models that are tailored to rendering all of these results useless whilst not

contradicting the numerous experimental observations of quantum mechanics [67, 68].

However, as much as the motivation and theoretical feasibility of quantum computing

have been thoroughly established in the last two decades, experimental and technological

limitations still hold practical quantum computing in the distant future�to illustrate

this point, note that the largest integer factored with Shor's algorithm to date is 21

[92]. In fact, it is still not clear which physical platform will be the most feasible for

implementation of quantum computers, nor if this should be done in the circuit model or

using an alternative model. These issues naturally lead to the study of restricted models

of computation, which are the main focus of the results reported in this thesis.

For our purposes, a restricted model of quantum computation consists of some set

of operations that do not, a priori, contain the standard �formula� for a quantum com-

puter: (i) preparation of a polynomial number of qubits in the computational basis, (ii)

a sequence of a polynomial number of arbitrary two-qubit gates, and (iii) �nal arbitrary

single-qubit measurements, on the computational basis, of a suitably large subset of the

output. We may de�ne a restricted model by imposing further limitations on one, or

all, of these ingredients. By studying restricted models of computation we can better

understand the physical origin of the quantum computational speedup, what the minimal

and most feasible resources for implementation of a fully scalable quantum computer are,

about the computational properties inherent to particular physical systems, etc. For ex-
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ample, one can consider the computational power of a quantum computer that operates

with limited amounts of entanglement [65, 149], or with a restricted set of operations

(such as e.g. Cli�ord gates [47, 66] or matchgates [143, 134]), or what happens if it can

only perform a �xed number of rounds of operations [135]. These restrictions may arise

directly from known experimental implementations, such as e.g. the hardness of obtaining

suitably large and controllable optical nonlinearities that motivated the study of quantum

computing with linear optics [78]; they may arise from the necessity of implementing a

given computational task, such as e.g. the hardness of implementing fault-tolerant com-

putation with non-Cli�ord gates; �nally, they may arise from the modeling of more exotic

scenarios, such as quantum computing with closed timelike curves [38, 131, 36, 88]. There

are too many scenarios and motivations to list at length here, but we will review several

examples in Chapter 2.

In this thesis, we will be mainly concerned with two restricted models of computation

that arise from the description of the evolution of noninteracting particles. The �rst is

the model of matchgate quantum computing, and the second is a recent proposal known

as BosonSampling [4].

Matchgates are a restricted set of two-qubit gates that can be related to free fermions

via the Jordan-Wigner transformation, which maps spin operators to fermionic operators.

They provide a transition from classical to quantum computational power based on a seem-

ingly �mild� change in underlying restrictions: if the qubits are arranged on a path, the

output of a circuit composed only of nearest-neighbor matchgates can be e�ciently simu-

lated classically [143, 134], whereas any quantum computation can be e�ciently simulated

by a circuit of matchgates acting on �rst and second neighbors [64, 72]�alternatively, this

change in connectivity can be simulated by suitable use of the swap gate. In this thesis,

I generalize these results in two main ways: (i) I use the theory of local invariants of

two-qubit gates to investigate what property the swap gate has that allows it to enact

this transition between classical and quantum computational power on the set of match-

gates, and describe a continuous family of two-qubit gates that can replace it; and (ii) I

show that changing the underlying qubit connectivity graph can also bridge this gap in

computational power, and that matchgates are in fact universal if they can act according

to any connected graph other than a path or a cycle, and they are classically simulable on

a cycle. I also show that this same dichotomy holds for the XY interaction, a proper sub-

set of matchgates that arises naturally in several implementations of quantum computing

[59, 105, 156, 98]. It should be noted that, while matchgates are related to the evolution

of free fermions, our results treat them as two-qubit gates in their own right, and points
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(i) and (ii) in fact depart from the correspondence with the free-fermion picture.

BosonSampling is a restricted model directly related to free bosons, and well-suited

to recent advances in linear-optical quantum information processing. The BosonSampling

task consists of (i) preparing an initial Fock state of n identical photons, (ii) interfering

these photons in anm-mode linear interferometer, and (iii) measuring the resulting output

distribution in the Fock basis. As shown in [4], sampling from the distribution obtained at

the output of a device that performs this task should be classically hard, under reasonable

complexity assumptions. This result is similar in spirit to others concerning quantum

circuits built out of a constant number of two-qubit gate layers [135], circuits built only

out of commuting quantum gates [22], among others. In this thesis, I show that this result

also holds if BosonSampling is performed only with a constant number of beam splitter

layers.

The authors of [4] go even further, and their main technical contribution is to show

that the BosonSampling task should be hard even if we allow the classical simulator to

sample only from a distribution that approximates the ideal one. This approximate Boson-

Sampling result brings the model closer to real-world implementations, where experimen-

tal imperfections mean that any quantum device will also only approximate the ideal out-

put distribution. In fact, since its inception in 2011, several quantum optics groups have

reported small-scale experiments related to BosonSampling [27, 35, 129, 138, 128, 30, 127].

In this thesis, I report several of these experiments that were performed by the Quantum

Optics groups in Rome and Milan [35, 128, 127], in a collaboration that I was part of.

The experiments consisted of observation of three-photon interference in integrated inter-

ferometers of various sizes. The experiments also focused on other aspects of the photonic

behavior in this regime, such as bosonic bunching, and on the certi�cation of the observed

output distributions. I describe the setup and results of these experiments, but focus on

the theoretical motivation and numerical analyses that were my main contribution, pro-

viding a great deal of detail that was omitted from the corresponding publications.

I will elaborate on the motivation, technical de�nitions, and historical background for

matchgates and BosonSampling in the introductions of their respective chapters. For now

I just point out the fascinating contrast between these two models: while free fermions

are classically simulable and thus presumably cannot display any quantum computational

power, bosons outperform classical computers in a particular task that, furthermore, seems

to consist only of �behaving naturally�. This contrast suggests a deep connection between

the physical nature of a system and its computational power, arguably rivalled only by
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the possibility of universal quantum computing itself.

1.1 Thesis outline

By necessity, this thesis contains a great deal of material reviewing previous results.

Chapters 2, 3 and 4 contain mostly revision material pertaining, respectively, to general

quantum computing, matchgates, and BosonSampling. Chapters 5 and 6 consist of new

results on matchgates and BosonSampling, respectively. Chapter 5 is based on my co-

authored papers [25, 26], published in Physical Review A, as well as [24] recently accepted

for publication in Quantum Information and Computation. Chapter 6 is based on my co-

authored paper [35], published in Nature Photonics, as well as [128], published in Physical

Review Letters and [127], currently submitted for publication. In more detail, this thesis

is organized as follows:

In Chapter 2, I review some basic de�nitions, which are standard in quantum com-

puting research. In Section 2.1 I review the notions of quantum universality and encoded

universality. In Section 2.2 I describe several notions of exact and approximate classical

simulation of quantum circuits. In Section 2.3 I describe the formalism of second quan-

tization, the standard physical toolset for describing identical quantum particles, which

is also particularly suitable for the subsequent description of the corresponding compu-

tational models. In Section 2.4 I give a brief overview of complexity theory, including

formal descriptions of the complexity classes that will play the most prominent roles in

the remainder of the thesis. Finally, in Section 2.5, I give a general overview of restricted

models of computation, including several that seem to have intermediate computational

power between classical and quantum computation. The main purpose of Chapter 2 is

to give some basic de�nitions that we will need, and which may be taught in a Physics

course but not in a Computer Science course and vice-versa. Most quantum computing

researchers will be familiar with most of this chapter, but these concepts are included for

completeness.

In Chapter 3, I review some previously-known results regarding matchgates. Although

these results are not new, their proof details aid in the exposition of our new results in

Chapter 5. I begin with the formal de�nition of this model in Section 3.1, as well as a

historical overview. In Section 3.2 I reproduce the proof that matchgates are classically

simulable when acting on nearest-neighboring qubits aligned on a path, which uses the

Jordan-Wigner transformation to map matchgates into fermionic operators. In Section 3.3
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I show how a small change in the underlying restrictions�namely, allowing matchgates to

act between second-neighboring qubits�enables universal quantum computation. In Sec-

tion 3.4 I brie�y review, for completeness, results connecting the power of nearest-neighbor

matchgates to that of other restricted models, such as log-space quantum computing.

In Chapter 4, I review some previously-known results regarding quantum computing

with linear optics. In Section 4.1 I give a brief historical overview, and discuss the advan-

tages and disadvantages of processing quantum information with photons. In Section 4.2

I describe the seminal KLM scheme [78] that enables universal and scalable quantum

computing with linear optics if operations can be adapted on the outcome of intermediate

measurements. Although our new results in Chapter 6 will not concern the KLM scheme

directly, they use some of its constructions. In Section 4.3 I give a simple proof, based on

the KLM scheme, that exact BosonSampling is hard up to some reasonable complexity

assumptions, which was �rst shown in [4]. I discuss how this proof relates to other re-

stricted models, such as quantum computers that have constant depth, or are built out of

commuting gates. I discuss the underlying restrictions, as well as general pros and cons

of the BosonSampling model. Section 4.4 is devoted to the approximate version of Boson-

Sampling. Since the original paper that proposed it is very long and highly technical [4],

there is no hope of giving a complete review, so we focus on some of the speci�c technical

aspects that are more relevant to our new results in Chapter 6.

In Chapter 5, I present our new results concerning matchgates. In Section 5.1 I

study how to supplement the computational power of nearest-neighbor matchgates with

other two-qubit gates. The swap gate is one previously-known such example, and I

generalize this results to show that any parity-preserving two-qubit gate�that is, a gate

that does not connect two-qubit states of di�erent parity�can replace the swap and

provide universal computational power to matchgates. In Section 5.2 I study the bridging

of this gap from classical to quantum computational power in a completely di�erent

way. Rather than including new operations, we investigate the power of matchgates

acting according to di�erent connectivity graphs. We show how the previous results (i.e.

classical simulability on nearest-neighbors and quantum universality on nearest and next-

nearest neighbors) can be recast in this formalism, and we generalize them to show that:

(i) matchgates are universal acting on any graph that is not a path or a cycle; and (ii)

matchgates are classically simulable on a cycle. This establishes a dichotomy, showing that

the jump in computational power is abrupt, and that there is no connectivity graph for

which an intermediate computational power (such as that of BosonSampling) may arise. I

also show that this same dichotomy holds for the XY interaction, which forms a subset of
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matchgates. Although this latter result implies the former, the construction using general

matchgates is more explicit, and more e�cient in general. Finally, in Section 5.3 I make

some �nal remarks, discussing possible open questions, as well as the relation between

our results and other works.

In Chapter 6, I present our new theoretical and experimental results concerning Boson-

Sampling. In Section 6.1 I show that the exact version of the BosonSampling result, re-

viewed in Section 4.3, holds even if the linear-optical circuit only has a constant number

of layers of beam splitters. In Section 6.2 I describe several aspects of the experiments,

such as experimental setup, numerical analysis, etc, that were used in the experiments

reported in Section 6.3. I give special focus to the numerical analyses, where I show

simulations of the expected behavior of di�erent matrix ensembles for the BosonSam-

pling task, as well as a numerical procedure for re�ning the process tomography for linear

interferometers. Section 6.3 is devoted to the results of the three recently performed

experiments, namely: (i) one of the �rst implementations of BosonSampling in the 3-

photon, 5-mode regime (Section 6.3.1), (ii) observation of bosonic bunching e�ects on

three photons interfering in interferometers of up to 16 modes (Section 6.3.2), and (iii)

validation of BosonSampling devices of 3 photons in interferometers of 5, 7, and 9 modes

(Section 6.3.3). Finally, Section 6.4 consists of some concluding remarks, where I discuss

the open questions and major challenges still remaining for scalable implementations of

the BosonSampling model, inspired both by theoretical and experimental motivations.

Finally, Chapter 7 is devoted to concluding remarks. I make a brief summary of

the results obtained here, and how they �t into the larger picture of current research in

quantum computing. I also describe a few more questions that were left open, as well as

other directions in which our results can be expanded.

The results of Chapter 6 are supported by Appendix A and Appendix B, which

contain the Mathematica c© code used for the numerical simulations, and Appendix C

which contains tables describing the speci�cations of each linear interferometer.

1.2 Notation and conventions

In this section, I summarize the basic notation that will be used in this thesis. My

intention is that the notation and graphical representations described here be maintained

consistently throughout the thesis. However, it will often prove necessary to locally change

the adopted notation, especially in Chapter 6 where we report the experimental results.
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I opted for using the original �gures, published in the respective journals, and so I con-

sidered it more instructive to adapt the local notation to re�ect that of the �gures. To

avoid any confusion, these small changes in notation and graphical representations will

be accompanied by corresponding remarks, besides being clear from context.

For reference, the recurring single-qubit gates that we will need, which are standard

to quantum computing literature, are the Hadamard (H) gate, the π/4 (P ), the π/8 (T )

gates:

H =
1√
2

(
1 1

1 −1

)
, P =

(
1 0

0 i

)
, T =

(
1 0

0 eiπ/4

)
,

as well as the Pauli gates:

X =

(
0 1

1 0

)
, Y =

(
0 i

−i 0

)
, Z =

(
1 0

0 −1

)
.

The recurring two-qubit gates we will need are the well-known controlled-NOT (cnot),

controlled-phase (cz), and swap gates:

cnot =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , cz =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , swap =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,

as well as the the less common fermionic swap (f-swap) and i-swap:

f-swap =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

 , i-swap =


1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

 .

We will also mention in passing the three-qubit To�oli gate, given by:

To�oli =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0


.

We will also refer to arbitrary parity-preserving two-qubit gates by the shorthandG(A,B),
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Figure 1.1: (a) A qubit prepared in the state |ψ〉, then subject to the single-qubit gate U at
some point in the circuit, and measured at the end of the circuit in the computational basis.
(b) The two-qubit cz gate. (c) The two-qubit swap gate. (d) Similar to (a), but for an optical
circuit. An optical mode is prepared in a Fock state of N photons, and subject to a �nal photon-
number-resolving detection. (e) A phase shifter by angle φ. (f) A beam splitter with angle θ.
Often, it θ is omitted, it represents a 50:50 beam splitter (i.e. θ = π/4). Notice that there are
marked di�erences between the two representations, mainly in the preparation, measurement and
application of two-qubit/two-mode operations. In this thesis, it will always be clear by context
which system we are talking about.

which stands for

G(A,B) :=


A11 0 0 A12

0 B11 B12 0

0 B21 B22 0

A21 0 0 A22

 ,

where A and B are unitary 2× 2 matrices. In Figure 1.1(a-c) we display some standard

circuit graphical notation.

In most of the thesis we will consider continuous families of single- or two-qubit gates,

so it will be convenient to denote the family of n-qubit unitary gates generated by the

n-qubit Hamiltonian K as RK(θ) = exp (iθK).

In several sections in this thesis, we will refer to linear-optical circuits rather than
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standard qubit circuits. The main elements of these circuits are phase shifters and beam

splitters. If there are only two modes, a phase shift by an angle φ (on the �rst mode) and

a beam splitter by an angle of θ correspond respectively to the 2× 2 matrices:

UPS(φ) =

(
eiφ 0

0 1

)
, UBS(θ) =

(
cos(θ) i sin(θ)

i sin(θ) cos(θ)

)
,

If these optical elements are embedded in larger interferometers, the unitary matrices that

describe them are the straightforward generalization that acts as above on the involved

modes and the identity on the rest. A beam splitter can be alternatively parameterized

by the transmissivity t := cos(θ) or the transmission probability T := t2, which are

parameters more natural to the quantum optics literature. The graphical notation for a

linear optical circuit is very similar to that for a standard quantum circuit, but in the latter

the lines correspond to qubits whereas in the former they correspond to optical modes.

In Figure 1.1(d-f) we display some standard graphical representation for optical circuits,

and the �gure legend makes explicit the di�erences between the two representations. We

will deviate from this graphical representation from optical circuits in Section 6.3, where

we will give preference to a representation that more closely resembles the integrated

interferometer architectures, but that will be clear from context.

For a single-qubit state, the basis {|0〉 , |1〉} is the computational basis, and the basis

{|+〉 := H |0〉 , |−〉 := H |1〉} is the X basis (because it is the basis of eigenvectors of the

Pauli X gate). The computational basis of an n-qubit state is the corresponding set of

all tensor product of elements of the computational bases of each qubit.

Often, we will say that a quantity has poly(n) growth if there is some constant k ≥ 0

such that the referred quantity grows as O(nk). A log(n) growth means that the quantity

grows as O(logn), and an exp(n) growth means that the quantity grows as O(tn) for some

constant t > 1. These behaviors will also often be stated as, for example, �a polynomial

number of qubits�, �an exponential amount of resources�, etc. In these cases, it will be

implictly clear that these quantities grow as the function of some straightforward number

paremeterizing the size of the problem or of the circuit.

Finally, we denote {0, 1}∗ as the set of all n-bit strings for every n ∈ N.
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2 Preliminary de�nitions

Quantum Computation is an extensively multidisciplinary research area and, as such,

brings together researchers with vastly di�erent backgrounds and formations. As a con-

sequence, this thesis contains Physics material that is not typically found in a Computer

Science course and vice versa. With this in mind, I decided to include an introductory

chapter to �lay the groundwork�, so to speak, for the remainder of the thesis. This chapter

is not intendend as a complete review on any particular subject, but rather focuses on

speci�c concepts from several areas that will play major roles throughout the subsequent

chapters, whilst also �xing important terminology.

This chapter is organized as follows. Section 2.1 discusses the concept of universal

quantum circuits, including a generalization of the concept known as encoded universality.

Section 2.2 reviews several notions of classical simulations of quantum circuits, namely

strong simulation, and exact and approximate weak simulation. Section 2.3 is devoted

to identical particles in Quantum Mechanics and the formalism of second quantization.

In Section 2.4 I discuss complexity theory, and de�ne the most prominent complexity

classes that will be important in later chapters. Finally, in Section 2.5 I discuss restricted

models of quantum computation, reviewing some important known results about a few

such models.

2.1 Quantum universality

Let us begin this introduction with a brief review on quantum circuits and quan-

tum universality (most of the information contained here can be found in any standard

textbook, such as [100]).

A classical circuit can be seen as a mapping from bit strings to bit strings. In Sec-

tion 2.4, when we review complexity theory, we will address the more interesting matter

of using circuits to solve problems, in which case a circuit is interpreted as mapping an
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input bit string encoding a question to an output bit string encoding an answer, and the

central question is whether this can be done in a feasible amount of time and/or space. In

a similar spirit, a quantum circuit can be viewed simply as a mapping between quantum

states. Fortunately, the formalism for describing transformations between di�erent states

was developed decades ago, in the context of quantum mechanics, to describe the dynam-

ical evolution of physical systems. Here, we use a simpli�ed version of this formalism,

which is standard in the theory of quantum computing, where we only consider composite

quantum systems consisting of a collection of two-level systems (i.e. qubits).

Consider the n-bit string x = x1x2x3 . . . xn. The corresponding computational state

is the tensor product |x〉 = |x1〉 |x2〉 . . . |xn〉, and the collection of these states for all x

forms a basis of the Hilbert space, known as the computational basis. A quantum circuit

can then described by some 2n × 2n unitary matrix U , which takes as input some state

|ψin〉 and maps it to an output state |ψout〉 as

|ψout〉 = U |ψin〉 .

It is a well-known fact (see e.g. [57, 110, 100]) that any such unitary matrix U can be

decomposed in terms of matrices acting on only two qubits at a time�each of these

building blocks is denominated a quantum gate. We could, more generally, consider

quantum gates acting on any small constant number of qubits at a time (e.g. the three-

qubit To�oli gate), but these will not appear in important roles throughout this thesis.

The set of all two-qubit gates is a particular example of a universal set. More generally,

a set of quantum gates is universal for quantum computation if it densely generates the

group of all 2n × 2n unitary matrices.

Throughout most of this thesis, we will consider continuous families of two-qubit gates

(or two-mode optical elements, in the case of linear optics). This is not the most realistic

scenario: no real-word implementation of quantum computers will have perfectly control-

lable parameters, and it becomes necessary to search for discrete sets of gates, de�ned

up to some experimental error tolerance, that are also universal. Furthermore, in some

implementations (e.g. free-space linear optics) a certain parameter may be hard-wired in

the physical device (e.g. the re�ectivity of a beam splitter), in which case it might be more

feasible to calibrate and benchmark the fabrication of several identical copies of the same

device, rather than various devices with di�erent values for that particular parameter, and

this also merits the use of a discrete universal set of gates. As an example, it is well-known

that products of T and H gates form a set that is dense in the set of all single-qubit gates,

SU(2). It is also known that the two-qubit cnot gate together with arbitrary single-qubit
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gates generates the set of two-qubit gates, SU(4). By previous considerations, the set of

all two-qubit gates densely generates the set of n-qubit gates, SU(2n), for any n. Con-

catenating these claims, we conclude that the discrete set {H,T,cnot} is universal for
quantum computation in the sense de�ned above.

The need for a universal discrete set of gates concerns mostly the theory of fault-

tolerant quantum computing, that is, the ability to measure and correct errors that occur

during the process su�ciently fast so that they do not completely disrupt the computation.

As mentioned previously, in most of this thesis we will consider families of gates param-

eterized by continuous parameters, and so will not be concerned with fault-tolerance per

se. This choice is based on two main reasons. First, our results adopt a more conceptual

point of view (e.g. what resources make a particular restricted set of operations universal)

rather than a practical one (e.g. what is the most e�cient way to perform a particular

computation). In this spirit, proving non-fault-tolerant universality is a good �rst step

towards proving its fault-tolerant version. Second, the well-known Solovay-Kitaev the-

orem ([74], see also [100]) guarantees that, if we have a quantum circuit built out of a

speci�c universal set of gates, we can rewrite it in terms of any other universal set with

a modest overhead in the number of operations. Importantly, this is true even if one or

both of the sets are discrete, in which case the Solovay-Kitaev theorem guarantees that

any gate from one of the sets can be approximated within accuracy ε by sequences of

length O[logc(1/ε)] of gates of the other set, for some constant c. As such, all universal

sets are equivalent, in the sense that any problem that can be solved e�ciently (in a sense

to be de�ned precisely later) by one can also be solved e�ciently by any other.

It is important to point out that, while a universal set of gates generates a set dense

in SU(2n), by de�nition, this does not say anything about e�ciency. In fact, a simple

counting argument (see e.g. [100]) shows that an exponential number of two-qubit gates

is needed to approximate an arbitrary SU(2n) matrix, and this is considered highly un-

feasible. In light of this, a unitary transformation is only considered feasible if it can be

implemented by a circuit of polynomially-many quantum gates1 (we will return to this

distinction between exponential and polynomial growth in Section 2.4).

Another standard de�nition we will need is that of a uniform family of quantum

circuits. For our purposes, a uniform family of (quantum or classical) circuits is a set

of circuits {Cn|n ∈ N}, where n is the number of qubits the circuit takes as input, and

whose description can be classically computed from n in poly(n) time. In practice, this

1In this sense, the Solovay-Kitaev theorem is fundamental since the polylogarithmic overhead it pro-
vides results in a mapping between universal sets that preserves the polynomial versus exponential gap.
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means that the circuits do not depend on the inputs, only on their size, and that the gate

sequences can be computed e�ciently (including all matrix elements of each gate to some

desired precision, if the gate set is continuous). This is a slightly technical condition,

but if uniformity is not imposed, some computational properties of the devices could be

ill-de�ned. For example, we could somehow hide away the answer to some problem on

the decimal expansion of the matrix elements of the gates, and it would even be possible

to compute functions which are known to be uncomputable.

Another concept that will be central to most of our results is that of encoded univer-

sality. Often, a certain restricted gate set clearly cannot be universal in the sense de�ned

before for some fundamental reason. For example, in Chapter 3 we will encounter a class

of two-qubit gates that is parity-preserving�that is, it not does connect two-qubit states

of di�erent parity. Any circuit composed only of these gates cannot take a computational

state of even parity (say, |00 . . . 0〉) into another of odd parity (say |10 . . . 0〉), and thus it

trivially does not generate SU(2n) when acting on n qubits. However, we will see that in

some cases these gates can still perform universal quantum computation in a generalized

sense. By encoding each qubit of information into more than one physical qubit, we can

circumvent this limitation. For parity-preserving gates, for example, it will be convenient

to interpret the two-qubit state |00〉 as encoding bit 0, and |11〉 as encoding bit 1, and

simply disregard states |01〉 and |10〉. As we will see, it will be possible to construct a

gate set that: (i) preserves this encoding, and (ii) is universal on the encoded space (i.e.,

generates any single- and two-qubit gate on the encoded qubits), and thus performs any

desired quantum computation at the cost of doubling the number of qubits. Throughout

this thesis we will occasionally denote an encoded state or gate by a subscript L (for

logical) if there is chance for ambiguity. We will also denominate the encoded states as

encoded, logical or computational qubits, whereas the actual qubits that compose them

will be denoted as physical qubits.

Finally, we point out that this model of quantum computation based on circuits,

which is called simply the circuit model, while being the most common setting in which

to describe quantum computers, is not the only one. An alternative model we will occa-

sionally need is the measurement-based model of quantum computation (MBQC). MBQC

is a very successful and extensively studied model, and a complete discussion is unfor-

tunately beyond the scope of this thesis, so we will restrict ourselves to a description of

what the computation consists of, and further discussion can be found e.g. in [109, 108].

In essence, an MBQC protocol can be implemented in two steps: �rst, prepare a highly-

entangled state, and then sequentially measure each qubit in a speci�c single-qubit basis.
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One important requirement is that the measurements must be adaptive, in the sense that

the basis on which each measurement is performed, as well as the meaning of the out-

come, depends on the results of previous measurements. By measuring the state in a

well-de�ned (and e�ciently-computable) order, one �forces� the information to propagate

from qubit to qubit, and the �nal output qubits encode the result of the computation. A

more explicit description will be given in Chapter 6.

2.2 E�cient classical simulability

One way to show that a physical system or restricted model of quantum computa-

tion has limited computational power is to show that it is e�ciently classically simulable2.

Naturally, this conclusion relies on the conjecture that quantum computers are more pow-

erful than classical computers�often, in the study of computational complexity, results

must be conditioned on plausible assumptions, and unconditional proofs are remarkably

rare. As we will see in Section 2.5, some restricted classes of quantum computation may

display features considered essential for a quantum speedup, such as unbounded entan-

glement [65], but nonetheless be classically simulable. In this case, they cannot o�er a

quantum speedup, no matter how entangled or otherwise complex the states of the system

may look a priori. Since classical simulability is such a central concept throughout this

thesis, let us de�ne it formally.

There are several possible de�nitions of classical simulability, with varying degrees

of strength. I will now give a description of a few that will be useful later on, with

some remarks about where each type of simulation arises naturally and how they relate

to each other. Since these are common concepts in quantum computing literature, the

references provided just refer to those where the de�nition was taken from, stated in the

most convenient form for our purposes. The most restrictive notion of simulation is the

aptly named:

De�nition 2.1. Strong simulation [64, 148]: Let Cn be any uniform family of quantum

circuits, de�ned together with a speci�ed class of (i) input states and (ii) output measure-

ments. Cn is classically strongly simulable if any probability or conditional probability of

the output measurements can be computed by classical means to m digits of accuracy in

poly(n,m) time.

2By e�cient, we mean in polynomial time, as it is always possible to do a classical simulation of a
quantum system if unbounded time is allowed, just by keeping track of the vectors in Hilbert space. In
this thesis, �classically simulable� will always refer to e�cient simulation.
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In most cases, input states are taken to be either product states or just computational

basis states, and output measurements are taken as single-qubit measurements in the

computational basis3. If the output consists on several disjoint measurements, it may

be necessary to calculate both the probabilities and conditional probabilities�that is,

the probability of observing a measurement outcome conditioned on results of previous

measurements�in order to also capture their correlations. This condition will guarantee

that strong simulation always implies weak simulation, as we will see shortly.

To understand why this is known as strong simulation, note that computing the

probabilities to m digits of accuracy in poly(n,m) time corresponds to exponential pre-

cision. Quantum computers are probabilistic in nature, and outcome probabilities are

accessed only by performing repeated measurements and compiling the results, which

cannot achieve exponential precision in polynomial time. To illustrate this, consider a

quantum experiment repeated 1000 times. The table of experimental results provides

each outcome probability with precision no larger than 1 in 1000, i.e., just 3 digits of

accuracy. If the number of digits of accuracy provided by the quantum computation it-

self only grows logarithmically with the elapsed time, clearly De�nition 2.1 makes for an

unfair comparison. To drive the point home further: even the quantum computer cannot

strongly simulate itself. Nonetheless, this is an unfair �ght that classical computers often

win�as we will see in Section 2.5 and Chapter 3, there are several restricted classes of

quantum circuits where strong classical simulation can be achieved.

This discussion naturally suggests a less stringent notion of classical simulation:

De�nition 2.2. (Exact) Weak simulation [22, 148]: Let Cn be any uniform family

of quantum circuits under the same conditions as De�nition 2.1. Cn is classically weakly

simulable if the probability distribution over the measurement outcomes can be sampled

by purely classical means in poly(n) time.

The main di�erence between this notion of simulation and the previous one is that,

rather than asking the classical computer to compute the outcome probabilities, we ask

only that it sample from the same output distribution. By previous considerations, this

simulation only provides the probabilities with a logarithmic number of digits (i.e. poly-

nomial precision). As the names suggest, strong simulation implies weak simulation [135].

This is not entirely obvious�in general, the output distribution we wish to simulate may

3Technically, the class Cn is strongly simulable relative to the choices of (i) and (ii), as there are
numerous examples of families of circuits where the gap between classical and quantum computational
power is bridged just by a change in (i) or (ii). Throughout this thesis, however, this choice will always
be made explicit.
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be de�ned on an exponentially large space, and it would not be possible to compute and

store the probabilities of all outcomes. Nonetheless, a weak simulation can be obtained

from a strong simulation as follows: (i) choose one measurement and calculate its associ-

ated probabilities; (ii) �x the value of the corresponding output bits by a classical �coin

toss� according to the computed probabilities; (iii) choose another measurement and re-

peat steps (i) and (ii), calculating probabilities conditioned on previously �xed outcomes,

until all outcomes have been �xed. It is clear that the �nal �xed bit string has been

sampled from the same distribution as that generated by the quantum computer.

As strong simulation implies weak simulation, one may wonder whether the latter is

relevant. In fact it is, as there are certain quantum computations that are very hard to

simulate strongly, but can be weakly simulated (see [148] and references therein).

Weak simulation is clearly a fairer comparison between classical and quantum comput-

ers, as we now only require the classical computer to �behave� like the quantum computer,

in a well-de�ned sense. For example, suppose we are given a black-box device and told

it is a quantum computer that performs some particular calculation. If the black box

was actually a classical computer, a weak simulation of the quantum computer would be

su�cient to trick us.

However, we can de�ne even weaker notions of simulation, based on the fact that a

real-world quantum computer will be subject to noise, experimental imperfections, etc.

Let us now de�ne notions of approximate weak simulation, where the classical simulator is

only required to sample from a distribution close to the ideal quantum one�presumably,

that is the best a real-world quantum computer itself can do. First, let us de�ne two

notions of approximate distributions: let p(x) and q(x) be two distributions de�ned over

the same sample space. We say p is close to q with multiplicative error c ≥ 1 if, for every

x in the sample space,
1

c
q(x) ≤ p(x) ≤ cq(x). (2.1)

And p and q are ε-close in total variation distance if

||p− q|| = 1

2

∑
x

|p(x)− q(x)| < ε (2.2)

We now de�ne two natural notions of weak simulation based on these de�nitions of

error [22]:

De�nition 2.3. Let Cn be any uniform family of quantum circuits under the same con-

ditions as De�nition 2.1. Cn is classically weakly simulable with multiplicative error c if
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there is a family of probability distributions parameterized by n, close to the ideal quan-

tum output distribution with multiplicative error c, and that can be sampled by purely

classical means in poly(n) time.

De�nition 2.4. Let Cn be any uniform family of quantum circuits under the same condi-

tions as De�nition 2.1. Cn is classically weakly simulable within ε total variation distance if

there is a family of probability distributions parameterized by n, ε-close in total variation

distance to the ideal quantum output distribution, and that can be sampled by purely

classical means in poly(n) time.

These two de�nitions are clearly weaker than exact weak simulation. Furthermore,

it is not hard to show that the �rst implies the second: if two probability distributions

are close in multiplicative error c, then they are ε-close in total variation distance with

ε = c− 1. However, the converse is not true. Suppose we have a distribution with a few

extremely unlikely outcomes, and we approximate it by setting the probability of these

outcomes to 0 (and normalizing the rest). The resulting distribution will be ε-close in

total variation distance to the original one, for some suitable ε bounded by the discarded

probabilities, but it will not be multiplicatively close for any value of c.

For usual quantum computation, these notions of approximate simulation are often

unnecessary, due to the power of quantum error correction. If the error rates are smaller

than a certain value, the threshold theorem (see e.g., [49] for an introduction to this

subject) guarantees, under some reasonable assumptions, that we can correct the errors

faster than they happen. However, as we will see in Chapter 4 and Chapter 6, there are

restricted models of computation that do not (yet) have a notion of error correction, and

the notion of approximate simulation is more meaningful.

Finally we point out that, from a computational complexity perspective, all these

de�nitions of simulation might already be too strong�conceivably, a classical computer

might be able to solve the same decision problems as a particular class of quantum com-

puters, without ever needing to explicitly simulate them. We will return to this point on

Section 2.4, when we review computational complexity classes.

2.3 Identical particles in QM

In the classical world, we are used to describing the states and trajectories of objects as

if they were perfectly distinguishable. It is natural to assume that one can simply pin labels
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to particles and follow their dynamics, and their �identity� will somehow be preserved.

However, in the quantum world the situation is not so simple. Consider a system of two

particles, identical in every aspect (charge, spin orientation, etc.), evolving according to

some dynamics. To distinguish these particles, one would need to follow their trajectories

individually�but quantum mechanics clearly forbids this, as the particles do not even

have well-de�ned trajectories. In fact, quantum mechanical particles are fundamentally

indistinguishable.

To enforce this indistinguishability, quantum theory is supplemented with the follow-

ing symmetrization postulate (see any standard textbook on quantum mechanics, such as

[32]):

Postulate 2.1. When a system includes several identical particles, only certain elements

of its state space can describe physical states. Physical states are, depending on the nature

of the particles, either completely symmetric or completely antisymmetric with respect to

permutation of these particles. Those particles for which the physical states are symmetric

are called bosons, and those for which they are antisymmetric, fermions.

In other words, if Ψ (x1, . . . , xN) is the wave function describing the state of an N -

particle system, it must additionally satisfy

Ψ (x1, . . . , xi, . . . , xj, . . . , xN) = ±Ψ (x1, . . . , xj, . . . , xi, . . . , xN) (2.3)

for all i and j. The meaning of Postulate 2.1 is simple: since the particles are indistin-

guishable, their collective state can only change by a global phase upon permutations of

the particles, which has no observable consequence. Furthermore, this global phase is

only ±14, with each sign de�ning a class of particles. A very well-tested empirical rule

is the following: every known particle of integer spin, such as photons or He4 nuclei, is a

boson, whereas every known particle of half-integer spin, such as electrons and nucleons,

is a fermion. This rule is also known as the spin-statistics theorem, as it can be proven to

follow from some very general assumptions in quantum �eld theory�for a discussion on

this, see e.g. [32]. Equation (2.3), despite its apparent simplicity, also predicts strikingly

di�erent behaviors for bosons and fermions.

For fermions, Eq. (2.3) leads to the well-known Pauli exclusion principle, which states

that two fermions may not occupy the same state (this follows trivially from Eq. (2.3) by

4Actually, this restriction only holds in three dimensions, and naturally applies to any fundamental
particle. In two-dimensional systems, however, we may obtain other phases under permutations, giving
rise to quasi-particles known as anyons. Anyons are the basis for the very elegant model of topological
quantum computation which, unfortunately, is beyond the scope of this thesis.



20

setting, e.g., xi = xj). Another well-known consequence is that an ensemble of fermions

in thermodynamical equilibrium satis�es the Fermi-Dirac statistics (hence, the name

fermion). This, in turn, is central for understanding the behavior of various physical

systems, from the electronic theory of metals to neutron stars.

In contrast to fermions, an ensemble of bosons in thermodynamical equilibrium sat-

is�es the Bose-Einstein statistics (again, hence the name boson). The most remarkable

di�erence is that bosons are not limited to one particle per mode�in fact, bosons have a

greater tendency to occupy modes �in groups� (a behavior known as bosonic bunching).

Examples of this bunching behavior are the Bose-Einstein condensation and the related

phenomena of super�uidity and superconductivity. This bunching behavior will also be

important on Chapter 6, where we will report some new experimental and theoretical

results concerning the bunching of photons at the output of linear-optical devices.

This classi�cation of particles in bosons and fermions raises a natural question: does

the Fermi-Dirac/Bose-Einstein statistics have any consequence for quantum computa-

tion? Since quantum computers rely on very precise control of microscopic systems, it is

conceivable that the very fermionic/bosonic nature of the particles could help or hinder

the experimental e�orts. The answer to this question is in fact a�rmative�there is a

fundamental relation between the computational power of (noninteracting) particles and

their statistics. Throughout this thesis we will investigate aspects of both noninteracting

fermions, which correspond to a class of computations that cannot outperform classical

computers (Chapters 3 and 5), and noninteracting bosons, the behavior of which cannot

be simulated classically (in a precise sense to be de�ned later, see Chapters 4 and 6).

Before that we must introduce the formalism of second quantization, which will be very

convenient for the description of identical particles from a computational point of view.

2.3.1 Second quantization

The description of multi-particle states in terms of symmetric/anti-symmetric wave

functions, as in Eq. (2.3), is known as �rst quantization. By contrast, second quantization

is a formalism that describes system states by the number of particles that occupy each

mode, and will be much more convenient for our purposes. An introduction to second

quantization and the equivalence of the formalisms can be found, e.g., in [11].

Consider a set of modes, either bosonic or fermionic, labeled by some index i =

1, . . . ,m (that can be discrete or continuous) encoding the set of relevant dynamical

properties of the particles: direction of propagation, polarization, spin, frequency, atomic
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orbital, etc. The basis of the state space (or Fock space) consists of a vacuum state | 〉,
containing no particles, together with all states of the form |n1, n2, n3, . . .〉, where each ni
represents the occupation number for mode i and

∑
i ni = N , for all N ∈ N. For bosonic

modes, each ni can assume any nonnegative integer value, whereas for fermionic modes

each ni can only be 0 or 1, in accordance with Pauli's exclusion principle.

For fermions, we de�ne the creation and annihilation operators fi and f †i by their

action on the Fock states:

f †i |n1, n2, . . . , 0i, . . .〉 = |n1, n2, . . . , 1i, . . .〉 , (2.4a)

fi |n1, n2, . . . , 1i, . . .〉 = |n1, n2, . . . , 0i, . . .〉 , (2.4b)

fi |n1, n2, . . . , 0i, . . .〉 = 0 = f †i |n1, n2, . . . , 1i, . . .〉 . (2.4c)

where 1i and 0i represent mode i being occupied or empty, respectively. The fermionic

operators satisfy the anti-commutation relations

{fi, fj} = 0 = {f †i , f †j }, (2.5a)

{fi, f †j } = δij, (2.5b)

which are a consequence of the anti-symmetrization required by Postulate 2.1. From the

anti-commutation relations we also obtain that (f †i )2 = 0, which is nothing more than the

Pauli exclusion principle.

The bosonic creation and annihilation operators bi and b
†
i are de�ned analogously

b†i |n1, n2, . . . , ni, . . .〉 =
√
ni + 1 |n1, n2, . . . , ni + 1, . . .〉 , (2.6a)

bi |n1, n2, . . . , ni, . . .〉 =
√
ni |n1, n2, . . . , ni − 1, . . .〉 . (2.6b)

These bosonic operators satisfy the following commutation relations, which are also a

consequence of the symmetrization required by Postulate 2.1:

[bi, bj] = 0 = [b†i , b
†
j], (2.7a)

[bi, b
†
j] = δij. (2.7b)

2.3.1.1 Free-particle dynamics

Most of the results presented throughout this thesis relate to the computational power

of noninteracting particles. In view of this, we will only describe in detail the formalism

of free-particle dynamics, rather than considering the most general case of fermionic and
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bosonic interactions. In terms of the second quantization formalism this assumption is

overly restrictive, of course, but it will provide a more simpli�ed and instructive discussion,

while still su�cient for our purposes.

We will also restrict ourselves to discrete-time transformations, where the evolution

of the system is not described by the action of some Hamiltonian during a given time,

but directly by the action of some unitary operator. This can be done without loss of

generality, since every unitary matrix can be written as the complex exponential of some

Hermitian matrix�the point is only that we will not consider continuous-time evolution

explicitly. This choice will be more convenient both when we study fermions, which will

correspond to unitary gates in a quantum circuit, and when we study bosons, where the

evolution will be due to discrete linear-optical devices.

Consider now a collection of identical particles evolving according to some (possibly

in�nite-dimensional) unitary matrix UF acting on the Fock space. In the Heisenberg

representation, an operator Ain will evolve into an operator Aout according to

Aout = UFAinU
†
F .

Since UF is a matrix acting on the Fock space, to de�ne it completely we would need,

in principle, to describe its action on every basis element of this space or, equivalently,

on every possible monomial of creation and annihilation operators. However, if UF de-

scribes the evolution of noninteracting particles, we can make a major simpli�cation in its

description, reducing it to a linear transformation of the modes themselves. The crucial

point is that, since the particles do not interact, the evolution must be completely deter-

mined on the single-particle sector of the Fock space. More explicitly, consider a single

particle initially in mode i (whenever the equations are the same for bosons and fermions,

we denote annihilation and creation operators generically by ai and a
†
i ). The �nal state

of the system must be a linear combination of single-particle states or, equivalently,

UFa
†
iU
†
F =

m∑
j=1

Uija
†
j, i = 1, 2, . . . ,m (2.8)

for some matrix U . We made the additional assumption that, besides being linear, the

transformation is also particle-number-preserving�in the most general case, the right-

hand side of Eq. (2.8) could contain a linear combination of both creation and annihilation

operators5. One can also check that U must be unitary to preserve the (fermionic or

5In this case, the evolution would also describe particle creation or absorption by the media, but not
interaction between the particles.
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bosonic) commutation relations. The action of UF on an arbitrary Fock state can be

easily obtained by mapping every particle operator that makes up the state via Eq. (2.8).

The transformation, as described by Eq. (2.8), also known as a Bogoliubov trans-

formation [79], can arise both as a passive or an active transformation. As a passive

transformation, Eq. (2.8) represents simply a change of basis for the modes. It arises, for

example, when we shift the description of photonic polarization from linear to circular,

or change the orientation of the Z axis of the electronic spin. In this sense, it does not

represent a dynamical evolution at all. On the other hand, as an active transformation6

Eq. (2.8) describes, for example, an optical interferometer, where photons can enter any

of m input modes and exit in a superposition of the output modes. The correspondence

between these two types of transformation only holds in the free-particle setting.

2.3.1.2 Elementary two-mode transformations

Let us now work out some simple examples of linear transformations that will be

important later on. For simplicity, suppose �rst that there are only two modes, which for

now may be bosonic or fermionic�we will give preference to a linear-optical terminology,

as this formalism will be needed more explicitly when we discuss linear optics in Chapter 4

and Chapter 6, but the equations will describe transformations valid for both types of

particles. First, consider the following single-mode unitary matrix UPS:

UPS(φ) := eiφa
†
iai .

It induces the transformation

a†i → eiφa
†
iaia†ie

−iφa†iai = eiφa†i . (2.9)

That is, UPS describes a phase shifter. Physically, it arises whenever particles in one mode

gain a phase relative to the particles in other modes, for example due to a di�erence in

the optical lengths of two paths, or due to a di�erence in the local magnetic �eld acting

on distant electrons.
6We use the word active to describe the fact that it is a dynamical transformation, much like rotations

in classical mechanics, which are denominated passive when they consist of a rotation of the frame of
reference, but active when they describe an actual rotation of some physical object. However, in the
quantum optics literature the devices that implement transformations of the type of Eq. (2.8), such as
phase shifters and beam splitters, are often called passive optical elements to distinguish them from active
elements, such a nonlinear media, that mediate interactions between the particles.
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Another important linear transformation is given by

UBS(θ) := eiθ(a
†
1a2+a1a

†
2).

Its action can be written as

a†1 → cos θa†1 + i sin θa†2, (2.10a)

a†2 → i sin θa†1 + cos θa†2. (2.10b)

The operator UBS describes a beam splitter, and arises as a mechanism allowing a particle

to jump between modes. For photons, it may correspond to an actual beam splitter, or

a waveplate if a1 and a2 correspond to polarization modes, while for fermions it may

correspond to the hopping term between di�erent sites of a lattice. In Chapter 6, when

we use Eq. (2.10) to describe the beam splitter transformations, we will refer to T := sin θ

as the transmission probability (or fraction), and t :=
√
T as the transmissivity.

It is well-known that the transformations described by Eqs. (2.9) and (2.10) su�ce

to construct an arbitrary number-preserving two-mode linear transformation (see, e.g.,

[125]). Furthermore, in an m-mode system, an arbitrary transformation such as the one

described by U in Eq. (2.8) (which we from now on call a multimode interferometer,

or an m-port) can be decomposed in terms of two-mode elements only [110]. From an

experimental perspective this is a very powerful result, as it allows the construction of

arbitrary multimode transformations from network of simpler elements. These results are

mentioned here only in passing, as they will be reviewed in more detail when we discuss

the computational models associated with fermionic (Chapter 3) and bosonic (Chapter 4)

linear optics.

Note also that both UBS and UPS are generated by Hamiltonians quadratic in the

particle operators. This is, in fact, a general feature: unitaries describing the evolution

of noninteracting particles precisely correspond to Hamiltonians quadratic in the particle

operators. This is true because, for any quadratic Hamiltonian H, it is always possible to

enact a change of basis (that is, a passive Bogoliubov transformation) that takes H into

a sum of terms each acting on a single mode�in a sense, this amounts to diagonalizing

the m-port unitary U .

Let us consider now an example of the evolution of a multi-particle state. Suppose,

for simplicity, that two particles initially occupy modes 1 and 2, and evolve according to
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some arbitrary m×m unitary U such as that of Eq. (2.8). We write the initial state as

|in〉 = |1100 . . . 0〉 = a†1a
†
2 | 〉 .

By Eq. (2.8), the �nal state after the action of U can then be written as

|out〉 = UF |in〉 =
m∑

i,j=1

U1iU2ja
†
ia
†
j | 〉 , (2.11)

Suppose now we want the amplitude associated with particles exiting in modes 1 and 2.

At this point we obtain di�erent results for fermions and bosons, so let us �rst assume

that the particles are bosons. In this case, we have

〈1100 . . . 0|UF |1100 . . . 0〉 = 〈1100 . . . 0|
m∑

i,j=1

U1iU2jb
†
ib
†
j | 〉

= U11U22 + U12U21 (2.12)

The two terms that contribute correspond to the two possible combinations of bosons

exiting in the output modes, and the plus sign is due to the bosonic commutation relations.

Suppose now that the particles are fermions. In this case, we have analogously

〈1100 . . . 0|UF |1100 . . . 0〉 = 〈1100 . . . 0|
m∑

i,j=1

U1iU2jf
†
i f
†
j | 〉

= U11U22 − U12U21 (2.13)

We obtain a similar result, but with a minus sign due to the fermionic anti-commutation

relations. Note that Eq. (2.13) equates the desired amplitude to the determinant of a 2×2

sub-matrix of U , whereas Eq. (2.12) equates this amplitude to a similar matrix function

known as the permanent. The determinant and permanent of an n× n square matrix A

are de�ned, respectively, by

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σi , (2.14)

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σi . (2.15)

The sums are taken over all permutations σ of the set {1, 2, . . . , n}, and sgn(σ) is the

signature of the permutation, equal to +1 if the permutation is even and −1 if it is

odd. The di�erence between the de�nitions of determinant and permanent lies only on

the minus signs introduced in the determinant for odd permutations�this resembles very
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closely the distinction between the commutation and anti-commutation relations in bosons

and fermions. This seemingly trivial observation is in fact a particular case of more general

rules, which we now state without proof (see e.g. [140, 116, 4]).

Let |T 〉 = |t1t2t3 . . . tm〉, with
∑m

i ti = N , be the initial state of an N -particle system.

Suppose the system evolves according to some m-port unitary U , which induces a unitary

UF on the Fock state. Let also |S〉 = |s1s2s3 . . . sm〉, with
∑m

i si = N , and let US,T be the

n× n matrix de�ned as follows: �rst we build an m× n matrix UT by taking ti copies of

the ith column of U , for all i ∈ {1 . . .m}. We then build an n× n matrix US,T by taking

sj copies of jth row of UT , for all j ∈ {1 . . .m}. We then have the following lemmas

Lemma 2.1. If the particles are bosons, the amplitude that they exit in the state |S〉 is
given by

〈S|UF |T 〉 =
perm(US,T )√

s1! . . . sm!t1! . . . tm!
. (2.16)

Lemma 2.2. If the particles are fermions, the amplitude that they exit in the state |S〉 is
given by

〈S|UF |T 〉 = det(US,T ), (2.17)

Note that, in Lemma 2.2, each si and tj can only be 0 or 1, so the product of their

factorials is simply 1.

To exemplify the construction of US,T , suppose that we have the following 3-mode

unitary matrix describing some interferometer:

U =


a b c

d e f

g h j

 .

Suppose now that the initial state is the two-particle state |110〉, and we want the ampli-

tude relative to the output state |101〉. This is obtained by �rst building a rectangular

matrix from the �rst and second columns of U , according to the initial state,
a b

d e

g h

 ,

followed by choosing the �rst and third rows of this rectangular matrix, according to the
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output state. The �nal result is

US,T =

(
a b

g h

)
.

The amplitudes for this transition for fermions and bosons would then be given in terms

of the determinant and permanent, respectively, as per Lemma 2.2 and Lemma 2.1. As

a second illustrative example, suppose that the input is the three-particle state |111〉,
and we want to compute the amplitude relative to the output state |210〉. Following the

same reasoning, with the only di�erence that now the occupation number 2 on the output

requires a repetition of the rows of U , we obtain

US,T =


a b c

a b c

d e f

 .

Again, the transition amplitudes would be given by Lemma 2.2 and Lemma 2.1 (we can

anticipate, by the Pauli exclusion principle, that the corresponding fermionic amplitude

will be 0).

This distinction between bosons and fermions may seem unremarkable, but in fact

it has very profound implications for the computational power of these particles, and is

the cornerstone of the results presented in this thesis. The permanent and the determi-

nant, although they seem similar, are vastly di�erent with respect to the complexity of

their calculation�more speci�cally, the determinant is easy to compute e�ciently in a

classical computer, whereas the best-known classical algorithm for the permanent takes

exponentially long, and it is not expected to be e�ciently computable even on quantum

computers. We will return to this distinction in Section 2.4, when we talk about compu-

tational complexity classes. For now, it su�ces to say that, even if a collection of particles

is noninteracting, the mere fact that they are identical quantum particles and thus obey

one statistics or the other may imply an intrinsic di�culty in simulating their behavior.

2.3.1.3 The Hong-Ou-Mandel e�ect

We end this section with a simple illustration of Eqs. (2.16) and (2.17) of great his-

torical interest. Consider two photons impinging on di�erent ports of a balanced beam

splitter (also denominated a 50:50 beam splitter), which is a simple two-mode interferom-
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(a)

Delay

0.5

Coincidence Probability

(b)

Figure 2.1: The HOM e�ect. (a) Two photons incident on di�erent ports of a balanced beam
splitter exit in equal superposition of states |20〉 and |02〉. (b) Typical pro�le of a HOM curve. By
introducing a delay between the photons, it is possible to make them partially distinguishable.
The HOM curve interpolates continuously between two extremal regimes: completely indistin-
guishable (quantum), where the coincidence probability is 0, and completely distinguishable
(classical), where the coincidence probability is 1/2.

eter described by

U =
1√
2

(
1 i

i 1

)
.

The amplitude that these photons exit in di�erent output ports is

〈11|UF |11〉 = perm

(
1√
2

i√
2

i√
2

1√
2

)
= 0

On the other hand, the amplitude that they exit both in the �rst mode is

〈20|UF |11〉 =
1√
2!
perm

(
1√
2

i√
2

1√
2

i√
2

)
=

i√
2
,

with the same value for 〈02|UF |11〉. Thus, two photons incident on di�erent modes of

a balanced beam splitter always exit together, and furthermore in equal superposition of

each output mode (see Figure 2.1(a)). This is the well-known HOM (Hong-Ou-Mandel)

e�ect [58], a manifestation of the bunching behavior of bosons mentioned in the previous

section, and that has several applications in quantum optics.

One application of the HOM e�ect that is particularly relevant to the experimen-

tal results reported in Chapter 6 is the characterization of single-photon sources. More

speci�cally, we know that perfectly indistinguishable photons always exit the balanced

beam splitter together. However, several experimental imperfections (collectively known

as mode mismatch) introduce some level of distinguishability�the photon wave packets
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might not be produced and/or arrive at the detectors at the exact same time, or the

apparatus may induce some di�erence in polarization, frequency, etc. In this case, the

fraction of events where photons do not exit together provides a measure of these imper-

fections. In Figure 2.1(b) we show the typical pro�le of a HOM curve, used in this type

of characterization.

In Chapter 4 and Chapter 6 we will also consider generalizations of the HOM e�ect,

where the bunching behavior is observed for more than two photons in larger interferom-

eters.

In contrast to the HOM e�ect, two fermions incident on di�erent modes of a beam

splitter must always exit in di�erent modes. This is, of course, nothing more than the

Pauli exclusion principle, but can also be seen from Eq. (2.17). The determinant of any

matrix with two identical rows or columns is always 0, while the determinant of the U

itself must be a phase, since U is unitary�thus the only allowed output state for fermions

is |11〉, which furthermore does not depend on U .

2.4 Computational Complexity classes

So far, we saw some computational tasks which are of interest to us, loosely classifying

them as �easy� (i.e. e�cient) or �hard�. More formally, we de�ne that a certain task is easy

for a computational model (i.e. it can be e�ciently solved in that model) if there exists a

procedure in that model, such as an algorithm, to solve it with only a polynomial amount

of resources. Conversely, a task is hard for that computational model if the best possible

procedure for solving it demands an exponential amount of resources7. Intuitively, these

de�nitions capture the distinction between that which may be a matter of developing new

theoretical and experimental techniques, and that which is inherently unfeasible. The term

�resource� has been left intentionally ambiguous since it can be, in principle, anything

relevant for a practical realization of that computational model, such as time, space,

energy, etc. Most notably, we will be interested in e�ciency in terms of time (or number

of computational steps of an algorithm) and space (number of bits, qubits, or particles).

The classi�cation of the hardness of computational tasks, the relationships between them

7This choice of polynomial versus exponential is not unique and, while natural and convenient, is
not without criticism. In particular, an algorithm that takes, say, n1000 time steps for an n-sized input
would certainly not be considered e�cient in practice. However, the discovery of such algorithms is often
followed by drastic improvements in the degree of the polynomial, which has given rise to the general
belief that every natural problem solvable in polynomial-time is also solvable in a �reasonably e�cient�
manner. For further discussion, see e.g. [46].
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and di�erent computational models is the subject of computational complexity theory.

We stated that problems can be easy or hard, but that of course is a major over-

simpli�cation�in fact, complexity theory is a very rich and diverse �eld, based partly

on the fact that not only there are seemingly hard problems, but that there seem to be

several di�erent levels and types of �hardness�, and tasks are separated in what are called

complexity classes. Complexity classes group problems by some shared characteristic,

commonly restrictions in the de�nition of the problem or the underlying computational

model (we will see several examples shortly). Unfortunately, it is notoriously di�cult

to prove that a particular problem is hard, as this must take into account all possible

procedures for solving it that anyone could ever come up with. Instead, what is often

obtained is a reduction from one problem to another�that is, some problem A reduces

to another problem B if an e�cient algorithm for B can be used to e�ciently solve A.

In this way we know that B is at least as hard as A, even if we cannot show that either

A or B are hard in the �rst place. This allows us, for example, to reduce the hardness

of vast complexity classes to the hardness of a couple of natural problems, and then

conjecture these to be hard based on some well-justi�ed intuition. We already saw this

implicitly in Section 2.2: we stated that there are classes of quantum circuits believed not

to be universal for quantum computation simply because they can be simulated classically,

thus conditioning their limitations on the conjectured separation between classical and

quantum computers.

We now give brief descriptions of some computational complexity classes. We will

restrict our attention to those classes relevant later in this thesis, describing them with

the corresponding level of detail. A complete survey of complexity theory, with the proper

amount of technical details, can be found e.g. in [46, 102]. For a compendium of complexity

classes and known relations between them, see also the Complexity Zoo [1].

• P, BPP, BQP, and NP

We begin by de�ning classes P and BPP. Informally, these classes capture precisely

the capabilities of classical computers�that is, P (resp. BPP) corresponds to those set

of problems e�ciently solvable by a deterministic (resp. probabilistic) classical computer

in polynomial time. For now we restrict our attention to decision problems, which are

problems that, for any input x, have a simple yes or no answer. More formally we will

de�ne a decision problem as a subset of all strings L ⊆ {0, 1}∗ (also known as a language)

such that, for every polynomial-sized bit-string x, x ∈ L if and only if x is an input to the

problem for which the outcome is yes. As an example, consider the problem of deciding
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whether a number is prime: x could be the binary representations of integers, in which

case L would be the the set of all x encoding prime numbers. We can then de�ne

De�nition 2.5. P (Polynomial-time) is the set of all languages L ⊆ {0, 1}∗ for which
there exists a uniform family (cf. Section 2.1) of polynomial-size deterministic classical

circuits {Cn} such that, for all inputs x,

(i) if x ∈ L, the �rst output bit is 1;

(ii) if x /∈ L, the �rst output bit is 0.

De�nition 2.6. BPP (Bounded-Error Probabilistic Polynomial-Time) is the set of all

languages L ⊆ {0, 1}∗ for which there exists a uniform family of polynomial-size proba-

bilistic classical circuits {Cn} such that, for all inputs x,

(i) if x ∈ L, the �rst output bit is 1 with probability at least 2/3;

(ii) if x /∈ L, the �rst output bit is 1 with probability at most 1/3.

The values 1/3 and 2/3 are irrelevant�as long as the gap between the yes and no

instances is not small, we can e�ciently amplify the success probability by repeating the

computation and taking a majority vote8. It is an important open question whether P =

BPP, although the general belief it that this is true.

Using the notion of quantum circuit de�ned in Section 2.1, we can de�ne the quantum

analogue of BPP, called BQP, in a similar manner:

De�nition 2.7. BQP (Bounded-Error Quantum Polynomial-Time) is the set of all lan-

guages L ⊆ {0, 1}∗ for which there exists a uniform family of polynomial-size quantum

circuits {Qn} such that, for all inputs x, after applying Qn to the state |0 . . . 0〉 ⊗ |x〉,

(i) if x ∈ L, the probability of measuring the �rst qubit in the state |1〉 is at least 2/3;

(ii) if x /∈ L, the probability of measuring the �rst qubit in the state |1〉 is at most 1/3.

Note that this de�nition of BQP contains both a polynomial-size quantum circuit

and a polynomial-size classical circuit, the latter implicit in the de�nition of the uniform

8This, of course, relies on the majority vote function itself being e�ciently computable. This is the case
for P and BPP, but in Chapter 3 we will come across a complexity class of sub-classical computational
power that cannot implement the majority vote function deterministically, and thus this remark does not
hold.
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family {Qn}. In simpler terms, there must be a classical computer capable of e�ciently

�nding the description of the quantum circuit. Also remark that quantum computers

are inherently probabilistic, which is why the de�nition of BQP is more closely related

to that of BPP rather than P. One fundamental di�erence is that BPP can be de�ned

as a deterministic computer supplied with an additional random input string, whereas

for BQP no such alternative de�nition is possible (i.e. its randomness is intrinsic). We

can also formalize a remark made at the end of Section 2.2: even if quantum computers

cannot be simulated classically in the weakest sense, it is still conceivable that BQP =

BPP, that is, all decision problems in BQP (such as factoring) would also be in BPP.

Finally, for completeness, we de�ne the class NP. Intuitively, NP consists of those

decision problems which may be hard to solve, but for which a solution can be e�ciently

checked. To illustrate, consider the problem of integer factoring9: given an arbitrary

integer x, there is no known (classical) algorithm to e�ciently factor it but, if we are

given a set of numbers and told they are the factors of x, we can e�ciently check whether

this is true. We can formally de�ne NP in the following manner:

De�nition 2.8. NP (Nondeterministic Polynomial-Time) is the set of all languages L

⊆ {0, 1}∗ for which there exists a function V ∈ P (called a veri�er) such that, for all

inputs x,

(i) if x ∈ L, there exists some polynomial-size witness y such that V (x, y) = 1;

(ii) if x /∈ L, for all witnesses y we have V (x, y) = 0.

Also important are NP-complete problems: a problem is NP-complete if it is in NP

and if it is NP-hard, by which we mean that any other NP problem can be reduced

to it. These problems, in a sense, capture the essence of the class NP�not only they

are the hardest among the NP problems, but an e�cient solution for any one of them

would collapse the whole class NP and make it equal to P. It is astounding that there

are hundreds of NP-complete problems [43], stemming from various areas of Computer

Science, Mathematics, and Physics, and not a single e�cient algorithm has been developed

for any one of them. This is taken as a strong argument towards the conjecture that P 6=
NP, which remains one of the most famous open problems in Mathematics.

Between these four classes, several relations are known or conjectured. It is trivial that

P ⊆ NP, P ⊆ BPP and BPP ⊆ BQP. It is also believed that BQP ( BPP, and arguably

9The standard formulation of the factoring problem is not technically a decision problem, but this
issue can easily be sidestepped.
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the most well-known evidence towards this conjecture is Shor's quantum algorithm for

factoring. Factoring is believed to be an NP-intermediate problem�that is, a problem

neither in P nor NP-complete�and thus, conditioned on this belief, Shor's algorithm

places BQP strictly greater than BPP, but not necessarily as large as NP. As we will see,

one of the main motivations for the study of the computational complexity of linear optics

(with which half of this thesis is concerned) is that it is based on even weaker assumptions

than factoring /∈ P.

• PP, #P, and PH

We now enter the domain of some less usual complexity classes10. In a sense, PP, #P

and PH are all di�erent levels of �incredibly hard�, much beyond what classical or quantum

computers are expected to achieve. The reason we are interested in them is mostly proof

techniques. Recall that it is very hard to prove that a certain problem cannot be e�ciently

solved in a classical (or quantum) computer, and often we must resort to reductions. One

way to provide evidence that some computational task is hard is to show that, if that

task could be performed e�ciently, this would have consequences deemed unlikely for the

structure of larger complexity classes such as PH. We now proceed to de�ne these classes,

although we will omit some formal de�nitions as they are somewhat cumbersome and not

very enlightening.

We begin with the following de�nition:

De�nition 2.9. PP (Probabilistic Polynomial-Time) is the set of all languages L⊆ {0, 1}∗

for which there exists a uniform family of polynomial-size probabilistic classical circuits

{Cn} such that, for all inputs x,

(i) if x ∈ L, the �rst output bit is 1 with probability greater than 1/2;

(ii) if x /∈ L, the �rst output bit is 1 with probability smaller than 1/2.

Remark the similarity with the de�nition of BPP. The di�erence now is that there

is no bounded gap between the yes or no cases�for a given problem, if the probabilities

for both cases are exponentially close to 1/2, we would need an exponential number of

repetitions to amplify this gap and distinguish the correct answer. Thus, it is clear that

the class PP does not correspond to any notion of �feasible�.

Closely related to PP is the class #P that, rather than decision problems, concerns

counting problems. Informally, #P is the class of problems associated with counting the
10Less usual for physicists, anyway, but not anywhere close to the most exotic classes studied by

complexity theory.
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number of solutions to an NP problem. As an example, consider the problem of �nding

a perfect matching11 in a graph�this problem is in NP, whereas the related problem of

counting the number of perfect matchings in a graph is in #P. Curiously, even though

�nding a perfect matching is actually easy (in P), its counting version is #P-complete,

and thus among the hardest problems in #P12.

Another very important #P-complete problem is exactly calculating the permanent

of a {0, 1}-matrix [142]. Recall that the permanent function already appeared in the

previous section, in the calculation of transition amplitudes in photons in a linear-optical

network. Its #P-hardness is the basis of the results of the computational complexity

of linear optics�although there are several subtleties, most notably that linear optical

devices cannot solve #P-complete problems, which we return to in Chapter 4.

Finally, we de�ne the polynomial hierarchy PH, which is a generalization of NP. Recall

that NP was the class of problems of the form: �given an input x, does there exist y such

that V (x, y) = 1?�. In this spirit, PH can be de�ned as the following hierarchy of classes:

for each natural number k, the kth level of PH, denoted ΣkP, corresponds to problems

of the form �given an input x, does there exist y1 such that for all y2, there exists a y3,

such that . . . yk such that V (x, y1, y2, y3, . . . , yk) = 1?�. As a particular case, Σ1P=NP.

An equivalent formal de�nition, given recursively in terms of oracles, is the following:

De�nition 2.10. Let ∆0P=Σ0P=P. Then, for i > 0 let

• ∆iP=P with Σi−1P oracle.

• ΣiP=NP with Σi−1P oracle.

• ΠiP=coNP13 with Σi−1P oracle.

PH is the union of these classes for all nonnegative constant i.

In this de�nition, an oracle, also called a �black box�, is an abstract device capable of

solving some computational problem in a single step, and is an extremely useful concept

in complexity theory. When we say �A with an oracle for B�, which is denoted AB, we

11A perfect matching in a graph G is a set of edges E such that every vertex in G is the endpoint of
exactly one edge in E.

12In fact, although this problem is #P-complete in general [102], it is in P if the graph is planar
[69, 133].

13coNP is the complement of NP. More speci�cally, while NP is the class of problems with witnesses
for Yes answers, coNP is the equivalent class of problems with witnesses for the No answers.
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Figure 2.2: A schematic representation of some complexity classes that we will use. In both
�gures, arrows represent class inclusions by pointing from the smaller to the larger class. In (a)
we represent the in�nite tower of the polynomial hierarchy PH, as de�ned formally in the main
text. In (b) we represent all the classes discussed in this section. All of our results rely, in some
sense, on conjectures that some of these depicted separations hold.

mean a device that can solve problems in A with the added capability of making queries

to a black box device that instantly solves problems in B14.

A schematic representation of the structure of PH is given in Figure 2.2(a). The

polynomial hierarchy is strongly believed to be in�nite, so much so that several hardness

results for speci�c problems are of the form �if such and such problem were in P, the

polynomial hierarchy would collapse to a certain level�, including the ones we review

in Chapter 4. Informally, it would be very surprising if all problems described by any

number of existential and universal quanti�ers could be reduced to problems with only a

few quanti�ers. However, the belief that PH is in�nite is not as strong as the belief that

P 6= NP. More speci�cally, even if P 6=NP, it is still possible for the polynomial hierarchy

14Among several other applications, oracles formalize the idea of reduction. For instance, NP-hardness,
which we de�ned previously, can be given the following alternative characterization: a problem L is NP-
hard if NP⊆ PL.
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to collapse to some upper level.

The main result we will need relating these classes is Toda's Theorem [139], which

states that PH is contained in P with a PP oracle or, equivalently, P with a #P ora-

cle. Since #P consists essentially of counting problems, it may seem strange to formally

compare its computational power with other classes based on decision problems. Thus,

for our purposes, P#P merely formalizes this comparison: it consists of decision problems

that could be solved e�ciently if we had a device for solving counting (i.e. #P) problems.

In this sense, Toda's theorem informally states that the computational power of PH is

smaller than that of PP or #P. In the light of this statement, the di�erence between

fermions and bosons described in Section 2.3.1 is remarkable: while fermions evolve ac-

cording to the determinant, which is in P, bosons evolve according to the permanent,

which is #P-complete and thus expected to be a drastically harder problem.

• Post-selected classes

Finally, we de�ne a model of computation based on an operation known as post-

selection. In essence, post-selection consists on the ability to condition a probabilistic

computation on the outcome of a subset of the output register, no matter how unlikely

that outcome may be. To illustrate, consider there is some number m we wish to factor,

and we apply the following naive probabilistic algorithm: we sample two random numbers

a and b ∈ [1,
√
m], and check whether a.b = m. If they are, we assign one output bit p to

1 to �ag that we found the correct answer, otherwise we assign it to 0 and try again. This

algorithm is obviously very ine�cient, as it must repeat an exponential number of times,

on average, until the right answer happens to appear. But suppose now that we had the

astonishing ability of, in one computational step, parse through all random possibilities

of a and b and pick one for which p is 1. Informally, that is the power of post-selection.

For now, we will de�ne classes postBQP and postBPP, corresponding respectively to

quantum and randomized classical computers with post-selection, but other post-selected

classes will arise in Chapter 4 and Chapter 6. For these de�nitions, it is convenient to

de�ne the output of the circuit as consisting of a single-line output register (o), which

encodes the answer to the decision problem, and a poly(n)-sized post-selection register

(p), on which the success of the circuit will be conditioned15. We then de�ne

De�nition 2.11. postBPP (BPP with post-selection, also known as BPPPATH) is the set

15Often, the post-selection register is de�ned with only one bit [2]. For postBPP and postBQP this
can be done without loss of generality, since at the end of the circuit we can simply append a few extra
operations to encode whether p is the desired bit string or not on a single bit. However, for some of the
classes to be de�ned later this is not always possible.
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of all languages L ⊆ {0, 1}∗ for which there exists a uniform family of polynomial-size

probabilistic classical circuits {Cn} such that, for all inputs x

(i) The probability of p = 00 . . . 0 is nonzero;

(ii) if x ∈ L then, conditioned on p = 00 . . . 0, the probability of o = 1 is at least 2/3;

(iii) if x /∈ L then, conditioned on p = 00 . . . 0, the probability of o = 1 is at most 1/3.

De�nition 2.12. postBQP (BQP with post-selection) is the set of all languages L ⊆
{0, 1}∗ for which there exists a uniform family of polynomial-size quantum circuits {Qn}
such that, for all inputs x, after applying Qn to the state |0 . . . 0〉 ⊗ |x〉,

(i) The probability of measuring p in the state |00 . . . 0〉 is nonzero;

(ii) if x ∈ L then, conditioned on measuring p on state |00 . . . 0〉, the probability mea-

suring o on state |1〉 is at least 2/3;

(iii) if x /∈ L then, conditioned on measuring p on state |00 . . . 0〉, the probability mea-

suring o on state |1〉 is at most 1/3.

Clearly, post-selection is a very powerful (and unrealistic) resource, since it allows us

to single out exponentially-unlikely outcomes. It is easy to see, for example, that postBPP

contains NP: similar to the algorithm we described for factoring, for any NP problem we

can just post-select on all possible random strings as witnesses for the solution. However,

this relies on the property of NP problems of having a witness to begin with: it is not

so trivial whether other problems in, say, higher levels of PH, could be contained in

postBPP. Nonetheless, it is known that postBPP is contained within the third level of

the polynomial hierarchy [52]. PostBQP, on the other hand, was shown to be equal to PP

[2]. Now recall that PP is considered a larger class than the whole polynomial hierarchy.

This shows that, from the point of view of post-selection, classical computers have a very

modest power compared to quantum computers and, if postBPP=postBQP, PH collapses

to its third level. It is tempting to think that BPP=BQP also implies a collapse of the

polynomial hierarchy, but in fact this is not true. It would be true if BPP were equal to

BQP due to some simulation scheme as de�ned in Section 2.2: if probabilistic classical

computers could e�ciently sample from the same distributions as quantum computers

we could post-select on obtaining the same results, and thus postBPP would be equal

to postBQP. But, as remarked previously, if BPP is equal to BQP simply because they

happen to contain the same set of decision problems, this reasoning no longer applies.
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As we will review in the next section, the hardness of simulating some restricted

classes of quantum computers, such as constant-depth quantum circuits or linear optics,

follows precisely from this conjectured separation between postBPP and postBQP.

In Figure 2.2(b) we show a schematic representation of the complexity classes de-

scribed in this sections, and some of the important inclusions between them, several

which we will use.

2.5 Restricted models of computation

The results reported in this thesis �t into the larger program of understanding the gap

between classical and quantum computing. Rather than searching for quantum algorithms

to e�ciently solve some important problem, our goal is to better characterize the resources

needed to build a quantum computer in the �rst place. In other words, our focus is not on

characterizing BQP itself, which is of course a di�erent but extremely important research

program, but rather on understanding what resources bridge the gap between BPP and

BQP in di�erent contexts, and whether there are intermediate computational classes.

To that end, we must investigate the computational capabilities of restricted models of

quantum computation.

Consider a model of computation Q, consisting of quantum computers subject to

some restriction (motivated e.g. by some real-world physical implementation). For the

sake of discussion, let us classify our knowledge about Q into one of three (oversimpli�ed)

scenarios:

(i) We can show that Q is classically simulable (cf. Section 2.2),

(ii) we can show that Q is universal for quantum computation (cf. Section 2.1), or

(iii) we can show that the ability to classically simulate Q contradicts some plausible

conjecture (cf. Section 2.4), thus providing evidence that Q has some supra-classical

computational power.

Suppose that we modify the underlying restrictions de�ning Q to obtain another

model, Q', and ask what can we prove about the computational power of Q'. For example,

Q may be in regime (i), and Q', obtained by adding some missing ingredient to Q, may

be in regime (ii) or (iii), in which case that ingredient is somehow fundamental for the

computational power of Q'. On the other hand, if Q is in regime (ii) and Q', obtained by
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imposing additional restriction on Q, is also in regime (ii), we conclude that this restriction

is irrelevant for the computational power of Q. Let us give some examples to illustrate

these concepts.

The jump from (i) to (ii) is the most sought-after, as it provides direct practical ap-

plications for Q', such as Shor's algorithm. For example, it is known that a circuit of

single-qubit gates, acting on a separable input state and followed by single-qubit mea-

surements is classically simulable, but by the addition of any entangling two-qubit gate

we obtain quantum universality [21], thus suggesting that entanglement is somehow a nec-

essary resource for (pure-state) quantum computation16. This intuition is strengthened

by the result that, for any quantum circuit acting on pure states, if the entanglement at

every intermediate step is bounded (in the sense that only a small number of qubits is

entangled) the output is classically simulable [65]. Another interesting example is that of

circuits composed only of the To�oli gate. Not only are these circuits classically simula-

ble, they are in fact universal for classical computation [42], whereas circuits composed

of To�oli and any non-basis-preserving single-qubit gate [120] are universal for quantum

computation. In this case, clearly what the To�oli gate is missing is the ability to create

quantum superpositions.

However, the claim that a certain resource is essential for quantum computation must

also be made with care. Consider the family of well-known Cli�ord gates17. A computation

consisting of a computational basis input state, a circuit of Cli�ord gates and a �nal

computational basis measurement may display unbounded entanglement throughout, but

it is nonetheless classically simulable by the Gottesman-Knill theorem [47]. Despite the

presence of entanglement, there must be some other resource missing for Cli�ord circuits.

In fact, Cli�ord gates become universal when supplemented by non-Cli�ord gates [120] or

special input states [121, 47]. A recent collection of results on the classical simulability of

Cli�ord circuits under the addition of di�erent ingredients can be found in [66]. Another

well-known class of quantum computations that is classically simulable despite the large

amounts of entanglement generated is that of nearest-neighbor matchgates (acting on

qubits arranged on a path). Since matchgates are the topic of Chapter 3 and Chapter 5,

we defer the de�nition and discussion of this model to those chapters. For now it su�ces

to say that, curiously enough, matchgates become universal when supplemented by the

swap gate, which does not seem a particularly �quantum� resource�in Chapter 5 we will

16In the most general case of a mixed-state quantum computation, the role of entanglement is less
clear. In particular, a maximally-mixed input state gives rise to the nontrivial �one clean qubit� model
[77].

17The Cli�ord group consists of the unitaries that preserve the Pauli group under conjugation.
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identify the property that makes the swap gate special, and prove several other scenarios

where matchgates become universal.

While (ii) is the regime of most general interest, there are also several results along

the lines of (iii). More speci�cally, in this thesis we will be interested in four restricted

models in this regime:

(a) Depth-4 quantum circuits [135]: This model consists of a computational basis input,

followed by three rounds of arbitrary two-qubit gates acting on arbitrary pairs of

qubits, and ending in a measurement of a polynomial fraction of the qubits in the

computational basis. Curiously enough, if we restrict this model further to only two

rounds of two-qubit gates, it becomes classically simulable.

(b) Circuits of commuting gates [22]: Also called IQP (for Instantaneous Quantum

Polynomial-time18), this model consists of a computational basis input, followed by

a circuit of gates diagonal in the {|+〉 , |−〉} basis, with a �nal measurement of a

polynomial fraction of the qubits in the computational basis.

(c) Non-adaptive measurement-based quantum computation [56]: As the name sug-

gests, consists of a subset of measurement-based quantum computations where there

is no adaptation in the measurements, and so they can all be performed at once.

(d) Non-adaptive linear optics, or BosonSampling [4]: The main topic of Chapter 4 and

Chapter 6. Consists of preparing an n-photon Fock state, evolving it through some

m-mode interferometer, and doing a �nal round of number-resolving measurements.

The quali�er �non-adaptive� distinguishes it from the KLM scheme [78], that uses

adaptive measurement to perform universal linear optical quantum computation.

For all of these models, the following is true: if an e�cient weak classical simulation of

its output is possible, the polynomial hierarchy collapses to its third level. Furthermore,

these proofs all follow the same recipe. The starting point is some trick to show that

the model is capable of arbitrary quantum computations if post-selection is allowed. As

a consequence, the post-selected version of the model contains BQP, and trivially also

postBQP, as nothing is gained by more than one round of post-selection. Finally, by the

discussion at the end of the previous section, it is clear that if we could weakly simulate

the model by classical means we could solve the same set of problems simply by post-

selecting on the corresponding outcomes of the classical simulator. This would imply that

18This is a joke from the authors, of course. The point is that all gates commute and thus can be done
in any order, not at the same time.
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the model is contained within postBPP, which in turn would imply postBPP = postBQP

and the collapse of the polynomial hierarchy. For a proof that this remains true even

if the classical simulation is approximate within multiplicative error, see [22]. Notably,

the complexity classes de�ned by these devices comprise only sampling problems, rather

than decision problems. Furthermore, an additional limitation is that the sampling must

be done over a polynomial fraction of the output qubits�it can be shown, at least for

models (a) and (b), that the distribution over any subset of the output comprising only

a logarithmically small fraction of the qubits can in fact be simulated classically[135, 22].

This hand-waving argument outlines how the hardness-of-simulation of these models

reduces to the conjectured separation between postBPP and postBQP (and conjectured

in�nitude of PH). We omit further details for now since, in Chapter 6, we will construct a

class of quantum circuits that is, at the same time, a subset of (a), (b) and (c), and use it to

prove that the aforementioned hardness reduction also follows through for constant-depth

linear optics.

One drawback of these proofs is that they do not provide a practical application

for these devices, such as solving some important problem (say, factoring), and the only

nontrivial computational task they can perform a priori is simulating themselves. In this

respect, Shor's algorithm has two notable advantages: �rst, factoring is in NP, meaning

that, when we have su�cient technology to build a full-blown quantum computer, we will

be able to verify whether it is actually running Shor's algorithm, whereas the tasks in

reach of these restricted models are not known to be in NP, making their validation highly

nontrivial. The second is that factoring is an inherently useful task, given its cryptographic

applications, and this alone can drive the experimental e�orts (and funding) to build an

universal, fault-tolerant quantum computer19.

However, despite this, restricted models such as (a)-(d) have been drawing increasing

interest, for two main reasons. The �rst is that results concerning their complexity are

based on milder assumptions than �factoring /∈ P��in other words, even if a classical

algorithm for factoring is found, these restricted models will still provide evidence that

quantum devices can perform some nontrivial computational task. The second reason

is that, precisely because they are restricted quantum computers, they might require

less stringent experimental control of some physical system, providing an intermediate

milestone for experimentalists that may be feasible in a much nearer future.

In terms of simplifying experimental e�orts, BosonSampling (d) is ahead in the race.

19Unless someone eventually develops an e�cient classical factoring algorithm, of course.
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The post-selection argument given above provides evidence that linear-optical devices

cannot be weakly classically simulated with multiplicative error, but in fact most of the

work done in [4] was to prove a stronger result: classical simulability remains unlikely

even for approximation close in total variation distance (recall that this is a weaker re-

quirement), thus more faithfully describing real-world experimental devices. Crucially,

what separates linear optics from the other restricted models (a)-(c) is that there is a

second way to prove its hardness-of-simulation reduction, based on the #P-completeness

of approximating the permanent. This provides a more robust result, but also leads to

a direct prescription of an experiment expected to be hard to simulate classically20, es-

pecially since the model itself is inspired on a physical system (noninteracting bosons).

Indeed, this result sparked a �urry of experimental interest that culminated on four quan-

tum optics groups reporting, within two days of each other, demonstrations of small-scale

implementations of BosonSampling devices on integrated photonic chips�one of these

results is reported in Chapter 6, as it is part of an ongoing collaboration between us and

quantum optics groups in Rome and Milan.

To summarize, we see that there is an inherent richness in the study of restricted

models of quantum computation, with di�erent sets of restrictions highlighting the role

of di�erent resources. In Chapter 5 we will report our new results in the context of

matchgates, where we show that several resources have the capability of uplifting match-

gates from classically simulable to quantum universal and, furthermore, this jump will be

abrupt in every case. In Chapter 6, we report several theoretical and experimental results

related to linear optics and BosonSampling.

20At the cost of some extra assumptions, most notably a conjecture that the permanent of a random
matrix is, typically, as hard to compute as the permanent of an arbitrary matrix. We will return to these
technicalities in Chapter 4.
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3 Review: Matchgates

In this chapter, I will review some previously known results regarding the computa-

tional power of matchgates. In Section 3.1 I give a brief historical overview on matchgates,

their connection to noninteracting fermions, and various aspects of their computational

power. In the subsequent sections, I revisit some of these results in more detail, with

special focus on those de�nitions and proofs that will be important for our main results

in Chapter 5.

3.1 De�nitions and historical background

Matchgates are a restricted class of quantum operations originally de�ned by Valiant

[143] in graph-theoretical terms, and shown to be closely related to systems of noninter-

acting fermions [134]. We de�ne matchgates as follows:

De�nition 3.1. Let G(A,B) denote the unitary gate that acts as unitaries A and B,

respectively, on the even- and odd-parity subspaces of a 2-qubit Hilbert space:

G(A,B) =


A11 0 0 A12

0 B11 B12 0

0 B21 B22 0

A21 0 0 A22

 . (3.1)

The gate G(A,B) is a matchgate if detA = detB.

Throughout this chapter we will cover known results pertaining to the computational

properties of matchgates in several di�erent contexts. Often, in the literature, the de�-

nition of matchgate is more general (e.g., by including additional non-unitary gates such

as in [143]), or more restrictive (e.g., by restricting the gates to only act on nearest-

neighboring qubits, such as in [134]) than the one we give here, depending on what the

author intends to investigate. Since most of the results presented in Chapter 5 are based
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on variations of the underlying assumptions, it will be convenient to take De�nition 3.1

as a working de�nition and add or remove further restrictions as we go. Hopefully, no

confusion will arise with other de�nitions found elsewhere in the literature. Additionally,

throughout this chapter it should be implicit that the qubits in a circuit are arranged

on a path (i.e., a one-dimensional array with open boundary conditions), as this is the

standard setting for the results which we will revisit here. Variations of this setting will

be considered in Chapter 5.

Matchgate circuits were originally introduced by Valiant in [143] as a class of restricted

classically simulable quantum computations, derived from the problem of counting the

number of perfect matchings (recall the de�nition of perfect matching from Section 2.4)

in planar graphs. We mention Valiant's result in passing for historical interest, but our

approach will follow that of subsequent work, and we will not concern ourselves with the

technical aspects of the original de�nition. It su�ces to say that the class of computations

de�ned by Valiant corresponds to circuits of matchgates (as per our de�nition) acting on

nearest-neighboring qubits, together with some non-unitary gates and a broader set of

two-qubit gates on the �rst two qubits. From hereon we consider only the restricted class

of circuits composed of unitary matchgates as de�ned by Eq. (3.1).

Valiant's result was soon after reinterpreted, by Terhal and DiVincenzo [134] and Knill

[75], in terms of the evolution of systems of noninteracting fermions. More speci�cally, the

authors use the Jordan-Wigner transformation [61] to show that the Hamiltonians that

generate the group of nearest-neighbor matchgates correspond precisely to Hamiltonians

quadratic in fermionic creation and annihilation operators. Recall from Section 2.3.1.1

that such quadratic Hamiltonians describe the evolution of noninteracting fermions�as

this correspondence between quadratic Hamiltonians and noninteracting particles is anal-

ogous for bosons (i.e. linear optics), matchgates are occasionally referred to by the ex-

pression �fermionic linear optics�. However, in terms of computational power, the parallel

between fermionic linear optics and its bosonic counterpart breaks down when nontriv-

ial measurements are allowed. As shown in [75], the action of particle detectors can be

described as the limit of (non-unitary) linear optical operators for fermions, but not for

bosons. Hence, noninteracting bosons become universal for quantum computation when

augmented with adaptive measurements via the KLM scheme [78] (incidentally, that is

topic of Chapter 4), whereas fermions remain simulable, as shown by [134], becoming

universal only with nondestructive two-qubit measurements [15].

We may also study matchgates as the subgroup of two-qubit unitaries G(A,B) in its
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own right, with many results obtained from their algebraic properties with no explicit

reference to their fermionic nature. For instance, it was shown by Jozsa and collaborators

in [63] that circuits of nearest-neighbor matchgates on n qubits are equivalent to general

quantum circuits on O(log n) qubits. It was also shown by Van den Nest that the class

of Boolean functions computable by circuits of nearest-neighbor matchgates corresponds

to that of so-called linear threshold gates [147]. These results connect the computational

power of nearest-neighbor matchgates to that of other computational classes, irrespective

of their underlying fermionic nature. This approach, which we also take here, focuses on

the algebraic structure of the matchgate group, and allows us to investigate its properties

beyond the fermionic formalism.

One can also consider deviations from the original setting by relaxing some of the

(occasionally implicit) restrictions, and ask whether the computational power of the sys-

tem changes. For instance, it was shown that matchgates become universal for quantum

computation if allowed to act on both nearest and next-nearest neighbors�or, equiva-

lently, by allowing a modest use of the swap gate (remark that the swap gate, while

being of the form G(I,X), is not a matchgate since detI 6= detX). This was �rst explic-

itly stated in the formalism of matchgates by Jozsa and Miyake in [64], although it was

already implicitly known in the context of the XY interaction [72]. Jozsa and Miyake also

extended the original simulability result by showing that a circuit of matchgates remains

simulable if conjugated by a suitable circuit of Cli�ord gates. These kinds of results often

push the boundaries of our understanding of matchgates in directions which do not arise

naturally in the fermionic formalism. All contributions of our work to the understanding

of matchgates are of this sort, and are described in Chapter 5.

Finally, note that we can also investigate the computational power of proper subsets

of matchgates. Any such subset acting only on nearest neighbors must be classically

simulable, as implied by the simulability of matchgates themselves. However, in those

regimes where matchgates become universal (say, when allowed to act on more distant

neighbors) we may ask whether proper subsets of matchgates retain this computational

power. The most notable of these subsets is the one de�ned by the XY (or Heisenberg

anisotropic) interaction. This interaction is an idealized model of the interactions present

in several proposed physical implementations of quantum computing, such as quantum

dots [59, 105], atoms in cavities [156], and quantum Hall systems [98]. The XY interaction

was shown to be as powerful as general matchgates1 if allowed to act on both nearest and

next-nearest neighbors [72]. In Chapter 5 we will show that several of our results for

1In fact, this result preceded the one for general matchgates.
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matchgates also follow through for the XY interaction.

For the remainder of this chapter I will review the proofs for some of these results

in detail, with special emphasis on those techniques that will be useful for our purposes

in Chapter 5. In Section 3.2, I review the proof of the simulability of nearest-neighbor

matchgates, following the formalism of Jozsa and Miyake in [64]. In Section 3.3, I review

the proof of the universality of matchgates when complemented with the swap gate,

also showing how this translates to matchgates acting on more distant qubits. In that

section I also review what is known about the XY interaction in this context. Finally, in

Section 3.4 I provide, for completeness, a brief outline of the relations between matchgates

and other quantum/classical computational complexity classes. Throughout this chapter,

by �matchgates� we will mean nearest-neighbor matchgates, unless stated otherwise, and

we reiterate the assumption that the qubits in the circuit are arranged on a path (in other

words, each qubit has at most two neighbors).

3.2 Simulability of nearest-neighbor matchgates

The starting point of this section is the Jordan-Wigner transformation [61]. It is a

result of great historical interest, that originated as a mapping between fermionic operators

and spin operators, and which often helps in obtaining solutions for solid-state models,

such as the 1D Ising or XY spin-chains. For our purposes, the role of spins will be taken by

qubits, and the spin operators will be replaced by logical unitary gates (more speci�cally,

matchgates).

We begin by de�ning the Jordan-Wigner operators [61] acting on n qubits:

c2j−1 :=

(
j−1∏
i=1

Zi

)
Xj

c2j :=

(
j−1∏
i=1

Zi

)
Yj (3.2a)

for j ∈ {1, . . . , n}. From the commutation relations of the Pauli operators, one can obtain

the (anti-)commutation relations for the ci operators:

{ci, cj} = 2δijI, i, j ∈ {1, . . . , 2n} (3.3)

To see how these operators relate to fermions, it's helpful to rewrite them in the following
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combinations:

fk := (c2k−1 + ic2k)/2

f †k := (c2k−1 − ic2k)/2.

Using Eq. (3.3) one obtains the commutation relations for the ai's:

{fi, fj} = 0 = {f †i , f †j }, and

{fi, f †j } = δij,

with i, j ∈ {1, . . . , n}. The above relations are precisely what one expects for fermionic

creation and annihilation operators [cf. Eq. (2.5) and Section 2.3]. Another way to under-

stand this correspondence is to notice that the PauliX gate is just a bit-�ip (i.e. exchanges

states |0〉 and |1〉)�if we interpret the qubit states |0〉 and |1〉 as occupation numbers for

a fermionic mode2, the X gate just creates a fermion if the mode is empty and annihilates

a fermion if it is occupied, and we expect it to be a simple linear combination of a and a†.

This is the content of Eq. (3.2), with the caveat that we have to include some Z gates to

obtain the correct commutation relations between operators on di�erent fermionic modes.

Now consider the following products of the ci operators:

c2k−1c2k = iZk (3.4)

for k ∈ {1, . . . , n} and

c2kc2k+1 = iXkXk+1 (3.5a)

c2k−1c2k+2 = −iYkYk+1 (3.5b)

c2k−1c2k+1 = −iYkXk+1 (3.5c)

c2kc2k+2 = iXkYk+1 (3.5d)

for k ∈ {1, . . . , n−1}. Although each ci operator can correspond to Pauli operators acting

on any number of qubits, in these particular quadratic combinations the Z gates present

in Eq. (3.2) cancel out, and we are left with two-qubit Hamiltonians between nearest

neighbors. Also recall from Section 2.3 that Hamiltonians quadratic in the fermionic

operators describe the evolution of noninteracting fermions, as we can always apply a

trivial transformation to take such a Hamiltonian into a sum of terms acting each on

a single fermionic mode. Remark that the Hamiltonians above do not conform to the

2Since a fermionic mode cannot be occupied by more than one particle, identi�cation between qubit
states and fermionic modes is well-de�ned.
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particle-number-preserving assumption of Eq. (2.8) but, as described under that equation,

they nonetheless do not include particle interactions.

Now consider the unitary operators generated by these quadratic Hamiltonians�since

we know these have to be nearest-neighbor two-qubit gates, let us �rst assume that there

are only two qubits and drop the qubit labels. Then, by explicit exponentiation, we obtain

the following unitary matrices:

ei(aX⊗X+bY⊗Y ) =

(
cos(a−b) 0 0 i sin (a−b)

0 cos(a+b) i sin (a+b) 0
0 i sin (a+b) cos (a+b) 0

i sin (a−b) 0 0 cos(a−b)

)
= G[Rx(a− b), Rx(a+ b)],

(3.6a)

ei(cX⊗Y+dY⊗X) =

(
cos(c+d) 0 0 sin (c+d)

0 cos(c−d) − sin (c−d) 0
0 sin (c−d) cos (c−d) 0

− sin (c+d) 0 0 cos(c+d)

)
= G[Ry(c− d), Ry(−c− d)],

(3.6b)

ei(fZ⊗I+gI⊗Z) =

(
ei(f+g) 0 0 0

0 ei(f−g) 0 0
0 0 e−i(f−g) 0
0 0 0 e−i(f+g)

)
= G[Rz(e+ f), Rz(e− f)]. (3.6c)

All matrices in Eq. (3.6) are of the form G(A,B) with detA=detB�that is, they

are matchgates. Not only that but, since G(A,B)G(C,D) = G(AC,BD), by a speci�c

choice of the parameters and by composing gates from Eq. (3.6) we can obtain any single-

qubit gates A,B ∈ SU(2) in G(A,B). This hand-waving argument shows that the group

generated by the six quadratic Hamiltonians of Eqs. (3.4) and (3.5) is exactly the group

of matchgates, up to some irrelevant global phases.

We saw that nearest-neighbor matchgates correspond to Hamiltonians quadratic in the

ci operators, and these in turn correspond to noninteracting fermions. We can now show

that a poly-sized circuit of such gates is classically simulable. Suppose that the circuit

being simulated has an initial product state input |ψ〉 = |ψ1〉 |ψ2〉 . . . |ψn〉, a sequence of

nearest-neighbor matchgates, and a �nal single-qubit measurement in the computational

basis. To simulate the �nal measurement of qubit k, it su�ces to calculate the expectation

value 〈Zk〉 = −i〈c2k−1c2k〉 = −i 〈ψ|U †c2k−1c2kU |ψ〉, where U is the unitary corresponding

to the action of the matchgate circuit. This su�ces because, if pi is the probability of

qubit k being measured in state |i〉, we have that 〈Zk〉 = p0−p1 = 2p0−1. This is a case of

strong simulation, as de�ned in Section 2.2, although with the restriction that the output

of the circuit being simulated consists of one single-qubit measurement. For a more general

set of output measurements, we would also need to compute conditional probabilities, as
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done e.g. in [134]. However, here we follow along the lines of [64], considering only a

single-qubit output, with the justi�cation that this su�ces, for example, to subsume any

decision problem solvable by a matchgate circuit. So, to show that 〈Zk〉 can be computed

e�ciently, we begin with the following Theorem (cf. [75, 134, 64], as proved in [64]):

Theorem 3.1. Let H be any Hamiltonian given by a sum of terms quadratic in the ck

operators and let U = eiH be the corresponding unitary. Then, for all i ∈ {1, . . . , 2n},

U †ciU =
2n∑
j=1

Ri,jcj, (3.7)

where R ∈ SO(2n), and we obtain all of SO(2n) this way.

Proof. First, let us write

H = i
2n∑

i 6=k=1

hijcicj, (3.8)

where hij is a real antisymmetric matrix, since H is hermitian and the operators ci, cj

anti-commute if i 6= j. Also notice that terms with i = j can be omitted as ci squares to

the identity. We now go explicitly to the Heisenberg representation to write ci as ci(0),

ci(t) = U(t)ci(0)U(t)† and, consequently,

ċi(t) = i [H, ci(t)] =
∑
j

4hijcj(t).

The solution to this di�erential equation is simply

ci(t) =
∑
j

Rij(t)cj(0),

where R = e4ht. By setting t = 1, we obtain a direct expression for R in terms of the

Hamiltonian which generates the unitary U . Also notice that, in principle, h can be any

antisymmetric matrix, and so R can be any matrix in SO(2n).

Since the Hamiltonians that generate nearest-neighbor matchgates are quadratic in

the ci operators, the expectation value for Zk after the application of the circuit is

〈Zk〉 = −i 〈ψ|U †c2k−1c2kU |ψ〉 (3.9)

= −i
n∑

a,b=1

R2k−1,aR2k,b 〈ψ| cacb |ψ〉 .

If t is the number of matchgates in the circuit, R ∈ SO(2n) can be calculated in
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poly(n, t) time as the product of the SO(2n) rotations corresponding to each matchgate.

Also notice that the sum in Eq. (3.9) has only O(n2) terms. Finally, note that |ψ〉 is a
product state, and any monomial cacb is a tensor product of Pauli matrices, as is clear from

Eq. (3.2). Thus, each term in the sum factors as a product of the form
∏n

i=1 〈ψi|σi |ψi〉,
which involves n e�ciently computable terms. Since 〈Zk〉 is a sum of a polynomial number

of e�ciently computable terms, it can be computed e�ciently, which completes the proof

of classical simulability of nearest-neighbor matchgates. We suggested, in Chapter 2,

that the reason why noninteracting fermions are classically simulable is that they evolve

according to determinants (cf. Lemma 2.2), which marks a strong distinction with their

bosonic counterparts. This did not appear explicitly in the above proof, since we opted

for a presentation of the result that is more convenient for future discussions, but this

simulability can in fact be traced to Lemma 2.2, see e.g. [134].

Before I �nish this section, I would like to detail two ways in which this simulability

result can be generalized, both discussed in [64]. First, the operators found in Eqs. (3.4)

and (3.5) are the only quadratic operators corresponding to one- or two-qubit gates, but

there are other quadratic operators which translate to gates acting on more than two

qubits. For example, the operator c2c5 translates to X1Z2X3�in fact, it is easy to see

that all such quadratic operators3 have the form AiZi+1 . . . Zj−1Bj with A,B ∈ {X, Y }
and 1 ≤ i < j ≤ n. Thus these can correspond to gates acting nontrivially on many

qubits at a time. However, there is a sense in which these gates do not add anything

qualitatively new to circuits of matchgates, as they can be implemented by a circuit of

nearest-neighbor matchgates. To see that, consider the G(Z,X) matchgate, which acts as

a swap gate followed by a cz gate. We dub this entangling gate the fermionic swap (or

f-swap), and it will play a central role in our results in Section 5.2. For now, it su�ces

to state that this gate acts on the matchgate Hamiltonians as e.g.,

fs23(X1X2)fs23 = X1Z2X3, (3.10)

where fs is a shorthand for the f-swap. This can be easily generalized for other match-

gates and qubit pairs, and thus the operators AiZi+1 . . . Zj−1Bj mentioned earlier can be

implemented using regular nearest-neighbor matchgates and repeated use of the f-swap

gate.

The second generalization of the result concerns a normal form for matchgate circuits.

Recall from Theorem 3.1 that each matchgate in the circuit e�ectively corresponds to a

3In [64] the authors denote the unitaries generated by these Hamiltonians as Gaussian operators.
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SO(2n) rotation r in the space of the ci operators, and that the action of the whole circuit

is obtained as some rotation R which is the product of these individual rotations. We can

now decompose R into a product of O(n2) rotations which act nontrivially only on two

dimensions (e.g. the space spanned by ci and cj). An algorithm for this decomposition

can be found in [57]�it follows the same lines of the decomposition of general n-qubit

unitaries into 2-qubit gates [100], or of a general linear-optical transformation into two-

mode interferometers [110] which we will use in Chapter 6.

More speci�cally, let ri,j denote the matrix appearing in the decomposition of R acting

nontrivially only on coordinates i and j. That is, we have

R = r2n−1,2n r2n−2,2n . . . r2,2n r1,2n

× r2n−2,2n−2 . . . r2,2n−1 r1,2n−1

. . .

× r2,3 r1,3

× r1,2.

Let ri,j = ehij , where hij is an antisymmetric matrix with nonzero values only on rows

and columns with coordinates i and j. Recall then from Theorem 3.1 that this rotation

on the space of the ci's corresponds to a unitary ui,j = eiθijcicj on the space of the qubits,

for some parameter θij. This naturally de�nes a unitary matrix U corresponding to the

rotation R and with the structure:

U = u2n−1,2n u2n−2,2n . . . u2,2n u1,2n

×u2n−2,2n−2 . . . u2,2n−1 u1,2n−1

. . .

×u2,3 u1,3

×u1,2. (3.11)

By construction, this unitary matrix acts on the ci operators in the same way as the

unitary V de�ned by the matchgate circuit. Hence the actions of U and V must be the

same on any monomial ci1 . . . cik . Since these monomials span the space of all n × n

matrices, U and V must be the same matrix up to some irrelevant global phase. We

thus say that U is a normal form for V , in the sense that it is the minimal form which
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Figure 3.1: A 4-qubit matchgate circuit in normal form. We represent each gate by a simple
rectangle, as their expressions and labels can be easily worked out from Eq. (3.11). Squares
represent single-qubit Z rotations, and rectangles spanning many lines represent unitaries acting
nontrivially on all these qubits, but that can be implemented using a ladder of f-swap gates and
a nearest-neighbor matchgate [cf. Eq. (3.10)].

only needs O(n2) gates [or O(n3), if we want to use only nearest-neighbor matchgates and

the trick of Eq. (3.10)], regardless on the number of matchgates in the original circuit.

In Figure 3.1 we show what such a normal form would look like for a 4-qubit circuit4.

Remark that the labels in Eq. (3.11) do not refer to the qubits, but to the ci operators,

thus both labels 2j − 1 and 2j refer to gates acting on qubit j.

3.3 Positive universality results for matchgates

In this section, I review the positive results for universal quantum computation with

matchgates, in contrast to the previous section. Clearly some restriction must be relaxed,

or some extra ingredient must be added, in order to obtain this universality. For instance,

it was shown that nondestructive two-electron charge measurements�that is, in the qubit

picture, a measurement that only distinguishes the numbers of 1's in the two-qubit state�

enables universal computation with fermionic linear optics5. Here, we focus on speci�c

quantum gates and/or changes in the connectivity restrictions that can uplift matchgates

to universal quantum computation. I begin by showing, along the lines of [64], how

matchgates become universal when complemented with the swap gate.

First note that matchgates are parity-preserving operations. This means that they

4There is one omitted step in obtaining the circuit of Figure 3.1: each rectangle actually involves two
operations from Eq. (3.11) that have been brought together by exploiting the commutation of some of
the u's, such as u1,4 and u2,3

5Evidently, such a measurement cannot be implemented in the qubit picture with nearest-neighbor
matchgates and computational basis measurements.
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do not connect n-qubit states with di�erent overall parity and so it is not possible, for

instance, to even approximate an arbitrary two-qubit gate without using some ancilla

qubits. One way to sidestep that issue is to consider only encoded universality, as discussed

in Section 2.1�to my knowledge, all universality results for matchgates adopt some similar

de�nition. Consider then an encoding of a logical qubit into two physical qubits, given by

|0〉L = |00〉 ,
|1〉L = |11〉 . (3.12)

Clearly an encoded single-qubit gate AL can be implemented simply by applying

the matchgate G(A,A) to the pair of physical qubits that encode the logical qubit (see

Figure 3.2(a)).

To obtain a universal set we also require an entangling 2-qubit gate, such as the

cz gate. Consider two adjacent logical qubits encoded in physical pairs of qubits labeled

{1, 2} and {3, 4}, respectively. Then a czL between the logical qubits can be implemented

simply by a cz between the neighboring qubits 2 and 3. Note that this is not a matchgate,

as this would contradict the simulability results of the previous section. Therefore the

entangling gate must be implemented with the aid of some non-matchgate operation. One

such example is the sequence (see Figure 3.2(b))

cz = f-swap · swap. (3.13)

Recall that swap = G(I,X) is not a matchgate, while the closely related gate f-swap =

G(Z,X) is a matchgate that swaps the two qubits and induces a minus sign when both are

in the |1〉 state (we already used this gate with another purpose in the previous section).

In Eq. (3.13) we can interpret the swap as undoing an undesired interchange of the qubits

induced by the f-swap during the entangling operation.

As we have obtained arbitrary (encoded) single-qubit gates and a two-qubit gate, we

thus conclude that matchgates, when supplemented by the swap, form a universal set.

Furthermore, the swap is only applied on disjoint sets of physical qubits (i.e., {2i, 2i+ 1}
for 1 ≤ i ≤ n, where n is the total number of logical qubits), so no qubit is swapped

more than one position away from its original place [64]. We can then commute all the

swap gates to the end of the circuit, at the cost of allowing some of the matchgates to act

on more distant neighbors. Since no qubit is moved farther than one position away, this

means that the swap gate in this construction can be replaced by allowing matchgates

to also act on second and third neighbors. In fact, matchgates between only nearest and
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G(A,A)

1

2

(a)

1

2

3

4
SWAP f-SWAP

(b)

Figure 3.2: Universal set of gates built from matchgates and the swap: (a) a logical single-qubit
AL, and (b) an entangling logical cz gate between encoded pairs {1, 2} and {3, 4}. Note that
the symbol we used for the f-swap is occasionally used for the swap gate in the literature, but
we opted to use a more intuitive graphical representation for the swap.

next-nearest neighbors are already universal as shown in [64] using an alternative encoding

of one logical qubit into 4 physical qubits.

The universality result, as described, was �rst put forth in the context of matchgates

by Jozsa and Miyake in [64]. However, it was already known since the work of [70] in the

context of the XY (or anisotropic Heisenberg) interaction. I now make a brief digression

to introduce the XY interaction, as it provides a proper subset of matchgates that arises

more naturally in real-world implementations of quantum computing, while still retaining

most of the computational properties of the whole set, as we will see in Chapter 5.

3.3.1 The XY interaction

Consider the following Hamiltonians

HA = X ⊗X + Y ⊗ Y, (3.14a)

HI = X ⊗X + Y ⊗ Y + Z ⊗ Z. (3.14b)

These are idealized models of interactions present in several proposed solid state im-

plementations of quantum computing. HA is known as the XY interaction, or Heisenberg

anisotropic interaction, and arises in systems such as quantum dots [59, 105], atoms in

cavities [156], and quantum Hall systems [98]. HI is known as the exchange or isotropic
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Heisenberg interaction [39]. Notice that HA is spanned by Hamiltonians which generate

matchgates [cf. Eq. (3.5)], while HI is not, and this re�ects directly on their computa-

tional power: unitaries generated by HI are universal for quantum computation acting on

nearest-neighboring qubits [39, 71], whereas the XY interaction is simulable on nearest

neighbors (as we know it should be from Section 3.2), but universal when acting also on

next-nearest neighbors. This can be shown using an encoding of a logical qubit into 3

physical qubits [70, 72], but we do not review this proof here as it is not qualitatively dif-

ferent from that of general matchgates in the previous section, and our results of Chapter 5

will subsume it. For now we just point out that, although the XY interaction generates

a proper subset of matchgates (acting nontrivially only on the odd parity subspace of the

two-qubit state), it bridges the gap between (sub-)classical and quantum computational

power under curiously similar conditions as matchgates.

To bring the idealized models closer to real-world implementations, work has also been

done on generalizations of the XY interaction, where other spurious anisotropic terms such

as X ⊗Y are present [141], arising for example from surface e�ects or spin-orbit coupling

[40, 96], or where there is the presence of a background �eld
∑

i εiZi [86]. In both situations

it was found that such e�ects can be canceled out by clever sequences of the allowed

operations. One such example is the technique known as encoded selective recoupling,

used in [86]. Intuitively, this technique works by �nding one controllable Hamiltonian A

such that, for some background Hamiltonian B, we have exp(−iAτ) exp(iB) exp(iAτ) =

exp(−iB)6. Then, by alternating pulses of A, one can cancel out the e�ect of B whenever

necessary. A more detailed description of such results is beyond our purposes, so we refer

to [86, 141] and references therein.

3.4 Other computational power results

In the last section of this chapter, I would like to give a brief description of other

computational results concerning matchgates.

The �rst of these results shows an equivalence between matchgate circuits on n qubits

and general quantum circuits on O(log n) qubits [63]. More speci�cally, Jozsa and collab-

orators show the following

Theorem 3.2. The following equivalence between matchgate circuits and general quantum

circuits holds:
6Note that this is true whenever A and B anti-commute, A squares to the identity and τ = π/2, thus

these are easy criteria to apply for Pauli matrices.
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• Given a circuit MG of nearest-neighbor matchgates with an n-qubit input |x1 . . . xn〉,
N gates, and �nal measurement on qubit k, there exists an equivalent quantum

circuit QC with an input of dlog ne + 3 qubits initialized in the 0 state, composed

of O(N log n) gates, and with �nal measurement on the �rst qubit. Moreover, the

encoding of the circuit QC can be computed from the encoding of the matchgate

circuit MG by means of a classical space O(log n) computation.

• Conversely, given any quantum circuit QC with an m-qubit input |y1 . . . ym〉, M
gates, and �nal measurement on the �rst qubit, there exists an equivalent matchgate

circuit MG with an input of 2m − 1 qubits initialized in the 0 state, composed of

O(M22m) gates and with �nal measurement on the �rst qubit. Moreover, the encod-

ing of matchgate circuit MG can be computed from the encoding of the circuit QC

by means of a classical space O(m) computation.

A proof for this Theorem can be found in [63]. In this Theorem, two circuits are

equivalent if their output measurements have the same probability distribution. Also,

the feature that the encoding of the circuits be computable in a classical computer with

limited space guarantees that the computational power is due to the circuits themselves,

not �hidden� in their classical description.

In order to use Theorem 3.2 to make claims about actual complexity classes, there

are some technicalities involved in de�ning families of computational tasks that can be

solved by such circuits. The complete formal treatment can be found in [63], we will

only concern ourselves with the signi�cance of this result. In essence, Theorem 3.2 states

that a polynomially-sized circuit of nearest-neighbor matchgates can be simulated by a

logarithmically-sized quantum circuit�this is done by directly interpreting the rotation

R ∈ SO(2n) of Theorem 3.1 as a unitary matrix describing some circuit and, since this

unitary matrix has only dimensions 2n × 2n, it corresponds to a transformation on a

space of O(log n) qubits. Conversely Theorem 3.2 states that an arbitrary quantum

circuit on O(log n) qubits can be simulated by a circuit of nearest-neighbor matchgates

on n qubits. Thus, these results together not only provide an equivalence between these

two types of restricted quantum circuits, but suggest that real-world physical systems

where the evolution is described by matchgates could be simulated by very small quantum

computers. In fact, building on this result other works have been published describing

compressed quantum simulations of properties of the 1D Ising [81] and 1D XY [19] models.

Finally, I would like to mention in passing that the computational power of matchgates

has also been related to a classical complexity class. In [147], Van den Nest showed that
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the class of Boolean functions computable by circuits of nearest-neighbor matchgates

coincides to the so-called linear threshold gates7. The author also shows that, if the

computation is to succeed with probability greater than 3/4, then the only computable

functions are trivial in the sense that they only depend on one bit of the input. Note that,

while a probabilistic computation that succeeds with probability greater that 1/2 + ε, for

constant ε, can usually be ampli�ed to probability arbitrarily close to 1, this requires the

use of the majority vote function (cf. Section 2.4). While the majority vote is in principle

computable by a matchgate circuit, there is a caveat: to be used for this ampli�cation,

the majority vote itself must succeed with high probability, a condition unsatis�ed in the

case of matchgates [147]. For a complete discussion of these issues, of linear threshold

gates and a comparison between the results of Van den Nest and of Jozsa et al. of the

beginning of the section, see [147] and references therein.

7A Boolean function f on n bits is called a linear threshold gate if there exists an n-dimensional real
vector w and a real constant θ, such that f(x) equals 0 if and only if wT + θ is strictly positive [147].
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4 Review: Linear optics and

BosonSampling

In this chapter, I will review several known results regarding the computational power

of linear optics. In Section 4.1 I give a brief historical overview the development of

linear optical quantum computing, from its inception in the seminal KLM paper [78], to

the current state-of-the-art and the BosonSampling model [4]. In subsequent sections I

describe some of these results in more detail, particularly those important for Chapter 6.

Unfortunately, a complete account of the BosonSampling model is beyond the scope of

this thesis, as there is an unbounded amount of technical details one could choose to

include, both from the complexity-theoretical and the experimental aspects of the model.

Our focus is precisely on this interface between theory and experiment, and in Chapter 6

I report new results of both types. In view of this, I will restrict the level of detail of

this chapter to only that necessary for our purposes, at the risk of omitting important

technical discussions which can, nonetheless, be found in the provided references.

4.1 Historical background

Photons are considered excellent information carriers�they hardly interact with their

environment, and thus loss of the information through decoherence is a relatively minor

problem in optical devices, in contrast to other physical implementations of quantum

information processing. As such, photons are among the best candidates for quantum

communication, given that they can carry information over dozens or hundreds of kilome-

ters, either of free space [152, 90] or optical �bers [62]. However, for more general quantum

information processing tasks, their main advantage also becomes a serious hindrance: not

only do they hardly interact with their environment, but they also hardly interact with

each other. Until 2001, scalable linear-optical quantum computing was regarded as un-

likely due to precisely this reason, since the intuition was that strongly nonlinear media

would be required for the implementation of two-qubit gates.
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In 2001, Knill, La�amme and Milburn (KLM) published their seminal paper [78],

proving that it is in fact possible to implement scalable quantum computing using only

linear optics. What they realized was that measurement is also an inherently nonlinear

process, and thus photon interaction can be replaced by measurement-induced nonlin-

earities [117]. Unfortunately, measurements are also probabilistic, and consequently any

attempt to implement a two-qubit gate via measurements has some nonzero chance of

failure. For instance, in [76], Knill proposed a linear-optical cz gate between two optical

modes that works with probability 2/27 (of which we give an explicit construction in

Section 4.2).

Clearly, a naive construction based only on probabilistic gates is not scalable, as

the success probability of the overall circuit decays exponentially with the number of

gates. To remedy this, the KLM scheme also includes an error-correction step. By a

clever combination of encoding, gate teleportation, and error correction, it is possible

to increase the probability of success of the two-qubit gates to arbitrarily close to one,

and to protect the information from being destroyed when the gate fails. The crucial

feature of these gates is that they are heralded�that is, the success of the gate is signaled

by the measurement outcome of some auxiliary mode. Thus, an essential ingredient

for universal linear-optical quantum computing is measurement feedforward, or adaptive

measurements, which consists on performing operations conditioned on the outcomes of

previous measurements (recall that this is also the de�ning feature of measurement-based

quantum computation, described in Section 2.1).

Photons also have additional advantages over other physical systems. For example,

they can encode information in several di�erent degrees of freedom: spatial modes, po-

larization, orbital angular momentum, frequency, time-bin, etc1. This provides great

�exibility for encoding information, and for coupling photons with other physical systems

into hybrid proposals. An interesting example is the encoding of more than one qubit into

a same photon�for example, a photon can encode a qubit in its polarization, another in

the orbital angular momentum, and so on. Of course, this only provides a well-de�ned

model if we can manipulate each degree of freedom independently, and there are obvious

complications with the fact that photonic measurements are usually destructive. However,

it also gives rise to curious phenomena, such as entanglement between di�erent modes

1Calling these degrees of freedom of a photon is an abuse of terminology, as technically what we have
are di�erent modes, each labeled by a set of quantum numbers, and each populated by a certain number
of photons (cf. Section 2.3.1). However, it is often a good approximation to consider them independent
degrees of freedom, and ignore some of them completely if they do not couple dynamically to the others
in a given experiment, which is the approach we take here.
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of a single photon2, or between several degrees of freedom of di�erent photons (what is

known as hyperentanglement [13]). These reasons, among others, have driven the �eld

of linear-optical quantum computing, both in improvements of the original KLM scheme

and in the development of new experimental techniques.

Unfortunately, the current state-of-the-art in linear optical experiments is still far from

the required for a practical large-scale implementation of the KLM scheme, and one of the

most experimentally-challenging steps is measurement feedforward. Given the magnitude

of the speed of light in optical media, very fast electronics is required to measure an

optical mode, decide the next computational step conditioned on the result and change

the optical network accordingly, all before the remaining photons arrive at the next stage

of the computation. One could then ask what the computational power of linear optics

is without adaptive measurements. Even if they seem necessary for arbitrary quantum

computations, are there any nontrivial tasks that can be performed without them? These

could provide intermediate milestones to drive the development of the �eld in the near

future. A partial a�rmative answer to this question can be found in the BosonSampling

model, which is the main subject of this chapter and Chapter 6.

The BosonSampling model was recently proposed by Aaronson and Arkhipov [4].

BosonSampling consists essentially of non-adaptive linear-optical quantum computing:

one starts with an n-photon Fock state, evolves it according to some random m-port

interferometer and measures the output distribution. The task then is to sample from

a distribution that's close in total variation distance to the ideal output distribution

predicted by Quantum Mechanics. Sampling exactly from the ideal distribution is pre-

sumably harder, of course, but it may too hard even for the quantum device itself, due to

experimental imperfections. The more realistic task of approximate sampling cannot be

performed e�ciently by classical computers, modulo some plausible conjectures, unless

the polynomial hierarchy collapses to its third level (cf. Section 2.5). The authors report

that this model did not arise from experimental motivations, but rather it was driven by

the #P-hardness of the permanent function and a way to harness this to propose a task

in which quantum systems could outperform classical computers�that it can be adapted

so naturally to a particular physical system came as a bonus.

Since its inception, BosonSampling has received quite a lot of attention both from

theoretical and experimental sides. Several quantum optics groups have reported small-

2There is some controversy on whether this should be denominated entanglement. In this thesis we
take the approach that, if the degrees of freedom are su�ciently independent, and if the computational
complexity results can be trivially adapted to treat all degrees of freedom as equivalent, then the speci�c
denomination is not very important.
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scale BosonSampling (and related) experiments [27, 35, 129, 138, 128, 30, 127], some

of which are reported in Chapter 6 as I was part of the collaboration that co-authored

these results. From the theoretical side, several results were reported attempting to

relax even more the conditions on the model, by e.g. investigating to what extent faulty

source/detectors or other experimental errors can drive the model into a computationally

uninteresting regime [85, 111, 97], by proposing alternative BosonSampling models with

di�erent types of sources [89, 118], or even by proposing implementations of the model in

completely di�erent physical system, such as phonon scattering in trapped ions [119].

The model has also su�ered criticism, mainly due to the fact that certifying whether

a BosonSampling device is performing as desired might be as hard as simulating it. This

criticism questions the interest of large-scale implementations, as it might be impossible

to verify whether the device is operating in a computationally-interesting regime [45].

This criticism has since been (partially) answered by the original authors [3], although

the possibility of a complete classically-e�cient certi�cation of BosonSampling devices

remains an open question since the original paper [4].

For the remainder of this chapter, I will describe the KLM scheme and the Boson-

Sampling model in some detail. Although the new results reported in Chapter 6 do not

focus on the KLM scheme per se, in Section 4.2 I will review some of its constructions, as

they provide a simple and straightforward way to prove some of the subsequent results.

In Section 4.3 (resp. Section 4.4) I will describe the exact (resp. approximate) version of

the BosonSampling model in more detail, also highlighting its pros and cons relative to

other quantum computational tasks of interest.

4.2 The KLM scheme

There are several variants to the original KLM scheme [78]. Here we will describe the

most convenient one for our purposes in the following sections, even if it is not the best

one in terms of e�ciency.

We begin with what is known as dual-rail encoding3. In this case, each qubit state

3In contrast, single-rail encoding consists in directly encoding the qubits states 0 and 1 in a mode
being empty or occupied with one photon, respectively. However, in this case single-qubit gates rely on
creating superpositions of states with di�erent photon numbers, and thus are not implementable only
with linear optics.
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corresponds to a photon being in a di�erent mode, as

|0〉L = |10〉 ,
|1〉L = |01〉 , (4.1)

which we represent as in Figure 4.1(a). Remark the similarity to Eq. (3.12), the encoding

used for matchgates. The main di�erence is that here the right-hand side of Eq. (4.1)

does not represent qubit states, but rather mode states. In particular, states such as

|20〉 are physically allowed, as they represent two photons (or any other number, in the

most general case) occupying a single mode. A collection of n qubits then corresponds

to n photons in 2n modes, with the modes paired two-by-two. To exemplify, suppose

we pair the modes sequentially, such that the state |011001〉, of 3 photons in 6 modes,

corresponds the logical state |101〉L. In this case, as long as the system is in a state where

each pair of modes {i, i + 1} , for every odd i, contains a single photon, it is in a valid

computational state. If the photons �leak� into the wrong modes, producing states such

as |110010〉 or |020010〉, the system is no longer in the encoding space, signaling a failure

in the computation. Finally, note that we did not specify what degrees of freedom these

modes represent. The notation of Eq. (4.1) is more usual for an encoding in which-path

degrees of freedom�i.e., where each mode corresponds to a di�erent spatial direction the

photons can travel in (a beam splitter is an example of a transformation that connects

two such modes). We stick to this notation, as the experiments reported in Chapter 6

are all included in this case. However, the protocol would be perfectly well-de�ned if the

modes represented di�erent states of polarization, orbital angular momentum, etc. In

this case, the di�erence would be the actual physical device implementing the required

transformations: for e.g. polarization, beam splitters would be replaced by wave plates.

Using this encoding, single-qubit gates are easy to perform deterministically. An

arbitrary unitary transformation connecting the states of Eq. (4.1) is nothing more than

an arbitrary two-mode transformation, which can be implemented by beam splitters and

phase shifters, as described in Section 2.3.1.2. We depict such an arbitrary transformation

in Figure 4.1(b). One can easily see that the corresponding logical transformation is

described by the matrix

S =

(
cos(γ)ei(α+β) i sin(γ)eiβ

i sin(γ)eiα cos(γ)

)
,

which is one possible parameterization of an arbitrary single-qubit gate (up to a global

phase). Of course, as explained in Section 2.3.1.2, the action of the optical circuit of



63

γ

α β

Q

1

2

1

1

1

1

θ

θ

-θ φ

Q1

Q2

Q1

Q2

Q

1

2

(a)

γ

α β

Q

1

2

1

1

1

1

θ

θ

-θ φ

Q1

Q2

Q1

Q2

Q

1

2

(b)

γ

α β

Q

1

2

1

1

1

1

θ

θ

-θ φ

Q1

Q2

Q1

Q2

Q

1

2

(c)

Figure 4.1: The KLM scheme. (a) Two modes encoding a qubit Q: mode 1 corresponds to qubit
state |0〉, and mode 2 corresponds to state |1〉. (b) An arbitrary single-qubit gate, up to a global
phase, on qubit Q. (c) A probabilistic two-qubit gate. Q1 and Q2 encode the qubit, ordered
such that the outermost modes encode states |0〉 and the innermost modes encode states |1〉 of
each qubit. The two central modes are ancilla modes, initialized each with a single photon. If
φ ≈ 17.63◦ and θ ≈ 54.74◦, and one photon is measured in the output of each ancilla mode, the
overall action of the circuit is a cz gate.

Figure 4.1(b) on the complete Fock space is much more complicated, but as long as

the system does not leave the encoded space, the single-qubit gates will never act in a

multi-particle state, and thus the matrix S correctly describes the transformation.

Finally, we need an entangling logical two-qubit gate. The simplest candidate is the

cz, since it only acts nontrivially on the |11〉L state, and furthermore only by adding a −1

phase. Thus, it clearly su�ces to implement a physical cz gate, that is, some two-mode

operation that adds a −1 phase only if both modes are occupied by a single photon, and

does nothing otherwise. Applying such an operation on the second and fourth modes

of a four-mode state, for example, would only induce a phase on the |0101〉 = |11〉L
state. This seems to require an interaction between the photons: informally, the physical

transformation would a�ect one photon conditioned on the other photon �being there�.

However, as we alluded to before, there is a way to do this probabilistically.

In Figure 4.1(c) we depict an optical circuit due to Knill [76]4. The two qubits are

4This is not the original gate in the KLM paper, but it is more convenient for our purposes.
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represented by lines Q1 and Q2, and we consider that the innermost modes represent the

|1〉L state of the respective qubits. We then add two extra ancilla modes, each carrying

a photon, and measure them at the output of the circuit. If we measure one photon in

each of the two ancilla modes, as depicted in the �gure, the circuit is successful, and the

overall action is a physical cz gate. If we measure any di�erent con�guration, the gate

has failed. This gate succeeds with probability 2/27.

A scalable scheme for linear-optical quantum computation requires, of course, gates

which are not probabilistic, or at least which have high enough probability for the well-

known threshold theorem to apply [7]. The success probability of a quantum algorithm

implemented directly with the gate of Figure 4.1(c) decays exponentially with the number

of gates. To deal with this, the KLM scheme also includes an error-correcting step.

As described above, the gate of Figure 4.1(c) works whenever we observe a particular

measurement outcome of the ancilla modes. But this means that, when we observe a

di�erent outcome, we know that the gate has failed, and we know what state the system

is left in�in other words, the gate's success is heralded. One important advantage is that

this allows the use of a gate teleportation trick, as �rst de�ned by Gottesman and Chuang

in [48], that consists of the following: whenever we want to perform some probabilistic

cz gate, rather than performing it directly on the computational qubits (that presumably

carry information we want to preserve), we can perform it �o�-line�, on some ancilla

qubits, and, if it succeeds, use the standard trick to teleport the computational qubits

onto those ancillas. This allows us to make repeated attempts of the probabilistic gate

until it succeeds, and only then use it for the computation.

The heralded errors5 and the gate teleportation trick are the reasons why adap-

tive measurements seem necessary in this protocol. Whenever we detect an outcome

corresponding to a failed two-qubit gate, the measurement result indicates what error-

correcting steps should follow. Even if we restrict the protocol and only perform two-qubit

gates o�-line, the decision to use these ancillas must be conditioned on the gate's heralded

success. The complete scalable construction, including the encoding and error-correction

steps, can be found in the original KLM paper [78], and we omit further discussion on this

subject. We will only use the KLM construction as an intermediate step in other results

related to BosonSampling, in which case the circuits of Figure 4.1 will be su�cient.

One drawback of the KLM scheme is that, albeit scalable, the overhead induced in

5Note that not all errors are of the type described above. Other types of errors include e.g. photon
loss or imperfections in the optical elements. These errors are not heralded and so cannot be detected
without destroying the coherence of the computation, consequently requiring more sophisticated error
correction schemes usual to standard circuit-model quantum computing.



65

the number of optical elements is not practical. It can be estimated that, to achieve a cz

gate with 95% success probability in this protocol, it would be required of the order of 104

linear-optical elements [80, 53]. Since then, several improvements have been developed,

most notably inspired on measurement-based quantum computing [153, 101, 28], although

there is a proposal more closely related to the circuit model [44], which reduce the number

of required operations by two orders of magnitude. Unfortunately, a review of these results

is beyond the scope of this thesis. We would just like to point out that the circuits of

Figure 4.1 are not anywhere close to the state-of-the-art, but they are more convenient for

our purposes. In particular, in Section 6.1 we will be interested in the depth-complexity

of the BosonSampling model�that is, how many layers of parallel elements are necessary

for the linear-optical circuit to display some interesting computational power. For that

purpose, the cz gate depicted in Figure 4.1(c) is the most convenient as it displays the

minimal depth for a two-qubit gate.

For an extensive review of the landscape of (experimental and theoretical) linear-

optical quantum computing prior to the advent of the BosonSampling model, see e.g., the

review article [80], and the textbook [79].

4.3 Exact BosonSampling

In the previous section, I described one possible set of circuits that enables quantum

computation within the KLM scheme. The circuits presented are manifestly not scal-

able, since the gates are probabilistic and I did not include details on error-correction.

Nonetheless, in this section I will show how that construction can be adapted to give rise

to the exact version of the BosonSampling model. In Section 4.4 we will address some

more technical aspects of the approximate version of BosonSampling, which is a pro-

posal intended to provide more robust results, closer to what can be done with real-world

imperfect physical systems.

We begin by recalling the de�nition of the complexity class postBQP, or BQP with

post-selection, from Section 2.4. Recall that, in this de�nition, p is a poly-sized post-

selection register, and o is a single-qubit output register.

De�nition. postBQP (BQP with post-selection) is the set of all languages L ⊆ {0, 1}∗

for which there exists a uniform family of polynomial-size quantum circuits {Qn} such
that, for all inputs x, after applying Qn to the state |0 . . . 0〉 ⊗ |x〉,

(i) The probability of measuring p in the state |00 . . . 0〉 is nonzero;
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(ii) if x ∈ L then, conditioned on measuring p on state |00 . . . 0〉, the probability mea-

suring o on state |1〉 is at least 2/3;

(iii) if x /∈ L then, conditioned on measuring p on state |00 . . . 0〉, the probability mea-

suring o on state |1〉 is at most 1/3.

We can also de�ne the analogous class postLO, consisting of (non-adaptive) linear

optics with post-selection. A subtlety is that now we must consider, as input, states of

n photons in m modes, where m =poly(n), and which include both the computational

modes as encoded per Eq. (4.1) and the ancilla modes necessary for two-qubit gates as in

Figure 4.1(c). Similarly, the output of the circuit (both the output and the post-selection

registers) now consists of measurements of occupation numbers of photonic modes, and

the post-selection is done on particular con�gurations of the photon states. Taking these

two factors into account, however, the de�nition for postLO is straightforward.

We can now de�ne the exact BosonSampling task6: given a unitary matrix U , describ-

ing a linear-optical interferometer, and given a speci�c input state |S〉 = |s1s2s3 . . . sm〉 of
n =

∑m
i si photons inm modes, sample from the output distribution obtained by measur-

ing the occupation number of each output mode. In other words: do a weak simulation of

the linear-optical device, as de�ned in Section 2.2. By patching together the discussions

of Section 2.5 and Section 4.2, we arrive at the following result:

Theorem 4.1. [4] If the exact BosonSampling task could be performed e�ciently by a

classical computer, then postBPP=PP and the polynomial hierarchy would collapse.

Proof sketch. We begin showing that postLO=postBQP, i.e., that post-selected linear

optics is equivalent to arbitrary post-selected quantum computing.

That postLO ⊆ postBQP is trivial: for an n-photon, m-mode linear optical circuit,

we simply treat each mode as an n-level system, and use a standard mapping from m

qudits to O(m logn) qubits [4, 100].

For postBQP ⊆ postLO, we use the KLM scheme from Section 4.2. For any quantum

circuit, decomposed in terms of the standard universal set of single-qubit gates and cz

gates, just translate it gate-by-gate to linear optics using the circuits of Figure 4.1. For

6In this thesis, we incur in a slight abuse of terminology: the word �BosonSampling�, for which we
follow the spelling of the original authors, will occasionally be used to represent the task, as de�ned
here, occasionally to represent the natural linear-optical device capable of performing this task, and
occasionally to denote the corresponding model of computation. Each use of the word, however, will be
made clear by the context.
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every cz in the circuit, post-select the particular outcome that heralds its success, ac-

cording to Figure 4.1(c). After this post-selection round, the remaining photonic modes

will correctly encode the same output as the quantum circuit. This proves that BQP

⊆ postLO but, since there is obviously no advantage in having two distinct rounds of

post-selection, this also proves that postBQP ⊆ postLO.

Now suppose that the BosonSampling task could be performed e�ciently by a classical

computer. Then, for any linear-optical circuit, there is some randomized classical circuit

that samples from the exact same output distribution. This means that any quantum

circuit that can be implemented in postLO, as described above, can also be implemented

in postBPP, simply by running the randomized classical algorithm and post-selecting on

the corresponding output. Thus, this would imply postBPP = postBQP.

Finally, recall from Section 2.4 that postBQP = PP. Thus, BosonSampling ⊆ BPP

implies that postBPP=PP which, by the discussion of Section 2.4, implies a collapse of

the polynomial hierarchy to its third level.

One possible extension of this theorem is to allow for weak simulation with multiplica-

tive error. A rigorous proof of this extended version can be found in [22] for the alternative

restricted model IQP (cf. Section 2.4), but a simple adaptation provides the analogous

result for BosonSampling. The intuition is the following: imagine we can classically sam-

ple from an approximate distribution where we know that both (i) the probability of

obtaining the correct output for p and (ii) the conditional probabilities for o given the

right outcome for p are su�ciently close to the ideal ones. This suggests that the success

probabilities of 1/3 and 2/3, for the yes and no instances (cf. the de�nition of postBQP),

might not be altered too much. But, as discussed in Section 2.5, these values are not

rigid: as long as the yes and no instances have some nonvanishing gap, for example of

2ε for some constant ε, the complexity class remains unchanged. It is possible to show,

then, that as long as the weak simulation is approximate within multiplicative error c for

some 1 < c < 1/
√

2, Theorem 4.1 still holds (see e.g. [22]). This does not seem to hold,

however, for weak simulation that is only close in total variation distance, which is the

subject of the next section.

As previously mentioned, the proof of Theorem 4.1 is analogous to an equivalent result

obtained for IQP. In fact, the reasoning behind it establishes a recipe of sorts: if a given

restricted model, when imbued with the ability to post-select on some output register,

can implement arbitrary quantum computation, then e�cient weak simulation of that

model would imply a collapse of the polynomial hierarchy. This recipe was used not
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only for BosonSampling and IQP, but also for constant-depth quantum circuits [135] and

non-adaptive measurement-based quantum computation [56], which are the four types of

restricted models described in Section 2.5. In Chapter 6, we will again follow along these

lines to give a uni�ed proof of some of these results, and show that the same results hold

for constant-depth linear optics.

Exact BosonSampling has several advantages over other, more usual, quantum infor-

mation processing tasks. The most prominent task a quantum computer can solve e�-

ciently is factoring, via Shor's algorithm. However, the hardness-of-simulation of Boson-

Sampling relies on milder assumptions than that factoring is hard. More speci�cally,

even if factoring turns out to be in BPP, BosonSampling might remain an example of a

task where quantum devices outperform their classical counterparts7. At the same time,

BosonSampling is presumably easier to implement physically than Shor's algorithm, at

least in optical systems, since it does not require measurement feedforward, which seems

crucial to the KLM scheme. As we will see later on, computationally-interesting regimes

for BosonSampling are indeed closer to the reality of nowadays experiments.

However, there are also some disadvantages. The most notable is that, while Shor's al-

gorithm solves a problem with several real-world applications (e.g. cryptography), to date

there is no known practical task solvable by a BosonSampling computer8. The only task

achievable by such a device is simulating itself, that is, generating an output distribution

that cannot be simulated by a classical computer, which of is purely academic interest�it

provides evidence that quantum computers have some nontrivial computational power,

and it may drive the experimental e�orts in the near future, but it has no practical appli-

cation. Another notable disadvantage is that there is no known e�cient way to certify the

operation of the device. That is, contrary to factoring9, where the problem may be hard

to solve but the answer is easy to verify, there is no straightforward way to determine

what distribution a given sample produced by the BosonSampling device came from. We

will return to this in the next section, when we review some criticism (and its rebuttal)

to the approximate BosonSampling model.

Finally, we point out two disadvantages of BosonSampling, as de�ned so far, which

7Of course, the drawback is that we are restricted to sampling tasks, rather than decision problems.
8One could ask whether there is any hope for non-adaptive linear optics to be universal for quantum

computing. As is usual in complexity theory, this cannot be proven, but is considered highly unlikely.
A plausibility argument for this intuition is that, while arbitrary n-qubit quantum circuits live in an
operator space of dimension 4n, the most general m-mode interferometer lives in an operator space of
dimension m2, despite the exponentially-large Hilbert space it acts on.

9And, more generally, any problem in BQP ∩ NP. More general tasks in BQP su�er from the same
certi�cation problem.
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can in fact be dealt with. The �rst is that Theorem 4.1 shows that an arbitrary linear-

optical circuit should be hard to simulate classically, but does not provide a prescription

for a direct (and feasible) experimental implementation of a hard instance of the problem.

The second is that a multiplicative error in the simulation is still very stringent. To

illustrate, suppose we constructed a linear-optical instance of Shor's algorithm via the

KLM scheme, and we replace the adaptive measurements with post-selection, as described

previously. The resulting circuit will only work with exponentially small probability,

since it will be conditioned on observing the heralded success of every cz gate. Given

that this probability of success is exponentially small, the experimental imperfections

would probably drown it out completely, which is incompatible with a multiplicative-

error approximation (cf. Section 2.2). An approximation close in total variation distance

would correspond to a more realistic noise model, since in this case the device could get

several of the exponentially-small probabilities completely wrong and still be su�ciently

close to the computationally-interesting regime. The total variation distance also has

better composability properties, akin to gate �delity in usual quantum computing: since

it satis�es the triangle inequality, if each operation in a linear-optical circuit (e.g., each

beam splitter) has some error ε, the total variation distance between the ideal and the real

distributions will only scale linearly in ε. In the next section, we review the approximate

BosonSampling model de�ned by [4] that deals with these two issues.

4.4 Approximate BosonSampling

In this section, I give a general overview of the approximate BosonSampling model

of [4], with the goal of setting the motivation for the experiments reported in Chapter 6.

As stated previously, the original paper is heavy in technical details. While most of

these technicalities do not concern us here, some are important in order to better justify

the choices made during the aforementioned experiments. Thus, for the sake of clarity,

this section has been further subdivided. In Section 4.4.1 I delineate the motivation and

formal de�nition of the result, and in subsequent sections I give an overview of its technical

aspects that had some impact in the choices reported in Chapter 6.

4.4.1 Motivation and Formal de�nition

The previous discussions in this chapter should provide enough motivation for the

computational complexity of linear optics in general. However, the results reviewed so
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far only concern the hardness of exact classical simulation of a BosonSampling device, or

at most a simulation within multiplicative error. As suggested previously, allowing only

for a multiplicative error is too stringent a requirement, likely beyond even the reach of

realistic quantum devices, thus we reserve the title of approximate BosonSampling to the

case where we only require the simulation to be close in total variation distance to the

ideal distribution. We now proceed to de�ne the BosonSampling task, as we will use it

here.

Let Φm,n be the set of all tuples S = (s1, . . . , sm) such that si ≥ 0 and
∑m

i=1 si = n.

As described in Section 2.3.1, the set of all Fock states |S〉, for S ∈ Φm,n, forms a basis

for the Hilbert space of a n-boson, m-mode system, the dimension of which is
(
m+n−1

n

)
.

For future discussion, let us also de�ne Φ∗m,n as the restriction of Φm,n over no-collision

outcomes, that is, over states for which each si is 0 or 1. Consider now the following

procedure:

(i) Initialize the system in a �xed Fock state |T 〉, which can be taken, without loss of

generality, to be |1, . . . , 1, 0, . . . , 0〉, i.e. the state where each boson enters in one of

the �rst n modes.

(ii) Evolve these bosons according to some Haar-random (i.e. sampled from the uniform

distribution) m-port interferometer U (cf. Section 2.3.1.1).

(iii) Measure the system at the output of the interferometer, and register the observed

outcome |S〉.

These measurement outcomes are distributed according to an output probability dis-

tribution, DU , over the sample space Φm,n, de�ned by (cf. Lemma 2.1)

Pr
DU

[S] =

∣∣∣∣ perm(US,T )√
s1! . . . sm!t1! . . . tm!

∣∣∣∣2 , (4.2)

where US,T denotes the sub-matrix of U obtained by taking si copies of the ith row of U

and tj copies of its jth column. Note that DU depends both on U and T , although we

omit the latter dependence as we will assume |T 〉 = |1, . . . , 1, 0, . . . , 0〉 �xed unless stated

otherwise. The BosonSampling task, then, is simply de�ned as sampling from DU . In

the regime that m = O(nk), for some constant k (the best known lower bound for k is 6,

although the authors conjecture that it can be reduced to 2�see the discussion in [4]),

the main result of [4] reads as follows:
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Conjecture 1. [4] Suppose there exists a classical algorithm that takes as input a descrip-

tion of U and T , as well as an error bound ε, and e�ciently samples from a probability

distribution D′U such that ||DU −D′U || < ε. Then, the polynomial hierarchy collapses.

The original result actually consists of two major parts. The �rst is a highly nontrivial

theorem that connects the ability to sample from D′U and the ability to obtain a suitable

approximation to the permanent of Gaussian-random matrices, which already contains

important implications for the underlying complexity classes. The second is a set of

natural conjectures about properties of the permanents of such random matrices. At

the risk of unfairly oversimplifying the authors' achievements, we condensed their main

theorem and conjectures into one claim that is most convenient for our purposes10. In the

next few sections, we will describe some of these intermediate steps in more details.

Besides its robustness in terms of the allowed type of approximation, this model has

the feature of suggesting a very simple and straightforward experimental test. Any �con-

vincing� demonstration of a scalable quantum computer performing, say, Shor's algorithm,

is far beyond the current experimental capabilities�to this day, the record for factoring

a number with a quantum computer is 21 [92]. On the other hand, as we will explain

shortly, Conjecture 1 suggests that a linear-optical experiment with, say, ∼ 20 photons

in ∼ 400 modes, would already be in a regime that would take noticeably long for a clas-

sical computer to simulate. Although an experiment in this range is also beyond current

technology, it is within much closer reach than general scalable quantum computing (espe-

cially given its simpler resource requirements), thus providing an intermediate milestone

for the �eld. In fact, that is the content of part of the results reported in Chapter 6, as

we were part of a collaboration that performed this exact experiment with 3 photons in

linear-optical networks of 5− 9 modes.

We now discuss some of the most relevant aspects, for this thesis, of the BosonSam-

pling task and of Conjecture 1.

4.4.2 Permanents and (ine�cient) classical simulation

Throughout Chapter 2, at several points, we suggested a connection between the

fact that bosons evolve according to permanents and the computational complexity of

BosonSampling. Although the post-selection-based proof given in Section 4.3 at no point

used this connection explicitly, it is crucial for the approximate case.

10Which, of course, does not have the status of Theorem as it includes unproven-yet-plausible conjec-
tures as ingredients.
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Recall from the previous section that DU , the output distribution of the BosonSam-

pling experiment, relies on calculating the permanents of n × n sub-matrices of U . Cu-

riously, it is also possible to write the same transition probabilities for classical particles

in terms of permanents. It is not hard to show that, if the photons are distinguishable,

in which case they behave much like classical billiard balls for the purpose of this model,

the corresponding distribution is given by

Pr
MU

[S] =
perm(|US,T |2)

s1! . . . sm!
, (4.3)

where |A|2, in this case, represents the matrix obtained from A by taking the element-

wise squared absolute value. It is curious that Eqs. (4.2) and (4.3) can be written so

similarly11, but it is the di�erence between them that is the crucial point of this model.

As mentioned before (cf. Section 2.4), it is a well-known fact that exactly computing

the permanent of a {0, 1}-matrix [142] is a #P-complete problem . However, an algorithm

due to Jerrum, Sinclair, and Vigoda, shows that it is possible to approximate the perma-

nent of a matrix of nonnegative entries in polynomial time [60]. The same does not hold

for complex matrices: it can be shown [4] that approximating the permanent of arbitrary

complex matrices to within a constant factor is #P-complete. The intuition behind this

is the following: each permanent consists, a priori, of a sum of an exponential number

of terms. If all terms are positive, it is reasonable to expect that their sum, even if hard

to compute exactly, might be easy to approximate. However, if the terms are complex

numbers, it is possible that most of them cancel out, and all that is left is an exponentially

small residue, which is much harder to approximate. This also has a profound implication

in terms of computational complexity of physical systems�as can be checked in Eqs. (4.2)

and (4.3), this distinction between complex and nonnegative matrices is precisely what

separates the classical and quantum regimes of BosonSampling.

It is tempting to think, at this point, that linear-optical devices can be used to solve

#P-complete problems, but that is misleading. As mentioned, the #P-hardness is related

to approximating an exponentially-small residue. This will be better formalized in the

next sections, in a natural conjecture that matrices of Gaussian random entries provide

#P-hard instances of the (approximate) permanent problem. For now we just point

out that, typically, all permanents involved in the proposed experimental setup will be

exponentially small. As explained in Section 2.2, since the quantum device is inherently

probabilistic, the values of the permanents can only be approximated by repeating the

11Note that the ti! terms only appear in Eq. (4.2), not in Eq. (4.3), but they are all equal to 1 if, as
we assume here, the input contains no mode with more than one photon.
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experiment several times, and constructing the relative frequency tables. If the experiment

is only repeated a polynomial number of times, this can only approximate each permanent

to polynomial precision�but, since they are in fact exponentially small, this clearly is not

enough, as 0 is already also a good approximation up to polynomial precision. Thus, even

though the BosonSampling device somehow draws its computational complexity from the

permanents that Nature is �computing�, it cannot actually be used to compute these

values itself (this, of course, would be too good to be true).

It is also possible to estimate how hard it would be to classically simulate the pro-

posed experiments, in the interest of providing a rough regime of computational interest.

It seems very hard to completely certify the operation of a BosonSampling device (we will

return to this matter shortly), and thus the interesting regime for experimental demon-

strations of the model would be that where classical computers can still simulate the

experiment, but take noticeably long to do so. It is estimated that this corresponds to a

regime of 20−40 photons, evolving in an interferometer of 400−1000 modes [4]. A typical

desktop computer, running a standard algorithm for the permanent on the Mathematica

c© software, computes a 15 × 15 permanent in 20ms, a 25 × 25 permanent in 10s, and a

35× 35 permanent in an estimated 10hrs12. This might still have room for optimization,

but an estimate of n ≈ 50 will likely remain nontrivial for classical machines in the near

future. In an experiment with n > 100, for example, it would be impossible to check the

working of the device without circularly assuming that the physical laws hold in the �rst

place, at least in the current state of both theory and technology.

However, a classical simulation consists of more than calculating a single n × n per-

manent. If we want to algorithmically generate samples from a given distribution, we

need, a priori, to be able to calculate all probabilities in the sample space. Recall that,

in an n-photon, m-mode system, for a �xed input, there are
(
m+n−1

n

)
di�erent outputs,

thus requiring the calculation of an exponential number of permanents of n × n sub-

matrices of the m × m unitary U . To illustrate this, notice that in the 20-photon and

400-mode regime, we would have
(

419
20

)
= 7.2 × 1033 possible outcomes. This suggests

that the task of simulating a BosonSampling device might be, itself, exponentially harder

than the task of verifying it, which is already expected to be hard, and this might bring

the computationally-interesting experimental regime a few levels down13. The theoretical

12An algorithm developed by the Mathematica community, motivated by a forum user inter-
ested in BosonSampling, can be found in http://mathematica.stackexchange.com/questions/38177/

can-compiled-matrix-permanent-evaluation-be-further-sped-up. The estimate I reported com-
bines the reported benchmark values of their algorithm and a �tting for larger values, where computer
memory also becomes an issue.

13Interestingly, even though the sample spaces are of the same size, the �classical� regime does not

http://mathematica.stackexchange.com/questions/38177/can-compiled-matrix-permanent-evaluation-be-further-sped-up
http://mathematica.stackexchange.com/questions/38177/can-compiled-matrix-permanent-evaluation-be-further-sped-up
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standing of such a claim, however, is still very nebulous. On one hand, the result of [4]

only guarantees that simulating BosonSampling is as hard as calculating a single n × n
permanent. It is possible that a simulation algorithm could exploit the constraints be-

tween the di�erent probabilities (e.g. the unitarity of U) to perform the simulation without

having to calculate all the individual permanents. On the other hand, no such algorithm

seems to be known [5]. Still, even if an algorithm is developed that requires calculating

only a small polynomial number of permanents, it might improve the boundaries of the

interesting range of experimental parameters.

4.4.3 Random Interferometers

An aspect of BosonSampling that we stealthily introduced without explanation in

Section 4.4.1 was the need for the interferometer unitary U to be Haar-random. The reason

for this is a conjectured worst-case/average-case equivalence for the BosonSampling task.

One issue with the exact BosonSampling model of Section 4.3 was that it did not provide

a very natural instance of the problem, amenable to being implemented experimentally.

However, if BosonSampling with a random interferometer is typically as hard as one

de�ned by a complex concatenation of the circuits of Figure 4.1, this greatly simpli�es

experimental e�orts14. This result is almost achieved by the authors in [4]. In fact, what

they do is posit the following Permanent-of-Gaussians conjecture:

Conjecture 2. [4] Given as input a random matrix X, whose elements are i. i. d. random

Gaussian complex variables (with mean 0 and variance 1), together with error bounds ε,

δ > 0, the problem of estimating perm(X) to within error ±ε|perm(X)| with probability

at least 1− δ over X in poly(n, 1/ε, 1/δ) time is #P-hard.

They then prove that, if Conjecture 2 is true15, e�cient classical simulation of a Boson-

Sampling device with a Haar-random interferometer implies a collapse of the polynomial

hierarchy (i.e. our statement of Conjecture 1).

What connects the Gaussian and the Haar ensemble is the fact that if m is su�ciently

larger than n [more speci�cally, m = O
(
n5/δ log2 n/δ

)
], then n × n sub-matrices of an

su�er from this problem. In that case, since the photons are all distinguishable, an e�cient algorithm
could simply simulate each photon at a time.

14Note that there are problems where the random instances are typically easy. One example would be
factoring: a random integer has a very high probability of being easy to factor�in fact, there are no NP
problems with worst-case/average-case equivalence.

15Actually, they need a second conjecture, called the Permanent Anti-Concentration Conjecture, for
the purpose of connecting two distinct notions of �approximating the permanent�, but it is much too
technical to discuss here.
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m×m Haar-random unitary are close, in variation distance, to matrices of i. i. d. Gaussian

variables. In simpler terms: if we only look at small sub-matrices of a uniformly-drawn

U , they all look independently Gaussian, and only by looking at larger sub-matrices does

the underlying unitarity constraint become apparent. This fact is then used to �hide� a

given Gaussian matrix into a larger Haar-random matrix, which is given as input to the

problem. This may seem like an odd requirement, but is in fact quite natural in complexity

theory, where results need to cover even the worst imaginable scenario. Suppose that the

BosonSampling device is completely adversarial (e.g., controlled by an untrusted third-

party), and tries to trick us into believing that it is performing some classically-hard task.

If we provide, as input to the problem, a Gaussian matrix X of interest (i.e., the one

described in Conjecture 2) hidden in a larger Haar-random matrix U , we guarantee that

the device has no knowledge of which permanent we care about in the �rst place and, in

order to sample from a distribution that is close in total-variation distance to the ideal

one, it must approximate most of the probabilities su�ciently well.

This adversarial device also has an experimental interpretation, where it is better

known as Nature. If an experiment samples from a distribution close in total variation

distance to the ideal one, this means Nature must be �computing� most of the probabilities

su�ciently well and so, with great likelihood, it is computing the permanent we desire

su�ciently well too. Of course, there is still the delicate matter of proving, based only

on experimental outcomes, whether the device really is operating so well�this question

is complicated by the fact that this output typically consists of an exponentially large

number of exponentially-unlikely outcomes. As it turns out, the distribution over the

outcomes of a Haar-random interferometer is very �at, which will also play a role in the

criticism that we will address shortly [45].

The actual construction of a Haar-random interferometer can be done in terms of

m(m− 1) random linear-optical elements (i.e. beam splitters and phase shifters). In fact,

by a procedure due to Reck et al. [110], any linear-optical device can be decomposed in

terms of m(m − 1) two-mode transformations. We will defer an explicit construction to

Chapter 6, when we also show the equivalent decomposition layout for integrated photonic

chips, used in the experiments. Besides this, we will also consider other ensembles of

random interferometers. For example, some of the experiments reported in Chapter 6

use interferometers built out of sequential layers of balanced beam splitters alternated

with layers of random phase shifters. We will present simulations suggesting that this

alternative design approximates well the uniform ensemble for several �gures of merit of

interest. Such simpli�ed interferometers are relevant, from an experimental point of view,
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as they are easier to construct, allowing us to benchmark several experimental techniques,

while still not presenting any obvious reason to suggest that they are easy BosonSampling

instances.

4.4.4 Bosonic birthday paradox

One result that shows up as an intermediate step for the main BosonSampling result

of [4], but which is also of independent interest, is the so-called bosonic birthday paradox

[4, 10]. The �classical� birthday paradox relates to the following question: given n people

distributed uniformly and independently into m birth dates, what is the probability of

observing a collision, i.e., of observing two or more people sharing the same birthday? Note

that the question can be analogously phrased in terms of balls thrown uniformly into bins,

or distinguishable photons into output modes of a uniformly random interferometer. It

is called a paradox due to people's natural tendency to overestimate this probability�as

an example, in a calendar of m = 365 days, 99% probability is obtained with n = 57

people, and 50% is reached with n = 23 people. A simple combinatorics problem gives

the probability of observing at least one collision in the classical case, Pc, as

Pc = 1−
m−1∏
k=1

(1− k/m) ≈ 1− e−n(n−1)/2m. (4.4)

This expression only holds for n ≤ m, evidently, as otherwise the probability is simply

1. It also shows that, in the asymptotic (m → ∞, n → ∞) limit, if m > n2/2 ln 2 then

the probability of observing no collisions, which is the regime of greater interest to us, is

greater than 1/2.

The bosonic birthday paradox, then, is the analogous result for indistinguishable

bosons. That is, by inputting n photons into a uniformly random interferometer, ini-

tially in some standard state (say, |1, . . . , 1, 0, . . . , 0〉), what is the expected probability of

observing a collision? Recall, from Section 2.3, that bosons have a natural tendency to

bunch together, and thus one could expect them to behave very di�erently from classical

particles. Curiously, however, it was shown [4, 10] that their behavior is not that di�er-

ent. More speci�cally, any input Fock state when evolved according to an ensemble of

uniform-random interferometers is taken into the maximally mixed state of all possible

con�gurations. To clarify, we are not referring to a Fock state evolving according to one

speci�c randomly-sampled interferometer�that is always a pure state�but rather the

description of a Fock state evolving according to an ensemble of interferometers weighed

according to the Haar measure.
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Then, a combinatorics problem, similar to the one done in the classical case, gives the

probability pq of observing a collision in the quantum case as

pq = 1−
m−1∏
k=1

1− k/m
1 + k/m

≈ 1− e−n2/m. (4.5)

From this expression, we see that, in the asymptotic limit, the no-collision outcomes occur

with greater than 1/2 probability if m > n2/ ln 2. That is, while identical photons tend to

bunch more than distinguishable particles, the asymptotic behavior is the same, di�ering

only by a constant factor.

One interesting consequence of this result is that, in the limit m >> n2, the out-

put of the BosonSampling experiment is dominated by n-photon coincidence outcomes,

that is, outcomes in Φ∗m,n (cf. Section 4.4.1). The relevance of this fact is twofold: �rst,

the probabilities of collision outcomes involve calculating permanents of matrices with

repeated columns, which are easier to compute than those with no repetitions16. Thus,

in this regime the outputs that dominate are precisely those corresponding to the hard-

est permanents to compute. Second, coincidence outputs correspond to a much simpler

experimental setting. Whereas measuring a general output requires detectors that dis-

criminate 0, 1, 2, . . . , n photons, for no-collision outputs it su�ces to use only �bucket

detectors�, that is, detectors that only distinguish between states with zero or nonzero

photons. Thus, in this regime, one can simply measure the outputs with bucket detectors,

and ignore any outcome that does not contain the n photons in n di�erent modes�the

bosonic birthday paradox guarantees, in this case, that only a negligible portion of the

outcomes will have been discarded.

In Chapter 6, we report an experimental demonstration of the bosonic birthday para-

dox, with 3 photons interfering in photonic chips of up to 20 modes. We also provide a

more re�ned theoretical result concerning bosonic bunching in these devices, and observe

it experimentally.

4.4.5 BosonSampling certi�cation

One of the major open questions for BosonSampling, since the original paper, is the

matter of certi�cation of the device. More speci�cally, if one is given a black-box that

allegedly samples from distribution D′U satisfying the conditions of Conjecture 1, is it

16As a limiting case, consider a matrix consisting of one column repeated m times. Its permanent is
simply the product of elements in one column, times a constant factor.
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possible to test that claim? Note that, so far, there is no known practical problem solvable

in this model, and thus its motivation is in great part academic, as a demonstration that

quantum devices can outperform classical ones in some task of �simple� experimental

implementation. Thus, if for some reason the certi�cation of the device turned out to be

impossible, this would deliver a blow to the motivation of model as it stands�a skeptic

could simply claim that the laws of physics change for > 100 photons, say, in a subtle way

as to be impossible to detect but su�cient to make the BosonSampling task easy. Note

that arbitrary quantum computing does su�er from this problem, to some extent: any

problem in BQP ∩ NP can obviously be classically veri�ed, but it is widely believed that

BQP is not strictly contained in NP [6], and there is no known way to classically verify

the solution to an arbitrary BQP-complete problem. An interesting partial solution to

this problem was given [6, 23], in terms of what is known as an (quantum) interactive

proof protocol. It was shown that, if the veri�er (e.g. us) wants to check whether an

untrusted prover (e.g. the experimental device) is actually performing the correct quantum

computation, and if the veri�er has access to a very small trusted quantum device, there is

a protocol where the two parties exchange rounds of (classical and quantum) information

such that the prover convinces the veri�er of its authenticity. It is an interesting open

question whether the small trusted quantum device can be eliminated and the certi�cation

done purely by classical means. It would also be interesting to investigate whether, for

BosonSampling, some analogous result holds.

This hardness of certi�cation is the grounds for one criticism made to the model by

Gogolin et al. [45], that ruled out this possibility for a certain class of classical algorithms

known as symmetric algorithms. More speci�cally, a symmetric algorithm is one that

does not make use of the outcomes' labels, only their multiplicities. The authors justify

this by saying that, since the output probabilities are #P-hard to calculate, the veri�er

does not have any information about the output distribution DU , and thus the outcome's

labels (and, with it, the actual expression of U) should mean nothing to them. They pro-

ceed to argue that, if the interferometer is sampled from the Haar distribution then, with

overwhelming probability, the distribution DU of the corresponding experiment is ε-�at

(that is, all of its probabilities are smaller than ε), for some ε that is exponentially small

in n. This reiterates what we mentioned before, that all permanents encoding outcome

probabilities are typically exponentially small. Finally, they show that no symmetric al-

gorithm can distinguish whether an output was sampled from DU , the BosonSampling

distribution, or from U , the uniform distribution over Φ∗m,n
17, with only a polynomial

17In this result, the distributions are only taken over the no-collision outcomes (Φ∗
m,n), rather than



79

number of samples. This is, in fact, a quite natural result: if the distribution is exponen-

tially �at and the experiment is only repeated a polynomial number of times, no outcome

is expected to happen more than once, and the table of multiplicities consists only of a

list of observed outcomes whose labels are ignored by the symmetric algorithm. In this

setting, the veri�er obviously cannot distinguish the output from a uniform distribution.

Note that, after an exponential number of samples, the table of multiplicities will start

to resemble the �shape� of the BosonSampling distribution, and will start to deviate from

the uniform distribution.

However, symmetric algorithms are overly restrictive. The fact that the probabil-

ities in DU cannot be computed e�ciently does not imply, in any way, that no useful

information can be e�ciently obtained from the unitary U itself. Furthermore, assuming

that the veri�er always has information about the matrix elements of U is an arguably

realistic modeling of current experimental e�orts since, as we will describe in Chapter 6,

there is a procedure to experimentally reconstruct U from a polynomial number of single-

and two-photon measurements [84]. In fact, in a follow-up response to the criticism of

[45], the authors of the original paper reported a procedure [3] to distinguish the output

of a BosonSampling device from the uniform distribution in polynomial time, by using

information e�ciently computable from U . The procedure works as follows:

(i) Perform a run of the experiment. Suppose that output |S〉 was observed, for a �xed
input |T 〉18.

(ii) Compute the product of the squared row-norms of US,T . That is, compute the

quantity R(US,T ), where, for an n× n matrix X, R(X) is de�ned as

R(X) =
n∏
i=1

n∑
j=1

|xij|2. (4.6)

(iii) If R(US,T ) is greater than a threshold t := (n/m)n, �guess� that the sample was

taken from DU . Otherwise, guess that the sample was taken from U .

Note that R(X) can be in fact classically computed in polynomial time. What the

authors of [3] showed is that, if U is taken from the Haar ensemble, and if m is su�ciently

larger than n (roughly in the same regime necessary for the sub-matrices of U to be

approximately Gaussian, as explained in Section 4.4.3), then, with high probability, the

all possible outcomes (Φm,n), but in the regime of interest of BosonSampling this distinction is not too
important, as these are the outcomes that dominate anyway.

18Recall that the distribution DU is de�ned also by the choice of �xed input |T 〉.
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above procedure only needs a constant number of samples to convince the veri�er that the

underlying distribution is not U . More speci�cally, they show that, for any experimental

outcome S,

Pr
S∼DU

[R(US,T ) ≥ t]− Pr
S∼U

[R(US,T ) ≥ t] ≥ 1

9
, (4.7)

with high probability over the uniform distribution of U 's. This also implies that DU
and U have constant total variation distance. The intuition behind this result is that the

quantity R(US,T ) is mildly correlated to the permanent of US,T . This correlation is not

su�cient for one to approximate the actual value of the permanent (nor should we expect

it to be), but it is still enough to convince the veri�er, after a constant number of samples,

that the distribution of outcomes is carrying some information about U , rather than just

some gibberish produced by a uniform distribution.

This does not prove that one can completely certify the BosonSampling device. In

fact, the use of the words certify and validate are a certain abuse of terminology, as there

are several di�erent things they can mean. The procedure above only validates the de-

vice against the uniform distribution as a null hypothesis, but not against every other

classically-samplable distribution. One example of �classical� distribution for which R

cannot be used is MU (i.e. the corresponding distribution observed for distinguishable

photons), as shown in [3]. This should be expected, as R only depends on the squared

absolute value of the matrix elements of U , and thus is insensitive to photon distinguisha-

bility (cf. discussion on Section 4.4.2). A very important open question, posited in the

original BosonSampling paper, is whether, for every authentic BosonSampling distribu-

tion DU , one can construct a classically-samplable distribution that is indistinguishable

from it in polynomial time.

Finally, we point out that the authors of [45, 3] are mostly interested in certi�cation

in the asymptotic limit�that is, whether speci�c certi�cation tasks are in BPP or not.

However, experimental BosonSampling will only be interesting in a limited range anyway,

of no more than roughly ≈ 50 photons, where the individual probabilities can still be

computed. In this case, a standard likelihood ratio test [33] might provide a better rate

of convergence for convincing the veri�er, especially given the constant total variation

distance between DU and U , and can in principle be used to rule out any �classical�

hypothesis. This does not have the same theoretical standing as the results of [3], since

the likelihood ratio test requires computing the probabilities, but might be of greater

interest to experimentalists in small-scale implementations. In Chapter 6 we report an

experimental validation of a BosonSampling device using both the estimator R (against
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the uniform distribution) and likelihood ratio test (against both the uniform distribution

andMU).



82

5 New results: Matchgates

In this chapter, I present our results for the computational power of matchgates. It is

based almost exclusively on my co-authored papers Refs. [25, 26], published in Physical

Review A, and Ref. [24], recently accepted for publication at Quantum Information and

Computation.

Recall from Chapter 3 that matchgates are unitaries of the form

G(A,B) =


A11 0 0 A12

0 B11 B12 0

0 B21 B22 0

A21 0 0 A22

 ,

satisfying the additional constraint that detA =detB (which we call the determinant

condition, for future use). Recall also that matchgates display the following two compu-

tational regimes:

(i) If the input is an n-qubit product state, followed by a circuit of a poly(n) nearest-

neighbor matchgates, and the �nal measurement is a computational basis measure-

ment on any qubit k, the output of this measurement can be computed e�ciently

by Eq. (3.9), as shown in Section 3.2.

(ii) An arbitrary quantum circuit can be simulated by a circuit consisting of a computa-

tional basis input, a sequence of matchgates on nearest and next-nearest neighbors,

and a �nal computational basis measurement on the �rst qubit. This simulation

induces only a linear overhead in the number of qubits and operations, as shown in

Section 3.3.

Throughout this chapter I show some ways in which the underlying (and often implicit)

restrictions delimiting these regimes can be modi�ed, and what the corresponding change

in computational power of the model is.
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First, in Section 5.1, I show how quantum universality can be recovered in (i) by adding

certain other unitary operations. Often, the gap from classical to quantum computational

power is bridged by adding some particular gate to the set of allowed operations�for

example, it is well-known that circuits of single qubit gates1 are classically simulable,

but become universal for quantum computation when complemented with any entangling

gate [21]. Another example is the To�oli gate, which is universal for classical computation

[42], but becomes universal for quantum computation by adding any non-basis-preserving

gate [120]. In both cases, there is clearly a quantum resource missing (entanglement

and quantum superposition, respectively) that is provided by the added operation. It

is curious that, for matchgates, this gap is bridged by a limited use of the swap gate,

just enough to allow for interactions between next-nearest neighbors. In contrast to, say,

entanglement, the swap gate does not seem to provide a particularly �quantum� resource,

and it is often taken for granted, especially in physical implementations of quantum

computing with �ying qubits (that is, the particles which carry the information can be

moved around freely, as is the case e.g. with photons). This is even more curious if we

recall that swap = G(I,X)�it is strikingly similar to a matchgate, only failing to satisfy

the determinant condition. This raises the question of whether the resource provided

by the swap gate is not, in fact, �hidden� in this di�erence between the determinants

of the inner and outer matrices. In Section 5.1 I show that this is indeed the case,

and any gate of the type G(A,B) where detA 6=detB is su�cient to extend matchgates

to quantum universality [25]. I will analyze this determinant condition from the point

of view of nonlocal invariants of unitary gates [91, 155] and, using the Jordan-Wigner

transformation, show how it can be understood in the fermionic formalism.

In Section 5.2 I study this gap in computational power in terms of the interaction

geometry. Note that, as usual in quantum computation, all results mentioned so far in

Chapter 3 implicitly assume that the qubits of the circuit are arranged on a path2. This

is often a natural assumption, especially since the swap gate can be implemented using

a sequence of three nearest-neighbor cnot gates, thus there is no loss of generality in

restricting a universal set of operations to act only on nearest neighbors3. However, for

nearest-neighbor matchgates this clearly is no longer true, as they cannot implement the

1Acting on input product states and with �nal measurements on the computational basis.
2A path is a graph where each vertex has two neighbors, except for two vertices at the endpoints. It

is also often called a 1D array, a linear graph, or a 1D chain. Throughout this thesis, we just call it a
path.

3To be fair, the e�ect of the geometrical arrangement of the qubits has also been studied in the context
of distributed quantum computation (see e.g. [55, 14]), but the goal there is to reduce the overhead induced
by having to swap the qubits around, whereas here the role of the geometry is to actually bridge the gap
between classical and quantum computational power.
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swap gate on their own. Hence, we can ask whether the computational power changes

if we modify the underlying geometrical arrangement of the qubits. In other words, we

know that nearest-neighbor matchgates are classically simulable on a path, but does this

remain true if the qubits are arranged on a cycle, a binary tree, a square or hexagonal

lattice, and so on? In Section 5.2 I show that, in fact, matchgates are universal acting

on any graph that is not a path or a cycle and, furthermore, that they are classically

simulable on a cycle [26, 24], thus completely closing this particular question. I also show

that, if we restrict the allowed operations only to the XY interaction (cf. Section 3.3.1),

the exact same dichotomy holds.

Finally, Section 5.3 is devoted to some concluding remarks, in particular on the rel-

evance of the results proved in this chapter to experimental e�orts, as well as possible

questions that remain open.

5.1 Matchgates vs. P. P. gates

In this section, I address the computational power of matchgates when supplemented

by other single- or two-qubit gates, and it is mostly based on the results published in

[25]. Since we want to single out the e�ect of complementing the set with other gates,

our starting assumptions are those under which matchgates are classically simulable�

more speci�cally, throughout this section we only consider computational basis inputs,

computational basis measurements, and gates acting on nearest-neighbor qubits arranged

on a path.

Recall, from Section 3.3, that one possible two-qubit gate enabling universal quantum

computation with matchgates is the swap = G(I,X) gate, that is remarkably similar

to a matchgate, failing only to satisfy the determinant condition. From this point on,

we refer to general G(A,B) gates as parity-preserving (P. P.) gates whether they satisfy

the determinant condition or not, with matchgates corresponding to those restricted P. P.

gates that do satisfy it. It is clear that the set of P. P. gates as a whole is, in fact, universal

for quantum computation.

In Section 3.2, we gave an interpretation of the swap operation as allowing matchgates

to act between more distant qubits, rather than just nearest-neighbors. We can then ask

whether this feature can be simulated by other gates similar to the swap, such as the

f-swap = G(Z,X)4 or the i-swap = G(I, iX). Both gates are similar to the swap in the

4The f-swap gate already appeared in Chapter 3, in Eq. (3.10).
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sense that they can also be seen as swapping operations when acting on the computational

basis (in fact, the f-swap was already used in Section 3.2 to swap the roles of two fermionic

modes). However, they also di�er from the swap in that they are entangling operations,

and they are matchgates. This last fact immediately tells us that they cannot replace

the swap, as otherwise it would contradict the classical simulability of nearest-neighbors

matchgates (we return to this point in Section 5.2 where we will show that we can replace

the swap by the f-swap or i-swap gates in a limited sense, if we additionally change the

underlying arrangement of the qubits).

To better characterize the set of P. P. gates and the role of the determinant condition

for their computational power, we now review some results about nonlocal parameters of

two-qubit gates.

5.1.1 Nonlocal parameters

We begin this section by stating a result fundamental for the discussion that follows:

Theorem 5.1. [82, 73] Any two-qubit gate U ∈ SU (4) can be written as

U = (U1 ⊗ U2)UNL(V1 ⊗ V2)

= (U1 ⊗ U2)ei(aX⊗X+bY⊗Y+cZ⊗Z)(V1 ⊗ V2) (5.1)

where Ui and Vi are single-qubit gates on qubit i, and a, b and c are real parameters in

the interval
[
0, π

2

)
.

In other words Theorem 5.1 states that, out of the 15 parameters that de�ne a general

4×4 unitary matrix (up to a global phase), only 3 are truly nonlocal in the sense of requir-

ing some interaction between the two qubits, while the remaining 12 can be implemented

by two sets of single-qubit gates, before and after this nonlocal �core�. Equation (5.1)

suggests a connection to the representation of matchgates developed in Section 3.2, but

this discussion will be postponed until after we obtain an explicit parameterization of

general P. P. gates similar to Eq. (5.1).

This set of nonlocal parameters is convenient because it gives an explicit way to

parameterize two-qubit gates, but we must be careful before ascribing special physical

signi�cance to any of them. One reason is the non-uniqueness of the decomposition: we

can implement permutations of the type a↔ c using only single-qubit gates (in this case,

H⊗H). This ambiguity can be eliminated by imposing some restriction such as a ≥ b ≥ c

(alternatively, for a geometrical approach in terms of what is known as the Weyl chamber,
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see [155]). For our purposes this ambiguity will not be relevant, and thus we make no

such restriction. This ambiguity also means that {a, b, c} are not, strictly speaking, local

invariants5. However, any true local invariant can be written as a (symmetric) function

of these parameters�one such example is the set of invariants de�ned by Makhlin in [91],

as shown in [155]. Another example of particular interest in the discussion that follows is

the entangling power, introduced by Zanardi et al. in [154], which we now de�ne.

Consider a two-qubit Hilbert space H = H1⊗H2, and a state |Ψ〉 ∈ H. Also consider
the linear entropy, an entanglement measure of |Ψ〉 de�ned by

E(|Ψ〉) :=1− tr1ρ
2,

ρ :=tr2 |Ψ〉 〈Ψ|

Then, the entangling power ep(U) of a two-qubit unitary U is de�ned as the average linear

entropy generated by the action of U on all product states |ψ1〉 ⊗ |ψ2〉 [154]:

ep(U) := E(U |ψ1〉 ⊗ |ψ2〉)
(ψ1,ψ2)

,

where the bar denotes average with respect to some probability distribution p(ψ1, ψ2). By

using the identity

tr(AB) = tr(A⊗B swap) (5.2)

we obtain, after some simple manipulations, that

ep(U) = 2 tr
[
U⊗2ΩpU

†⊗2P−13

]
,

where P−13 is the projector on the antisymmetric subspace of qubits 1 and 3 [the trace is

taken over a doubled Hilbert space as a consequence of Eq. (5.2)], while

Ωp =

∫
dµ(ψ1, ψ2)(|ψ1〉 〈ψ1| ⊗ |ψ2〉 〈ψ2|)⊗2,

and dµ denotes the measure over the space of product states induced by probability

distribution p(ψ1, ψ2).

It can be shown that, if the average is taken over the uniform distribution, the en-

tangling power is both local invariant (i.e., it remains the same if U is multiplied by

single-qubit gates on either side), suggesting that it must be written as some function

of the nonlocal parameters {a, b, c}, and swap invariant (i.e., it is the same for U and

U · swap). If fact, simply by plugging Eq. (5.1) in the above de�nition (and rescaling the

5A local invariant is de�ned precisely as any property of a two-qubit gate that is invariant under local
operations.
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value of ep(U) so it goes from 0, for local gates and swap, up to 1, for perfect entanglers)

we �nd that

ep(U) = 1− cos22a cos22b cos22c− sin22a sin22b sin22c. (5.3)

It is clear from the expression above that any local gate has ep(U1⊗U2) = 0. It can also

be seen that ep(cnot) = 1, since for the cnot, {a, b, c} = {π
4
, 0, 0}, and that ep(swap) =

0, since for the swap we have {π
4
, π

4
, π

4
}, all results which were expected. The above

expression is invariant under permutations of {a, b, c}, another previously anticipated

feature.

Recall that arbitrary single-qubit gates together with any entangling gate form a

universal set, and we can check that a gate U is entangling by calculating ep(U). Can

a similar characterization be given for matchgates? The swap gate, which seems to

be responsible for boosting their computational power, cannot be implemented only by

single-qubit gates, and thus must clearly have some nonlocal property (even though it is

not entangling). We will show in the next section that this property can be characterized

in terms of the {a, b, c} parameters above, and that it is central for the computational

power of P. P. gates.

5.1.2 Extending matchgates with parity-preserving unitaries

In this section I present our �rst result, regarding P. P. unitaries that extend nearest-

neighbor matchgates to universality. I start with an example to build intuition by analyz-

ing a family of gates that interpolates between the swap and the i-swap. I then provide

a characterization of general P. P. gates in terms of nonlocal parameters, identifying their

relation to the determinant condition and thus their role in the computational speedup

provided by P. P. gates relative to matchgates.

Example 5.1. Consider the following family of P. P. gates:

G(I, eiτX) =


1 0 0 0

0 0 eiτ 0

0 eiτ 0 0

0 0 0 1

 , (5.4)

where τ goes from 0 (swap) to π/2 (i-swap). Besides being a P. P. gate, this gate is also

a matchgate if (and only if) τ = π/2. Now recall the universality scheme described in

Section 3.3 (cf. Figure 3.2): (i) encode each logical qubit state |0L〉 (|1L〉) into two physical
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qubits as |00〉 (|11〉), as per Eq. (3.12); (ii) implement any encoded single-qubit gate AL

by a nearest-neighbor matchgate G(A,A); (iii) implement any encoded cz gate using a

swap followed by a f-swap; and �nally (iv) measure the output in the computational

basis. The only non-matchgate unitary in this scheme is a swap in Figure 3.2(b)�let us

replace it by G(I, eiτX). The resulting encoded two-qubit gate is

G(I, eiτX) ·G(Z,X) =


1 0 0 0

0 eiτ 0 0

0 0 eiτ 0

0 0 0 −1

 . (5.5)

This matrix is diagonal, and thus preserves the encoding [cf. Eq. (3.12)], as it should. We

can also check that the nonlocal parameters [cf. Eq. (5.1)] for this gate are {0, 0, π
4
− τ

2
} and

so, by Eq. (5.3), its entangling power is cos2 τ . This is consistent with what we expect:

the entangling power is maximum when we use the swap, but goes to 0 as the gate

approaches the i-swap, in which case any circuit built out of these building blocks must

be classically simulable�since then the physical circuit is composed only of matchgates

(alternatively, the logical circuit is composed only of non-entangling gates).

However, perfect entanglers are not necessary for an universal set [21]. If arbitrary

single-qubit gates are available, a gate that creates any (nonzero) amount of entangle-

ment is su�cient for universal quantum computation. In view of this, we conclude that

G(I, eiτX) is su�cient to achieve universal quantum computation, together with match-

gates, if and only if τ 6= π/2�or, equivalently, if and only if it is not a matchgate itself.

We have thus obtained a continuous family of gates akin to the swap that can replace

it. While there is an inverse relation between entangling power of the physical gate and

entangling power of the resulting logical gate (as evident by the extreme cases of the swap

and i-swap), it will soon become clear that this is just an attribute of this particular gate

family, and there is no such relation for P. P. gates in general.

Example 5.1 suggests that the parameter τ in G(I, eiτX) is fundamental in obtaining

a universal set. We will now formalize and generalize this intuition. We start with a

convenient parameterization of general P. P. matrices. It is well-known [100] that any

single-qubit unitary matrix can be parametrized as(
cos θei(β+α) i sin θei(β+γ)

i sin θei(β−γ) cos θei(β−α)

)
,
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where θ, β, α and γ are real parameters in the interval [0, 2π). Note that the determinant

of this matrix depends only on β. By parameterizing A and B in this way, the most

general P. P. matrix can be written as

G(A,B) =


cos θ ei(β+α) 0 0 i sin θ ei(β+µ)

0 cosφ ei(−β+γ) i sinφ ei(−β+ν) 0

0 i sinφ ei(−β−ν) cosφ ei(−β−γ) 0

i sin θ ei(β−µ) 0 0 cos θ ei(β−α)

 (5.6)

in terms of 7 real parameters: {θ, α, γ, φ, µ, ν, β}. Although A and B each have 4 free

parameters, G(A,B) is de�ned only up to global phase, and we have �xed the determinant

such that detA = 1/detB = e2iβ.

How much �nonlocal freedom� remains in the 7-parameter family above? In other

words, how does the P. P. restriction constrain the nonlocal parameters of G(A,B)? To

answer this, let us explicitly write the nonlocal �core� de�ned in Eq. (5.1):

UNL =


cos(a− b) eic 0 0 i sin (a− b) eic

0 cos(a+ b) e−ic i sin (a+ b) e−ic 0

0 i sin (a+ b) e−ic cos (a+ b) e−ic 0

i sin (a− b) eic 0 0 cos(a− b)eic

 . (5.7)

Comparing Eq. (5.6) and Eq. (5.7) we see that UNL is, itself, a P. P. gate, with

nonlocal parameters {φ+θ
2
, φ−θ

2
, β}, which points us to two important facts. First, that

general P. P. gates can have any value of the nonlocal parameters (and, consequently,

of any local invariant derived from them), hence any SU (4) matrix is locally equivalent

to a P. P. gate. Second, that the determinant condition de�ning matchgates (β = 0)

is equivalent to �xing one of these nonlocal parameters (c = 0). Note that in this case

there is no ambiguity in the de�nition of c�any permutation between c and either a or b

must be implemented by some non-P. P. single-qubit gate, such as H. Thus, if we restrict

our attention only to P. P. gates, parameter c indeed becomes a local invariant, and our

characterization of matchgates as the subset of P. P. gates with c = 0 is meaningful.

Now compare Eq. (5.6) and Eq. (5.7) again. Three of the independent parameters of

G(A,B) have been accounted for, in terms of {a, b, c}. The remaining four parameters are

given by individual phases, and can be obtained by multiplying whole rows and columns

by phases (i.e., by applying Z-rotations to the left and to the right). Recalling from
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Section 3.2 that single-qubit Z-rotations are also matchgates, we can write Eq. (5.6) as

G(A,B) = G
(
RZ(τ1), RZ(τ2)

)
UNL G

(
RZ(τ3), RZ(τ4)

)
,

where {τ1, τ2, τ3, τ4} are de�ned as {α + µ, γ + ν, α − µ, γ − ν}. To put this equation in

an even more convenient form, recall from Eq. (5.7) that UNL is an exponential involving

Hermitian operators X⊗X, Y ⊗Y , and Z⊗Z. Since these operators commute, the Z⊗Z
term can factor out in its own exponential. Furthermore, since Z⊗Z also commutes with

single-qubit Z rotations, and since X ⊗X and Y ⊗Y generate matchgates [cf. Eq. (3.5)],

we can write the equation above as

G(A,B) = G
(
RZ(τ1), RZ(τ2)

)
G
(
RX(θ), RX(φ)

)
G
(
RZ(τ3), RZ(τ4)

)
eicZ⊗Z

= G
(
RZ(τ1)RX(θ)RZ(τ3), RZ(τ2)RX(φ)RZ(τ4)

)
eicZ⊗Z (5.8)

This decomposition for a general P. P. gate connects nicely with our initial description

of the generators of matchgates in Section 3.2. It shows that any P. P. gate G(A,B) can

be written as a matchgate multiplied by eicZ⊗Z , where c is directly connected to the

relative phase between A and B, and furthermore these two unitaries commute. It also

reiterates our previous claim, that matchgates correspond exactly to the set of P. P. gates

where c = 0 since, if we impose this condition on Eq. (5.8), what remains is a completely

arbitrary matchgate6.

We can now return to the universality scheme of Section 3.3. Recall that, there, the

only non-matchgate was the swap, and it only appeared in the following sequence:

cz = f-swap · swap. (3.13)

That is, the swap was used in conjunction with a matchgate (f-swap) to implement an

entangling two-qubit gate. This cz gate on the physical qubits corresponded precisely to

a cz gate between the logical qubits, hence supplying the entanglement necessary for the

encoded universality. This gate is also diagonal, which is required so as to not disrupt the

encoding of Eq. (3.12). At that point in Section 3.3 we interpreted the role of the swap

as undoing an unwanted interchange of the qubit states induced by the f-swap. We will

now reverse that intuition: in fact, the role of swap is to induce a relative phase between

the odd and even parity subspaces (i.e. parameter c), but it also induces an unwanted

exchange of the qubit states, which the f-swap undoes. This intuition is motivated by

the following Theorem (rephrased from [25]):

6Again, up to an irrelevant global phase.
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Theorem 5.2. Let G(A,B) be any parity-preserving unitary, and M be the set of all

matchgates together with G(A,B). If G(A,B) is not a matchgate (i.e. if detA 6= detB),

gates fromM acting only on nearest-neighbor qubits are universal for quantum computa-

tion.

Proof. The encoding of the qubits, implementation of single-qubit gates and measurement

of �nal output are all the same as in the proof of universality of Section 3.3. We only

provide the explicit construction for an entangling two-qubit gate. To that end, begin

with the decomposition of Eq. (5.8), that we write as

G(A,B) = G(A′, B′)eicZ⊗Z ,

where c is such that detA = 1/detB = e2ic [cf. Eq. (5.6)], and A′ and B′ are the �SU(2)

versions� of A and B, respectively (i.e., with global phases �xed such that the determinant

is 1). Then a suitable entangling gate E can be obtained simply by canceling out the

unwanted part of G(A,B)

E = G(A,B) ·G(A′, B′)† = eicZ⊗Z .

From Eq. (5.3), it is straightforward to see that ep(E) = sin2 2c. Hence, E is (partially)

entangling as long as c 6= 0, i.e., as long as G(A,B) is not a matchgate, and it is well-

known that partially entangling two-qubit gates su�ce for universal quantum computation

if arbitrary single-qubit gates are available [21]. This completes a universal set of encoded

operations built only of nearest-neighbor gates inM.

We now justify our intuition described previously: the role of the swap in Eq. (3.13) is

to provide a relative phase between the odd and even parity subspaces, and the role of the

f-swap is that of undoing the unwanted exchange in the qubits. As Theorem 5.2 shows,

this same reasoning applies to any P. P. gate that we may want�if G(A,B) is a P. P.

gate, its role in the universal scheme is to provide some nonzero value of the parameter c,

and we must apply a G(A′, B′)† operation to cancel out any unwanted e�ect it may have

(that could, for example, disrupt the encoding).

5.1.3 Discussion

Theorem 5.2 shows that any non-matchgate P. P. gate su�ces to extend nearest-

neighbor matchgates to universality, and the swap gate is just one particular example.
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Furthermore, it establishes a certain dichotomy�matchgates jump from classically sim-

ulable to quantum universal by relaxing the determinant condition by any amount7, for

any gate, and they do not display any intermediate power similar to that of IQP, Boson-

Sampling, or constant-depth quantum circuits (cf. Section 2.5). In the next section, when

we consider changes in the underlying graph, the jump in computational power will also

be abrupt in this sense.

So far, we have restricted our attention to P. P. gates, as they are a natural general-

ization of matchgates. Are there other single- or two-qubit gates that can also ful�ll this

role? It is easy to see that matchgates together with arbitrary single-qubit gates form

a universal set, since matchgates include many perfect entanglers [134]. The Hadamard

gate alone is su�cient for this purpose, since, as mentioned in Section 5.1.1, it can be used

to implement the permutation a↔ c. Thus, a matchgate with a 6= 0 conjugated by H⊗2

is a non-matchgate P. P. gate, satisfying the conditions of Theorem 5.2. Other H-like

gates that implement similar permutations (i.e. a ↔ c and b ↔ c, but not a ↔ b) can

be used in the same fashion. While this use of the H to extend the power of matchgates

is natural in our context, it is not particularly surprising: matchgates contain all single-

qubit Z-rotations which, when added to the H gate, generate arbitrary single-qubit gates,

and we obtain a universal set even without encoding. This section's focus on P. P. gates

is natural as we encoded the logical qubits on the even parity subspace of two qubits, but

other encodings could lead to di�erent universal constructions, which in turn may help

identify other unitaries that can complement the set of matchgates in this manner.

In this section, we have also pointed out that the parameter c, in the context of

P. P. gates, is qualitatively di�erent from the other two, since we cannot implement the

permutations a ↔ c and b ↔ c. To further make this point, note that the subset of

P. P. gates with a = 0 is already universal, since we can use single-qubit Z rotations to

implement the permutation a↔ b, and so this subset trivially generates the whole set of

P. P. gates. This point can be understood easily if we return to the fermionic formalism. As

mentioned in Section 3.2, if we map matchgates to fermionic operators using the Jordan-

Wigner transformations [cf. Eqs. (3.4) and (3.5)], we obtain Hamiltonians quadratic in

the fermionic operators (i.e. noninteracting fermions). On the other hand, from Eq. (3.2)

we see that ZiZi+1 = −c2i−1c2ic2i+1c2i+2, which is a quartic operator, and so describes an

interaction between the fermions. Thus, the break in the permutation symmetry among

7Obviously, any constant amount. If the gate G(A,B) has a parameter c that somehow decreases with
the size of the input, our results might not hold, but this seems a very unnatural assumption, both in
theoretical and experimental terms.
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the three nonlocal parameters, which is not obvious in the algebraic formalism, turns out

to have a very physical meaning in the fermionic formalism. In fact, in [20], Bravyi and

Kitaev had already showed that the exp{iπ
4
Z ⊗Z} interaction can be used to implement

a cz gate, which is then used to generate a universal set with fermionic modes.

Our result is closely related to the one in [20], but also more general as we provide an

explicit construction where any non-matchgate G(A,B) matrix can be used. This alterna-

tive approach can be useful whenever circuits of P. P. gates arise in physical systems other

than fermionic linear optics. For example, in the fermionic picture the f-swap corresponds

to a simple exchange of the fermionic modes, whereas the Z⊗Z Hamiltonian corresponds

to an interaction between the fermions. In contrast, in the algebraic formalism followed

throughout most of this chapter, these roles are reversed: the f-swap is a maximally

entangling operation, and so requires some interaction between the qubits, whereas the

swap gate may require no interaction between the qubits at all, especially if the informa-

tion carriers are �ying qubits (as, for example, in a recent linear-optical implementation

of matchgates [107]). This interpretation of c in terms of fermionic interaction is also not

very natural in the context of the Heisenberg interactions described in Section 3.3.1. In

that context, the XY interaction has c = 0 [cf. Eq. (3.14)] and, if applied only on nearest

neighbors, is classically simulable, whereas the exchange interaction has c 6= 0 and is

universal8. Just from looking at the Hamiltonians that generate the two interactions, it is

not obvious what feature the exchange interaction has that is qualitatively di�erent from

the XY interaction and that could grant this computational power�of course, by using

the Jordan-Wigner transformation we can see how this relates to fermionic interactions,

but Theorem 5.2 provides a much more natural and straightforward understanding of this

distinction.

5.2 Matchgates and XY interaction in graphs

So far, in this chapter, we have been concerned with the change in the computational

power of matchgates when extra gates are added to the set, with all other conditions kept

the same. We now consider an alternative scenario, and ask what the power of matchgates

is when acting on other graphs, rather than the path. In the circuit model, qubits are

often implicitly assumed to be aligned on a path. As we mentioned before, this is a

natural assumption, given that the swap gate can be implemented using the cnot gate,

and the cnot is one of the most standard gates one aims to implement when constructing

8Note however that these two results neither imply nor are implied by our own.
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Figure 5.1: In a triangular ladder graph, vertices have a one-to-one correspondence to vertices of a
path such that nearest neighbors on the triangular ladder correspond to nearest and next-nearest
neighbors on the path.

a universal set. However, for matchgates the swap gate itself plays a central role for their

computational power, and variations of this underlying arrangement of the qubits become

meaningful, as they provide qualitatively di�erent regimes. This question of interaction

graphs and universal quantum computation was already posited in [70], in the context of

the XY interaction, and we will answer it here fully both for general matchgates and for

the XY interaction. The results from this section are taken from [26] and [24].

Throughout the next few sections, we always consider matchgates to act on some

graph. More speci�cally, we consider a graph such that its vertices correspond to the

qubits, and we can act with a matchgate on a pair of qubits if the graph contains the

corresponding edge. Without loss of generality we consider only connected graphs, as

qubits in di�erent components of a general graph cannot interact, so the components can

be treated separately. Of course, changes in the underlying graph can be alternatively

viewed as a very particular set of allowed long-range interactions on qubits aligned on

a path. However, in order to provide a complete characterization, it will be much more

convenient to consider, from hereon, that matchgates act exclusively on qubits arranged

according to some graph.

In order to further clarify this formalism, let us recast the results from the beginning of

the section in terms of these interactions graphs. Recall from Chapter 3 that matchgates

are classically simulable if allowed to act only on nearest neighbors, but become universal

if allowed to act also on next-nearest neighbors. In terms of graphs, this means that

matchgates are classically simulable if acting on the graph of Figure 5.1(a), which is just

a path, and universal if acting on the graph of Figure 5.1(b), which we call a triangular

ladder�it is easy to see that neighbors on the latter correspond to nearest and next-

nearest neighbors on the former. This correspondence was already observed explicitly in
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n-1
Figure 5.2: An n-vertex graph obtained from an (n− 1)-vertex path by joining a new vertex to
some degree-2 vertex of the original path.

[72].

In this section, we proceed as follows. In Section 5.2.1 we begin with two instructive

examples, which culminate on our proof that matchgates are universal on any connected

graph other than a path or a cycle. In Section 5.2.2 we build upon the simulability proof

of Section 3.2 to prove the classical simulability of matchgates acting on a cycle. Finally,

in Section 5.2.3 we specialize the result of Section 5.2.1 and show that the XY interaction

is also universal on any graph other than a path or cycle. Although this latter result

implies the �rst, we present them separately as the �rst proof is easier and develops tools

that are useful later on, while the simulation using the XY interaction is less explicit.

The basic de�nitions and nomenclature concerning graphs can be found in any standard

textbook on Graph Theory [17].

5.2.1 Universality of matchgates on arbitrary graphs

Recall, from Section 3.3, that matchgates are universal when supplemented by the

swap gate, a result that translates to their universality on the triangular ladder of Fig-

ure 5.1(b). Recall also, from Section 5.1, that there are other gates, such as the f-swap

or the i-swap, that closely resemble the swap but fail in replacing it in the universal set,

given that they are matchgates. We now show that, if we change the underlying graph,

there is a sense in which these gates can replace the swap. Before giving the proof for

the most general case, it is instructive to work through two cases that exemplify the main

ideas.

Example 5.2. Suppose the qubits are arranged according to a graph of the form shown

in Figure 5.2, obtained by joining a new vertex to some degree-2 vertex of a path. To

prove that such a graph is universal, we use the following two tricks.

First, suppose we have a logical qubit in an arbitrary state |Ψ〉L = α |00〉+β |11〉 and
a third physical qubit in any state |φ〉. We then have the identity

fs12fs23 |Ψ〉L |φ〉 = |φ〉 |Ψ〉L , (5.9)
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where fs is shorthand for the f-swap gate, and subscripts denote the pair being acted on.

The above identity follows from the trivial observation that the logical qubit is always a

superposition of |00〉 and |11〉, so the f-swap gate either does not induce a minus sign, or

does so twice. Thus, we can use the f-swap as a swapping operation provided it always

exchanges the two qubits that form a logical qubit at a time. Note that, by linearity, this

holds even if the logical state of qubits 1 and 2 is entangled with other logical qubits, as

long as it is a physical state of even parity.

The second trick is the identity

fs |0〉 |ψ〉 = |ψ〉 |0〉 (5.10)

where |ψ〉 is the state of any physical qubit. This can be easily seen from the explicit

form of the f-swap gate:

fs = G(Z,X) =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

 . (5.11)

This follows simply because when either of the qubits is in the |0〉 state, the f-swap does

not induce a minus sign, behaving exactly as the swap. We will use this fact to initialize

some ancilla qubits in the |0〉 state and move them around as necessary.

These two tricks consist essentially of special situations in which the f-swap behaves

as the swap. We can now prove universality for Example 5.2. First note that the graph

of Figure 5.3 is guaranteed to appear as a subgraph of the one in Figure 5.2 if the number

of vertices is greater than 6. We refer to the degree-3 vertex in that graph�and more

generally, to any vertex of degree greater than 2 in a tree9�as a branching point. We

initialize two ancilla qubits near the branching point (speci�cally, at vertices α and β

in Figure 5.3) as |0〉 and encode the logical qubits using pairs of adjacent qubits as in

Eq. (3.12). Depending on the number of vertices and the location of the branching point,

some physical qubits might be unpaired, in which case one or two qubits at the endpoints

may not be used.

As discussed in Section 3.3, a logical single-qubit gate A can be implemented simply

by a G(A,A) matchgate between adjacent qubits. Now say we want to implement a logical

cz gate between two (not necessarily adjacent) logical qubits. We �rst use the identity

9A tree is a graph with no cycles.
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1 2α

β

3 4

Figure 5.3: Close-up view of the degree-3 vertex of the graph in Figure 5.2. Vertices labeled α
and β correspond to ancillas initialized in the |0〉 state. Vertex pairs {1, 2} and {3, 4} correspond
to the two logical qubits on which we want to implement a logical cz gate. The α and β ancillas
are used to change the order of the state of the other qubits, as per Eq. (5.12).

of Eq. (5.9) to place the two desired pairs near the branching point, as in Figure 5.3.

Recall that the logical cz can be implemented by a physical cz between two of the four

qubits (e.g., 1 and 3, as labeled in Figure 5.3), which in turn is equal to swap followed by

f-swap. We can implement this sequence by swapping qubit 2 with both qubits of pair

{3, 4}, which is possible by Eq. (5.9), and then using the fact that α and β are ancillas in

the |0〉 state to switch the order of the qubits placed in vertices 1 and 2. This e�ectively

implements the swap of Eq. (3.13). If we follow this with an f-swap again between qubits

1 and 2, the �nal result is the desired cz gate. We can then use Eq. (5.9) to return all

qubits to their original places. The explicit sequence is

fs23 fs34 fs12 fsβ1 fs12 fsα1 fsβ1 fs12 fsα1 fs34 fs23. (5.12)

This sequence uses only matchgates to implement a cz between the logical qubits

which, together with the single-qubit gates mentioned previously, provides a universal

set. Since any logical qubit can be moved to any desired location using O(n) f-swap

gates, the overhead in the number of such gates grows polynomially with the number of

2-qubit gates in the original circuit.

Example 5.3. Now suppose the qubits are arranged on a complete binary tree of m

levels, as in Figure 5.410. This graph has n = 2m+1 − 1 vertices. Since the longest path

contains only 2m− 1 = O(log n) vertices, the strategy of Example 5.2 cannot be trivially

adapted to this case: the number of available logical qubits would not be su�cient.

Instead, we store logical qubits using the 2m = (n+1)/2 leaves as shown in Figure 5.4.

By using the leaves as the computational qubits and �lling the paths that connect them

with |0〉 ancillas, we can use the identity of Eq. (5.10) to move the state of any qubit

to a vertex adjacent to any other desired qubit in less than 2 log(n/2) steps, apply the

10This example also shows why this formalism in terms of graphs is convenient�the description of the
graph of Figure 5.4 in terms of long-range connectivity restrictions of qubits on a path is both unnatural
and cumbersome.



98

log(n+1)

Figure 5.4: An n-vertex complete binary tree. White vertices represent |0〉 ancillas and black
vertices are used in pairs to store computational qubits. This is one particular arrangement that
enables universal computing with matchgates.

n/2 n1

(a) Square lattice

n/2 n1

(b) Cycle with extra ver-
tex

n/2 n1

(c) A 3-regular graph

n/2 n1

(d) Star graph

Figure 5.5: Several graphs that are universal for quantum computation with matchgates. White
circles represent one possible placement of the |0〉 ancillas that makes the universality explicit
by the arguments in Examples 5.2 and 5.3.

desired matchgate between them, and return them to their initial positions. This means

we can use the f-swap to implement an e�ective interaction between any pair among the

(n + 1)/2 computational qubits, which clearly is su�cient for universal computation, as

per the construction of Section 3.3. The overhead of this approach is modest: it requires

twice the number of qubits and uses 2 log(n) f-swap operations per 2-qubit gate in the

original circuit. Note that this approach works for any pairing of physical into logical

qubits.

These two examples prove the universality of matchgates in two extremal situations.

In Example 5.2, we have a graph that has a very long path as a backbone, whereas in

Example 5.3 the longest path is too short, and we must turn to the many leaves of the
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v

Figure 5.6: A tree. The dashed rectangle indicates the vertices in the path from v to the nearest
branching point, which are deleted in the proof of Lemma 5.1. Upon deletion of these vertices,
the remaining tree has one fewer leaf, and at most p− 1 vertices have been removed.

graph to store the logical qubits. In fact, in [26] we used adapted versions of these two

ideas to prove the universality in many di�erent graphs of interest, such as those shown

in Figure 5.5. Examples include regular lattices, that often arise naturally in solid state

systems, the n-vertex star graph, that relates to the formalism of ancilla-driven quantum

computation (i.e., where the computation is implemented by interaction of every qubit

with one single ancilla [9]), and more exotic cases. However, Examples 5.2 and 5.3 also

raise a natural question: is it always possible to �nd either a su�ciently large number of

leaves or a su�ciently long path, on any given graph, to enable universal computation?

In [24] we showed that the answer to this question is indeed yes. We begin by proving

the following Lemma:

Lemma 5.1. Let T be an n-vertex tree with l leaves and a longest path of length p. Then

either (i) l >
√
n or (ii) p >

√
n.

Proof. Choose any leaf v of T . Delete every vertex on the path from v to the nearest

branching point, not including the branching point (see Figure 5.6). Since, by hypothesis,

this path has length smaller than p, the result is a subtree of T where one leaf and at

most p − 1 vertices are removed. Repeat this procedure until only a path remains (i.e.,

l− 2 times). Finally, delete the remaining path, removing the last two leaves and at most

p vertices. This process deletes every vertex in T . Therefore n ≤ (l − 2)(p− 1) + p < lp,

so max{l, p} > √n as claimed.

The main result follows straightforwardly from Lemma 5.1 and the previous examples:

Theorem 5.3. Let G be any n-vertex connected graph, other than a path or a cycle,

where every vertex represents a qubit and we can implement arbitrary matchgates between
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neighbors in G. Then it is possible to e�ciently simulate (i.e., with polynomial overhead

in the number of operations) any quantum circuit on Ω(
√
n) qubits.

Proof. Since G is not a path or a cycle, it has some spanning tree T that is not a path11.

This holds because G necessarily contains a vertex of degree more than 2 and one can

construct a spanning tree that includes all edges adjacent to this vertex. It su�ces to

show that universal computation can be implemented in T , since all edges of T are edges

of G. By Lemma 5.1, either (i) the longest path of T or (ii) the set of all its leaves must

have more than
√
n vertices.

First, suppose (i) holds. Assign each qubit of a longest path of T as a computational

qubit, with the exception of one qubit at a branching point. We also use one qubit

adjacent to the branching point and not in the path as an ancilla. All other qubits are

ignored. We implement the circuit as shown in Example 5.2 of the previous section. Since

the longest path has more than
√
n vertices by hypothesis, this allows the simulation of

an arbitrary quantum circuit on b(√n− 1)/2c qubits. This simulation uses O(n) f-swap

operations for each two-qubit gate.

Otherwise (ii) holds, so T has more than
√
n leaves. Proceed by assigning every qubit

at a leaf as a computational qubit and initializing every other qubit as a |0〉 ancilla. The
intermediate vertices on the (unique) path between any two leaves represent qubits in the

|0〉 state. As in Example 5.3, we can use the identity of Eq. (5.10) to move the state of any

qubit to a vertex adjacent to any other, implement a matchgate, and move it back. Thus

we can e�ectively implement any matchgate between any pair of logical qubits. Since the

longest path has length less than
√
n, this simulation uses O(

√
n) f-swap operations for

each gate in the original circuit.

Theorem 5.3 proves the universality of matchgates on any graph that is not a path

or a cycle, neatly tying all the particular cases from [26] in one single result. However,

the fact that it does not work for the cycle suggests that a degree-3 vertex is necessary

for the universality. The proof method also indicates this�both cases (i) and (ii) of the

Theorem rely on the existence of branching points to maneuver the states of the qubits

around according to Eqs. (5.10) and (5.9). In the next section we show that a branching

point, besides being a su�cient condition, is indeed also necessary.

11A spanning tree of G is a tree that contains all vertices of G.
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5.2.2 Classical simulation of matchgates on the cycle

I will now prove that matchgates are classically simulable on the cycle [24]. In Sec-

tion 3.2, I reproduced a proof from [75, 134, 64] that matchgates are classically simulable

on a path, if the input of the circuit is a product state and the output is the measurement

of some qubit k in the computational basis (i.e., this corresponds to strong simulation, as

described in Section 2.2). The proof was along the following lines. I started by showing

that any unitary U corresponding to a circuit of nearest-neighbor matchgates corresponds

to a linear transformation on the space of the fermionic operators ci. More speci�cally,

there is some rotation R ∈ SO(2n) such that

U †ciU =
2n∑
j=1

Ri,jcj,

where the ci are the operators de�ned in Eq. (3.2). Furthermore, recall that to compute

the probability p0 that qubit k will be measured in the |0〉 state, it su�ces to compute the

expectation value 〈Zk〉 = p0 − p1 = 2p0 − 1. Since Zk = c2k−1c2k, for any input product

state |ψ〉 = |ψ1〉 |ψ2〉 . . . |ψn〉 we can write

〈Zk〉 = −i 〈ψ|U †c2k−1c2kU |ψ〉 = −i
n∑

a,b=1

R2k−1,aR2k,b 〈ψ| cacb |ψ〉 . (3.9)

Finally, since any monomial cacb is a tensor product of Pauli operations, each expectation

value in the right-hand side of expression above factors into a product
∏n

i=1 〈ψi|σi |ψi〉.
Hence, the desired probability can be calculated from a polynomial number of e�ciently

computable terms, so the action of the circuit is classically simulable.

However, this result does not immediately apply to the case of a cycle, which corre-

sponds to applying periodic boundary conditions to a path, because a matchgate between

the �rst and last qubits does not translate into a Hamiltonian that is quadratic in the cis,

and vice versa. For example,

c1c2n = iX1Xn

n∏
i=1

Zi, (5.13)

which is clearly not a matchgate, as it is a unitary operation acting on every qubit in the

circuit.

Note that Theorem 3.1 still applies to the Hamiltonian in Eq. (5.13) even though it

does not correspond to a matchgate. However, we do not have a straightforward way of

writing the operators we need, such as X1Xn, in terms of these quadratic operators.
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To show that matchgates are simulable in this case nonetheless, �rst consider the case

where the input state |ψ〉 is a computational basis state. Suppose that |ψ〉 has even parity

(e.g., |000 . . . 0〉). Matchgates preserve parity, so the state at any point in the computation

has a well-de�ned (even) parity. Now notice that
∏n

i=1 Zi is the operator that measures

overall parity, so it acts as the identity on the even-parity subspace. This means that for

any even-parity input we have a correspondence similar to Eq. (3.5):

X1Xn = X1Xn

n∏
i=1

Zi = −ic1c2n (even parity),

where the second equality is just Eq. (5.13). The equivalent equations for Y1Yn, X1Yn, and

Y1Xn are straightforward. Since we have recovered a correspondence between matchgates

on qubits 1 and n and quadratic Hamiltonians, the simulation can be carried out exactly

as in Section 3.2. The case of an odd-parity input state (e.g., |100 . . . 0〉) is analogous,
except that the operator

∏n
i=1 Zi now acts as minus the identity, and we write

X1Xn = −X1Xn

n∏
i=1

Zi = ic1c2n (odd parity)

and its equivalents for Y1Yn, X1Yn, and Y1Xn.

Now consider a general product input state |ψ〉. Let |ψ±〉 denote the projections of

|ψ〉 onto the even- and odd-parity subspaces, respectively. The expectation value 〈ZK〉,
analogous to Eq. (3.9), is

〈Zk〉 =− i 〈ψ|U †c2k−1c2kU |ψ〉

=− i
n∑

a,b=1

(R2k−1,aR2k,b 〈ψ+| cacb |ψ+〉

+R′2k−1,aR
′
2k,b 〈ψ−| cacb |ψ−〉). (5.14a)

Here R and R′ correspond to two sets of rotations, where R′ includes an extra minus

sign for every matchgate applied between qubits 1 and n. The expression above does not

contain cross terms such as 〈ψ−| cacb |ψ+〉 because cacb preserves parity.

The sum in Eq. (5.14) contains a polynomial number of terms, just as in Eq. (3.9),

but now each term may not be easy to compute, since |ψ±〉 are not product states in
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general. However, we have

〈ψ| cacb |ψ〉 = 〈ψ+| cacb |ψ+〉+ 〈ψ−| cacb |ψ−〉 ,

〈ψ| cacb
n∏
i=1

Zi |ψ〉 = 〈ψ+| cacb |ψ+〉 − 〈ψ−| cacb |ψ−〉 .

We can invert these equations to obtain

〈ψ+| cacb |ψ+〉 =
1

2

[
〈ψ| cacb |ψ〉+ 〈ψ| cacb

n∏
i=1

Zi |ψ〉
]
,

〈ψ−| cacb |ψ−〉 =
1

2

[
〈ψ| cacb |ψ〉 − 〈ψ| cacb

n∏
i=1

Zi |ψ〉
]
. (5.15)

The left-hand sides are precisely the two terms of 〈Zk〉 that we need, while the

right-hand sides are combinations of terms that can be e�ciently computed, as both

are expected values of products of Pauli operators on product states. Explicitly, if

|ψ〉 = |ψ1〉 |ψ2〉 . . . |ψn〉 and cacb = σ1σ2 . . . σn, we have

〈ψ| cacb |ψ〉 =
n∏
i=1

〈ψi|σi |ψi〉 ,

〈ψ| cacb
n∏
i=1

Zi |ψ〉 =
n∏
i=1

〈ψi|σiZi |ψi〉 .

Plugging Eq. (5.15) into Eq. (5.14), we recover an expression that can be e�ciently

computed in the same manner as Eq. (3.9), with only four times as many terms. This

gives an e�cient classical simulation for matchgates acting on a cycle, as claimed.

The simulability proof of matchgates on a path, shown in Section 3.2, was recently

exploited [63] to show that circuits of nearest-neighbor matchgates on n qubits (on a path)

are equivalent to general quantum circuits on O(log n) qubits, and subsequently [81, 19]

to show a protocol for �compressed� simulations (i.e., with quantum circuits on O(log n)

qubits) of the Ising and XY models of spin systems with open boundary conditions. It is

an open question whether the observations made in this section lead to analogous results

for systems with periodic boundary conditions.

5.2.3 Universality of the XY interaction on arbitrary graphs

In Section 5.2.1 and Section 5.2.2, I addressed the computational power of the set of all

matchgates on arbitrary graphs. We now consider the computational power of a restricted
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set of matchgates corresponding to the XY (or anisotropic Heisenberg) interaction on

arbitrary graphs, which we introduced in Section 3.3.1. This interaction corresponds to a

subset of matchgates generated by the Hamiltonian HA := X ⊗X + Y ⊗ Y (recall from

Section 3.2 that matchgates are generated by the two-qubit Hamiltonians X⊗X, X⊗Y ,
Y ⊗X, Y ⊗ Y together with the single-qubit Hamiltonian Z). It is easy to see that these

interactions form a proper subset of matchgates as, e.g., they act nontrivially only on the

odd-parity subspace of the 2-qubit Hilbert space.

Despite being a proper subset of matchgates, the XY interaction is also known [72]

to be universal for quantum computation when acting on the graph of Figure 5.1 (i.e.,

nearest and next-nearest neighbor interactions on a path). It also follows trivially from

Section 3.2 and Section 5.2.2 that the XY interaction is classically simulable on paths

and cycles. This prompts the question of whether our results from Section 5.2.1 can be

adapted for the XY interaction on arbitrary graphs.

We now show that the XY interaction alone is universal for quantum computation on

any connected graph that is not a path or a cycle [24] . Since these operations are a subset

of matchgates, this result subsumes the one of Section 5.2.1. However, the argument given

for the XY interaction is less explicit, and the simulation is less e�cient in general.

First observe that the XY interaction acts trivially on the even-parity subspace, so

the encoding of Eq. (3.12) cannot be used. A suitable alternative (as used in [72]) is

|0〉L = |01〉 ,
|1〉L = |10〉 , (5.16)

which is simply the corresponding encoding on the odd-parity subspace.

We also need to adapt some of the identities used in Section 5.2.1. The fermionic

swap gate is not available, but we can instead use i-swap (denoted by the shorthand is):

is := exp(iπ
4
HA) = G(I, iX) =


1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

 . (5.17)

For an arbitrary logical state |Ψ〉L = α |10〉+β |01〉 in the encoding of Eq. (5.16), and

for any physical qubit in an arbitrary state |φ〉, we have the following identity (already
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Figure 5.7: 5-vertex graphs for implementing a universal set of logical two-qubit gates with the
XY interaction. In all �gures, gray boxes identify pairs of physical qubits that make up a logical
qubit and white vertices represent ancillas initialized as |0〉.

used implicitly in [72]):

is12 is23 |Ψ〉L |φ〉 = i |φ〉 |Ψ〉L . (5.18)

Thus these states can be swapped up to an irrelevant global phase.

Another useful identity, akin to Eq. (5.10), is given by

is12 |0〉 |ψ〉 = (P |ψ〉) |0〉 , (5.19)

where |ψ〉 is any state and P := diag(1, i). This identity has a familiar operational

interpretation: once more any state can be �swapped through� a |0〉 ancilla, but now with

the caveat that the state su�ers an unwanted P gate. We must take this into account

when using Eq. (5.19) in a simulation, but one can already see that if we only need to

swap states through an even number of ancillas at a time, we can cancel out the P gates

by alternating i-swap and i-swap† swapping operations. In fact, a trivial adaptation of

Theorem 5.3 gives a proof of universality for those graphs that have an odd cycle (i.e.,

non-bipartite graphs), since then there is always an even-length path between any two

vertices. We state this without proof, as the details are not instructive and the result is

implied by the general case. Note however that for non-bipartite graphs, one can obtain

a universal set of unitary matrices, whereas for general graphs we will only obtain a

universal set of orthogonal matrices.

We �rst show how to implement a particular set of one- and two-qubit gates on the two

5-vertex graphs of Figure 5.7, similar to the simulation in Example 5.2 (cf. Figure 5.3).

Suppose the two logical qubits can be initialized as in Figure 5.7(a), according to the

encoding of Eq. (5.16), together with one |0〉 ancilla.
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Since

HA =


0 0 0 0

0 0 2 0

0 2 0 0

0 0 0 0

 ,

a logical X rotation on the logical qubit stored in physical qubits {1, 2} can be imple-

mented by a simple XY interaction:

exp(iaXL) = exp(ia
2
HA,12) =


1 0 0 0

0 cos a i sin a 0

0 i sin a cos a 0

0 0 0 1

 .

We can also implement the two-qubit gate RXZ(a) := exp(iaX ⊗ Z) on the logical

qubits {1, 2} and {3, 4} by the following sequence:

is25 is23 is34

[
is†25 exp(ia

2
HA,12) is25

]
is†34 is

†
23 is

†
25. (5.20)

This sequence works as follows. The �rst three i-swap gates use Eq. (5.19) to swap the

qubits and place them as in Figure 5.7(b). Notice that the �rst logical qubit su�ers a

P gate during this operation. The sequence inside the square brackets implements an

e�ective unitary with Hamiltonian Y ⊗Z. This can be veri�ed by explicit multiplication,

but can also be understood as follows: the is25 and is†25 swap qubits 2 and 5, leaving the

�rst logical qubit encoded in pair {1, 2}, up to some phases that depend upon the states

of both qubits. The HA,12 Hamiltonian then acts as a logical X rotation on the �rst qubit.

Keeping track of the dependence of the relative phases on the states of both qubits, we see

that the overall operation is Y ⊗Z. Finally, the last three i-swap gates return the states

of all qubits to their original positions, while inducing a P † gate on the �rst logical qubit.

Since P †Y P = X, the overall operation on the encoded states is X ⊗ Z, as claimed.

We now make a brief digression to explain why the set of Hamiltonians

A := {X ⊗ I, I ⊗X,X ⊗ Z,Z ⊗X,X ⊗ Y, Y ⊗X}

is universal for quantum computation in the usual circuit model. First notice that the

Hamiltonians X⊗Y and Y ⊗X are included; this is without loss of generality, as they can

be obtained as simple sequences of the remaining interactions, e.g., X⊗Y = U(X⊗Z)U †
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where U = exp[iπ
4
(I ⊗X)]. By conjugating every element in A by P , we obtain the set

B := {Y ⊗ I, I ⊗ Y, Y ⊗ Z,Z ⊗ Y,X ⊗ Y, Y ⊗X}.

These are exactly the generators of the special orthogonal group SO(4). This can be

seen by writing them down explicitly, but also understood by a counting argument, as B
contains six linearly independent, purely imaginary 4× 4 matrices.

Now we recall the well-known fact (see, e.g., [16] and [112]) that universal quantum

computation is possible using only orthogonal, rather than general unitary, matrices, with

the overhead of one extra ancilla qubit and a polynomial number of operations. Further-

more, any special orthogonal matrix on n qubits [i.e., in SO(2n)] can be decomposed in

terms of SO(4) gates acting nontrivially only on pairs of qubits, so the set B is universal

for quantum computation. But this means that the set A is also universal, since we can

assume that initialization and measurements are done in the computational basis, so the

initial and �nal single-qubit {P, P †} gates do not a�ect the outcomes.

While the graph in Figure 5.7(a) may not appear as a subgraph of the given graph,

the sequence Eq. (5.20) can be easily adapted to the graph of Figure 5.7(c). In that case,

we can just use Eq. (5.19) to swap the ancilla with any of the other qubits and obtain a

similar arrangement to that of Figure 5.7(b). The corresponding sequence is

is24

[
is†25 exp(ia

2
H12) is25

]
is†24. (5.21)

In this case, every operation described before is obtained up to conjugation by P , and

the set of available operations is B, rather than A. However, as described above, this still

su�ces for universal computation.

It remains to show that, for any graph other than a path or cycle, we can assign

su�ciently many vertices as computational qubits and swap them around to one of the

arrangements of Figure 5.7 with a polynomial number of operations.

Theorem 5.4. Let G be any n-vertex connected graph, other than a path or a cycle, where

every vertex represents a qubit and we can implement the interaction H = X⊗X+Y ⊗Y
between any nearest neighbors in G. Then it is possible to e�ciently simulate any quantum

circuit on Ω(
√
n) qubits.

Proof. As in Theorem 5.3, it su�ces to prove the universality of H on any n-vertex tree

T that is not a path.

By Lemma 5.1, either (i) the longest path of T or (ii) the set of all its leaves must
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have more than
√
n vertices. Suppose �rst that (i) holds. Then the universal construction

is directly analogous to case (i) of Theorem 5.3. Simply assign pairs of adjacent vertices

on the longest path as logical qubits, and every other as a |0〉 ancilla. Then, by using

Eq. (5.18), we can swap any two logical qubits to the closest degree-3 vertex, where we

use sequence Eq. (5.20) to implement the X ⊗ Z Hamiltonian as per Figure 5.7(a). As

explained previously, this together with the logical X Hamiltonian on any qubit (given

by H on adjacent qubits) enables universal computation with overhead of at most O(n)

i-swap operations per orthogonal matrix in the original circuit of [112].

Otherwise, (ii) holds. Then, �rst suppose that T is not a star. Any such T contains

the graph of Figure 5.7(a) as a subgraph, so we assign those 5 vertices as |0〉 ancillas,
together with all non-leaves, and pair the remaining leaves arbitrarily into computational

qubits. We can now use Eq. (5.19) to bring the states of any two logical qubits to the

structure of Figure 5.7(a), but with one caveat: this process may induce an overall P

gate on some logical qubits, depending on whether an odd or even number of |0〉 ancillas
is traversed. This separates the logical qubits into two disjoint sets, namely those that

su�er an overall P gate and those that do not (there is no need to single out the case

where the qubits su�er an overall P †, as this can be prevented by using i-swap†, rather

than i-swap, as the swapping operation). We then take the larger of these two sets,

which has at least
√
n/4 logical qubits, and for simplicity we disregard the rest. On the

remaining qubits, as argued previously, we can either implement the set of operations A
or its conjugated-by-P version B. Since either set is universal, this gives an universal

construction with an overhead of O(
√
n) operations for each gate in the original circuit.

Finally, for the star graph, we replace sequence Eq. (5.20), corresponding to Fig-

ure 5.7(a), by the equivalent sequence Eq. (5.21) corresponding to Figure 5.7(c). This

enables us to implement the set of Hamiltonians mentioned in the previous paragraph,

and concludes the proof.

5.2.4 Discussion

We completely characterized the computational power of nearest-neighbor matchgates

when the qubits are arranged on an arbitrary graph�the only connected graphs for which

matchgates are classically simulable are paths and cycles, whereas on any other connected

graph they are universal for quantum computation. Furthermore, the same dichotomy

holds when we restrict matchgates to the proper subset described by the XY interaction.

Once again, as in Section 5.1, this dichotomy excludes the possibility that these two
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sets of interactions (general matchgates and the XY interaction), acting on graphs, could

exhibit intermediate computational power such as that displayed by circuits of commuting

observables (IQP) [22] or noninteracting bosons [4]. However, this does not rule out such

a result for other subsets of matchgates. As one example, consider the set generated by

the X⊗X Hamiltonian acting on some graph. All such operations commute, and this set

corresponds to a proper subclass of IQP. Furthermore, the set of two-qubit X ⊗ X and

single-qubit X Hamiltonians is su�cient to implement the non-adaptive measurement-

based quantum computation model (cf. Section 2.5) that was also shown [56] to be hard

to simulate classically, in the same fashion as IQP and noninteracting bosons. It is an open

question whether an analogous result can be obtained by further restricting the operation

to only the X ⊗X Hamiltonian, or possibly some other proper subset of matchgates, and

how the power of such a model depends on the underlying interaction graph.

While the results of this section establish the universality of matchgates on any con-

nected graph that is not a path or a cycle, it should be possible to improve the e�ciency

of these constructions. These results take an operational approach, where each |0〉 is seen
as an �empty space� through which we can move logical qubits, allowing for a simple and

uni�ed proof of universality for all graphs. In some cases, such as for the star graph,

where all vertices but one are leaves, this construction is optimal. But in many others,

our construction could ignore many vertices and/or edges, making it far from optimal.

One such case is the binary tree of Figure 5.4, where we could have �lled most of the

non-leaves with logical qubits and used Eq. (5.9) rather than Eq. (5.10) whenever it was

necessary to �move� two logical qubits through each other. Since the bounds of Lemma 5.1

are tight (e.g., consider the graph obtained from a
√
n-leaf star by subdividing each edge

√
n times), an optimal simulation presumably requires a more e�cient assignment of log-

ical qubits than in Theorem 5.3. While being markedly non-optimal in some cases, the

constructions presented in this section nevertheless provide powerful tools for case-by-case

optimization. It remains an open question whether there is a way to systematically ob-

tain a more e�cient construction, and in particular, whether in every case only a constant

fraction of the qubits must be discarded as non-computational.

5.3 Conclusions, open questions and relations to other

work

Throughout this chapter, we have considered variations of the known results regarding

matchgates reviewed in Chapter 3. In every case considered, we have observed the jump
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in computational power to be abrupt. We can start with matchgates on a path, which

are classically simulable, and obtain quantum universality simply by adding any parity-

preserving gate that is not a matchgate (Section 5.1), or by having at least one qubit of

the circuit interact with more than two other qubits (Section 5.2), and the same is true

if we start only with the XY interaction. In what other directions could these results be

extended? Could they provide other computational regimes?

One possibility is that of modifying the state preparation or measurement stages of

the circuit. Throughout this chapter, we have not considered the use of nontrivial mea-

surements to implement other unitary operations�it has been shown, for example, that

noninteracting fermions (i.e., matchgates on a path) become universal if nondestructive

charge measurements are allowed [15]. These charge measurements clearly cannot be im-

plemented by combining matchgates and computational basis measurements. It is plausi-

ble that a similar result could be obtained by allowing the use of more general two-qubit

input states, that somehow require a non-matchgate unitary for their preparation.

Another approach, already mentioned previously, would be to consider other non-

matchgate unitaries, together with a change in the encoding. The parity-preserving gates

of Section 5.1 arise naturally given that we are encoding qubits on a space of well-de�ned

parity, which in turn is a particularly suitable choice for matchgates, but not the only one

(for example, see [70] for a general formalism of encoded universality, and a procedure for

obtaining valid encodings for universal computation with the exchange interaction).

Note also that all of these variations can in principle be combined. One example of

this was discussed in Section 5.2.4, where it was left as an open question whether other

notable restricted subsets of matchgates, such as e.g. only the X ⊗X interaction, could

have their computational power a�ected by changing the underlying graphs. Another

known example is that of combining preparation of special ancillas (in the |+〉 state)
with changes in the graph. This possibility, which was omitted here, was analyzed in

[26] for several examples. Although preparation of these special input states was not

strictly necessary for universality, it did remove the need of encoding in several cases, thus

suggesting that these combinations may be relevant for the matter of overall e�ciency of

the computation, both in terms of time and spatial resources.

Other interesting open questions we can point out relate to the robustness of our

results against experimental noise and imperfections. For the results of Section 5.1, one

could also ask how much noise can be added to the non-matchgate operation before it

stops being useful. Similar results are known in the context, for example, of Cli�ord
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gates [145]. There, the authors considered noisy non-Cli�ord operations (for a particular

noise model) and showed that, if the level of noise is too high, that operation falls inside

the �Cli�ord polytope�. At that point, the operation becomes a convex sum of Cli�ord

gates, and its action can be simulated by a classical probabilistic mixture of Cli�ord

gates, thus providing no quantum speedup. It would be interesting, although it seems

mathematically daunting, to characterize the equivalent �matchgate polytope�12 of convex

sums of matchgates. This would allow one to investigate whether a very noisy Z ⊗ Z

interaction can be simulated in a similar fashion.

For the robustness of the results of Section 5.2, it would be interesting to see whether

the technique of encoded selective recoupling (cf. Section 3.3.1) can be adapted for the

XY interaction on arbitrary graphs. Recall that the XY interaction is an idealized model

of real-world physical interactions [59, 105, 156, 98]. Techniques have been developed to

deal with spurious terms in the Hamiltonian of the XY interaction or background �elds

[141, 86], but these techniques seem to need second-neighbor interactions throughout the

whole circuit. It remains an open question whether these realistic models retain the

universality of the XY interaction on arbitrary graphs. Also, during the writing of this

thesis a new pre-print was released [54] with a proposal for matchgate quantum computing

using polar molecules trapped in optical lattices. This proposal has a set of tunable

interactions consisting of matchgates which is larger than just the XY interaction, and

so it might present an interesting �rst candidate for a more robust version of the results

presented here.

Besides the broader question addressed in Section 5.2 of characterizing the power of

matchgates on any graph, there are interesting connections between the results proven for

particular graphs and other results in the literature, obtained by giving the connectivity

determined by the graph a new interpretation. There are two particular cases I would

like to mention: that of quantum control of spin chains [29], and that of ancilla-controlled

quantum computation [104].

In the formalism of quantum control of spin chains of [29], the system consists of a path

of qubits with an always-on nearest-neighbor interaction (such as e.g. an XY interaction),

together with arbitrary control of a particular subset of the qubits. Speci�cally in [29],

one assumes the ability to do arbitrary single-qubit gates on two ancillas at one of the

end-points (i.e., the �rst and second qubits of the path). The computation is done, then,

by a careful pulsing of the single-qubit gates on the controllable qubits such that the

12Not necessarily a polytope, since matchgates are a continuous set of operations, in contrast to Cli�ord
gates.
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information is propagated to the remainder of the path by the always-on interaction.

This formalism has some analogy to our results for the universality of matchgates (or just

the XY interaction) on the graph of Figure 5.2, where the extra appended vertex is on the

second qubit. In both cases an otherwise-simulable set of operations (the XY interaction)

on a path is taken to quantum universality by extra operations at the endpoints, which is

where the information is e�ectively processed (recall that our result is based on bringing

the logical qubits to the branching point in order to implement the universal gate set).

In a recent paper [104], the authors introduce the formalism of ancilla-controlled quan-

tum computation (inspired by the setting of ancilla-driven quantum computation of [9]),

where the system consists of one ancilla that can interact via one particular interaction

with all the other computational qubits, which cannot interact between themselves, to-

gether with arbitrary single-qubit gates on the ancilla. This is similar to our results of

universality for the star graph, which can also be viewed as a computation where the

only allowed interactions are between one ancilla and the remaining qubits. In fact, in

[104] the universality is proven by initializing the ancilla in the |0〉 state, using the trick

of Eq. (5.10) to exchange the states of the ancilla and the computational qubits and then

implementing the desired operations between the computational qubits, which is a very

similar construction to the one we used in Section 5.2.1. Besides being completely �exible

in terms of changes in the graph, our result is also more general in that universality is

achieved either by general matchgates or just by the XY Hamiltonian, with no need for

single-qubit gates. However, our result is also more restrictive in the sense that it uses

an encoding, which doubles the number of qubits used (although that is not strictly nec-

essary, as discussed in our paper [26]), and that we, for simplicity, consider a continuous

family, rather than a discrete set, of operations.

Finally, I'd like to address the relationship between the results of this chapter and the

fermionic formalism. The results in this chapter take a more algebraic approach, with

little concern of the underlying fermionic nature of matchgates. This is done for two main

reasons: (i) the questions are much more naturally posed and investigated (e.g., consider

the fermionic equivalent of matchgates acting on the complete binary tree), and the results

and more readily accessible in various other contexts. That is not to say, however, that

some of these results do not have a fermionic parallel. The results of section Section 5.1,

as already discussed, relate to the fact that Z⊗Z is the only generator of P. P. gates that

translates, via the Jordan-Wigner transformation, to an interaction. As for the results

of Section 5.2, consider �rst Example 5.2. One way of stating this result is saying that

universality can be obtained by a circuit of nearest-neighbor matchgates, if additionally
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(any) one particular qubit can interact with one of its second neighbors. This second-

neighbor interaction corresponds to some Hamiltonian of the typeXkXk+2 which, by using

Eq. (3.2), translates to a quartic operator of the type c2kc2k+1c2k+2c2k+3, again a fermionic

interaction. In the fermionic formalism, then, the construction of Example 5.2 corresponds

simply to having a sequence of fermionic modes, occupied by a certain number of fermions,

where just two of the modes can interact. In order to interact two distant fermions, we

can move them around, place them in these special modes, interact them, then move them

back (remark the similarity between this and the use of the f-swap to swap the states

of logical qubits close to the branching point in Example 5.2). In fact our claim that a

branching point is necessary in the graph may be related precisely to this. However, the

claim that a branching point is also su�cient has a less clear interpretation. The action

of matchgates on the binary tree or on the star graph, for instance, would translate to

a very peculiar set of polynomials of the fermionic operators, including polynomials of

very high degrees. The question of Example 5.3 in this case would be very unnatural and

unmotivated, and its answer cumbersome.
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6 New results: Linear optics and

BosonSampling

In this chapter, I present our new theoretical and experimental results on the Boson-

Sampling model. The experiments reported were done in collaboration with the quan-

tum optics groups of Roberto Osellame (Milan), and Paolo Mataloni and Fabio Sciarrino

(Rome), and the results reported here are drawn from Ref. [35], published in Nature

Photonics, Ref. [128], published in Physical Review Letters, and Ref. [127], currently sub-

mitted for publication. The theoretical results consist mostly of yet-unpublished material,

and a more detailed description of the simulations and data analysis done in support of

the experiments, which were omitted from [35, 128, 127]. This chapter is organized as

follows.

First, in Section 6.1, I show that exact BosonSampling remains hard to simulate even

if the linear optical circuit is restricted to have constant depth. More speci�cally, a linear

optical device consisting of an input Fock state, followed by four rounds of arbitrary two-

mode transformations and a �nal number-resolving measurement, produces a distribution

over the possible outputs that should be hard to simulate classically (either exactly or

up to a multiplicative error, as discussed in Section 4.3), unless the polynomial hierarchy

collapses to its third level. This result is similar in spirit to the one of Terhal and Di-

Vincenzo [135] which shows that arbitrary quantum circuits of depth 4 should be hard to

simulate. Curiously, this value is tight for the case of arbitrary quantum circuits�it was

also shown that arbitrary quantum circuits of depth 3 can be simulated classically�but

not for the case of linear optics, since I show that optical circuits with two layers of beam

splitters can be simulated classically, whereas the situation for circuits with three layers

remains unresolved. Besides being conceptually interesting, this result should also be of

interest to experimentalists since all recent implementations of BosonSampling are based

on integrated optics and, at least in the current state of the technology, the number of

layers of these devices is heavily responsible for photon losses. One drawback to this result

is that, a priori, the constant-depth construction requires beam splitters to act between
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arbitrary pairs of modes, something that may be hard to do with current experimental

designs.

In Section 6.2 I present several experimental and theoretical aspects that permeate

our experiments. I give an overview of the experimental setup, with emphasis on the

workings of the integrated interferometers. This is followed by discussions of the numer-

ical analysis performed during di�erent stages of the experiment: simulation of di�erent

unitary ensembles, sampling of the interferometers to be fabricated, tomography of the

device, and comparison between experimental and theoretical data. I reiterate that my

contribution, and this thesis, are of a mostly theoretical nature, and thus I will only give

brief nontechnical descriptions of the experimental apparatus, focusing on the theoretical

and computational e�orts.

In Section 6.3 I report the data and conclusions drawn from the three experimental

papers: (i) a small-scale implementation of the full BosonSampling model, using 3 photons

in a uniformly-random 5-port interferometer [35], (ii) an investigation of the bosonic

bunching behavior of 3 photons in several interferometers of increasing size (2�16 modes),

including a comparison with behavior expected from the bosonic birthday paradox (cf.

Section 4.4.4) and a new bunching law that was observed experimentally and proven

theoretically, and �nally (iii) a larger demonstration of BosonSampling on interferometers

of 7 and 9 modes, with emphasis on certi�cation of the device, as described in Section 4.4.5.

Finally, Section 6.4 is devoted to concluding remarks. A discussion on the scalability

issues that will a�ect future experiments is provided, as well as a discussion of several

open questions of interest stemming both from experimental and complexity-theoretical

aspects of the model. This chapter is also complemented by several appendices at the

end of the thesis, consisting of additional tables of numerical and experimental data, and

copies of the Mathematica notebooks used in the simulations and device tomography.

6.1 Constant-depth (exact) BosonSampling

In this section, I prove that the exact BosonSampling result of Section 4.3 holds

even if the linear-optical circuits only have a constant number of beam splitter layers.

Note that, for approximate BosonSampling, the best known bound requires the optical

circuit to have depth O(n logm), as can be found in [4]. In contrast, I will show that a

depth of 4 already su�ces for the hardness reduction for exact BosonSampling. This will

follow the general recipe, described in Section 4.3, whereby if a certain restricted model of
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quantum computation, when imbued with post-selection, becomes as powerful as arbitrary

quantum computation with post-selection (postBQP), then a weak simulation of that

model (even within multiplicative error) cannot be e�ciently performed only by classical

means unless the polynomial hierarchy collapses to its third level. We begin by showing

how this reasoning applies to a family of circuits that is in the intersection of constant-

depth quantum circuits [135], IQP [22], and non-adaptive measurement-based quantum

computation (cf. Section 2.5), in Section 6.1.1. We believe such a uni�ed proof may also

be of independent pedagogical interest. We then proceed to show, in Section 6.1.2, how

to adapt it for constant-depth linear optics via the KLM scheme reviewed in Section 4.2.

6.1.1 Constant-depth quantum computing

Let us begin with an alternative proof of the result found in [135]. In that paper, the

authors prove that e�cient classical simulation of quantum circuits of depth 4 would imply

a collapse of the polynomial hierarchy. They also show that this depth is the smallest

for which this holds by giving an explicit simulation for circuits of depth ≤ 3. For the

present purposes, the depth of a quantum circuit is de�ned as the number of layers of

arbitrary two-qubit gates, plus one �nal round of measurements. We consider that gates

acting on qubit pairs that share a common qubit (e.g., {1, 2} and {2, 3}) cannot be done
simultaneously, even if they commute. Single-qubit gates do not contribute to the depth

count since we can consider them as part of the nearest two-qubit gate which means, in

particular, that we can choose initialization and measurements in any single-qubit basis

without loss of generality.

Our starting point is an universal construction in the measurement-based model of

quantum computing (MBQC) [109, 108]. We will restrict ourselves to a description of how

the computation is performed, with no discussion on how its universality is proved�that

would lie much beyond the scope of this thesis, and we refer to [23] and references therein.

Let G be the family of brickwork graphs, such as in Figure 6.1(a), parameterized by

some size n (i.e. the graph has poly(n) vertices). Consider, then, the corresponding graph

state |G〉, built as follows: (i) for each vertex in G prepare a qubit in the |+〉 state and (ii)

for each edge in G apply a cz gate between the two corresponding qubits. This generates

a highly-entangled multi-qubit state. The computation then proceeds by a sequence of

single-qubit measurements on the qubits of |G〉. Each measurement is done in one of a

discrete set of bases, and their outcomes determine the bases of future measurements. The

complete set of measurements, including the order in which they are performed and the
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Figure 6.1: (a) The brickwork graph state. (b) Representation of the MBQC protocol as a
circuit. Dashed lines conceptually represent the dependence of some measurements bases on the
others. The color coding shows how, in the translation from (a) to (b), preparation of the state
corresponds to only three rounds of cz gates, while almost all of the temporal structure resides
on the measurement adaptation.

dependence of some measurements on the results of others, is known as a measurement

pattern.

We now restate the following Theorem, which is taken from [23]1:

Theorem 6.1. Let G be the brickwork graph shown in Figure 6.1. The corresponding

graph state is universal for measurement-based quantum computation. The computation

is performed as follows:

(i) Initialize a qubit in the |+〉 state for every vertex of G;

(ii) Apply cz gates according to the edges of G;

(iii) Sequentially measure each qubit of G in one the bases{
|±θ〉 = |0〉 ± eiθ |1〉 |θ = 0,±π

4
,±π

2
,±3π

4
, π

}
.

Any poly-sized quantum circuit on n qubits can be simulated in this way using some graph

G of poly(n) size, and by a suitable choice of the measurement pattern which, furthermore,

can be computed e�ciently classically.

A formal proof of this result, found in [23] and references therein, gives explicit mea-

surement patterns corresponding to gates in the universal set {cnot, H, T}, and thus an

explicit procedure to simulate any quantum computation. Omitting further details from

1Although we follow the result of [23] for convenience, the brickwork state was known to be universal
for MBQC before that, see e.g. [31].
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this proof, we would just like to point out that this protocol, described as a quantum

circuit (see e.g. Figure 6.1(b)), inherits a temporal structure almost exclusively from the

�classical� adaptation of measurements. In other words, preparation of the graph state

only takes a few rounds of two-qubit gates, and the depth of the circuit stems from the

fact that some qubits must be measured prior to others.

Now consider what happens if we replace adaptive measurements by post-selection.

That is, rather than making a measurement and conditioning future measurements on its

outcome, we just postselect each measurement to a given outcome such that adaptation

is unnecessary�this is akin to what we did with the KLM scheme in Section 4.3. As an

example, suppose we measure one qubit in basis M1, with two possible outcomes labeled

+ and −, and must measure a second qubit on either basis M+
2 or basis M−

2 depending

on the outcome of M1. This can be replaced simply by post-selecting M1 to the outcome

+ and simultaneously measuring the second qubit in basis M+
2 . Doing this for every

measurement e�ectively �attens out the temporal structure of the protocol, allowing us

to perform all measurements in a single round2.

Our goal is now basically reached, as the procedure described already constitutes a

quantum circuit of depth 4. To see this, consider the circuit description of the MBQC

protocol, as shown in Figure 6.1. In this circuit, the depth count goes as follows3: (i)

a �rst round of cz gates (green edges of Figure 6.1(a)); (ii) a second round of cz gates

(red); (iii) a third round of cz gates (blue), followed by a round of single-qubit gates to

prepare the measurement bases; and (iv) �nal measurement in the computational basis.

Note that only three rounds of cz gates su�ce because vertices of the brickwork state

have degree at most 3, as show in Figure 6.1. It should be clear by our arguments and

Theorem 6.1 that circuits of this form, when imbued with the power of post-selection, can

implement any computation in postBQP. We then conclude, by the previous discussion,

that an e�cient classical simulation of its output would imply collapse of the polynomial

hierarchy.

It is interesting that the MBQC approach is very well suited for this proof, since

almost all the temporal structure lies in the adaptive measurements, which is precisely

what we replace by post-selection. Curiously, all information about the computation

also lies in the measurements, since the brickwork state does not depend at all on the

underlying quantum computation (except, of course, in its size). Thus, it seems that all

2If this sounds too good to be true, recall from the discussion of Section 2.4 that post-selection is
indeed an extremely unrealistic �power�.

3Recall that the H gates necessary to initialize the qubits in the |+〉 state do not count for the depth.
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�computational power� (to abuse the terminology) of the constant-depth quantum circuit

resides on the combinations of possible choices of measurement bases. An interesting

open question is whether there is a natural way to randomly choose the measurement

bases such that the �nal simulation is a provably hard instance, similar to the worst-

case/average-case equivalence conjectured for the approximate BosonSampling scenario,

as discussed in Section 4.4.3.

Another curious aspect of this proof is that it encompasses several similar proofs

for di�erent models. The resulting circuit obtained by �attening out the adaptivity of

MBQC has depth 4, is a non-adaptive measurement-based protocol (by de�nition), and is

in IQP, since it only uses gates diagonal in the X basis. This is interesting, but maybe not

specially surprising�the concept of gate teleportation is present, in one form or another,

in all of these results, and is closely related to the historical origin of MBQC. We should

also point out that, while this proof uni�es several results, it does not provide concrete

relations between these models�the resulting circuit lies at their intersection, but each

model may have circuits that perform tasks outside of this intersection.

6.1.1.1 Quantum circuits of depth 3

Besides proving that depth 4 is su�cient for the hardness result, the authors in [135]

also prove that it is necessary. This is done by giving an explicit simulation of any depth

3 circuit, which we brie�y reproduce here.

Consider an arbitrary depth-3 quantum circuit. That is, the qubits are initialized in

the computational basis, undergo a �rst round of arbitrary two-qubit gates, followed by

a second round of arbitrary two-qubit gates, and a �nal round of measurements. The

simulation becomes straightforward if we reinterpret this as a two-round computation:

�rst the qubits are prepared in arbitrary two-qubit states, and then they are measured in

arbitrary two-qubit bases. The classical simulation then proceeds as follows:

(i) Choose one particular measurement Mi. This is a two-qubit measurement where

each qubit may be entangled with some other qubit. Thus, its outcome probabilities

only depend on a four-qubit state and are trivially easy to compute in constant time.

(ii) Compute the outcome probabilities and simulate Mi by classically sampling a two-

bit string from the corresponding distribution and �xing the output of the measure-

ment accordingly.
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(iii) Project the two measured qubits onto the �xed bit string, and update the description

of the two qubits entangled to them accordingly. These two qubits are now in an

arbitrary known two-qubit state.

(iv) The next measurement involving one of the qubits updated in (iii) is again a two-

qubit measurement that depends only on an arbitrary four-qubit state.

(v) Repeat this procedure until all measurements have been �xed.

It is easy to see that this simulation samples from the same distribution as the corre-

sponding quantum circuit. It also consists of a weak simulation (cf. Section 2.2), rather

than strong, since at no point do we compute the probabilities associated with the full

output of the circuit, only small two-bit strings at a time. As a consistency check, one

could attempt to generalize this simulation for circuits of depth 4. This would naturally

fail, because the �rst measurement in step (i) would depend on an 8-qubit state, hence

step (iii) would collapse the unmeasured qubits to an arbitrary 6-qubit state. But then,

the next time we returned to step (i) the measurement might depend on the state of 14

qubits, and the iteration is clearly disrupted.

6.1.2 Constant-depth linear-optical circuits

We now combine the previous results into one�the computational complexity of exact

BosonSampling with a constant-depth linear optical circuit.

The �rst step is a rather straightforward concatenation of previously reviewed results.

Consider a constant-depth circuit obtained from some universal MBQC protocol by re-

placing adaptive measurements with post-selection, as in Section 6.1.1. Now map the

resulting quantum circuit to a linear-optical circuit using the constructions of Figure 4.1.

Finally, replace the adaptive measurements of the KLM protocol by post-selection. The

resulting circuit is naturally as strong as postBQP, and thus it cannot have an e�cient

classical simulation unless the polynomial hierarchy collapses. The fact that there are

actually three rounds of post-selection is immaterial.

Let us now count the depth of the resulting optical circuit. The single-qubit gates

cannot be �absorbed� into the two-qubit gates anymore, as was done in Section 6.1.1, due

to the dual-rail encoding. More speci�cally, in this encoding the single qubit gates involve

the two modes of a single qubit, while two-qubit gates involve two modes of di�erent

qubits. We will, however, absorb phase shifters into the closest beam splitter, and count
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layers of arbitrary two-mode transformations. The total count then, goes as follows: one

layer of balanced beam splitters for the preparation of the |+〉 states, followed by six

layers for the preparation of the entangled state (i.e. two for each layer of cz gates of the

brickwork state, using the cz of Figure 4.1(c)). Finally, one last layer of beam splitters and

phase shifters for the preparation of measurement bases, and a round of measurements.

This amounts to a total depth of 9.

We can now use two tricks to reduce this depth count. First note that, according to

Figure 4.1(c), when we perform a cz gate, only one mode of each encoded qubit is involved,

while the other remains idle. By a simple adaptation of the circuit of Figure 4.1(c), we

can use the second mode of each qubit to simultaneously implement the second round

of czs. To do this, we include two π phase shifters before the circuit of Figure 4.1(c),

resulting in a gate which, up to a global phase, only adds a minus sign to the photonic

|00〉 state. It is clear that, if we act with this gate on the modes encoding the |0〉 state of
two qubits, we obtain precisely a logical cz gate. By a clever alternation of which mode

we use for each cz gate, we can build the long paths of the brickwork state of Figure 6.1

in one round of czs (i.e., two rounds of beam splitters). This reduces the overall depth

to 7.

The second trick is to use a procedure similar to the usual gate teleportation [48],

which can be found in [78], to parallelize the third layer of czs. The original idea is

that we want to implement some faulty (i.e. probabilistic) gate U on a computational

qubit, but without endangering the information stored in that qubit. We can then do the

following: we prepare an auxiliary two-qubit state |φ+〉 = 1√
2
(|01〉 + |10〉), implement U

on the second qubit of this auxiliary state, and, if U succeeds, project the �rst qubit of

the auxiliary state together with our original qubit on the 〈φ+| state (see Figure 6.2(a)).
Of course, in standard quantum computation (i.e. BQP) we cannot guarantee that a two-

qubit measurement will project our qubits on the 〈φ+| state, but for our purposes we can
just post-select on observing this outcome. Now notice that, if rather than being a two-

qubit state, |φ+〉 actually represents a state of one photon in two modes, the mathematical

structure is exactly the same, and so it allows us to use an equivalent scheme to teleport

the states of the modes in the KLM scheme. Since each cz gate only involves one mode

of each qubit, as in Figure 4.1(c), this allows us to implement the gate teleportation by

teleporting only one mode, rather than a complete qubit, as shown in Figure 6.2(a). Thus,

we can perform all the cz gates for the brickwork state in parallel, and just teleport the

computational states around, in a very similar spirit to the original result of [135]. This

scheme, and how it can used to reduce the depth, is illustrated in Figure 6.2(b). This
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Figure 6.2: (a) The standard gate teleportation scheme in the quantum circuit model, and its
linear-optical version, replacing the entangled two-qubit state |φ+〉 by the corresponding photonic
state 1√

2
(|01〉+ |10〉), which can be mapped to the Fock basis by a balanced beam splitter. (b)

The resulting scheme for constant-depth (exact) BosonSampling. Every beam splitter in this
�gure is balanced, and white rectangles represent phase shifters. Dashed lines represent the
probabilistic cz gates of the usual KLM scheme, constructed as in Figure 4.1(c), shown implicitly
so as to not clutter the �gure. The color coding is intended only to aid in the mapping from
the construction of Section 6.1.1: yellow regions represent preparation of the |+〉 states, gray
regions represent the gate teleportation scheme shown in (a), and orange regions represent the
single-qubit measurements. The depth bottleneck of the model is represented here as the two
central modes. Each is involved in four beam splitters: one for state preparation (explicit), two
in the cz gate (implicit), and one for the arbitrary single-qubit measurement (explicit), resulting
in a circuit of depth 5.

reduces the total depth count to 5.

Note that, of the two tricks mentioned, the second would already su�ce to reduce

the depth count to 5. We presented the �rst as it may be of independent interest for the

parallelization of linear-optical circuits even in future implementations of the full KLM

scheme. Also, since here we do not have to worry about the gates failing anyway, it would

be wasteful to do all the cz's in fresh ancilla modes rather than directly on the qubit

themselves whenever possible.

6.1.2.1 Depth-3 linear optics

We now ask whether the two depth bounds meet. That is, can we prove that 5 layers

are not only su�cient, but also necessary? Alas, unfortunately so far the answer is no.

A direct adaptation of the simulation of Section 6.1.1.1 only proves that depth-3 linear

optical circuits are classically simulable.
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The main di�erence between the simulation of Section 6.1.1.1 for quantum circuits

and the analogous for linear optics is the following: assuming that each mode is initialized

with either one or zero photons, the state after the �rst layer of beam splitters can have

some modes occupied by two photons. Thus, one could argue that, when we do the

iterative step of the simulation, the sample space changes from one step to the next,

possibly disrupting the iteration. But, if we observe that no mode can ever have more

than four photons, this can easily be accommodated into the simulation scheme as follows:

(i) Choose a measurement Mi. This is a two-mode measurement, where each mode

has up to two photons and may be �entangled� with some other mode. Thus, this

measurement only depends on the states of four modes, each with up to two photons,

and its probabilities can be computed in constant time.

(ii) Compute the outcome probabilities and simulate Mi by sampling from the corre-

sponding distribution and �xing the output of the measurement accordingly. Note

that the space of outcomes can have from zero to four photons distributed in any

way among the two measured modes.

(iii) Project the two measured modes onto the sampled state, and update the descrip-

tion of the two unmeasured modes accordingly. They are now in an arbitrary, but

known, two-mode state. By photon-number preservation, the outcome �xed in (ii)

determines the number of photons in the collapsed state, but it is easy to check that

it can have at most two photons per mode.

(iv) The next measurement involving one of the modes collapsed in (iii) is again a two-

mode measurement that depends only on a four-mode state. One caveat is that

these four modes may now contain up to eight photons overall (up to two per mode)

depending on previously �xed outcomes. Nonetheless, any subsequent two-mode

measurement can only detect 4 of these photons, so step (ii) can always be applied.

(v) Iterate this procedure until all measurements have been �xed.

As should be clear, since we have only two layers of beam splitters, no mode can

ever have more than 2 photons, except immediately prior to a measurement, in which

it can have up to 4 photons. This guarantees that, even though the �rst measurement

di�er from subsequent measurements in the set of allowed states, this does not disrupt the

iterative procedure. Also note that this simulation seems to break down for more layers.

If the optical circuit has depth 4, say, then a �rst measurement could depend on the state
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of eight modes, and collapse the unmeasured modes into an arbitrary state of six modes.

But then the next measurement involving these modes could depend on 14 modes, and so

forth. Since each new choice of measurement may depend on a larger number of modes,

the iteration step fails.

6.1.2.2 Discussion

In this section, I showed that the exact BosonSampling result reviewed in Section 4.3

already holds if the linear optical circuit has depth 5. I also showed that it cannot hold

for depth 3 or lower. This seems to be a consequence of the fact that a probabilistic

linear-optical cz gate must be constructed with at least two layers of beam splitters. This

is natural, since it is known that ancilla modes are necessary [76] for the construction of

the gate (even probabilistically), and so a single layer of beam splitters would clearly not

su�ce to interact both the two computational modes and the ancilla modes in question.

It cannot be ruled out, of course, that an ingenious use of post-selection might provide a

construction for a hard-to-simulate depth-4 exact BosonSampling instance, via completely

di�erent means.

Besides the corresponding result for depth 4, we leave another open question: is it

possible to somehow close the depth gap between this result and the approximate Boson-

Sampling result reviewed in Section 4.4? For approximate BosonSampling, the minimal

known depth is mlog(n), for n photons in m modes, as shown in [4], and for exact

BosonSampling the minimal known depth, as we showed, is 5. There are two natural

routes to close this gap: either prove that the approximate BosonSampling result can be

simpli�ed, using a further parallelized scheme or possibly a matrix ensemble other than

the Haar ensemble, or give an e�cient classical algorithm for approximate constant-depth

BosonSampling (thus showing that constant-depth and regular BosonSampling are indeed

fundamentally di�erent). The latter would not be too surprising: there exist problems for

which the exact solution is hard (e.g. in #P), while an approximate solution is easy (i.e.

in P), such as the permanent of positive matrices, as discussed in Section 4.4.2. Another

possibility would be to explicitly investigate the permanents of constant-depth interferom-

eters. However, the unitary of a depth-5 interferometer has at most 32 nonzero entries in

each row or column, simply because a photon that enters one mode cannot leave in more

than 32 di�erent modes, and similarly a photon that exits in a particular mode cannot

have entered in more than 32 di�erent input modes. Thus, these matrices obey a very

special structure, very di�erent from the Haar ensemble, and a worst-case/average-case
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equivalence allowing us to condition the hardness of their permanents on some plausible

conjecture seems quite unlikely.

An approximate result for constant-depth BosonSampling would also have important

consequences for the corresponding complexity classes. For example, it can contribute

to the more general program of relating the di�erent restricted models described so far.

Recall, from Section 4.3, that an arbitrary n-photon, m-mode linear-optical circuit can be

simulated in BQP simply by treating each mode as an n-level system, and using a stan-

dard mapping from m qudits to O(m log n) qubits [4, 100]. As discussed in [135], this

translation induces an O(log n) depth increase, simply because an arbitrary single-qudit

gate will translate to an arbitrary (log n)-qubit circuit. This logarithmic depth increase

suggests that arbitrary linear-optics might not be simulable by constant-depth quantum

circuits. However, the same is not true for constant-depth linear optics. In an optical

circuit consisting of a no-collision Fock state input (e.g. |111 . . . 10 . . . 0〉) followed by a

constant number of beam splitter layers, it is easy to see that no mode can have more than

a constant number of photons. For example, if the circuit has depth 5, no mode ever has

more than 32 photons, which means that this system can be viewed simply as a collection

of m 32-level systems. Consequentially, simulating it on a quantum computer does not

induce a logarithmic depth increase and it can, in fact, be simulated in constant depth.

So we see that constant-depth linear optics is provably contained within constant-depth

quantum computing (although the constant will probably not be 5), and so an approxi-

mate result for the former, along the lines of Section 4.4, might suggest an approximate

result for the latter. This would be the �rst evidence that the other hardness results are

in fact as robust as BosonSampling.

Finally, we point out that this result might also have important implications for

experiments. As we will discuss shortly, all BosonSampling experiments so far have been

performed using integrated photonic circuits. In these devices, the depth of the circuit is

one of the leading causes of photon loss and attenuation of the signal, so any optimization

of the model in terms of depth should reduce the experimental e�orts. A drawback of

the proof given here, however, is that it requires beam splitters acting between arbitrarily

distant modes, a requirement that is not well-suited for these devices. Nevertheless, we

believe our proof may pave the way for more practical simpli�cations of the proposed

experiments.
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6.2 Experimental design and chip tomography

In this Section, we describe in more detail several aspects relevant to the experiments

reported in Section 6.3. In Section 6.2.1 we describe the general concept of integrated

photonic chips, including the physical principle of the device, the fabrication procedure,

as well as a novel technique to control independently the phase shifter and beam splitter

parameters, necessary for the construction of an arbitrary interferometer. In Section 6.2.2

we give a conceptual description of the experimental procedure, from the photon sources

to the detectors. In Section 6.2.3 we describe the numerical analysis behind the sampling

of the random interferometers�namely, the sampling of a uniformly-random unitary and

the numerical simulations of the behavior of other (non-uniform and of easier fabrication)

ensembles, in order to investigate how well they reproduce the uniform ensemble for several

�gures of merit of interest. Finally, Section 6.2.4 is dedicated to the reconstruction of the

unitary matrix from single- and two-photon data. We describe a tomography algorithm

due to Laing and O'Brien [84], and how we re�ned it to improve the agreement between

the reconstructed unitary and the experimental data.

These tools and techniques, both theoretical and experimental, are present in one way

or another in all the experiments, which is why we concentrated them on this section, and

will devote Section 6.3 exclusively to the results and analysis of each experiment.

6.2.1 Integrated photonics

The most conventional approach for implementing an arbitrary linear-optical trans-

formation is via the setup of optical elements�such as beam splitters, phase shifters,

wave plates, etc�on an optical table, and propagation of photons through free space.

However, this su�ers from severe scalability issues, mainly due to mechanical instabilities.

As mentioned in Section 4.2, to obtain a a cz gate that works with probability greater

than 95%, one would require thousands of beam splitters and phase shifters. The idea

of aligning thousands of beam splitters (per two-qubit gate!) on an optical table raised

natural skepticism over whether linear-optical quantum computing would ever be really

feasible. Of course, this drove a theoretical e�ort to simplify the scheme, reducing this

requirement by up to two orders of magnitude. On the experimental side, several groups

adopted a more promising approach, based on integrated photonics.

The physical workings of integrated photonic devices are based on the concept of

optical con�nement. The well-known phenomenon of total internal re�ection happens
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when light, whilst propagating in a medium of refractive index n1, strikes the boundary

with a medium of lower refractive index n2 < n1 at an angle larger than arcsin(n2/n1),

causing it to be completely re�ected. In turn, an optical waveguide consists of a strip

or cylinder of material embedded in another of lower refractive index, in which case the

phenomenon of total internal re�ection can be exploited to create a conduit for light: the

light is led along the waveguide, propagating by repeated re�ections at the boundaries4.

Consider now what happens when two of these waveguides are embedded in the

medium. Although light su�ers total internal re�ection in each waveguide, there is an

evanescent wave that reaches into the external medium with an exponential decay. If

the two waveguides are brought su�ciently close to each other, such that the evanescent

waves have non-negligible overlap, a fraction of the light can �leak� from one waveguide to

another. More speci�cally, let the waveguide separation be s, and let the power in waveg-

uides 1 and 2 be P1(z) and P2(z), respectively, as a function of the interaction length z

(i.e. the distance through which they interact). Then, it can be shown (see [113, 132, 151])

that, if P1(0) = P0 and P2(0) = 0,

P1(z) =P0 cos2(κz), (6.1)

P2(z) =P0 sin2(κz), (6.2)

where κ is a coupling coe�cient that decays exponentially with s as

κ = κ0e
−s/s0 , (6.3)

in which κ0 and s0 are constants. The values κ0 and s0 may have a complicated dependency

on the shape of the waveguides, the di�erence between the refractive indices n1 and n2,

the light frequency, etc, and it is often more practical to obtain them experimentally,

as we will discuss in Section 6.2.1.2. If the two waveguides are in�nite in length, the

power periodically �ows from one to the other, as Eq. (6.1) shows. However, if they only

interact for a given length Z, a speci�c fraction of the light will �ow�this con�guration

is known as a directional coupler. In the quantum regime, this coupling translates to an

amplitude that a photon will hop from one waveguide to another�in other words, for our

purposes, it will behave precisely as a beam splitter5, and we will identify sinκz as the

beam splitter's transmissivity (recall, from Section 2.3.1.2, that we use transmissivity to

refer to the square root of the transmission probability). For a comprehensive introduction

4This is the principle behind, for example, the optical �ber.
5In fact, from now on we interchangeably refer to these devices as beam splitters and directional

couplers.
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to the theory of waveguides, see [113].

As a generalization of a directional coupler, one can construct larger optical circuits,

consisting of several waveguides whose relative distances are varied so as to apply se-

quences of beam splitters. This is precisely the setting in which several recent experiments,

including those reported later in this chapter, were performed. The use of integrated de-

vices, rather than free-space optics, has led to miniaturization of the devices6, which

not only reduces errors from misalignment of optical elements, vibrations from external

sources, etc, but also allows packing of a larger numbers of beam splitters than would

be possible in a typical optical table (in some cases, up to 50 beam splitters in a few

centimeters of glass). For a (noncomprehensive) list of recent experiments using these

techniques, see [114, 103, 93, 126, 27, 35, 129, 138, 128, 30, 127].

6.2.1.1 Femtosecond laser micromachining of integrated devices

There are several techniques for the fabrication of these integrated devices, the most

conventional ones consisting of lithographic methods. However, the chips constructed

for the experiments reported here were built using the femtosecond laser micromachining

technique, which has recently gathered increasing attention (for an extensive review of

this method and how it compares to others, see [144]). This writing technique consists

of focusing femtosecond laser pulses into the volume of a transparent material, such as

borosilicate glass. By focusing the ultrashort pulses in a very small region of the material,

the �eld intensities become high enough to allow the medium to absorb energy, in a

localized volume near the focus, via several nonlinear processes. This localized energy

absorption, in turn, induces a permanent change in the refractive index of the material.

By translating the sample relative to the laser beam at a uniform velocity, one can inscribe

a variety of con�gurations of optical waveguides directly into the sample.

Writing waveguides with this femtosecond laser technique has several advantages over

more conventional methods. Since the writing is done directly in the interior of the

material by the laser, it does not require a mask (necessary for lithographic methods),

and it is an inherently 3D technology, since the changes in refractive index can be induced

at di�erent depths of the material (typically 10 µm to 10 mm). As such, this technique

allows a very fast and cost-e�ective prototyping of devices, and its intrinsic 3D nature

allows implementation of novel layouts (impossible with conventional lithography) such

as a tritter, where three waveguides are coupled at once [126], or the independent control

6Not unlike the shift from vacuum tubes to transistors in modern day electronics.
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of linear optical parameters we will describe in Section 6.2.1.2. On the down side, devices

produced by this technique also have lower waveguide quality, in terms of propagation

loss, than other methods, which is why it is expected to be a complementary, rather than

alternative, technology.

6.2.1.2 Arbitrary integrated interferometers

Suppose now that we want to implement an arbitrary m-mode linear transforma-

tion U on a photonic chip. This has three main requirements, namely (i) the ability to

decompose U in terms of beam splitters and phase shifters, and the ability to indepen-

dently implement (ii) arbitrary phase shifters and (iii) arbitrary beam splitters. I will

now describe how each of these is done, in turn.

To decompose U into two-mode optical elements we use a procedure due to Reck

et al. [110]. An example of the circuit that results from such a decomposition, and

its implementation as an integrated circuit, can be seen in Figure 6.3, for m = 5. This

procedure is akin to Gaussian elimination, where we start with unitary U and sequentially

obtain (unitary) matrices acting nontrivially only on two levels that �cancel out� o�-

diagonal matrix elements of U . By doing this for every o�-diagonal element of U , we are

left with an equation of the type U1U2U3 . . . UfU = I, where f = m(m − 1)/2 and I is

the m×m identity. By inverting this equation, we obtain a decomposition of U in terms

of the Ui's, that are two-level matrices. The explicit form of this decomposition can be

found in [110], but also on [100] where it is used to decompose an n-qubit unitary into

two-qubit gates. The resulting optical circuit is also analogous to normal form given for

matchgate circuits in Section 3.2�in fact, the circuit of Figure 3.1 is nothing more than

the �fermionic� version of Figure 6.3(a).

It is also necessary to control the beam splitters and phase shifters. Ideally, we want

to control the two types of parameters independently. However, recall that the e�ective

transmissivity of a directional coupler depends on parameters such as distance between

the waveguides and coupling length. And it is clear that attempting to change either value

for one particular beam splitter, e.g. t2 in Figure 6.3(b), would change the relative optical

path between the two modes that are involved in that coupler (1 and 2) and the three

that are not (3, 4, and 5). Unfortunately, this would also result in an e�ective phase shift

between modes 1 and 2 relative to modes 3, 4, and 5, not to mention it might misalign

the circuit as a whole. Fortunately, there is a much more convenient way to control

these parameters, which exploits a 3D architecture. Our paper [35] is the �rst to use
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Figure 6.3: (a) Schematics of an arbitrary 5-mode interferometer composed by a circuit of 10
beam splitters with transmissivities ti and 20 phase shifters with phases αi and βi (blue and red
rectangles). (b) Realization of the same scheme using integrated photonics, where beam splitters
are replaced by directional couplers, and phase shifters are replaced by S-bends (see main text).

this idea to independently control all parameters needed for a completely arbitrary linear

interferometer (although similar ideas were used in previous work by the same group, see

e.g. [114, 126]).

The phase shifters are controlled by deforming the S-bent waveguides at the input of

each beam splitter, which has the e�ect of changing the path length (see Figure 6.4(a-b)).

The pro�le of the S-bend is chosen carefully so as to stretch the curve smoothly, otherwise

abrupt bends would increase losses in the device. More speci�cally, an undeformed S-bend

is described by a sinusoidal function of the kind

y = −h
2

cos

(
2π

L
x

)
, (6.4)

where L and h correspond to longitudinal and transversal (relative to the waveguide

direction) extensions of the waveguide, such as shown in Figure 6.5. The deformation of

the S-bend is then obtained by a coordinate transformation

x′ = x+ d sin

(
2π

L
x

)
, (6.5)

where d parameterizes the transformation. This procedure ensures that the deformation

has all the necessary smoothness properties, and the resulting length of the S-bend (as a

function of d) can be obtained numerically. The calibration of this technique showed that

it is possible to introduce a phase shift of up to π in this way without causing additional

losses, and is shown in Figure 6.4(b). The root mean square deviation of the phase shift

measured experimentally relative to the predicted theoretically is of 0.25 rad.

The beam splitters, on the other hand, are controlled by exploiting the 3D fabrica-
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Figure 6.4: (a) Controlled deformation of the S-bend at the inputs of each directional coupler
and the 3D geometry allow independent control over the phase shift and transmissivity. (b)
The drawing shows an undeformed S-bend together with a deformed one. The deformation is
carefully chosen to increase the optical path without inducing kinks or abrupt bends. The plot
shows experimental (squares) and theoretical (solid line) dependence of the induced phase shift
on the deformation parameter d of the S-bend, for light of wavelength λ = 806 nm. (c) Control
over the transmission probability (T ) of the directional coupler is performed by changing the
waveguide distance. This is obtained via a rotation of one arm of the directional coupler out of
the main circuit plane. The plot shows the experimental (squares) and theoretical (solid line)
transmission dependence on the rotation angle at λ = 806 nm.
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Figure 6.5: Scheme of the smallest cell of a directional coupler, displaying all the relevant geo-
metric parameters.
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tion capability of the femtosecond laser writing technique to rotate the waveguide out

of the main plane of the circuit (see Figure 6.4(c)). This provides a way to change the

distance between the waveguides without changing the path length and introducing un-

wanted phase shifts. Recall from Eqs. (6.1) and (6.3) that the coupling coe�cient decays

exponentially with the distance between the two waveguides, with two parameters κ0 and

s0 that depend on particularities of the waveguides. The dependence of the angle α on

the desired transmission probability T = t2 can be obtained analytically (see the Supple-

mentary Material of [35]) and is plotted in Figure 6.4(c), although we omit its explicit

expression as it is not very enlightening. Calibration of the technique allows �tting of the

parameters, providing κ0 = 42 mm−1 and s0 = 2.4 µm, as well as showing that that a

rotation by a few degrees already allows for the whole range of transmissivities.

The calibrations of both types of optical elements were done by fabricating several

single instances of each, using the same fabrication technique of the larger interferometers.

One might naturally worry whether the concatenation of several of these devices might

induce additional errors beyond those observed during calibration. We will return to this

question in Section 6.3, where we will show that the agreement with the single-, two-

and three-photon distributions observed in larger devices are, in fact, compatible with an

error-per-parameter rate equivalent to observed in the single instances.

6.2.2 Experimental setup

All the experiments we will discuss consist, in essence, on the observation of one, two

or three photons interfering in a multimode integrated chip followed by a detection of

coincidence outcomes at the output. The general setup is exempli�ed in Figure 6.6 for

the case of a 5-port interferometer. Let us now discuss separately aspects of the photon

preparation and measurements stages.

The single photons used in the experiment are generated at 785nm by the second order

process of a parametric downconversion source [83, 35]. Four photons are generated, two

from each parametric downconversion event, and are routed to the experiment. One is

coupled into a single-mode �ber and detected by a single-photon counting detector, and

acts as a trigger for the coincidence events. The other three photons are coupled into

single-mode �bers, and propagate through di�erent delay lines before being coupled into

the chip. The delay lines control the time overlap between the photons, and thus allow for

a continuous control over their relative distinguishability. Finally, the output of the chip

is coupled into multimode �bers and detected using single-photon avalanche photodiodes.
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Figure 6.6: General experimental set-up for most of the reported experiments, exempli�ed with
a 5-mode chip. (a) Schematic representation of a 5-mode chip, fabricated by the procedure
described in Section 6.2.1. (b) One-photon, two-photon and three-photon states, generated by
parametric downconversion, are injected into the interferometer. Spatial delay lines are used to
synchronize the three photons. Legend: APD, avalanche photodiode; IF, interferential �lter; PC,
polarization controller; PBS, polarizing beamsplitter; PDC, parametric downconversion; HWP,
half wave plate. (c) Single-, two- and threefold coincidence detection is performed at the output
ports of the chip to reconstruct the probability of obtaining a given output state.

The three-photon outcomes are signaled by a fourfold coincidence between the trigger and

three of the detectors.

6.2.2.1 Photon distinguishability

The photon distinguishability can be controlled by the use of delay lines, as depicted

in Figure 6.6(b). Ideally, this would allow for a continuous variation between the regimes

where the photons are perfectly distinguishable (which we call the classical regime) to

that where they are perfectly identical (the quantum regime). However, the photons also

present an inherent level of partial distinguishability, due to a nonperfect overlap between

the spectral functions of photons generated in di�erent downconversion events. This can

be modeled by describing the input state as a mixture of the two regimes. For example,

an input state of the type |10101〉, which corresponds to three identical photons being

input in modes 1, 3, and 5, and which we used in the experiments with the 5-mode chip,

is actually described as follows:

ρ = r |10101〉 〈10101|+ (1− r) |1a 0 1b 0 1a〉 〈1a 0 1b 0 1a| . (6.6)

Here r encodes the partial distinguishability factor, which is proportional to the overlap

between the the spectral functions of the three photons, while indices a and b label the
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fact that photons input on modes 1 and 5 are generated by the same source, whereas the

photon input on mode 3 is generated by a di�erent source, and is twin to the trigger.

More speci�cally, a and b correspond to some additional degree of freedom (in this case,

temporal separation) that can in principle be used to distinguish the photons. The factor

r can be written as r = p2, where p is the indistinguishability factor of two photons

belonging to di�erent pairs. Recall, as mentioned in Section 2.3.1.3, that two perfectly

identical photons impinging on a 50:50 beam splitter always exit together, in the same

mode, which is the Hong-Ou-Mandel (HOM) e�ect. Thus, the fraction of coincidence

outcomes observed in a HOM experiment when photons are not perfectly distinguishable

gives a measure of their partial distinguishability. By this method, it was possible to

obtain p = 0.63± 0.03.

It is also worthy of note that the parametric downconversion has a nonzero probability

of actually producing a six-photon event. The �nal data reported in Section 6.3 takes

into account both this (implicitly) and the partial distinguishability (explicitly).

6.2.2.2 Output measurements

All the experiments involved mainly three types of output detection: single-photon,

two-photon visibilities and three-photon coincidences.

For a single photon input on mode i of an m-mode interferometer U , the probability

that it will exit in output mode L7 is simply determined by the corresponding matrix

element of U as

P 1
i;L = |ULi|2. (6.7)

This means that, conversely, the absolute values of U can be determined using only

single-photon measurements. By inputting single photons in the chip it was possible to

obtain P 1
i;L for all combinations of i and L, and these values were used: (i) as a �rst test

of the fabrication quality; (ii) in conjunction with two-photon data for an algorithmic

reconstruction [84] of U , which we will explain in Section 6.2.4; and (iii) to compute the

expected output probabilities for two and three photons in the classical regime, using

Eq. (4.3).

For a two-photon input on modes (i, j) and output on modes (L,M), detection con-

sisted on performing HOM interferences to obtain the corresponding visibilities. The

7Throughout this section we use lower case letters to represent inputs and upper case to represent
outputs.
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Figure 6.7: Typical HOM curve for experimental measurement of two-photon visibilities. Note
that the visibility corresponds only to the relative height of the dip (or peak).

visibility is de�ned as

Vi,j;L,M =
P 2,c
i,j;L,M − P 2,q

i,j;L,M

P 2,c
i,j;L,M

(6.8)

where P 2,c
i,j;L,M and P 2,q

i,j;L,M correspond to the classical and quantum two-photon proba-

bilities, respectively. The visibility can be directly obtained from a HOM curve as the

one depicted in Figure 6.7. Note that, while the �standard� HOM curve described in Sec-

tion 2.3.1.3 consists of observing two photons in a 50:50 beam splitters, a general HOM

curve is actually a transition between the probabilities associated with the two regimes,

and can be a dip or a peak depending on which probability is larger. Also note that the

visibilities are independent of photon losses in the device, assuming that losses a�ect both

classical and quantum regimes equally.

The two-photon probabilities P 2,q
i,j;L,M can be obtained from the visibilities by invert-

ing Eq. (6.8) and computing P 2,c
i,j;L,M from the corresponding single-photon probabilities.

Interestingly, the tomography algorithm described in Section 6.2.4 relies directly on the

visibilities, rather than on the probabilities themselves, and thus has the convenient fea-

ture of reconstructing a unitary matrix independently of photon losses. As we will see,

this algorithm requires the measurement of only a subset of all visibilities, however the

measurement of the complete set helps to avoid those values of Vi,j;L,M with larger ex-

perimental errors. For a 5-mode chip, the set of all visibilities requires the measurement

of 100 HOM curves, whereas for a 7-mode chip this number is raised to 441�measuring
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these many HOM curves is no simple task, which is why these full sets of measurements

were only performed on chips of size 5 and 7. For larger chips, either an indirect cer-

ti�cation of the quality of the device was performed by using the validation algorithm

of Section 4.4.5, as well as standard statistical tests, to compare ideal and experimental

three-photon distributions, or else other properties were being investigated that did not

heavily depend on the actual expression of U .

Both single- and two-photon probabilities were obtained using twin photons from a

single downconversion event, but for the three-photon measurements two sources and a

trigger were required, as described in the previous section. The corresponding probabilities

for input {i, j, k} and output {L,M,N} are denoted P 3,q
i,j,k;L,M,N , and in a sense are the

crux of the experiments. The comparison is made between the corresponding probabilities

corrected for the r distinguishability factor, which are denoted as P 3,r
i,j,k;L,M,N and which

can be computed with the aid of single- and two-photon data, and the experimental

probabilities P 3,e
i,j,k;L,M,N . This makes up a large part of the results reported in Section 6.3.

Finally, another important quantity that was measured in one of the experiments

was the bunching fraction, corresponding to the probability pq that at least two photons

will exit in the same output mode. This is the �gure of merit of the bosonic birthday

paradox, described in Section 4.4.4. To measure this quantity, a setup was arranged

with the 3 input photons and 3-fold coincidence measurements in which both classical

and quantum regimes were alternated, each running for the same time interval, and the

overall number of detected events per interval was recorded. Since the bunching fraction is

the complement to the total fraction of coincidence outcomes, this gives a direct estimate

for (1−pq)/(1−pc), where pc is the corresponding classical bunching fraction. Since pc can
be computed directly from the single-photon measurements, this allows a good estimate

for pq, without the much-less-feasible requirement of identifying multiphoton outcomes.

6.2.3 Random ensembles of unitary matrices

Given the ability to implement an arbitrary m-mode integrated interferometer, the

question arises of what should be its speci�cations. As discussed in Section 4.4.3, the

choice that most faithfully reproduces the setting where BosonSampling was de�ned is a

uniformly random unitary matrix. An m ×m Haar-random unitary U can be obtained

by the following procedure:

(i) Sample an m×m matrix Z from the standard complex Gaussian ensemble.
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(ii) Apply some QR decomposition to Z. In other words, obtain a decomposition Z =

QR for some orthogonal matrix Q and upper-triangular matrix R. Notice that this

decomposition is not unique.

(iii) De�ne the matrix R′ = diag
(
R11

|R11| ,
R22

|R22| . . .
Rnn

|Rnn|

)
. This �xes the non-uniqueness of

the QR decomposition.

(iv) The matrix U = QR′ is randomly distributed according to the Haar measure.

For a discussion on why this method works, see [94]. Alternatively, the Haar ensemble

can also be simulated by a choice of decomposition such as Figure 6.3(a), together with

a suitable random sampling of each individual parameter. However, the distribution

satis�ed by each re�ectivity depends on the beam splitters' position within the circuit,

and the resulting procedure is considerably more cumbersome than simply using the

method above and then the decomposition of [110].

Although it is closer in spirit to the original BosonSampling proposal, the uniform en-

semble has some drawbacks, especially in terms of losses at the S-bends. At each S-bend,

there is a non-negligible probability that a photon will escape tangentially (these can be

measured experimentally, and are typically around 7% per S-bend), which has two main

consequences for the experiment. The �rst is that these losses induce an overall attenu-

ation of the signal, related to the smallest number of S-bends a photon must transverse.

Although simulations suggest that lossy BosonSampling devices may retain their hard-to-

simulate properties [111], this nonetheless presents one of the major scalability obstacles

to these techniques since the overall signal actually decays exponentially with the circuit

depth8, and we will return to this subject at the end-of-chapter discussion. Secondly, the

asymmetry in the layout of Figure 6.3(b) causes losses to be biased relative to di�erent

paths within the chip. More speci�cally, if we factor out the overall losses, each output

mode is subject to a di�erent loss factor. To exemplify, consider the 5-mode circuit of

Figure 6.3(b). A photon will transverse two more S-bends if it leaves in mode 3 than if

it leaves in mode 5, independently of its input. This can be corrected by multiplying the

count of each output mode by a �xed factor, but is nonetheless a source of extra biased

error in the experimental data.

With these two concerns in mind, we numerically investigated an alternative ensemble,

described by m-mode chips consisting of L layers of alternated 50:50 beam splitters9

8This was the primary motivation for the constant-depth result proved at the beginning of the chapter.
9As recently shown in [18], any unitary linear transformation can be e�ciently approximated by a

sequence of beam splitters of any �xed re�ectivity. Thus, contrary to what one might expect, this
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Figure 6.8: Schematic representation of the random phases ensemble. The �rst example has
m = 7 modes and L = 5 layers of 50:50 beam splitters, and the second has m = 9 and L = 6.
Red and blue rectangles represent phase shifts sampled uniformly from the [0, π] interval.

between neighboring modes, interspersed with random phase shifts sampled uniformly

from the [0, π] interval. Examples of these interferometers for m = 7 and m = 9, with

L = 5 and L = 6 respectively, are depicted in Figure 6.8. Henceforth, we denominate this

the random phases ensemble.

The random phases ensemble was de�ned for practical, rather than mathematical,

reasons. Its properties are not as well-studied as the uniform ensemble, and a conjecture

that their permanents are #P-hard does not seem as natural as Conjecture 1. Nonetheless,

chips built according to this ensemble have the nice feature of being symmetric, in order

to avoid biased losses. Also, if we restrict ourselves to using only the central 3 input

modes and if L ≥ (m + 3)/2, the chip is �fully connected�, in the sense that any of

the photons has a nonzero probability of exiting at any output mode. This is a more

feasible depth range for those chips with m ≥ 7, if compared with arbitrary unitaries,

where generally L = m− 1. Since the �rst experiment that was performed, with m = 5,

demonstrated a good control over the technique for fabricating arbitrary unitaries [35],

in subsequent experiments [128, 127] we decided to focus on other technical aspects such

as certi�cation of the device, for which the random phase ensemble su�ces. Thus, this

ensemble is well-motivated for its physical, if not complexity-theoretical, properties.

In Figure 6.9 and Figure 6.10 we show the distributions of several �gures of merit of

interest over 10000 samples from the random phase and from the uniform ensembles, for

m = 7 and m = 11 and several values of L. We plotted the real part of matrix elements

{m+1
2
, m+1

2
} and {m+1

2
, 1} of U . These matrix elements correspond to the transition am-

plitudes for photons entering in the central mode to exit in the central and endpoints

modes, respectively. The plots for the imaginary parts of these elements have a similar

appearance and are not reported here. We also plotted the permanents of 3 × 3 matri-

ces associated with the transition of photons entering on the three central inputs and

exiting either in the three central or three endpoint modes. We chose these two sets of

restriction on the beam splitters does not make the ensemble trivial.
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(a)

(b)

(c)

(d)

(e)

Figure 6.9: Simulations for the random phase (blue) and Haar ensembles (magenta), for m = 7
and several values of L. (a) Real part of the amplitude connecting the central input to the central
output. (b) Same as (a) but for an endpoint output. (c) Probability connecting three photons
input on central modes to the central output modes. (d) Same as (c), but for the upper three
output modes. (e) Bunching fraction.
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(a)

(b)

(c)

(d)

(e)

Figure 6.10: (a)-(e) Same as Figure 6.9, but for interferometers with m = 11.
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outputs since they display the extremal in�uence of the chip's constraints on the tran-

sition probabilities�if the depth is smaller than (m + 3)/2 some photons simply cannot

transition from a central mode to one of the endpoint modes, and the corresponding ma-

trix elements are zero, which is why one might expect these matrix elements to be very

biased at L close to (m + 3)/2. Finally, we also simulated the behavior of the bunching

fraction (cf. Section 4.4.4). These simulations were done on Mathematica c© software, and

the corresponding �les can be found in Appendix A.

All simulations suggest that relevant �gures of merit approach the corresponding

distributions for the Haar ensemble surprisingly fast as L becomes larger than (m +

3)/2. This provides evidence that this ensemble, despite its limitations, still has �enough

randomness� to motivate its use for small-scale implementations of BosonSampling in

order to benchmark the several experimental techniques involved.

6.2.4 Device tomography

A �nal important aspect of data analysis that warrants a separate discussion, due

to its ubiquity in analysis of the experiments, is chip tomography. The implementation

of a previously-known tomography algorithm [84] on Mathematica c© software, as well as

several re�nements of this algorithm to obtain better agreement with experimental data,

were one of my main contributions to these experimental papers.

The starting point is an algorithm due to Laing and O'Brien [84], which we will

describe shortly, that allows the reconstruction of the chip's unitary U from the set of

single-photon probabilities and two-photon visibilities (cf. Section 6.2.2.2). Rigorously

speaking, this does not consist of complete process tomography (see e.g. [95] and references

therein). Recall that the Fock space of an n-photon, m-mode system has dimension(
m+n−1

n

)
, and that U induces an unitary UF in this space, in the manner described in

Section 2.3.1. However, the real-world matrix UF is not completely determined by U , but

rather involves several other spurious nonlinear and non-unitary processes. In this sense,

complete process tomography would consist on reconstructing UF , and this would require

an unfeasible amount of experimental e�ort and technology. Instead, the tomography we

will describe consists simply of reconstructing U , under the idealized assumption that it

completely determines UF .

Under this assumption that all processes are linear, one may wonder why is it nec-

essary to use both single- and two-photon data. In principle, one could perform the re-

construction by describing a single photon in an m-mode chip as an m-mode system, and
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performing some suitable well-known single-qudit process tomography. The reason is that

single-qudit tomography would require inputting the photons in several well-controlled su-

perposition states, corresponding, for example, to some set of m − 1 mutually unbiased

bases [150], which in turn requires a very precise control on the relative phases between

di�erent input modes. However this would be experimentally challenging, since random

input phases are introduced e.g. by the coupling between the single-mode �bers and the

chip. The algorithm we will describe, in contrast, only depends on the transition proba-

bilities between Fock states, at the cost of requiring some two-photon measurements, but

which are nonetheless more feasible than preparing the arbitrary single-photon superpo-

sitions. As we will see, a drawback of this algorithm, foreshadowed by this discussion,

is that we will only obtain U up to a round of phase shifters at the beginning and at

the end. This disadvantage, however, is compensated by the fact that BosonSampling

itself depends on matrix permanents only via such transition probabilities, and thus is

also insensitive to input and output phases. In other words: we cannot experimentally

determine what phases are induced at the input and output of the chip due to the cou-

pling with the �bers and other factors, but this is irrelevant since they have no observable

e�ect on the subsequent experiments.

We should point out that there are other methods for reconstructing U . Most no-

tably, it is possible to reconstruct U using only coherent states, as shown in [106]. Since

in our experiments the measurement of single- and two-photon data was required to

take into account the partial distinguishability of photon sources (cf. Section 6.2.2.1 and

Section 6.2.2.2), we opted for the simpler choice of using this data to also perform the

tomography. It has been claimed that determining the expected theoretical behavior of a

3-photon experiment using a reconstructed matrix obtained from single- and two-photon

experiments consist of circular reasoning. To illustrate this claim, suppose we perform an

experiment with n = 50 photons. The experiment would verify that the corresponding

laws of Physics hold for n = 50, but only assuming that they already hold for n = 2 since

we would be using the reconstructed U as the theoretical prediction. However, I do not

agree that this reasoning is circular: the HOM curves (such as depicted in Figure 6.7)

have been perfected through the last three decades, and the laws of Physics have been

very well veri�ed for n = 2, and it makes perfect sense to consider this data trustworthy

enough to base our theoretical predictions for n = 50.

We will now give a brief description of the Laing-O'Brien algorithm, as �rst described

in [84], followed by a discussion on its features and shortcomings and how it can be re�ned.
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6.2.4.1 The Laing-O'Brien algorithm

Let each matrix element of U be written as τk;Je
iαk;J , where lower case letters label

columns and upper case letters label rows, to maintain consistency with our previously

adopted notation. Let also P 1,e
k;J correspond to the experimental single-photon transition

probability connecting input mode k to output mode J , and V e
k,h;J,G be the two-photon vis-

ibility connecting input pair {k, h} to output pair {J,G}. Let us also de�ne the following
auxiliary quantities:

xk,h;J,G :=

√√√√P 1,e
k;JP

1,e
h;G

P 1,e
h;JP

1,e
k;G

, (6.9)

yk,h;J,G := xk,h;J,G + x−1
k,h;J,G. (6.10)

Note that xk,h;J,G and yk,h;J,G are completely determined by experimental data. It can

be shown, then, that the matrix parameters τi;J and αi;J are related to experimentally

accessible quantities (xk,h;J,G, yk,h;J,G and V e
k,h;J,G) as follows [84]:

xk,h;J,G =
τk;Jτh;G

τh;Jτk;G

, (6.11a)

V e
k,h;J,G yk,h;J,G = −2 cos(αk;J − αh;J − αk;G + αh;G). (6.11b)

The algorithm, as we will describe shortly, consists of inverting these two equations to

sequentially obtain every parameter τk;J and αk;J , for k and J greater than 2, in terms

of the experimental values and the parameters of the �rst row and column (i.e. τ1;J , τk;1,

α1;J , and αk;1), which we will call �reference values�, and then impose unitarity of U to

obtain equations that completely determine these reference values. Note that Eq. (6.11b)

does not allow one to completely obtain αh;G, since the sign for the argument is unknown.

However, if the absolute value |αh;G| is known, and the other three reference angles are

completely known, the sign of αh;G can be determined by

sgn[αh;G] =sgn[|βk,h;J,G − |αk;J − αh;J − αk;G − |αh,G|||
− |βk,h;J,G − |αk;J − αh;J − αk;G + |αh,G|||], (6.12)

where βk,h;J,G := αk;J − αh;J − αk;G + αh,G.

In order to make the sequential replacement possible, we must make the following

assumptions. First, the elements of the �rst column and row are real (i.e. α1;J = αk;1 = 0

for all J and k). This can be done without loss of generality, since these can be �xed by a

round of phase shifters at the input and output which, as we discussed, the algorithm is



144

insensitive to. Second, the element {2, 2} has positive imaginary part (i.e. α2;2 ≥ 0). This

can be done since the photon probabilities are also insensitive to the symmetry U → U∗.

We now start from the initially unknown matrix M1, parameterized as

M =



τ1;1 τ1;2 · · · τ1,m

τ2;1 τ2;2 e
iα2;2 · · · τ2;me

iα2;m

...
...

...

τm;1 τm;2e
iαm;2 · · · τm;me

iαm;m


, (6.13)

and proceed to replace the parameters as as follows:

(i) Fix {j,K} = {1, 1} in Eq. (6.11a) and rewrite every τh;G (for h,G ≥ 2) in terms of

τ1;1, τ1;G and τh;1 and x1,h;1,G.

(ii) Do the same as (i), but in Eq. (6.11b). Since the αh;1 = α1;G = 0, this allows directly

obtaining the absolute value of αh,G as arccos
(

1
2
V e

1,h;1,G y1,h;1,G

)
.

(iii) Finally, recall that the sign of α2,2 is de�ned to be positive. Thus, by �xing {k, J} =

{1, 2} in Eq. (6.12) one can determine the sign of all α in the second column, by

�xing {k, J} = {2, 1} one can determine the signs of α in the second row, and �xing

{k, J} = {2, 2} determines the signs of the remaining phases.

After this replacement, the matrix is completely determined up to the values of τk;J on

the �rst row and column. Finally, these values are determined by imposing that the �rst

column and row are normalized, and that they are orthogonal to the remaining rows and

columns, respectively10. If the experimental data corresponds to a perfect unitary ma-

trix, the resulting matrix obtained after this step is already the correct one. However,

experimental data typically does not correspond perfectly to some unitary matrix, both

because the real-world process is not really unitary and because even then the measure-

ments themselves would be noisy, and a polar decomposition must be performed to obtain

U . The polar decomposition consists in writing M as M = UP , where U is unitary and

P is a positive-semide�nite Hermitian matrix. Intuitively, this decomposition resembles

the polar decomposition for complex numbers: U represents a �direction� in space, or a

rotation, while P represents a �stretching� along that direction. It can be shown that U

is in fact the closest unitary matrix to the reconstructed M , which justi�es this step.

10Note that these do not correspond to all constraints due to unitarity, since orthogonality between
remaining columns or rows is not imposed.
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The resulting unitary matrix, U , is the best obtained by this procedure that approx-

imates the experimental data. Of course, the experimental data cannot be completely

consistent with some particular unitary in any realistic setting, and the authors of [84]

also report a numerical investigation on the e�ect of noisy data on the reconstruction.

More speci�cally, sets of noisy data were simulated starting from the distribution expected

from some chosen unitary, and the gate �delity [= 1
m
Tr(UV †)] between the original and

the reconstructed matrices was plotted as function of the noise level and the interferometer

size. As they report, a noise of up to 5% in a 4-mode experiment causes the reconstructed

unitary to have an average 95% �delity with the original one, and this value drops to 85%

in a 20-mode experiment with noise rate of 0.25%.

6.2.4.2 Re�ning the Laing-O'Brien algorithm

We now describe two re�nements made to the Laing-O'Brien algorithm that provided

us with a reconstructed unitary displaying considerably better agreement with experi-

mental data.

To quantify the quality of the reconstructed matrices, we use two �gures of merit for

the distance between reconstructed and experimental data points: (i) the total variation

distance between the distributions (cf. de�nition in Section 2.2), both for single- and two-

photon measurements, and each averaged over all possible choices of input; and (ii) the

χ2 between the complete data sets, de�ned as

χ2 =
∑
i

(
xri − xei
σxi

)2

, (6.14)

where xri and x
e
i are the reconstructed and experimental values, respectively, σxi is the

corresponding error bar, and the sum runs over the complete data set. In these experi-

ments, we cannot ascribe the usual signi�cance to the value of the χ2. Typically, a model

that gives a good description for a certain data set should present a χ2 of roughly 1 per

data point�this represents the fact that each data point is roughly at most one devia-

tion from the expected theoretical value. In our data set, with the best reconstructed

unitaries, χ2 ranges around values of 30 per data point. However, the usual interpre-

tation of this value is only meaningful when the data describes independent variables,

and our data most certainly does not. There are correlations both on the fact that the

data corresponds to probability distributions (and thus are normalized), but also that

they come from a same unitary matrix U , and there is a great deal of correlations across

data from di�erent inputs. As an example, note that the absolute values of U , which
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determine single-photon probabilities, must be normalized along both rows and columns.

The correlations between the various two-photon data points are even more intricate. In

simpler terms: a variation of one standard deviation in one data point must induce a

corresponding variation on several of the other points just to maintain normalization, and

this causes the χ2 to blow up. Nonetheless, it still provides a measure of distance between

experimental and theoretical data, moreover one that takes into account our con�dence

on the experimental values via their estimated errors.

We also compute the gate �delity F between the ideal (U t) and reconstructed (U r)

unitaries, given by

F =
1

m
|Tr(U t †U r)|. (6.15)

Given that the algorithm is insensitive to a round of arbitrary input and output phase

shifters and to the symmetry U → U∗, but F is not, we �x these symmetries so as

to maximize the value of F . Of course, this �delity measures the distance from the

reconstructed unitary to the theoretical one, not to the experimental data, and as such

it is not a measure of quality of the algorithm itself, but rather of the quality of the

fabrication. A matrix with smaller value of χ2 or total variation distance, but greater F ,

has better agreement with experimental data, and if it does not agree with the original

theoretical unitary it is most likely because the fabrication procedure did not implement

the desired parameters perfectly.

The �rst way we re�ne the Laing-O'Brien algorithm is simply by varying the reference

row and column used in the original algorithm. Notice that, for an m ×m unitary, the

complete set of experimental data consists of m2 single-photon and 1
4
m2(m − 1)2 two-

photon data points. However, the Laing-O'Brien algorithm only uses (m − 1)2 single-

photon and (m − 1)2 two-photon data points11, a consequence of the choice of the �rst

row and column as the references. In the original paper the authors raise the question

of whether the algorithm can be adapted to produce a matrix that uses all the available

data set for a more robust result, or whether it is better to focus experimental e�orts on

obtaining the highest possible precision on a minimal subset of data points. In two of the

experiments (for 5- and 7-mode chips) we will report in the next section, the complete

data set was measured, and this allowed us to use di�erent subsets in the reconstruction

algorithm. More speci�cally, what we did was obtain m2 di�erent reconstructed matrices,

each obtained from a di�erent choice of reference row and column. This was achieved by

11Plus an additional m(m + 4) points to �x the signs of the phases. We do not include these into
the count since each only determines a discrete information, i.e. a sign, so the �nal reconstructed matrix
typically only depends very mildly on their values.
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permuting the data set labels prior to implementing the Laing-O'Brien algorithm as is.

By running the reconstruction over all possible permutations for the available exper-

imental data, we observed that the quantities of interest vary greatly. In Table 6.1 and

Table 6.2 we report the best and worst permutation from the point of view of each of these

�gures of merit. Note that the records for each �gure of merit are not held all by the same

choice of permutation, so one may choose di�erent permutations depending on what they

wish to optimize. This argument does not answer the authors' open question, as it does

not really use the redundant data for increased robustness, but nonetheless it allows us to

sidestep certain pathological data sets that provide below-average reconstructed matrices.

{k, J} F χ2 Single-photon TVD Two-photon TVD
{2, 4} 0.945 4952 0.0714 0.0744
{0, 4} 0.966 6758 0.087 0.082
{3, 4} 0.953 5701 0.0711 0.069
{3, 2} 0.833 77510 0.22 0.18
{0, 3} 0.804 58546 0.224 0.201
{1, 1} 0.811 74894 0.238 0.228

Re�ned from {2, 4} 0.953 3556 0.066 0.067

Table 6.1: Illustrative values of F , χ2, and total variation distance relative to single and two
photon data, for several matrices obtained by permutations of the Laing-O'Brien algorithm, for
the 5-mode experiment. The �rst column describes the permutation: speci�cally, a value of
{k, J} means that the reference row and column were J + 1 and k + 1 respectively. The χ2 are
reported for the complete set of 125 data points. Values in blue and red are the best values of
the corresponding �gure of merit among the 25 possible permutations. The last row represents
the best value output by a 15 min run of the numerical search on a standard 2.20 GHz quadcore
laptop, with 8Gb RAM, running the algorithm shown in Appendix B on Mathematica c© software.

{k, J} F χ2 Single-photon TVD Two-photon TVD
{3, 4} 0.96 3.6 × 106 0.09 0.124
{2, 2} 0.974 4.9× 106 0.080 0.102
{2, 3} 0.967 7.4× 106 0.073 0.095
{5, 3} 0.789 6 × 108 0.204 0.256
{5, 6} 0.788 6.9× 106 0.232 0.257
{0, 5} 0.844 4.1× 107 0.221 0.276

Re�ned from {3, 4} 0.975 2.38× 104 0.074 0.086

Table 6.2: Similar values as for Table 6.1, for the 7-mode chip. The χ2 are reported for the
complete set of 490 data points, and there are 49 possible permutations. The last row represents
the best value output by a 8 hr run of the numerical search.

The second re�nement was a numerical procedure to search for better �ts, in the region

close to the best matrix obtained from the standard Laing-O'Brien algorithm. Among

the several techniques attempted, including genetic algorithms, gradient searches, brute

force searches, the method that produced the best and fastest results was the following:
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(i) Start from U0, the matrix with best χ2 from the Laing-O'Brien algorithm.

(ii) Compute the expected set of all data (single- and two-photon), {xi}.

(iii) Replace each xi by x
′
i = xi + δi, where δi is sampled from a Gaussian distribution

of mean 0 and variance equal to the experimental error associated with xi.

(iv) From the new simulated data set {x′i}, obtain a new set of m2 matrices using all

permutations of the Laing-O'Brien algorithm.

(v) If any of the new reconstructed matrices, say U1, has a better value of χ2 to the

experimental data than U0, replace U0 with U1 and start from (i).

(vi) If no matrix has a better χ2, discard them and restart from (i).

The intuition behind this algorithm is the following. Given that each experimental

data point is expected to lie within a certain range of values due to its associated error,

even if the real process was perfectly unitary (which it is not) its distributions probably

would not correspond exactly to the center of each uncertainty interval, but rather some

set of values close to it. Thus, the experimental error bars o�er a natural measure of

how close we expect the real-world unitary to be from the reconstructed one obtained by

the Laing-O'Brien algorithm, and serve as a guide for a random search in the space of

unitaries.

This algorithm was run for the 5- and 7-mode chips, since in those experiments the

complete data set was available. The Mathematica c© �les that implement this algorithm

can be found in Appendix B. In Table 6.1 and Table 6.2 we show a comparison of how

this algorithm improves on the best obtained matrix from the Laing-O'Brien algorithm.

For the 5-mode chip, a 15 min run of the algorithm improved the χ2 by 1396 (11 per data

point), while improving the gate �delity and variation distances for single and two photon

data, upon which the algorithm saturated. For the 7-mode chip the improvement is more

impressive: an 8 hr run of the algorithm improved the χ2 by two orders of magnitude,

while considerably improving the single- and two-photon variation distances, upon which

the algorithm saturated. The algorithm was run several times, starting from di�erent

permutations, displaying a consistent performance.

These results suggest that the algorithm has a practical application as a re�nement

of the Laing-O'Brien algorithm. Considering that any experimental imperfections will

only be ampli�ed on experiments with three (and more) photons, a reliable method for

estimating the fabricated unitary matrix is essential for the scalability of the proposal.
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In this sense, a complete brute-force search is completely unfeasible�the m-mode chip

has typically m2 free parameters, which quickly makes the parameter space too large

for this approach. Thus, an e�cient tomography algorithm, of which the Laing-O'Brien

is an example, is an indispensable tool for experiments on progressively larger systems.

However, this algorithm, while having the good feature of being immune to device losses,

still su�ers considerable variations from noise in experimental data stemming from non-

unitarity of the device and statistical errors. As such, I believe that the re�nement

proposed helps to mitigate these variations and, furthermore, receives additional feedback

from the experiments, in the form of error estimates that indicate the more reliable subset

of data, which the algorithm should strive to approximate more closely. At present I do

not have a rigorous theoretical analysis of the performance of the algorithm, nor why it

seems to work much more e�ciently than other well-known algorithms such as gradient

search, only the empirical observation that it is so. Nonetheless, I believe they provide

compelling evidence for the usefulness of the algorithm for any experiment that may be

performed in the near future.

Finally, I would like to point out that the output of the numerical searches reported

in Table 6.1 and Table 6.2 are not the same as those I will report on the next section.

This is because I opted for presenting the experimental results that follow in a manner

faithful to the papers they were originally published in, but in which an outdated version

of this algorithm was used, which is why the results will be slightly worse.

The Mathematica c© �les for these algorithms can be found in Appendix B.

6.3 Experimental results

In this section, we reproduce the results reported in references [35, 128, 127]. The �rst

of these was published in 2013 in Nature Photonics [35] and consists of one of the �rst

demonstrations of a small-scale implementation of BosonSampling, where we observed

one, two and three photons interfering in a 5-mode unitary sampled from the uniform

ensemble. The second paper, published in 2013 in Physical Review Letters [128], consists

of the observation of bosonic bunching in larger interferometers. Besides observing a

decrease in the fraction of bunching events as the size of the chips increases, which is

compatible with the bosonic birthday paradox described in Section 4.4.4, we also observed

experimentally and proved theoretically a new bunching law, relating the classical and

quantum probabilities of full-bunching events (i.e. those where all photons exit at the same



150

modes). Finally, the third manuscript, which is still undergoing the review process as of

the writing of this thesis, focuses on the certi�cation of BosonSampling devices [127]. More

speci�cally, we sampled two interferometers from the random phase ensemble described

in Section 6.2.3, of 7 and 9 modes respectively, and applied the certi�cation algorithm

due to Aaronson and Arkhipov to e�ciently distinguish the distribution generated by the

device from the uniform distribution, as discussed in Section 4.4.5.

Notation: The notation used throughout this section di�ers slightly from that used

in the rest of the chapter. This is to conform with the published versions, specially of the

�gures. However, the meaning of each notation will be clear from context.

6.3.1 BosonSampling in arbitrary integrated photonic chips

In this section we report on the experimental implementation of a small instance of

the BosonSampling proposal, using up to three photons interfering in a randomly chosen,

5-mode integrated photonic chip, �rst reported in [35]. The unitary describing the chip,

U t
5, was sampled from the uniform distribution (cf. Section 6.2.3), and decomposed in

phase shifters and beam splitters according to the method of Reck et al. described in

[110]. The resulting circuit schematics is depicted in Figure 6.3(b), and a table with

the corresponding parameters ti, αi and βi, as well as U t
5, can be found in Appendix C.

Each parameter was independently controlled using the novel three-dimensional technique

depicted in Figure 6.4. This was the �rst demonstration of such a random chip where

the unitary was sampled numerically and the chip was fabricated as speci�ed, rather than

delegating the randomness to lack of fabrication control. The chip was used in single, two,

and three photon experiments that made use of the sources and detection apparatuses

described in Figure 6.6. The input-output transmission of the device, in other words the

fraction of the overall signal that is not lost inside the device, is 30%.

As a �rst step we characterized the 5-mode chip by injecting single photons in each

input port i and measuring the probability P 1
exp(i,K) of detecting it in output mode K.

The probability distribution obtained experimentally is shown in Figure 6.11(a), together

with the theoretical prediction P 1
t (i,K) of the sampled unitary U t

5. Each output proba-

bility corresponds to the absolute value squared of one matrix element of U t
5. To quantify

the agreement between theory and experiment we calculated the variation distance be-

tween the distributions, as de�ned in Section 2.2. We obtained d1
exp,t = 0.158 ± 0.003

by averaging over the values corresponding to all the di�erent inputs; this small distance

provides a �rst con�rmation of the proper functioning of the device.
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Figure 6.11: (a) One-photon probability distribution: theoretical distribution P 1
t (i,K), experi-

mental distribution P 1
exp(i,K) and reconstructed distribution P 1

r (i,K). (b) Two-photon probabil-
ity distributions: theoretical distribution P 2

t (i, j,K, L), experimental distribution P 2
exp(i, j,K, L)

and reconstructed distribution P 2
r (i, j,K, L). Expected three-photon probability distribution for

input state |10101〉: (c) theoretical distribution P 3
t , reconstructed distribution P 3

r and recon-
structed distribution with partial distinguishability P 3

r,p, and (d) experimental distribution P 3
exp

and reconstructed distribution with partial distinguishability P 3
r,p. Error bars in the experimen-

tal data are due to Poissonian statistics of the measures events, while error bars on theoretical
predictions were obtained from a Monte Carlo simulation.

A complete characterization of the implemented interferometer was performed by

simultaneously injecting two single photons on all ten combinations of two di�erent input

modes {i, j}. For each input combination we measured the ten corresponding visibilities

from the HOM curves, as described in Section 6.2.2.2, for the photons exiting in two

distinct modes {K,L}). From the visibilities we were able to compute the experimental

two-photon probability distributions P 2
exp(i, j,K, L), reported in Figure 6.11(b) together

with the theoretical distribution P 2
t (i, j,K, L) expected from U t

5. We observe a good

agreement between the experimentally and theoretical probabilities, as evidenced by the

variation distance d2
exp,t = 0.221 ± 0.013 (averaged over all the inputs), thus con�rming

good control over the chip's fabrication parameters.

Having measured the two-photon visibilities, we also applied the re�ned version of

the Laing-O'Brien algorithm described in Section 6.2.4 to obtain a reconstructed unitary

U r
5 . The average variation distance between the predictions of U r

5 and our experimental

data is d1
exp,r = 0.065±0.003 (single photon experiments) and d2

exp,r = 0.103±0.013 (two-

photon experiments), which indicates a good characterization of the unitary implemented

experimentally. We also obtained a gate �delity between of U t
5 and U

r
5 of F = 0.950±0.002.
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As explained in Appendix C, we performed a Monte Carlo simulation to estimate how

errors in the phase shifts and transmissivities a�ect the overall unitary. Our simulations

show the gate �delity observed is consistent with the average error rate observed in the

calibrations shown in Figure 6.4. This, in turn, provides evidence that the precision over

each parameter is maintained even during the fabrication of larger circuits.

Finally, we have also probed the chip's behavior in the multi-photon regime, by in-

jecting three single photons into modes 1, 3 and 5 of our interferometer (this choice was

random) and measuring all probabilities of coincidence outcomes. In Figure 6.11(c) we

compare three distributions: the ideal distribution P 3
t obtained from U t

5; the distribu-

tion P 3
r arising from our reconstructed U r

5 and the one P 3
r,p taking into consideration the

partial indistinguishability p of the photons (cf. Section 6.2.2.1). Figure 6.11(d) shows a

good agreement between the distribution P 3
r,p and our experimental results P 3

exp as quan-

ti�ed by the variation distance between these two distributions d3
exp,rp = 0.105 ± 0.024.

This is an experimental con�rmation of the permanent formula [cf. Equation (4.2)] in the

three-photon, �ve-mode regime.

6.3.2 Bosonic bunching in multimode interferometers

In Section 2.3, we discussed how bosons and fermions exhibit distinctly di�erent

statistical behaviors. For fermions, the required wave-function anti-symmetrization results

in the Pauli exclusion principle. Bosons, on the other hand, tend to occupy the same

state more often than fermions or classical particles do, which is re�ected in phenomena

such as Bose-Einstein condensation, and the HOM e�ect described in Section 2.3.1.3.

The HOM e�ect consists in a suppression of the probability that two identical photons

incident on separate ports of a 50:50 beam splitter will exit on separate modes, and is

observed as a curve (e.g. Figure 2.1 and Figure 6.7) describing the dependency of this

probability on the partial distinguishability between the photons. However, as discussed

in Section 6.2.2.2, in larger interferometers a HOM curve connecting input {i, j} and

output {K,L} may be a dip or a peak, since there is obviously no constraint on which

regime, classical or quantum, must present a larger probability of transition between two

arbitrary states. Nonetheless, there are signatures of photonic bunching in systems with

larger interferometers and more particles. Three examples are: (i) recent suppression laws

demonstrated for m-photon interference in particular m-mode interferometers [137]; (ii)

the bosonic birthday paradox12, describing the average behavior of bunching outcomes

12Interestingly, while the bosonic birthday paradox paper [10] shows that, on average, there is an
enhancement in the bunching fraction in the quantum relative to the classical regime, the authors' main
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Figure 6.12: Layouts of the chips used in the experiment. Red spots represent phase shifters,
and directional couplers perform as described in Section 6.2.1.2. For more details on the chips'
design, see the Supplementary Material of [128].

in uniformly random interferometers in the regime m � n (cf. Section 4.4.4); and (iii) a

rule showing that the transition to a full-bunching output (e.g. |n, 0, . . . , 0〉), if nonzero,
is always enhanced in the quantum relative to the classical regime, which we proved

theoretically and veri�ed experimentally in [128]. The experiments reported in this section

consist on a comprehensive observation of bosonic bunching, most notably e�ects (ii) and

(iii), in interferometers of sizes ranging from m = 2 to m = 16, and designs as depicted

in Figure 6.12.

Let us now state and prove the aforementioned rule governing bosonic full-bunching

probabilities13 of n photon in arbitrary m-mode interferometers.

Theorem 6.2. Let tk denote the occupation number of input mode k. Let us denote the

probabilities that all n bosons leave the interferometer in mode j by qc(j) (distinguishable

bosons) and qq(j) (indistinguishable bosons). Then the ratio of full-bunching probabilities

rfb = qq(j)/qc(j) = n!/
∏

k tk!, independently of U,m, and j.

Proof. Recall from Lemma 2.1 in Section 2.3.1.2 that, for n photons interfering in an m-

mode interferometer described by unitary U , the probability amplitude associated with

input |T 〉 = |t1t2 . . . tm〉 and output |S〉 = |s1s2 . . . sm〉 is given by

〈S|UF |T 〉 =
perm(US,T )√

t1! . . . tm!s1! . . . sm!
, (6.16)

point is that this behavior is not as strong as one could expect, and the bunching fraction become
negligible in the limit m→∞.

13During the writing of this thesis, it was brought to our attention that this result was also reported
independently in the PhD thesis of Malte Tichy [136].
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where US,T is the matrix obtained by repeating ti times the ith column of U , and sj times

its jth row. Recall from Section 4.4.2 that, for distinguishable bosons, the analogous

equation holds:

pS,T =
perm(|US,T |2)∏

i si!
, (6.17)

where |US,T |2 is the matrix obtained by taking the absolute value squared of each corre-

sponding element of US,T .

Let us now introduce an alternative, convenient way of representing the input occupa-

tion numbers. De�ne a n-tuple of m integers ri so that the �rst t1 integers are 1, followed

by a sequence of t2 2's, and so on until we have tm m's. As an example, input occupation

numbers t1 = 2, t2 = 1, t3 = 0, t4 = 3 would give r = (1, 1, 2, 4, 4, 4). Using Eq. (6.16)

we can evaluate the probability qq(j) that the n indistinguishable bosons will all exit in

mode j:

qq(j) =
|per(A)|2
n!
∏

k tk!
, (6.18)

where A is a n × n matrix with elements Ai,k = Uj,rk . Since all rows of A are equal,

perm(A) is a sum of n! identical terms, each equal to
∏

k Uj,rk . Hence

qq(j) =
|n!
∏

k Uj,rk |2
n!
∏

k tk!
= n!
|∏k Uj,rk |2∏

k tk!
. (6.19)

Using Eq. (6.17), we can calculate the probability qc(j) that n distinguishable bosons

will leave the interferometer in mode j: qc(j) = perm(B)/n!, where B has elements

Bi,k = |Ai,k|2 = |Uj,rk |2. Hence

qc(j) = n!

∏
k |Uj,rk |2
n!

=
∏
k

|Uj,rk |2. (6.20)

Our new bosonic full-bunching rule establishes the value of the quantum/classical full-

bunching ratio, which we can now calculate to be

rfb =
qq(j)

qc(j)
=

n!∏
k tk!

. (6.21)

This bosonic full-bunching rule generalizes the HOM e�ect into a universal law, now

applicable to any interferometer and any number of photons n. Despite becoming expo-

nentially rare as n increases, as discussed in Section 4.4, full-bunching events are enhanced

by a factor as high as n! when at most one boson is injected into each input mode, as in

our experiments.
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Figure 6.13: (a) Bunching fraction for two indistinguishable photons (p
(q)
b , red points) and two

distinguishable photons (p
(c)
b , green points). Experiments were performed on di�erent unitaries

(m = 3, m = 8, m = 12) or di�erent input states (m = 3, m = 5). Shaded areas correspond to of
1.5 standard deviation around the mean, obtained from sampling over 10000 uniformly random
unitaries. (b)-(g), Experimental results (points) together with histograms obtained from the
numerical simulations, for several values of m. Error bars in the experimental data are due
to the Poissonian statistics of the measured events, and where not visible are smaller than the
symbol.

The apparatus for this experiment consists mostly on that described throughout Sec-

tion 6.2, including the sources described in Section 6.2.2.1 and the single, two and three

photon measurements described in Section 6.2.2.2. Randomness was purposefully incor-

porated in the designs of the chips in various ways, including sampling from the Haar and

the random phase ensembles of Section 6.2.3. In particular, the chip with m = 5 was the

same as used in the experimented reported in Section 6.3.1, taken from the Haar ensemble.

The 7-mode chip was taken from the random phase ensemble. The remaining chips were

taken from experiments performed previously by the same quantum optics group which

I was not a part of. For more details see the Supplementary Material of [128], together

with the provided references for the chip with m = 2 [115], the two chips with m = 3

[126], one chip with m = 8 [114], and the remaining chips with m = 8, 12, 16 [34].

A �rst set of experiments aimed at measuring the bunching probabilities p(q)
b and

p
(c)
b respectively of quantum (i.e. indistinguishable) and classical (i.e. distinguishable)

photons. We note that these probabilities depend both on the interferometer's design and

the input state used. A bunching event involves, by de�nition, the overlap of at least

two photons in a single output mode. The classical bunching probability p(c)
b is obtained

from single-photon experiments that characterize the transition probabilities between each



156

input/output combination. An estimate of p(q)
b was obtained from the procedure described

at the end of Section 6.2.2.2, where the ratio t := (1 − p
(q)
b )/(1 − p

(c)
b ) is estimated by

running the experiment on the classical and quantum regimes for equal periods of time,

without the need for distinguishing di�erent multi-photon states at each output.

We summarize the experimental results for a number of di�erent photonic chips in

Figure 6.13 (two-photon experiments) and Figure 6.14 (three-photon experiments). The

results are in good agreement with theory, taking into account the partial indistinguisha-

bility of the photon source. For all the employed interferometers we �nd that indis-

tinguishable photons display a higher coincidence rate than distinguishable photons do

(p(q)
b > p

(c)
b ); this is known to be true for averages [10]. Furthermore, p(q)

b falls as m

increases, in the manner predicted by the bosonic birthday paradox. It is important to

point out that the distinguishable-photon distribution plotted in Figure 6.13 and Fig-

ure 6.14 does not correspond to the classical birthday paradox described in Section 4.4.4,

more speci�cally Eq. (4.4). This is because the usual classical birthday paradox consists

of sampling n people independently from the uniform distribution, whereas here all dis-

tinguishable photons in the experiment are subject to the same random unitary. The

correlations between matrix elements due to unitarity actually make a distinguishable-

photon experiment have typically a lower bunching fraction than that described by the

classical birthday paradox.

We now turn to experiments that test our bosonic full-bunching rule. We estimated

the quantum to classical full-bunching probability ratio rfb by introducing delays to change

the distinguishability regime, and performing photon counting measurements in selected

output ports, using �ber beam-splitters and multiple single-photon detectors. In Fig-

ure 6.15 (blue data) we plot the full-bunching ratio for all two-photon experiments referred

to in Figure 6.13, and �nd good agreement with the predicted quantum enhancement

factor of 2! = 2. Note that in two-photon experiments every bunching event is also a full-

bunching event, which means that when n = 2 the ratio rfb = rb = 2, independently of

the number of modes m. We have also measured three-photon, full-bunching probabilities

in random interferometers with number of modes m = 3, 5, 7. Perfectly indistinguishable

photons would result in the predicted 3! = 6-fold quantum enhancement for full-bunching

probabilities. The partial indistinguishability α = 0.63±0.03 of our three injected photons

reduces this quantum enhancement to a factor rfb = α2 3!+(1−α2) (3−1)! = 3.59±0.15.

The results can be seen in Figure 6.15 (red data), showing good agreement with the

predicted value.
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Figure 6.14: Experimental results for the three-photon photonic bunching in the quantum (p
(q)
b ,

red points) and classical (p
(c)
b , green points) regimes. Shaded areas correspond to 1.5 standard

deviation around the mean, obtained from sampling over 10000 uniformly random unitaries.
Red area: simulation taking into account partial photon indistinguishability. Error bars in
the experimental data are due to the Poissonian statistics of the measured events, and where
not visible are smaller than the symbol. Inset: numerical simulation of the e�ect of partial
photon distinguishability on the bunching probability pb, where the gray area represents perfectly
indistinguishable photons.

In conclusion, these experiments characterize the bunching behavior of up to three

photons evolving in a variety of integrated multimode circuits. The results are in agree-

ment with the predictions of the bosonic birthday paradox (c.f. Section 4.4.4). We have

also proved a new rule that sharply discriminates quantum and classical behavior, by

focusing on events in which all photons exit the interferometer bunched in a single mode,

and have obtained experimental con�rmation of this new full-bunching law.

6.3.3 Experimental validation of BosonSampling

In this section, we report an experiment focused on validation of BosonSampling

devices. Recall, from Section 4.4.5, that recent criticism [45] of the BosonSampling model

showed that no symmetric algorithm can e�ciently distinguish a BosonSampling device

from one that samples from the trivial uniform distribution over all outcomes. This

prompted a response from the authors of the original BosonSampling paper, arguing that

symmetric algorithms are overly restrictive and proving that an e�cient non-symmetric

algorithm exists to distinguish between these two hypotheses [3]. Here we report new

BosonSampling experiments on photonic chips of 5, 7, and 9 modes, and analyze the data

using the algorithm of [3], which we described in Section 4.4.5. We show that the test

successfully validates small experimental data samples against the hypothesis that they
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Figure 6.15: Here we report rfb for two-photon (blue) and three-photon (red) experiments on
a number of photonic chips. Shaded regions: expected values for two-photon (blue) and three-
photon (red) taking into account partial photon distinguishability. Error bars in the experimental
data are due to the Poissonian statistics of the measured events, and where not visible are smaller
than the symbol.

are uniformly distributed. We also show how to discriminate data arising either from

indistinguishable or distinguishable photons, albeit in a non-scalable manner.

The experiments were performed using the same techniques described throughout this

chapter. The 5-mode chip is the same used for the BosonSampling experiment described in

Section 6.3.1, while the 7- and 9-mode chips were drawn from the random phases ensemble

described in Section 6.2.3. Their parameter speci�cations are reported in Appendix C.

The 7-mode chip was also reconstructed using the algorithm described in Section 6.2.4,

and the result of this reconstruction is also reported in Appendix C.

Let us now discuss how a certi�er can validate small sets of BosonSampling data gen-

erated by an agent we call the BosonSampler (BS), against the hypothesis that they were

generated by Uniform Sampler (US), an agent that samples from the uniform distribu-

tion. The veri�er succeeds by using the e�ciently-computable estimator R described in

Section 4.4.5 on small experimental data sets. R is correlated to the outcome probabilities

just enough to re�ect some of the structure of the BosonSampling distribution, allowing

us to determine with great con�dence that it is not simple gibberish produced by US (but

not correlated enough to approximate the values of the probabilities themselves). We ap-

plied this test to multiple, random experimental data sets of varying sizes. This enabled

us to gauge the trade-o� between set size and success rate, which has been theoretically

studied in the asymptotic limit [3]. The results are shown in Figure 6.16. For experiments
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with the 5-, 7-, and 9-mode chips, the veri�er reaches a 95% average success rate with

very modest set sizes of just ∼ 100 events. This establishes experimentally the usefulness

of the R estimator of [3] for the analysis of small-scale experiments.

To show that the test will also work in as-yet unperformed, larger-scale experiments, in

Figure 6.16(d) we simulate the test's success rate for BosonSampling experiments with n =

5 andm = 20. Additionally, in Figure 6.16(e) we numerically determine the minimum data

set size Nmin for which the test based on the R estimator discriminates BosonSampling

data from the uniform distribution (and vice-versa) with a success rate > 95%. Not only

is Nmin small for all experiments we simulated, it actually decreases as we increase m.

Despite proving successful for all the interferometers we implemented experimentally, our

numerical simulations revealed that the test fails for some interferometers if the ratio m/n

is too low.

In the probed regime with n = 3 photons and interferometers with up to m = 9

modes it is possible to perform a full validation of the BosonSampling experiments by

reconstructing all probabilities associated with no-collision events. This requires recording

experimental data sets of a larger size; for the m = 7 chip, for example, we recorded

∼ 2100 events. The experimentally reconstructed probabilities are then compared with

the theoretical prediction. For the chips with m = 5, 7, we compared the experimental

data with the theoretical obtained from the reconstructed corresponding unitaries, while

for m = 9 we used the ideal, theoretical unitary for comparison. The results are shown

in Figure 6.17, and the good agreement between the experiments and the predictions is

quanti�ed by the variation distance d = 1/2
∑

k |pk − qk|, which reaches values d(2,3,4)
exp,r =

0.104 ± 0.022 (m = 5), d(3,4,5)
exp,r = 0.168 ± 0.016 and d

(4,5,6)
exp,r = 0.133 ± 0.017 (m = 7),

d
(4,5,6)
exp,t = 0.113±0.017 and d(3,4,8)

exp,t = 0.167±0.020 (m = 9). Furthermore, we have applied

the R-estimator test to the full data set. We remark that the high �delity of our devices

relative to the designed ones allows us to apply this test successfully by using either the

reconstructed or the ideal unitaries.

In addition, for small-scale experiments we can perform simple statistical tests to

validate BosonSampling data against probability distributions which are more natural

in experimental settings than the uniform distribution, such as that produced by the

corresponding BosonSampling experiments with distinguishable photons. These tests

are ine�cient, in the sense that they require computing the probabilities, and thus the

#P -hard permanents which are the cornerstone of the original BosonSampling result.

Nonetheless, at least until theoretical advances are made concerning e�cient validation
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Figure 6.16: E�cient validation test using experimental data sets of varying sizes. We show the
success rate as a function of sample set size Nset, in experiments using (a) one Haar-random
5-mode interferometer (red circles: input state |01110〉); (b) a random 7-mode interferometer
with input states: |0011100〉 (green), |0001110〉 (cyan), |0101010〉 (black), and |1110000〉 (ma-
genta); (c) a random 9-mode interferometer with input states: |000111000〉 (red) and |001100010〉
(black). Grey dashed line: level for 95% success probability. Squares: numerical simulations,
averaged over 1000 data sets, of the validation test using data generated by US. In all plots, blue
shaded regions correspond to theoretical prediction for validation of BS, shown as 1.5 standard
deviation over 1000 Haar-random unitaries. Simulations exclude cases where success rate does
not reach 95% even with Nset = 5000. The number of cases with the (asymptotically proven) cor-
rect behavior was 434 (m = 5), 573 (m = 7), and 822 (m = 9). Green shaded regions correspond
to theoretical prediction for the validation of US. (d) Simulated performance for BosonSampling
experiments with n = 5 photons and m = 25, averaged over in 100 Haar-random interferometers.
(e) Minimum data set size for both > 95% success probability using BS data and < 5% using
US data, as a function of n and m obtained through numerical simulation. For each point, the
simulation is averaged over 50 or 100 Haar-uniform unitaries.
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Figure 6.17: Experimentally measured (blue) and theoretical (yellow) probabilities for (a) Haar-
random 5-mode chip with input state |01110〉; (b) random 7-mode chip with input states
|0011100〉 and |0001110〉; (c) random 9-mode chip with input states |000111000〉 and |001100010〉.
Lighter regions of the blue bars correspond to experimental error due to Poissonian statistics.
Lighter regions of the yellow bars correspond to error in the reconstruction process, retrieved
by Monte Carlo simulation. Bottom �gures of panels (a) and (b), right �gures of panel (c):
application of the R-estimator test to the full set of experimental data. C is a counting variable
that is increased by 1 for each event assigned to BS, and decreased by 1 for each event assigned
to US. Blue points: test applied on the experimental data by exploiting the ideal unitaries.
Black points: test applied on the experimental data by exploiting the reconstructed unitary (for
the m = 5, 7 chips only). Green points: test applied on simulated data generated by US. For
states |01110〉 (m = 5) and |0001110〉 (m = 7) blue and black points present a large overlap and
superimpose in the �gures.
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of BosonSampling against these alternative distributions, these ine�cient statistical tests

will be the best way to validate the physical device and will remain feasible for experiments

involving up to 30− 40 photons. Since, as we will see, these statistical tests only require

computing a small number of permanents (more speci�cally, one for each outcome that

is observed in the experiment), they presumably will be considerably more e�cient than

performing a classical simulation as described in Section 4.4.2.

In our experiment, the statistical test used was an adaptation of a standard likeli-

hood ratio test [33], with added thresholds to better take into consideration experimental

imperfections. More speci�cally, let pind
i and qdis

i be the probabilities associated with

indistinguishable and distinguishable photons for measured outcome i, and let D be a

discrimination parameter, initialized to the value D = 0. For each experimental outcome,

we calculate the ratio of the expected probabilities for indistinguishable and distinguish-

able photons. If the ratio is close to one, up to to a threshold k1 < pind
i /qdis

i < 1/k1, the

event is considered to be inconclusive and D is left unchanged. These inconclusive events,

however, are still counted as a resource and do contribute to the e�ective number of events

required to discriminate the two distributions. If 1/k1 ≤ pind
i /qdis

i < k2, the event is as-

signed to the Indistinguishable BosonSampler by adding +1 to D. If the ratio between

the two probabilities is high, pind
i /qdis

i ≥ k2, the event is assigned to the Indistinguishable

BosonSampler by adding +2 to D, thus re�ecting the higher level of con�dence in this

case. Conversely, if 1/k2 < pind
i /qdis

i ≤ k1 and pind
i /qdis

i ≤ 1/k2 the event is assigned to the

Distinguishable BosonSampler by adding −1 and −2 to D respectively. Finally, after N

experimental outcomes, if D > 0 the whole data set is assigned to the Indistinguishable

BosonSampler, and conversely if D < 0. In our analysis we set k1 = 0.9 and k2 = 1.5.

In conclusion, our experiments have shown how to leverage available information

about the BosonSampling experiment to distinguish experimental data from the uniform

distribution, using the scalable test proposed by Aaronson and Arkhipov [3]. Our analysis

shows that this test works even for small instances of BosonSampling experiments, and

provides experimental support for the recent theoretical refutation [3] of a recent criticism

on BosonSampling experiments [45]. We have also certi�ed the experimental data using a

test that distinguishes them from a similar experiment done with distinguishable photons.

An independent paper [30] with some results similar to ours was reported online shortly

after ours.
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Figure 6.18: (a) Experimental results of the discrimination between BosonSampling distribu-
tions in the classical and quantum regimes for the 7-mode chip. The protocol is applied by using
the reconstructed unitary. Top �gures: evaluation of the D parameter for two di�erent input
states. Black data: indistinguishable photons. Red data: distinguishable photons. Bottom �g-
ure: success probability Psuccess of the discrimination protocol as a function of the data set size
Nset. Circles correspond to input states |0011100〉 (green), |0101010〉 (blue), |0001110〉 (cyan),
|1110000〉 (magenta). Squares: corresponding success probability for �false positive� events with
distinguishable photons. Blue shaded region: numerical simulation of the success probability of
discrimination test for indistinguishable photons, taking into account the partial photon distin-
guishability. Blue dash-dotted line: average behaviour for perfectly indistinguishable photons.
Red shaded region: numerical simulation for distinguishable photons. Red dash-dotted line: av-
erage behaviour without taking into account partial photon-distinguishability. (b) Experimental
results of the discrimination between BosonSampling distributions in the classical and quantum
regimes for the 9-mode chip with input state |000111000〉. The protocol is applied by using the
probability distributions obtained from the ideal unitary. Blue data: indistinguishable photons.
Red data: distinguishable photons.
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6.4 Discussion and concluding remarks

In this chapter, we presented both theoretical and experimental results on Boson-

Sampling. On the theoretical side we showed that exact BosonSampling is hard, under

the standard complexity assumptions, even if the optical circuits consists only of a con-

stant number of beam splitter layers (Section 6.1). We also proved a new rule governing

bosonic bunching in multi-photon multimode experiments, stating that there is always

an enhancement for the probability of full-bunching outcomes in the quantum relative to

classical regime (Section 6.3.2). Numerically, we performed simulations to better charac-

terize the random unitary ensemble described by layers of 50:50 beam splitters alternated

with uniformly random phase shifters, and provided evidence that this ensemble displays

a su�ciently rich behavior to make it a physically-motivated alternative to the Haar

ensemble (Section 6.2.3). Finally, we showed how the Laing-O'Brien algorithm for re-

construction of the unitaries from single- and two-photon data can be further re�ned by

the use of numerical searches, consistently providing better agreement with experimental

data (Section 6.2.4).

On the experimental side, we reported work performed in collaboration with the

Quantum Optics groups of Rome and Milan, where interference of one, two and three

photons was observed in integrated photonic chips. We experimentally veri�ed that the

formula describing multiphoton transitions in terms of matrix permanents holds well in

the 3-photon, 5-mode regime (Section 6.3.1). We investigated e�ects of bosonic bunching

of 3 photons in chips of up to 16 modes, observing a behavior consistent with the bosonic

birthday paradox, and with our new full-bunching rule (Section 6.3.2). Finally, we per-

formed 3-photon experiments in chips of 5, 7 and 9 modes in order to apply a recent

algorithm that distinguishes a BosonSampling distribution from the uniform distribution

(Section 6.3.3), and also applied standard statistical tests which, albeit asymptotically in-

e�cient, distinguish BosonSampling from the corresponding classical-photon distribution

using a small number of experimental samples.

Much like standard quantum computing, BosonSampling still has a lot of ground to

cover before it provides concrete evidence that quantum systems are in fact outperforming

classical computers in a given task. The most prominent advantage of BosonSampling

is that this evidence will, presumably, be less demanding to reach�an experiment with

50 − 100 photons already consists of something expected to be unfeasible with classi-

cal computers, whereas a useful quantum computation (such as Shor's algorithm), might

require systems several orders of magnitude larger. However, in some sense the Boson-
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Sampling model is still in its infancy, and there are several theoretical and experimental

obstacles that must be tackled if it is to stand on ground as solid as standard quantum

computation.

The experimental challenges consist mostly in showing that a given experiment can be

scaled e�ciently, at least in principle. For the sake of discussion, let us consider only inte-

grated interferometers�free space linear optics has its own obvious scalability problems,

while BosonSampling with other types of bosons is a much less compelling scenario [119].

For a scalable integrated optical experiment, the main technological advances that should

be pursued are (i) near-deterministic sources of nearly-indistinguishable photons, (ii) scal-

able chips, and (iii) better detectors. For (i) and (iii), it might help to have integrated

sources and detectors, i.e., some method for generating and measuring the photons from

within the chip itself, to reduce losses in the coupling with �bers. However, in my view,

point (i) still has a serious fundamental problem: as long as sources only produce photons

probabilistically, the overall coincidence signal will decay exponentially with the desired

number of photons, not only because an n-fold coincidence event is exponentially unlikely,

but even when it happens photons will likely have a large distinguishability factor14.

The major obstacle for point (ii) currently seems to be the fact that the signal decays

exponentially with the depth of the circuit. This could be resolved with the develop-

ment of novel fabrication techniques where losses scale more favorably, or by showing

that the result of Section 6.1 can be generalized for approximate BosonSampling with

sub-polynomial-depth circuits. I do not consider that errors in the control of beam split-

ter transformations pose a greater obstacle to (ii) than losses, mainly because experi-

mentalists have e�cient reconstruction algorithms at their disposal, such as described in

Section 6.2.4, which allow them to always know with very good precision what the imple-

mented unitary is. Of course, from a complexity-theoretic point-of-view, this argument

does not hold�U is the input to the BosonSampling task, and any deviation from U in

the experiment must be considered an error. However, from a physical point of view, the

unitary U
′
obtained from Haar-random U by shifting each internal parameter by a small

random amount is still typically random.

14Recently, in the blog of Scott Aaronson (http://www.scottaaronson.com/blog/?p=1579), an idea
was proposed, credited to Steve Kolthammer, called Scattershot BosonSampling, which seems to circum-
vent (i) somewhat. It is based on the following argument: rather than having n photon sources and
waiting for all n of them to produce a photon at the same time, we can use N > n sources and wait for
any subset of n of them to produce a photon each. In this way, the probability of an n-fold coincidence
is boosted arbitrarily high using only a polynomial overhead in the number of sources. This, however,
is still a preliminary idea, and furthermore it is unclear how this would help with the partial photon
distinguishability factor.

http://www.scottaaronson.com/blog/?p=1579
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The main theoretical challenges of BosonSampling are those related to simplifying

experimental e�orts, such as a depth-wise optimization of the model, and those of a more

fundamental nature, such as device certi�cation�or, in other words, an answer to the

question �I have a BosonSampling device, now how do I prove it?�. Note that universal

quantum computation also presents similar certi�cation issues: any problem in BQP ∩
NP of course can be veri�ed in polynomial time, but it is still an open problem whether

any task outside this intersection�including any BQP-complete problem�has an e�cient

procedure that convinces a purely classical veri�er of its correctness. Even leaving aside

the usual �paranoia� of complexity theory, where a BosonSampling device would be asked

to prove its authenticity against a miriad of conceivable �classical� distributions, it would

already be an impressive result to show that BosonSampling can be distinguished, in

polynomial time, from any classical distribution natural to the experimental apparatus,

such as e.g. the distributions generated by distinguishable photons. This might also serve

as a partial replacement for tomography if the experimental data showed that, despite

imperfections in the fabrication of the device, the output distribution is still close enough

to the ideal one as to make it distinguishable from other suitable candidates. This, in a

sense, is what we did with the 9-mode interferometer of Section 6.3.3: regardless of the

fact that we did not perform the reconstruction of the unitary since we did not have all

two-photon data, we can deduce that our fabricated chip must have been su�ciently close

to the ideal one since the statistical tests were successful.

To conclude this chapter, I would like to say that even standard quantum compu-

tation has its skeptics. However, since universal quantum computers have the power of

fault-tolerance and error correction, a serious skeptic must come up with quite arti�cial

models to explain why some fundamental physical principle disallows quantum comput-

ing whilst allowing the plethora of quantum-mechanical phenomena observed in the last

several decades. BosonSampling, unfortunately, does not share this feature, as it does not

have (yet) a notion of fault-tolerance. It will be exciting to see, in the future, whether

BosonSampling follows in the footsteps of universal quantum computers, where increasing

theoretical progress makes skeptics' jobs harder every day, or if it will follow the unsuc-

cessful path of classical analog computers, where physical imperfections necessarily wash

out any supra-classical computational speedup.
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7 Final Remarks

There are several fascinating aspects that drive much of the current research in quan-

tum computation and information. On the practical side, quantum computers hold the

promise to outperform classical computers in several tasks of interest, the most notable of

which is integer factoring. Given that the hardness-of-factoring assumption is the basis for

one of the most widely used public-key cryptosystems of our days, this is naturally a very

strong driving force for development of the �eld, both theoretically and experimentally.

However, practical large-scale quantum computing remains safely in the distant future,

and so another strong motivation is of a more fundamental nature. Quantum computing

is not the �rst case of a connection between Physics and Computer Science, but it is one

of the most compelling, and that has gathered the greatest amount of attention. Physics

and Computer Science originated within di�erent kinds of human activities and devel-

oped with very distinct purposes, and the whole concept of quantum computing seems

to suggest an a posteriori connection between them that is surprisingly robust: there are

several di�erent routes (i.e. models) that provide universal quantum computation, but

any mechanism that reduces a universal quantum system to a classical regime (de�ned on

reasonable physical grounds), such as e.g. decoherence, seems to enact a corresponding

reduction in the computational power. This did not need to be the case: if a universal

quantum computer retained its power when driven to a classical regime by some physical

mechanism, this would provide a �quantum proof� that certain computational problems,

such as factoring, are in fact classically easy. In my opinion, one of the most notable exam-

ples of such a connection is the di�erence in the computational complexity of simulating

the dynamics of free fermions and free bosons. An experimental setup corresponding

to arguably the simplest nonclassical bosonic/fermionic behavior�the particles are only

required to evolve according to identical particle statistics de�ned by the symmetry of

the wave function, with no need for controllable interactions�provides natural computa-

tional tasks that have a sub-classical (fermions) and a supra-classical (bosons) simulation

complexity.
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In this thesis, I reported several results that extend the known regimes of compu-

tational power for the two restricted models corresponding to free-particle dynamics:

fermions (matchgates) and bosons (BosonSampling).

In Chapter 5 I studied the computational power of matchgates. Matchgates, when

acting on nearest-neighboring qubits aligned on a path, correspond to free fermions and

are classically simulable. I investigated how their computational power changes when we

modify the underlying restrictions, moving the model away from a fermionic description.

I showed that adding any parity-preserving two qubit gate (that is not a matchgate) to

the set su�ces to bridge the gap between (sub-)classical and quantum computational

power. Alternatively, I showed that this can also be achieved by almost any change in the

connectivity: matchgates acting on nearest neighbors on a path or cycle correspond to free

fermion dynamics and are classically simulable, whereas matchgates acting on any other

graph are universal for quantum computing and no longer correspond to free fermions.

Notice how this echoes a claim made in the previous paragraph: it was conceivable that

matchgates would become universal for quantum computation acting on a given graph,

whilst not disrupting their e�cient classical simulation scheme. The fact that this does not

happen provides additional evidence that the distinction between quantum and classical

regimes, in terms of computational power, is meaningful. I also showed that the exact

same dichotomy holds for the XY interaction. In some sense, the XY interaction already

captures all the computational power of the complete set of matchgates, despite explicitly

being a proper subset.

A list of more technical open questions on this subject and relations to other work

can be found in Section 5.3. At a high level, the main open questions we leave are more

quantitative than qualitative. We completely characterized the computational regimes of

matchgates in arbitrary graphs, but we have not directed our e�orts to determining the

more e�cient way to perform a given quantum computation (i.e., that is more robust

to noise, uses less additional operations and/or qubits, etc). Such an e�ort might be

of interest to experimentalists working with physical systems where matchgates arise

naturally. Most proposals in this category that I am aware of are over a decade old

[59, 105, 156, 98], and I am not aware how they compare, in terms of feasibility, with

other well-known implementations. Nonetheless, during the writing of this thesis a new

proposal arose [54] for matchgate quantum computing using polar molecules trapped in

optical lattices. I hope that the results contained here may provide an extensive �exibility

to these constructions, especially as they show that only a rudimentary control over the

geometrical arrangement of the qubits might already su�ce for a nontrivial computation.
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Finally, our results also have some relation to qualitatively di�erent quantum computing

models, such as e.g. ancilla-controlled quantum computing [104], and they might suggest

improvements for these known models, or even lead to completely new ones.

In Chapter 6 I presented several results, both experimental and theoretical, on the

BosonSampling model of quantum computation. BosonSampling is a restricted model that

is not expected to be universal for quantum computation�as a matter of fact, it possesses

no practical application so far, and there are no known decision problems solvable by this

model (that are not also solvable classically). Nonetheless, it has been gathering increasing

attention, mostly due to how it lends itself so naturally to experimental implementation.

Rather than imposing a (quite arti�cial) qubit structure on the photon states, followed

by a yet-prohibitively-large complex network of optical elements, auxiliary photons, and

adaptive measurements, which make up the KLM scheme, a BosonSampling device con-

sists of nothing more than observing photons in their �natural habitat�. By inputting

an n-photon, m-mode Fock state into a random garden-variety linear interferometer and

measuring the output distribution over the Fock basis, one is already performing a task

that is strongly conjectured to be classically hard [4]. Furthermore, the running time

of the best known classical algorithms to perform this task grows very fast with n�an

experiment with n between 50 and 100 would already surpass the capacities of modern

day classical computers. As such, it is extremely natural that great e�orts be focused

on this model, since interesting computational regimes will be experimentally feasible for

BosonSampling much earlier than for other quantum computing tasks, such as factoring.

My main theoretical contribution to this area is a proof that exact BosonSampling

is hard even if the optical circuit has only constant depth, under similar complexity

assumptions as standard BosonSampling. I believe this may be an important �rst step

in further simplifying the experimental requirements for a convincing implementation of

the model. For this to actually unfold, it will be necessary to show that the hardness

of the approximate BosonSampling in the constant-depth regime also reduces to some

natural hardness conjecture1. From a more conceptual point of view, this result also

connects two di�erent restricted models, namely constant-depth quantum computing and

constant-depth BosonSampling, by showing that the latter is contained in the former. This

containment is not known to be true for standard BosonSampling, and could be used to

translate results between the models (e.g., if approximate constant-depth BosonSampling

is also hard, this might suggest a similar proof for approximate simulation of constant-

1This can turn out to not be the case: constant-depth BosonSampling might be hard to perform
exactly, but easy to perform approximately. This would also be a very interesting result.
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depth quantum circuits, providing the �rst proof that other restricted models are as robust

as BosonSampling).

I have also contributed to experiments that were among the �rst small-scale implemen-

tations of BosonSampling using integrated photonics, as part of an ongoing collaboration

with quantum optics groups in Rome and Milan. In these experiments, we observed

three-photon interference in chips of 5 to 16 modes, and a good agreement with the de-

scription of bosonic dynamics in terms of matrix permanents, which is at the heart of the

BosonSampling result. These experiments also showed that fabrication techniques allow

a high level of control over the chips' parameters (transmissivities and phase shifts). This

is fundamental not only for progressively larger BosonSampling experiments, but also

benchmarks the experimental techniques for use in other quantum information process-

ing tasks, and ultimately in a large-scale implementation of the KLM scheme. My main

contribution to these experiments was essentially theoretical: I helped bridge the gap

between the highly-technical BosonSampling paper with the real-world available experi-

mental setups; I provided simulations of the behavior of interferometer ensembles inspired

on experimental limitations; and I helped to numerically improve known techniques for

interferometer tomography.

A more detailed discussion on these experiments and the main theoretical and ex-

perimental open questions regarding BosonSampling can be found in Section 6.4. In

the big picture, however, I believe that BosonSampling has, today, a similar status that

quantum computing had in the beginning of the '90s. It is not very clear what practical

applications it may have, and it still has several �loopholes�, so to speak, that raise a lot

of skepticism2. The most serious issues, in my opinion, are: (i) the serious scalability

issues of current experimental implementations, (ii) the lack of a practical application

for BosonSampling, other than the (arguably) purely academic one of providing evidence

that quantum systems can outperform classical ones, (iii) a lack of a purely linear-optical

fault-tolerant construction, or a satisfying argument that one is unnecessary, and (iv) the

elusive matter of e�cient veri�cation of the device.

Issue (i) can be closed with a combination of theoretical and experimental e�orts.

Experimentally, one might perfect techniques for deterministic photon generation and

detection, develop fabrication procedures that allow integration of sources and detectors

into the photonic device, reduce losses due to circuit depth, etc. Theoretically, one could

2With the added disadvantage that techniques that have been extensively developed to deal with
similar loopholes of quantum computing, such as error correction, cannot be applied directly to Boson-
Sampling.
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improve the known results to show that they hold even in simpler experimental setups.

Examples might include the constant-depth regime mentioned previously, or considering

the complexity of BosonSampling with variable inputs3. Issues (ii) to (iv), on the other

hand, involve mostly theoretical research. Of greater importance (and corresponding

challenge) is (iv), since the lack of an e�cient validation procedure allows a skeptic to

permanently question whether a real-world device is in fact performing any nontrivial

task (in fact, this issue might turn out to be fundamentally unresolvable, as it is not ruled

out that, for any BosonSampling distribution, there exist some classical distribution that

is indistinguishable from it in polynomial time). Note that standard quantum computing

does su�er from this problem, but to a lesser extent. Any quantum algorithm that solves

some NP problem, such as factoring, can be e�ciently veri�ed (by de�nition), but any task

that is outside of NP, in principle, cannot. An interesting partial solution to this problem

was given by [6, 23], who showed that an arbitrary untrustworthy quantum computer

can be veri�ed e�ciently if the veri�er has access to a small trusted quantum resource.

A similar result for BosonSampling is not ruled out, for example in a setting where the

veri�er uses a small linear-optical resource to verify the functioning of an arbitrarily larger

device. However, it is unclear how such a protocol would work within the BosonSampling

model itself, since introducing intermediate measurements and adaption already takes the

model all the way to universal quantum computing via the KLM scheme.

Finally, there are other interesting questions that are suggested by our work, which

however are not direct extensions of the questions answered here. For example, it would

be interesting to investigate the computational power associated with noninteracting ex-

otic particles. In our real (three-dimensional) world, bosons and fermions are the only

two kinds of fundamental particles, corresponding to a symmetry/antisymmetry of the

wave function, respectively. However, other possibilities arise as quasi-particles in two-

dimensional systems, such as Abelian anyons (where an interchange of two particles

induces a complex phase, rather than just a ±1), which are the basis for the model

of topological quantum computation, and the more abstract generalization known as

quons [50, 12], which provide several ways to continuously interpolate between bosons

and fermions. Although this sounds like an extremely daunting challenge, it would be

interesting to see how the inherent simulation complexity of these systems change as we in-

terpolate between fermions (classically easy) and bosons (classically hard), assuming that

3We mentioned an example in Section 6.4, which was called Scattershot BosonSampling. This proposal
would require many more photon sources, which might mean that it will not be feasible in the near future,
at least in its current preliminary form, but it shows that BosonSampling can be scaled up e�ciently
using probabilistic sources.
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this question is even completely well-de�ned. I conjecture that fermions are a pathological

case of trivial computational power, since the experience with matchgates showed that

very small deviations from pure free-fermionic behavior along several di�erent directions

already disrupts the classical simulation.

As a �nal thought, I point out that all aspects discussed here follow the connection

from Physics to Computer Science by using the former to shed light on the latter. However,

if there really is a connection that runs deeply between the two �elds, one may also expect

Computer Science to provide insights into physical phenomena. Quantum computing

skeptics may suggest that any connection is illusory: Physics studies natural phenomena,

while Computer Science is concerned with arti�cial constructs that arise mostly from

the human mind, and it is arrogant to believe that any apparent connection between

them is not simply an artifact of the way humans describe the world around them. The

verdict for these philosophical lines is still open, but there is no question that quantum

computing has deeply impacted our way of describing and thinking about the physical

world. Quantum mechanics is a theory of a highly counterintuitive nature, so much

so that, regardless of impressive experimental con�rmations, its interpretation remains

subject of a heated debate that has lasted almost a century. In this sense, new ways

of describing the quantum world in terms of computational and information-theoretic

constructs might just be a welcome addition.
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A Simulation of random phases

ensemble

This Appendix contains the Mathematica c© code for the simulation of the random

phases ensemble and comparison with the Haar ensemble, described in Section 6.2.3.

This code was written in Mathematica 9.0, Student Edition.

Notebook for simulation of random phases ensemble

Preliminary de�nitions

(* Definitions of Permanent, Beam splitters and phase shifters *)

Permanent3x3[U_]:=U[[1,1]] U[[2,2]] U[[3,3]]+U[[1,2]]U[[2,3]]U[[3,1]]+U[[1,3]]U[[2,1]]U[[3,2]]+U[[1,3]] U

[[2,2]] U[[3,1]]+U[[1,2]]U[[2,1]]U[[3,3]]+U[[1,1]]U[[2,3]]U[[3,2]];

beamSplitter[k_,m_]:=Normal[SparseArray[{{k,k}->1/Sqrt[2],{m,k}->I/Sqrt[2],{k,m}->I/Sqrt[2],{m,m}->1/Sqrt

[2] ,{l_,l_}-> 1}, {size,size},0]];

phaseShifter[\[Phi]_,m_]:=Normal[SparseArray[{{m,m}->Exp[I \[Phi]],{l_,l_}-> 1}, {size,size},0]];

(* Defining optical elements as pairs of balanced beamsplitter plus two random phase shifters in [0,\[Pi]]

range. *)

optEle[{k_,m_}]:=beamSplitter[k,m].phaseShifter[RandomReal[\[Pi]],k].phaseShifter[RandomReal[\[Pi]],m];

optEle[{k_}]:=phaseShifter[RandomReal[\[Pi]],k];

(* Routine to sample Haar-random unitary RU[n] *)

RR:=RandomReal[NormalDistribution[0,1]];

RC:=RR+I*RR;

RG[n_]:=Table[RC,{n},{n}];

RU[n_]:=Module[{Q,R,r,L},{Q,R}=QRDecomposition[RG[n]];

r=Diagonal[R];

L=DiagonalMatrix[r/Abs[r]];

Q.L];

(* UPS[S,L] = Unitary of random phases with S modes and L layers *)

PSLayer1[S_]:=Block[{size},size=S;Dot@@Map[optEle,Partition[Range[size,1,-1],2,2,-1,{}]]]

PSLayer2[S_]:=Block[{size},size=S;Dot@@Map[optEle,Partition[Range[size,1,-1],2,2,1,{}]]]

UPS[S_,L_]:=Dot@@(Extract[{A,B},Reverse[Partition[-(-1)^Range[L],1]]])/.{A:>PSLayer1[S],B:>PSLayer2[S]}

Output probabilities

(* Definitions for calculation of probabilities. *)

subU[U_,out_List,IN_List]:=U[[out,IN]]

probCl[U_,out_List,IN_List]:=Permanent3x3[Abs[subU[U,out,IN]]^2]/(Times@@((Tally[out]/.{_,x_}->x)!))
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probQu[U_,out_List,IN_List]:=Abs[Permanent3x3[subU[U,out,IN]]]^2/(Times@@((Tally[out]/.{_,x_}->x)!))

Simulations

(* runs determines number of sampled matrices each size and depth *)

(* {dmin, dmax, dstep}, define depth values to be simulated, {smin, smax, sstep} does the same for sizes *)

(* Note that size and Size are two different variables used in internal working of the code. *)

runs=10000;

{dmin,dmax,dstep}={(Size+3)/2,(Size+3)/2+7,2};{smin,smax,sstep}={7,11,4};

SeedRandom[]

(* Samples 'runs' Haar-random matrices of sizes {smin,smax,sstep}. *)

(* For each, samples one matrix from random phase ensemble of each depth {dmin,dmax,dstep}. *)

(* Computed quantities as follows

RePartHaarmidmid and RePartPSmidmid: matrix element at position {central, central};

RePartHaar1mid and RePartPS1mid: matrix elements at position {central, endpoint};

Per3x3Haarmid and Per3x3PSmid: permanent of 3x3 submatrix of 3 central inputs and 3 central outputs;

Per3x3Haarend and Per3x3PSend: permanent of 3x3 submatrix of 3 central inputs and 3 endpoint outputs;

BunchHaar and BunchWalk: Bunching fractions. *)

Do[Do[

Haar=RU[Size];

Haarmid=subU[Haar,{(Size-1)/2,(Size+1)/2,(Size+3)/2},{(Size-1)/2,(Size+1)/2,(Size+3)/2}];

Haarend=subU[Haar,{1,2,3},{(Size-1)/2,(Size+1)/2,(Size+3)/2}];

RePartHaarmidmid[Size,t]=Re[Haar[[(Size+1)/2,(Size+1)/2]]];

RePartHaar1mid[Size,t]=Re[Haar[[1,(Size+1)/2]]];

Per3x3Haarmid[Size,t]=Abs[Permanent3x3[Haarmid]]^2;

Per3x3Haarend[Size,t]=Abs[Permanent3x3[Haarend]]^2;

BunchHaar[Size,t]=1-Total[Flatten[Table[probQu[Haar,{i,j,k},{(Size-1)/2,(Size+1)/2,(Size+3)/2}],{i,1,Size

},{j,i+1,Size},{k,j+1,Size}]]];

Do[

WalkPS=UPS[Size,Dept];

WalkPSmid=subU[WalkPS,{(Size-1)/2,(Size+1)/2,(Size+3)/2},{(Size-1)/2,(Size+1)/2,(Size+3)/2}];

WalkPSend=subU[WalkPS,{1,2,3},{(Size-1)/2,(Size+1)/2,(Size+3)/2}];

RePartPSmidmid[Size,Dept,t]=Re[WalkPS[[(Size+1)/2,(Size+1)/2]]];

RePartPS1mid[Size,Dept,t]=Re[WalkPS[[1,(Size+1)/2]]];

Per3x3PSmid[Size,Dept,t]=Abs[Permanent3x3[WalkPSmid]]^2;

Per3x3PSend[Size,Dept,t]=Abs[Permanent3x3[WalkPSend]]^2;

BunchWalk[Size,Dept,t]=1-Total[Flatten[Table[probQu[WalkPS,{i,j,k},{(Size-1)/2,(Size+1)/2,(Size+3)/2}],{i

,1,Size},{j,i+1,Size},{k,j+1,Size}]]];

,{Dept,dmin,dmax,dstep}]

,{Size,smin,smax,sstep}],{t,1,runs}]

Histograms

(* Exports histograms in pdf files as found in Thesis *)

SetDirectory[NotebookDirectory[]]

Do[
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Print[Style["***"<>ToString[Size]<>"MODES***","Subtitle",TextAlignment->Center]];

Export["walk"<>ToString[Size]<>"a.pdf",GraphicsRow[Table[SmoothHistogram[{Table[RePartPSmidmid[Size,Dept,t

],{t,1,runs}],Table[RePartHaarmidmid[Size,t],{t,1,runs}]},PlotLabel->Style["Re part of element "<>

ToString[{Size/2+1/2,Size/2+1/2}]<>", \n m="<>ToString[m=Size]<>" and L="<>ToString[Dept],30,Bold],

ImageSize->600,Frame->True,FrameTicks-> {{{0,0.5,1,1.5},None},{{-0.5,0,0.5},None}},LabelStyle->{30,

Bold},Filling->Axis,AxesOrigin->{-1,0},FrameStyle->Thick],{Dept,dmin,dmax,dstep}],-120]];

Export["walk"<>ToString[Size]<>"b.pdf",GraphicsRow[Table[SmoothHistogram[{Table[RePartPS1mid[Size,Dept,t],{

t,1,runs}],Table[RePartHaar1mid[Size,t],{t,1,runs}]},PlotLabel->Style["Re part of element "<>ToString

[{Size/2+1/2,1}]<>", \n m="<>ToString[m=Size]<>" and L="<>ToString[Dept],30,Bold],ImageSize->600,Frame

->True,FrameTicks-> {{{0,0.5,1,1.5},None},{{-0.5,0,0.5},None}},LabelStyle->{30,Bold},Filling->Axis,

AxesOrigin->{-1,0},FrameStyle->Thick],{Dept,dmin,dmax,dstep}],-120]];

Export["walk"<>ToString[Size]<>"c.pdf",GraphicsRow[Table[SmoothHistogram[{Table[Per3x3PSmid[Size,Dept,t],{t

,1,runs}],Table[Per3x3Haarmid[Size,t],{t,1,runs}]},PlotLabel->Style["Probability of output "<>ToString

[{(Size-1)/2,(Size+1)/2,(Size+3)/2}]<>" \n m="<>ToString[m=Size]<>" and L="<>ToString[Dept],30,Bold],

ImageSize->600,FrameTicks-> {{(1-(7-Size)/2){0,30,60,90},None},{(1/2-(Size-7)/16)

{0,0.04,0.08,0.12,0.16},None}},Frame->True,FrameTicks->Automatic,LabelStyle->{30,Bold},Filling->Axis,

AxesOrigin->{-1,0},PlotRange->{{0,0.03+(11-Size)*0.05/4},All},FrameStyle->Thick ],{Dept,dmin,dmax,

dstep}],-120]];

Export["walk"<>ToString[Size]<>"d.pdf",

GraphicsRow[Table[SmoothHistogram[{Table[Per3x3PSend[Size,Dept,t],{t,1,runs}],Table[Per3x3Haarend[Size,t],{

t,1,runs}]},PlotLabel->Style["Probability of output "<>ToString[{1,2,3}]<>" \n m="<>ToString[m=Size

]<>" and L="<>ToString[Dept],30,Bold],ImageSize->600,Frame->True,LabelStyle->{30,Bold},FrameTicks->

{{(2+4(Size-7)){0,15,30,45,120,150,180},None},{(1-3(Size-7)/16){0,0.04,0.08,0.12,0.16},None}},Filling

->Axis,AxesOrigin->{-1,0},PlotRange->{{0,0.03+(11-Size)*0.05/4},All},FrameStyle->Thick ],{Dept,dmin,

dmax,dstep}],-120]];

Export["walk"<>ToString[Size]<>"e.pdf",GraphicsRow[Table[SmoothHistogram[{Table[BunchWalk[Size,Dept,t],{t

,1,runs}],Table[BunchHaar[Size,t],{t,1,runs}]},FrameTicks-> {{{0,3,6},None},{{0,0.3,0.5,0.7},None}},

PlotLabel->Style["Bunching fraction \n m="<>ToString[m=Size]<>" and L="<>ToString[Dept],30,Bold],

ImageSize->600,Frame->True,LabelStyle->{30,Bold},Filling->Axis,AxesOrigin->{-1,0},FrameStyle->Thick],{

Dept,dmin,dmax,dstep}],-120]];

,{Size,smin,smax,sstep}]
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B Reconstruction algorithm

This Appendix contains the Mathematica c© code for the numerical re�nement of the

Laing-O'Brien algorithm, described in Section 6.2.4. This code was written in Mathemat-

ica 9.0, Student Edition.

Notebook for Reconstruction Algorithm

Preliminary de�nitions

(* Number of modes of the chip *)

Size=7;

(* Definition of mxm permanent for m\[GreaterEqual]3 *)

Permanent[m_List]:=With[{v=Array[x,Length[m]]},Coefficient[Times@@(m.v),Times@@v]]

(* More efficient definition of 2x2 permanent *)

Permanent2x2[U_]:=U[[1,1]]*U[[2,2]]+U[[2,1]]*U[[1,2]]

(* Preliminary definitions for calculation of gate fidelity *)

(* maximized over round of input and output phase shifters and symmetry U \[Rule] U\[Conjugate] *)

PhaseShifter[A_,m_]:=Normal[SparseArray[{{m,m}->Exp[I A],{l_,l_}-> 1}, {Size,Size},0]];

ArbPhase[U0_,\[Alpha]_List,\[Beta]_List]/;(Length[\[Alpha]]==Size&&Length[\[Beta]]==Size):=Chop[(Dot@@(

PhaseShifter[\[Alpha][[#]],#]&/@Range[Size])).U0.(Dot@@(PhaseShifter[\[Beta][[#]],#]&/@Range[Size]))];

GateFid[U_,V_]:=Chop[Abs[Tr[U.V\[ConjugateTranspose]]/Size]];

MaxGateFid[U_,V_]:=Max[(First[FindMaximum[GateFid[U,ArbPhase[#,\[Alpha]/@Range[Size],\[Beta]/@Range[Size

]]],Flatten[{\[Alpha]/@Range[Size],\[Beta]/@Range[Size]}]]]&)/@{V,V\[Conjugate]}]//Quiet

(* Definition of \[Chi]2 *)

Chi2[U_]:=Total[(TeoSingle[U]-ExpSingle)^2/ErrorsSingle^2]+Total[(TeoVisib[U]-ExpVisib)^2((1)/(ErrorsVisib)

^2)];

Chi2Single[U_]:=Total[(TeoSingle[U]-ExpSingle)^2/ErrorsSingle^2];

Chi2Visib[U_]:=Total[(TeoVisib[U]-ExpVisib)^2((1)/(ErrorsVisib)^2)];

(* Definition of Total Variation Distances *)

TVDSingle[U_]:=1/2 Total[Flatten[Abs[RExp-RTeo[U]]]]/Size

TVDVisib[U_]:=1/2 Total[Flatten[Table[Total[Abs[ExpProb2[i,j]

-TeoProb2[U,i,j]]],{i,2,Size},{j,1,i-1}]]]/(Size*(Size-1)/2)

Importing External data

SetDirectory[StringJoin[NotebookDirectory[],"\\****"]];
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(* Importing of ideal unitary from separate .dat files with real and imaginary parts*)

ImUIdeal=ToExpression[Import["****.dat"]];

ReUIdeal=ToExpression[Import["****.dat"]];

UIdeal=ReUIdeal+I ImUIdeal;

(* Importing of experimental data from .dat files *)

RExp=Import["****.dat","Table"]; (* Single-photon data. *)

\[Sigma]RExp=Import["****.dat","Table"]; (* Single-photon error bars. *)

VIMPORT=Import[StringJoin["****.dat"],"Table"]; (* Two-photon data. *)

\[Sigma]VIMPORT=Import[StringJoin["****.dat"],"Table"]; (* Two-photon error bars. *)

VExp=Table[0,{j,1,Size},{g,1,Size},{h,1,Size},{k,1,Size}];

\[Sigma]VExp=Table[0,{j,1,Size},{g,1,Size},{h,1,Size},{k,1,Size}];

(* Redefinition of visibilities indexed as for use in Laing-O'Brien algorithm *)

ROW=0;

COLUMN=0;

Do[Do[++COLUMN;ROW=0;

Do[Do[++ROW;

VExp[[k,h,j,g]]=VExp[[h,k,j,g]]=VExp[[k,h,g,j]]=VExp[[h,k,g,j]]=VIMPORT[[ROW,COLUMN]];

\[Sigma]VExp[[k,h,j,g]]=\[Sigma]VExp[[h,k,j,g]]=\[Sigma]VExp[[k,h,g,j]]=\[Sigma]VExp[[h,k,g,j]]=\[Sigma]

VIMPORT[[ROW,COLUMN]];

,{k,h+1,Size}],{h,1,Size-1}],{g,j+1,Size}],{j,1,Size-1}];

(* Definition of theoretical variables from unitary matrix U *)

RTeo[U_]:=Abs[U]^2 (* Matrix that stores classical light amplitudes *)

QTeo[U_,k_,h_,j_,g_]:=Abs[Det[{{1,-1},{1,1}}*U[[{j,g},{k,h}]]]]^2 (* Quantum probabilities for 2 photons

entering at k,h and exiting at g,j *)

ClTeo[U_,k_,h_,j_,g_]:=Det[{{1,-1},{1,1}}*Abs[U[[{j,g},{k,h}]]]^2 ]; (* Classical probabilities for 2

photons entering at k,h and exiting at g,j *)

VTeo[U_,k_,h_,j_,g_]:=Chop[1-(Abs[Det[{{1,-1},{1,1}}*U[[{j,g},{k,h}]]]]^2)/(Det[{{1,-1},{1,1}}*Abs[U[[{j,g

},{k,h}]]]^2 ]+10^(-20))];(* Two-photon visibilities *)

(* Definition of auxiliary vectors containing the complete data set. *)

ExpSingle=Flatten[RExp]; (* 1D Vector with experimental single-photon data *)

ErrorsSingle=Flatten[\[Sigma]RExp]; (* 1D Vector with experimental single-photon error bars *)

ExpVisib=Flatten[Table[Table[Table[Table[VExp[[k,h,j,g]],{k,h+1,Size}],{h,1,Size-1}],{g,j+1,Size}],{j,1,

Size-1}]];

(* 1D Vector with experimental visibilities *)

ErrorsVisib=Flatten[Table[Table[Table[Table[\[Sigma]VExp[[k,h,j,g]],{k,h+1,Size}],{h,1,Size-1}],{g,j+1,Size

}],{j,1,Size-1}]];

(* 1D Vector with visibilitiy error bars *)

ExpProb2[k_,h_]:=Flatten[Table[Table[(1-VExp[[k,h,j,g]])*(RExp[[j,k]]*RExp[[g,h]]+RExp[[j,h]]*RExp[[g,k]])

,{g,j+1,Size}],{j,1,Size-1}]]; (* 1D Vector with experimental 2-photon probabilities *)

TeoProb2[U_,k_,h_]:=Flatten[Table[Table[QTeo[U,k,h,j,g],{g,j+1,Size}],{j,1,Size-1}]]; (* 1D Vector with

theoretical 2-photon probabilities *)

TeoSingle[U_]:=Flatten[RTeo[U]]; (* 1D Vector with theoretical single-photon probabilities *)

TeoVisibSuppt=Table[Table[Table[Table[{{j,g},{k,h}},{h,k+1,Size}],{k,1,Size-1}],{g,j+1,Size}],{j,1,Size

-1}];

TeoVisib[U_]:=Flatten[Map[1-(Abs[Permanent2x2[U[[Sequence@@#]]]]^2)/(10^(-20)+Permanent2x2[Abs[U[[

Sequence@@#]]]^2 ])&,TeoVisibSuppt,{-3}]]; (* 1D Vector with theoretical visibilities *)
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Laing-O'Brien Subroutine

(* Vis and Coup are the matrices with visibilities and single-photon data.*)

(* Set REFj and REFk to use row REFj+1 and column REFk+1 as references *)

LaingOBrien[REFj_,REFk_,Vis_,Coup_]:=Block[{V,R,x,y,\[Beta],SN,T,A,A0,\[Tau],\[Alpha],\[Alpha]0,M2,M1,M,u,v

,w,M0},

(* Definition of auxiliary variables *)

V[k_,h_,j_,g_]:=Vis[[Mod[k+REFk,Size,1],Mod[h+REFk,Size,1],Mod[j+REFj,Size,1],Mod[g+REFj,Size,1]]];

R[j_,k_]:=Coup[[Mod[j+REFj,Size,1],Mod[k+REFk,Size,1]]];

x[k_,h_,j_,g_]:=Sqrt[R[j,k]R[g,h]/(R[j,h]R[g,k])];

y[k_,h_,j_,g_]:=x[k,h,j,g]+1/(x[k,h,j,g]);

\[Beta][k_,h_,j_,g_]:=Abs[ArcCos[-V[k,h,j,g]y[k,h,j,g]/2]];

SN[k_,h_,j_,g_]:=Sign[Abs[\[Beta][k,h,j,g]-Abs[Mod[A[[j,k]]-A[[j,h]]-A[[g,k]]-A0[[g,h]],2\[Pi],-\[Pi]]]]-

Abs[\[Beta][k,h,j,g]-Abs[Mod[A[[j,k]]-A[[j,h]]-A[[g,k]]+A0[[g,h]],2\[Pi],-\[Pi]]]]];

T=Table[\[Tau][i,j],{i,1,Size},{j,1,Size}];

A=Table[\[Alpha][i,j],{i,1,Size},{j,1,Size}];

A0=Table[\[Alpha]0[i,j],{i,1,Size},{j,1,Size}];

A[[All,1]]=A[[1,All]]=0^Range[Size];

(* Sequential replacement of absolute values and phases of matrix elements *)

A0[[2;;Size,2;;Size]]=Table[Abs[ArcCos[-V[1,h,1,g]y[1,h,1,g]/2]],{g,2,Size},{h,2,Size}];

A[[2,2]]=A0[[2,2]];

A[[3;;Size,2]]=Table[SN[1,2,2,m]A0[[m,2]],{m,3,Size}];

A[[2,3;;Size]]=Table[SN[2,m,1,2]A0[[2,m]],{m,3,Size}];

A[[3;;Size,3;;Size]]=Table[SN[2,h,2,g]A0[[g,h]],{g,3,Size},{h,3,Size}];

M2=Simplify[Table[x[1,j,1,i],{i,1,Size},{j,1,Size}]]*Exp[I A];

(* Linear system to solve for absolute values of elements in reference row and column *)

T[[All,1]]=Sqrt[LinearSolve[M2\[ConjugateTranspose],UnitVector[Size,1]]];

T[[1,All]]=Sqrt[LinearSolve[M2,UnitVector[Size,1]]];

T[[2;;Size,2;;Size]]=Table[x[1,h,1,g]T[[1,h]]T[[g,1]]/T[[1,1]],{g,2,Size},{h,2,Size}];

M1=Simplify[T*Exp[I A]];

M0=Chop[M1[[Mod[#1-REFj,Size,1]&/@Range[Size],Mod[#1-REFk,Size,1]&/@Range[Size]]]];

(* Singular Value Decomposition *)

{u,w,v}=SingularValueDecomposition[M0];

MTomo[REFj,REFk]=u.ConjugateTranspose[v];

(* Outputs a vetor with \[Chi]2, Gate fidelity and permutation coordinates. Also stores reconstructed

matrix as MTomo[REFj,REFk]. *)

{Chi2[MTomo[REFj,REFk]],MaxGateFid[MTomo[REFj,REFk],UIdeal],{REFj,REFk}}]

Permutations of Laing-O'Brien

(* All matrices output by the Laing-O'Brien algorithm, and outputs the best one in terms of \[Chi]2. *)

Recordist=Sort[Flatten[Table[LaingOBrien[i,j,VExp,RExp],{i,0,Size},{j,0,Size}],1]][[1]]

(* Defines the starting point for the numerical search. *)

URecon=MTomo[Sequence@@(Recordist[[3]])];

BestChiSq=Chi2[URecon]

BestGFid=MaxGateFid[URecon,UIdeal]

Numerical Search
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(* RUNS encodes the number of runs of the algorithm. *)

(* STEP enables fine-tuning when the algorithm saturates. *)

RUNS=1000;

STEP=1;

Do[

Clear[MTomo,RSam,VSam,BestIndex,BestTomo];

(* Samples new set of single- and two-qubit data from Gaussian distribution centered on previous values. *)

SeedRandom[];

RSam=((#/Total[#]&)/@((RTeo[URecon]+Map[RandomReal[NormalDistribution[0,#/STEP]]&,\[Sigma]RExp,{2}])\[

Transpose]))\[Transpose];

VSam=Table[0,{j,1,Size},{g,1,Size},{h,1,Size},{k,1,Size}];

Do[Do[Do[Do[

VSam[[k,h,j,g]]=VSam[[h,k,j,g]]=VSam[[k,h,g,j]]=VSam[[h,k,g,j]]=RandomReal[NormalDistribution[VTeo[URecon,k

,h,j,g],\[Sigma]VExp[[k,h,j,g]]/STEP]];

,{k,h+1,Size}],{h,1,Size-1}],{g,j+1,Size}],{j,1,Size-1}];

(* Laing-O'Brien algorithm, with permutations, on simulated data set. *)

BestIndex=Sort[Flatten[Table[LaingOBrien[i,j,VSam,RSam],{i,0,Size},{j,0,Size}],1]][[1]];

(* If the \[Chi]2 improved, redefine all variables, print updated values as {\[Chi]2, Fidelity} and start

again.*)

(* Otherwise just start again. *)

If[BestIndex[[1]]<BestChiSq,

BestTomo=MTomo[Sequence@@BestIndex[[3]]];

BestGFid=MaxGateFid[BestTomo,UIdeal];

BestChiSq=BestIndex[[1]];

URecon=BestTomo;

Print[{BestChiSq,BestGFid}]];

,{RUN,1,RUNS}]
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C Sampled and reconstructed

unitaries

C.1 5-mode chip

The matrix U t
5 was sampled from the uniform, Haar distribution over 5 × 5 unitary

matrices:

Ut
5 =



0.212 −0.018 + 0.165i −0.238− 0.18i −0.429 + 0.32i −0.715 + 0.2i

−0.193− 0.388i −0.045− 0.379i 0.19 + 0.311i 0.328− 0.269i −0.594 + 0.03i

−0.723 + 0.363i 0.087− 0.09i −0.076− 0.155i 0.206 + 0.443i −0.153− 0.193i

−0.092 + 0.045i −0.148− 0.645i −0.588 + 0.184i −0.369− 0.086i 0.167 + 0.025i

0.318− 0.009i −0.144− 0.594i 0.452− 0.405i 0.037 + 0.387i 0.071 + 0.025i


,

where the global phase was �xed so as to make the upper-left element of U t
5 real. We

then decomposed U t
5 as a product of matrices that act nontrivially on two modes only,

each representing a set of one beam splitter and two phase shifters in the range [0, π], as

described in [110]. The use of [0, π] phase shifters was an adaptation of the decomposition

of [110], which originally used phase shifters in the [0, 2π] range. This was done to limit

the phase shift (and waveguide deformation) introduced by each element, as this may lead

to losses. In this new decomposition, only one of the two phase shifters at each beam

splitter input branch needs to introduce a nonzero phase shift. Table C.1 reports the

parameters obtained in this decomposition.

Since all experimental outcomes are invariant under multiplication of U t
5 by a phase

shifter at each input and output port, we have set α1, β1, β5, β8 and β10 equal to zero in

Table C.1.

We have also found a unitary that �ts well the single- and two-photon data, following

the re�nement of the Laing-O'Brien algorithm described in Section 6.2.4. Since the recon-

struction method only obtains the unitary up to a round of arbitrary phases at the input

and output modes, we have multiplied each row and column of the optimized unitary so

as to obtain the highest gate �delity with U t
5, making the matrices easier to compare. The

reconstructed unitary U r
5 is found to be:
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i ti αi [rad] βi [rad]
1 0.19 0 0
2 0.40 0.64 0
3 0.48 0 1.37
4 0.44 0 1.10
5 0.55 2.21 0
6 0.54 0 1.02
7 0.51 2.93 0
8 0.76 1.08 0
9 0.99 2.58 0
10 0.95 0 0

Table C.1: Transmissivities, ti, and phases, αi and βi, related to the layouts in Figure 6.3(b),
that result from the decomposition of the sampled unitary matrix.

Ur
5 =



0.370 0.007 + 0.151i −0.164− 0.31i −0.442 + 0.138i −0.702 + 0.099i

−0.109− 0.465i −0.013− 0.585i 0.121 + 0.381i 0.076− 0.134i −0.474− 0.147i

−0.677 + 0.180i 0.134− 0.027i −0.283− 0.133i 0.036 + 0.498i −0.206− 0.319i

−0.039 + 0.240i −0.080− 0.572i −0.496− 0.046i −0.475− 0.220i 0.265 + 0.125i

0.262 + 0.133i 0.090− 0.524i 0.479− 0.377i 0.055 + 0.486i 0.143 + 0.007i


.

We have implemented a Monte Carlo simulation to check the consistency of our recon-

struction method. We used U r to simulate 1000 complete, new data sets for single- and

two-photon experiments, with error bars compatible with those of our real experimental

data. We then applied the Laing-O'Brien method to obtain a reconstructed unitary U r ′
5

for each data set. The standard deviation in the results serves as our estimated error bars

for any quantity of interest.

The error bars for the real and for the imaginary parts or U r
5 are respectively:

∆Re(Ur
5 ) =



0.011 0.010 0.010 0.008 0.007

0.015 0.011 0.010 0.010 0.008

0.008 0.008 0.010 0.013 0.007

0.011 0.012 0.010 0.007 0.008

0.010 0.013 0.009 0.011 0.010


,

and

∆Im(Ur
5 ) =



0 0.009 0.009 0.013 0.015

0.008 0.005 0.010 0.011 0.011

0.014 0.012 0.012 0.006 0.009

0.009 0.007 0.013 0.010 0.011

0.009 0.008 0.010 0.009 0.011


.

The similarity between the sampled U t
5 and the reconstructed U r

5 can then be quanti�ed

by the gate �delity F = |Tr(U t
5U

r†
5 )|/5 = 0.950± 0.002.

Such a value of the gate �delity F between the sampled unitary U t
5 and the recon-

structed one U r
5 has to be related to the fabrication tolerances estimated from the data
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shown in Figure 6.4. To analyze the e�ect of fabrication errors in the full device, we

sampled N = 10000 random unitaries from a gaussian distribution centered around U t
5.

More speci�cally, the parameters of the internal phase shifters and beam-splitters have

been randomly picked from a Gaussian distribution centered at the parameter values of

U t
5, with standard deviation equal to the fabrication error. We obtained a value for the

average gate �delity between U t
5 and the sampled unitaries equal to: F = 0.968± 0.020.

Such a value is compatible within one standard deviation with the experimental value of

F = 0.950± 0.002 obtained between U t
5 and U r

5 .

C.2 7-mode chip

The matrix U t
7, used in Section 6.3.3, was sampled from the random phases ensemble

described in Section 6.2.3:

Re(Ut
7) =



0.4425 −0.1165 −0.1488 0.4638 0.1579 0.0794 0.

−0.1399 −0.4259 −0.1446 0.0255 −0.0794 0.1579 0.

−0.0407 0.0883 0.5283 0.2971 −0.1533 −0.0246 0.1383

0.6001 0.3919 −0.205 −0.4029 −0.2782 −0.1281 0.2082

−0.1749 0.0259 −0.2427 0.1622 −0.1493 −0.2798 −0.0683

−0.0259 −0.1749 0.073 −0.1255 0.2164 −0.3516 0.1798

0. 0. −0.0576 −0.2433 −0.4469 0.1336 −0.5942


,

and

Im(Ut
7) =



0 −0.271 −0.6244 0.1661 −0.0794 0.1579 0

0.5437 −0.5791 0.2894 0.0161 −0.1579 −0.0794 0

−0.253 −0.3246 −0.0445 −0.3622 −0.1533 −0.4588 0.2082

0.0265 −0.2588 0.1053 −0.0722 −0.1775 −0.1004 −0.1383

0.0259 0.1749 −0.1019 0.4779 −0.2428 −0.6334 −0.2194

−0.1749 0.0259 0.1096 0.1911 −0.6708 0.2806 0.3694

0 0 −0.2433 0.0576 −0.0615 −0.0134 0.548


,

where the global phase was �xed so as to make the upper-left element of U t
7 real. The

parameter speci�cations are given in Table C.2, where L and M label the position of each

phase shifter within the interferometer as follows: in the ordering of Figure 6.8, the modes

are labeled sequentially as M1, M2, and so on, from top to bottom, while the layers of

phase shifters are labeled as L1, L2 etc., from left to right. Note that the chip has an

odd numbers of modes, so one mode is idle in every layer of 50:50 beam splitters. The

convention is that the �rst layer has beam splitters between modes 1 and 2, 3 and 4, 5

and 6, and so on, and the bottom mode is idle.

We have also applied the re�ned Laing-O'Brien algorithm described in Section 6.2.4

to obtain a reconstructed matrix U r
7 . Since the reconstruction method only obtains the

unitary up to a round of arbitrary phases at the input and output modes, we have mul-
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L1 L2 L3 L4
M1 1.5253 0.6993 2.7776 1.8087
M2 2.6182 1.5267 2.956 1.6449
M3 1.9217 2.8131 0.6705 1.7497
M4 0.7217 0.4718 0.9392 1.5706
M5 2.9256 1.3138 2.1079 2.8032
M6 0.4974 1.4759 0.3152 0.7684
M7 2.0089 2.9217 1.347 2.025

Table C.2: Speci�cation of phase shifts (in rad) for the 7-mode chip from the random phases
ensemble. The labeling notation is de�ned in the text.

tiplied each row and column of the optimized unitary so as to obtain the highest gate

�delity with U t
7, making the matrices easier to compare. The reconstructed unitary U r

7 is

given by:

Re(Ur
7 ) =



0.4452 −0.1619 −0.0803 0.3911 0.1092 0.0209 −0.0081

−0.1373 −0.4556 −0.1317 0.0791 −0.0755 0.0837 0.0001

−0.0416 0.0536 0.4685 0.3431 −0.1754 −0.055 0.0912

0.6524 0.3148 −0.1802 −0.3467 −0.2841 −0.2602 0.2024

−0.1626 −0.0474 −0.2752 0.1311 −0.1485 −0.2213 −0.0441

−0.0704 −0.1444 0.0106 −0.106 0.3 −0.3859 0.1749

0.0001 −0.0067 −0.0768 −0.2394 −0.4011 0.0415 −0.6603


,

and

Im(Ur
7 ) =



0 −0.2345 −0.7213 0.1138 0.0039 0.1245 0.0016

0.3705 −0.7084 0.2681 −0.0592 −0.1077 −0.1061 0.0001

−0.4088 −0.1521 −0.0212 −0.3293 −0.2072 −0.4918 0.179

0.0715 −0.1923 0.1248 −0.1292 −0.15 −0.1598 −0.1038

0.0324 0.154 −0.0879 0.5484 −0.0376 −0.6209 −0.292

−0.1169 0.0211 0.0282 0.2579 −0.7122 0.2034 0.2517

0 −0.007 −0.1605 0.0906 −0.1107 −0.0338 0.5391


.

We have implemented a Monte Carlo simulation to check the consistency of our re-
construction method, in the same way as for the 5-mode chip described earlier in this
Appendix. The error bars for the real and for the imaginary parts or U r

7 are respectively:

∆Re(Ur
7 ) =



0.011 0.021 0.025 0.011 0.008 0.008 0.008

0.02 0.02 0.012 0.012 0.009 0.008 0.005

0.019 0.012 0.009 0.01 0.012 0.016 0.014

0.009 0.01 0.018 0.01 0.01 0.012 0.01

0.008 0.008 0.011 0.016 0.014 0.021 0.019

0.011 0.007 0.008 0.016 0.022 0.013 0.018

0.006 0.007 0.012 0.016 0.014 0.016 0.018


, (C.1)

and

∆Im(Ur
7 ) =



0. 0.019 0.008 0.018 0.01 0.01 0.009

0.014 0.017 0.017 0.014 0.009 0.008 0.006

0.01 0.013 0.018 0.013 0.013 0.01 0.014

0.023 0.012 0.011 0.016 0.013 0.011 0.012

0.01 0.009 0.012 0.012 0.013 0.01 0.017

0.007 0.009 0.009 0.009 0.012 0.015 0.014

0.007 0.007 0.01 0.018 0.018 0.016 0.022


. (C.2)

The similarity between the sampled U t
7 and the reconstructed U r

7 can then be quanti�ed
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by the gate �delity F = |Tr(U t
7U

r†
7 )|/7 = 0.9750± 0.0022.

C.3 9-mode chip

The matrix U t
9, used in Section 6.3.3, was sampled from the random phases ensemble

described in Section 6.2.3:

Re(Ut
9) =



0.1737 0.3764 −0.2099 0.0618 0.156 0.0832 0. 0. 0.

0.2093 −0.1192 −0.193 0.188 −0.1875 0.0353 −0.1083 −0.0624 0.

−0.3979 −0.2573 0.1942 0.2589 0.1764 −0.0378 0.0624 −0.1083 0.

−0.0198 0.1469 0.3669 −0.1077 −0.2168 0.4123 0.1051 −0.2844 −0.146

−0.0195 0.3428 −0.5808 −0.2214 −0.0762 0.2985 0.319 −0.0395 0.0997

−0.0433 −0.1173 −0.0321 0.0354 0.2657 0.2604 −0.2291 −0.535 0.4547

0.1173 −0.0433 −0.0772 −0.2149 0.2085 −0.3808 0.0738 0.2366 0.0849

0. 0. −0.1216 0.0289 0.362 −0.3342 0.5234 −0.4918 −0.0882

0. 0. −0.0289 −0.1216 −0.0368 0.1977 −0.0343 −0.1498 −0.6324



,

and

Im(Ut
9) =



0 −0.6425 −0.3237 −0.4474 −0.0832 0.156 0 0 0

0.7566 −0.2241 −0.0309 0.4142 −0.0529 0.0619 0.0624 −0.1083 0

0.3374 −0.1194 0.3813 −0.4619 0.2872 0.194 0.1083 0.0624 0

−0.1551 −0.1639 0.0947 0.2141 −0.0766 0.2954 0.5338 0.0884 0.0997

0.1591 0.3216 0.2771 −0.1147 0.186 0.0874 0.0228 0.0695 0.146

−0.1173 0.0433 −0.1696 0.1752 0.1475 0.2771 −0.3511 0.0202 0.0303

−0.0433 −0.1173 −0.0718 0.2822 0.4033 0.3424 0.1966 0.495 −0.1054

0 0 0.0289 0.1216 −0.3066 −0.1135 0.1344 −0.0901 −0.2633

0 0 −0.1216 0.0289 0.4462 0.0092 −0.2397 −0.1164 −0.4843



,

where the global phase was �xed so as to make the upper-left element of U t
9 real. The

parameter speci�cations are given in Table C.3, where L and M label the position of

each phase shifter within the interferometer in the same manner as for the 7-chip of the

previous section of this Appendix. We did not apply the reconstruction method for the

9-mode chip, so every analysis was done directly with U t
9.

L1 L2 L3 L4 L5
M1 2.6429 2.306 1.9381 0.857 1.5198
M2 2.6199 0.5196 0.8464 2.9378 2.4199
M3 0.4416 2.8766 2.4005 2.7948 0.2681
M4 2.6066 0.6619 3.0257 2.1596 1.8241
M5 2.9507 0.5332 0.274 2.8834 1.8991
M6 0.9698 2.6471 1.2586 1.9846 2.3428
M7 0.3772 2.3326 0.1867 0.8455 2.7346
M8 0.5191 0.021 0.3205 1.3059 0.771
M9 1.5579 1.9952 0.2173 2.8286 1.127

Table C.3: Speci�cation of phase shifts (in rad) for the 9-mode chip from the random phases
ensemble. The labeling notation is equivalent to that of Table C.2.
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