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Abstract

Recent, experiments found evidences that vacancies give rise to local magnetic mo-
ments in graphene sheets. This vacancy-mediated magnetism has renewed the interest
on Kondo physics in graphene systems. The Kondo effect is singular in graphene due to
its vanishing density of states at low energies, which puts graphene in the class of the so-
called pseudogap systems. The pseudogap leads to a Kondo physics that is significantly
different than that of the metallic case. There is a recent report on the observation of the
Kondo effect in graphene in the literature [1]. However, this result has been contested in
favor of a Curie-like paramagnetism persistent down to temperatures as low as 2K [2]. In
this cloudy scenario, theory can offer valuable support to elucidate this puzzle.

In this thesis we put forward a theoretical model to address the Kondo effect in
graphene with vacancies. We show that disorder plays a central role for the Kondo
physics in graphene being the mechanism responsible for the coupling between the local
moment created by the vacancy and the conduction band electrons. Our study shows
that graphene’s nearest neighbors tight-binding Hamiltonian can, upon inclusion of the
long-range disorder term, be mapped into a single impurity Anderson-like model. This An-
derson Hamiltonian provides the necessary inputs to implement the Numerical Renormal-
ization Group method (NRG), that allows a full characterization of the low-temperature
behavior of the system physical properties.

We perform NRG simulations and analyze the system’s magnetic susceptibility. We
find that disorder "spoils" the pseudogap character of graphene since our results are
consistent with those of a "standard" metal. We also use the NRG method to study the
distributions of Kondo temperatures P(Tx). We find that the resulting P(T%) depends on
the disorder strength and, in a more subtle manner, on the chemical potential. We show
that disorder can lead to long logarithmic tails in P(Tk), consistent with a quantum
Griffiths phase, opening the possibility of observation of non-Fermi-liquid behavior in
graphene. Finally, we argue that our study can also offer a conciliatory scenario to the
contentious experimental results reported in the literature about the low-temperature
behavior of local magnetic moments generated by vacancies in graphene.



Resumo

Experimentos recentes encontraram evidéncias que vacancias dao origem a momentos
magnéticos locais em folhas de grafeno. Este magnetismo mediado por vacancias renovou
o interesse na fisica de Kondo em grafeno. O efeito Kondo em grafeno é singular devido a
sua densidade de estados ir a zero a baixas energias, colocando-o na classe dos chamados
sistemas de pseudogap. O pseudogap leva a uma fisica de Kondo significativamente difer-
ente da de sistemas metalicos. Na literatura, ha relato recente de observacao do efeito
Kondo em grafeno [I]. No entanto, este resultado foi contestado em favor da observagao
de paramagnetismo do tipo lei de Curie persistente a temperaturas baixas até 2K [2]. Em
meio a este cendrio controverso, a teoria pode fornecer uma ajuda valiosa para elucidar
este problema.

Nesta tese, noés propomos um modelo tedrico para tratar o efeito Kondo em grafeno
com vacancias. Nos mostramos que a desordem tem um papel central para a fisica de
Kondo no grafeno, sendo responsavel pelo acoplamento entre o momento localizado gerado
pela vacancia e os elétrons da banda de conducao. Nosso estudo mostra que o Hamilto-
niano de ligagoes fortes de primeiros vizinhos do grafeno pode, ap6s inclusao do termo de
desordem de longo alcance, ser mapeado num modelo do tipo Anderson de uma impureza.
Este modelo de Anderson fornece as entradas necessarias para implementacao do método
do Grupo de Renormaliza¢ao Numérico (NRG), que permite uma caracterizacao completa
do comportamento a baixas temperaturas das propriedades fisicas do sistema.

Nos realizamos simulacoes via NRG e analisamos a susceptibilidade magnética do
sistema. Deste estudo observamos que a desordem "arruina" o carater de pseudogap do
grafeno pois nossos resultados sao consistentes com o esperado para metais "comuns”.
Também aplicamos o método do NRG para avaliar as distribuicoes de temperaturas de
Kondo P(Tk). Observamos que as distribui¢oes P(Tx) dependem do grau da desordem
e, de uma maneira mais sutil, do potencial quimico. Mostramos que a desordem pode
levar a P(Tk) com caudas logaritmicas longas, consistente com uma fase de Griffiths
quantica. Isto abre a possibilidade da observacao de comportamento do tipo nao liquido
de Fermi em grafeno. Finalmente, argumentamos que nosso estudo pode oferecer um
cenario conciliatério para os resultados experimentais conflituosos na literatura acerca do
comportamento a baixas temperaturas de momentos magnéticos localizados gerados por
vacancias em grafeno.
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1 Introduction

1.1 Introductory remarks on graphene

Less than a decade has elapsed since the realization of the experiment [13], conducted
by the Manchester Group headed by Andre Geim and Kostya Novoselov, that first isolated
and identified a truly (one-atom-thick) 2D crystal: graphene. This discovery triggered
the scientific community to explore the properties of this new material with such an
engagement probably never seen before. As a recon for the importance of their pioneering

work, Geim and Novoselov were awarded with the 2010 Nobel prize in Physics.

Graphene attracted the attention of the scientific community due to its unique chem-
ical, mechanical, optical, thermal and electronic properties |3} [5, 141 [15], 16} 17, 18] 19, 20,
211, 22, 23| 241 25]. Many of the promising properties are yet to be explored, but some of
the already known aspects are: exquisite chemical sensitivity to foreign molecules [5] and
ability to adsorb and desorb various atoms and molecules [I5], impermeability to gases
[5L [I5], breaking strength 200 times greater then steel and the largest tensile strength
measured so far [5], flexibility [15], very high thermal and electrical conductivity [3} 5, [15]

and transparency |[5].

The combination of such superb characteristics into a single material makes graphene
a potential candidate to be used in technological applications and has stimulated the
interest on graphene across the physics frontiers to disciplinary areas such as chemistry,
biology and engineering. Just to mention some possibilities under investigation we have
the use in touch screens, e-paper, transistors, photodetectors, solar cells, sensors, tissue-

engineering etc [23].

The two questions that naturally rise at this point are: What is graphene? and What
makes it so special? It is known since a long date that carbon atoms can combine in
different manners forming distinct allotropes. Graphene is a monolayer of carbon atoms

tightly packed in a two-dimensional honeycomb lattice and may be thought as a single



layer of graphite (see Fig. [1]J]

Figure 1: (Left) Graphene honeycomb lattice. (Right) Graphite is composed of stacks of
graphene. Adapted from Ref. [3]

The electronic configuration of atomic carbon is 1s? 2s? 2p?. Single carbon atoms
are extremely unstable and have the natural tendency to combine with other atoms to
form more stable structures, such as solids or molecules. In carbon-carbon bonds, the s
and p orbitals combine themselves forming the so-called s — p hybridized orbitals |26, 27].
The 1s electrons form the core nucleus and constitute a deep valence band, hence the
properties of carbon materials are essentially determined by the 2s and 2p,, 2p, and 2p,
orbitals’| [21]. There are different possibilities of combinations of these orbitals, and this
is the reason for the existence of different allotropes with such distinct properties as those
found in graphite and diamond, for instance [2I], 27]. For the case of graphene, the 2s
orbital combines with two 2p’s (generally called p, and p,), forming what is called a
sp® hybridization [27]. These three hybridized orbitals (denominated o orbitals) form a
trigonal planar structure (see Fig. [2h) which, in combination with the same structure of
other carbon atoms, form a covalent () bond between carbon atoms separated by 1.42A
(see Fig. ) These bonds are very strong, being responsible for the great robustness of
graphene’s lattice. The saturation of the resulting ¢ bonding orbitals leaves an extra p
orbital (also denoted 7 or p, orbital) which is orthogonal to the planar structure and hosts
a single electron. These p-orbitals form a band that is usually considered in theoretical

studies of low-energy electronic properties of graphene [3].

As we show below, three ingredients are determinant for the unusual electronic prop-
erties of graphene: 2D character, the lattice geometry and the fact that it is composed

solely by carbon atoms.

The lattice structure of graphene is shown in Fig. 2b. The honeycomb lattice is not a

! This is actually the way it was first obtained, stripped from graphite crystals using scotch tapes [13].
2In the presence of other atoms, such as H, O or other C atoms, it is energetically favorable to promote
one electron from the 2s orbital to one 2p orbital in order to form covalent bonds with these atoms.
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Figure 2: (a) Trigonal planar structure formed by the sp? hybridization. (b) Bipartite
nature of the graphene lattice also denoted the lattice vectors a; and a, and first neighbors
vectors 0;, i = 1,2,3. (c) Representation of the first Brilloin zone of graphene with the
high symmetry points I', M, K and K’. Adapted from Ref. [4].

Bravais lattice [28]. Instead, it can be viewed as being composed of two interpenetrating
triangular sublattices A and B in such a way that sites of one sublattice have only nearest
neighbors of the opposite sublattice. As a consequence, the unit cell has two atoms, one
in each sublattice. The primitive vectors are given by a; and as. The corresponding first

Brillouin zone of the associated reciprocal lattice is displayed in Fig. 2.

Even though we mentioned that graphene was only experimentally isolated recently
[13], a theoretical model to describe the basic electronic properties of graphene was de-
veloped a long time ago by Wallace [29], who was interested in studying Graphite’s band
structure and used graphene as an example to illustrate the model. The electronic struc-
ture of graphene is well described by tight binding model for the 7 electrons. Considering

that electrons hop only to nearest neighbors, the model Hamiltonian reads [3]

H= —tz [agﬂbj,g +H.c (1.1)

(i.5)
where t &~ 2.8¢V [3] is the hopping integral, alg (a;,) creates (annihilates) an electron
with spin o on site R; on sublattice A and an analogous definition applies to b;’g (b))
The square brackets indicate that the sum is restricted to nearest neighbors only. To take
into account the translation symmetry of the lattice, a transformation to the momentum

representation is necessary. In this representation the Hamiltonian is written as a 2 x 2



matrix (due to the two atoms in the unit cell) cast ad’| [25]:
0 —tS(k
H = (k) : (1.2)
—t5*(k) 0

where the function S(k) reads [25]:

Sk) =) ™ n=1,23, (1.3)

where 8, denotes the three nearest neighbors vectors (see Fig. [2b).

The simple structure of the Hamiltonian, Eq. with null terms in the main diagonal
is a consequence that the graphene unit cell possess only identical atoms [] This gives a

gapless band structure, as we show below.

The diagonalization of Eq. (L.2) leads to the dispersion relation [25]:

Ei(k) = £[t[v/3 + f(k), (1.4)

where f(k) is [25]:

f(k) = 2cos (\/§kya> + 4 cos (?kw) oS (gkxa) (1.5)

with a =~ 1.42A the lattice parameter.

The result found in Eq. (1.4) shows that the system is particle-hole symmetric, a

consequence of the bipartite nature of the lattice [4].

The system is gapless since the valence and conduction band touch each other at six
points which correspond to the corners of the Brilloun zone (see Fig. 2k). From these six
corners only two K and K’ are inequivalent, the others being connected by reciprocal

lattice vectors.

The two energy bands are represented in Fig. [3l As there are two 7 electrons in the
unit cell, neutral graphene is half-filled. Due to the characteristics of the bands described
above, the low energy physics of the system is determined by the behavior of the dispersion

relation close to the Brillouin zone corners. Taylor expanding Eq. (1.4)) close to one such

3For more details on this calculations see Ref. [27]

4If the atoms were not equal, the onsite energies would differ and there would be non-null terms in
the main diagonal. A finite term on the main diagonal also appears under consideration of next nearest
neighbors, but this effect is considerably smaller [3].



Figure 3: (a) Graphene band structure. (b) Conical relation obtained in the low-energy
limit close to the K (or K') point. Extracted from Ref. [5]

point, K for instance’, one obtains [3]:

E+(q) = tvrlql, (1.6)

where k = K + ¢, |q] < |K| and g is the momentum measured relative to K. vp =
3ta/2h =~ 10°m/s is the Fermi velocity. In Fig. [3p is plotted the band structure close to
one of the corners confirming the behavior described by Eq. (1.4)).

The result presented by Eq. has a striking consequence for the physics of
graphene: its low energy spectra is governed by a Dirac-like (relativistic) equationﬂ in-
stead of the usual situation, governed by the Schrodinger equation for systems where the
energy dispersion is given by a quadratic relation F(k) = k?/2m, with m the electron
mass. Hence, the electrons in graphene behave as massless Dirac fermions, but instead of
the light velocity ¢, with a Fermi velocity vr &~ ¢/300. This has enormous consequences for
the observation of phenomena of the realm of QED in graphene. Successfully experiments
on graphene have already observed the ocurrence of a minimum in the conductivity when
the carriers density tends to zero [14], Klein tunneling (insensitivity of Dirac Fermions to
electrostatic potentials barriers) 3], anomalous integer quantum Hall effect |30, 31| which

can be observed even at room temperature [32].

Note that since the Dirac points K and K’ are inequivalent, the complete descrip-

tion of the electrons of graphene is given by a 4-dimensional spinor, accounting to the

A similar result is found for K.
SFor this reason, the K and K’ points are usually denoted Dirac points (cones). The term valley is
also very frequent.



informations respective of each sublattice and "valley", reading [3, 25]:

v
Uy
vl

K/
\IJB

, (1.7)

where the spin index is omitted since for pristine graphene there is no process distinguish-

ing any spin direction and it enters only as a degeneracy factor.

For pristine graphene, the Dirac Hamiltonian which acts on this spinor has no terms

connecting the K and K’ valleys [25]:

0 ky—ik, 0 0
ky + ik 0 0 0
[ Ty (1.8)
0 0 0 —ky + ik,
0 0 —k,— ik, 0

where in the Hamiltonian Eq. (1.8)), the upper (lower) block corresponds to K (K’)
Dirac point. This particular configuration allows to separate each block and derive two
effective reduced Hamiltonians for each valley. Hence the contribution of each valley may
be described by a 2-dimensional spinor [3]. This scenario has to be revised under the
introduction of mechanisms that generates coupling of the two valleys. A particular case
where this happens is the presence of short-range disorder in the system. In this case the

full 4-dimensional structure has to be considered [16].

The density of states derived for graphene has also a peculiar form (see Fig. [). As
expected it embodies the particle-hole symmetric character of this system[’] A remarkable
aspect is that, due to the linear dispersion, in the low-energy regime p(e) oc |e| /v [3],
hence the density of states vanishes linearly close to charge neutrality (e = 0). This means
that pristine graphene is not a metal, since p(€) vanishes for € — 0, nor an insulator since
it possess no band gap. Depending on the community it is called a gapless semiconductor
or a semimetal [3]. This state of affairs is crucial for the effects of electron-electron
interactions in this system and in particular for the problem we address in this thesis,

namely, the Kondo effect in graphene.

"Valid when only nearest neighbor interactions are taken into account. Depart from this form due to
inclusion of next nearest neighbors interactions may be seen in Fig. 5 of [3].
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Figure 4: (Left) Graphene density of states. (Right) The region in the inset shows a linear
shape as energy goes down to € = 0. Extracted from Ref. 3]

1.2 Introductory remarks on the Kondo effect

The Kondo effect is known to the condensed matter community for many decades.
The first experimental observations of its signature remounting back to the 1930’s [§].
Contrary to what was expected, it was observed that by cooling down a piece of a metal
the resistivity decreased monotonically until a certain temperature, where it reached a
minimum. Chilling below this point however produced an increase in the resistivity until
a saturation at a finite value. Later it was discovered that the occurrence of such phe-
nomenon was connected to the presence of very diluted magnetic impurities in the metal
host®] Since most of the early experiments dealt with very diluted concentrations of im-
purities in the host metal, to a first approximation, the latter do not interact with each
other, hence the phenomenon can be essentially considered as due to a single magnetic
impurity in a metal. By a magnetic impurity we mean any atom with an unfilled shell,
so that unpaired electrons form a magnetic moment [33]. Experimentally, the effect of
these localized moments show up as a Curie-like contribution to the magnetic suscepti-
bility, but answering the questions of how this localized moment survives in the metallic
environment and how this affect the conduction electrons of the metal took decades to be

developed [§].

A complete understanding of the Kondo effect in metallic systems was only accom-
plished fifty years after its first experimental observation. On the theoretical side, contri-
butions of P. W. Anderson, J. Kondo and K. Wilson were essential for the construction
of a complete solution to the problem. In chronological order, to mention some of these

outstanding contributions, we can cite the theoretical modelling derived by Anderson that

8A few parts per million of iron in gold, for instance [33].



was able to establish the conditions whether a magnetic impurity immersed in a metal
"remains" magnetic or not [34]; Kondo’s perturbative approach that accounted for the
minimum of the resistivity observed in the experiments [35]; Wilson’s development of the
numerical renormalization group (NRG) scheme, responsible for the full characterization

of the low-temperature physical properties of the system [36].

The heuristic picture that emerges from the theory and explains the puzzle has in its
origin the fact that atoms with unpaired electrons tend to form bonds or spin singlets in
order to spread their electrons over a larger region of space and minimize their kinetic
energy [33]. As mentioned above, impurities in the system were ideally so diluted that
they do not interact. In this case, the way the impurity finds to form the bond is via
the surrounding conduction electrons. The picture here is slightly different then bonding
in molecules such as H; where the two electrons are localized. Here only the electron
impurity is localized and the initially delocalized conduction electrons have to somehow
localize forming a strongly correlated state through an energy-cost process to originate the
"bond". As an outcome of this process, the bond is rather weak and only appears at very
low temperatures’| (tens of Kelvin [33]). Electronic transport is severely influenced when
a bond is formed since the conduction electrons take part on it. In this case, a conduction
electron passing by the impurity will not be simply scattered in a new direction and give
as a by-product an increase in the resistivity. Now, these conduction electrons will have to
take part in the bond during an amount of time before being scattered in a new random
direction [33]. Hence, at sufficiently low temperatures, when the "bond" is well developed
the resistivity stops to rise and saturates at a new level. In this point the conduction
electrons "quench" (are paired with) the local moment of the impurity and the Curie

signature in the magnetic susceptibility disappears.

1.3 Kondo effect in graphene

The vanishing density of states at the charge neutrality point puts graphene in a class
of systems denoted as pseudogap systems [37]. Kondo physics in these systems reveals
new aspects such as the presence of quantum critical behavior [38]. Depletion of conduc-
tion electrons at very low energies may lead to a failure in the bond formation between
the conduction electrons and the impurity. In this situation the localized spin remains
unquenched down to extremely low temperatures [37, 38]. Pseudogap Kondo physics has

been extensively studied [38], but its physical realization was generally addressed in the

9Compare for instance the case of bonds in molecules, where they are stable even at room temperature.



context of d-wave superconductors [37, [38]. Graphene, besides offering another platform
of realization of pseudogap Kondo effect, has the advantage of having additional handle
with respect to the superconductors. Since graphene can easily be doped (by electrons or
holes) [13], it allows the possibility of study how Kondo physics is affected by the tuning

of a chemical potential [39].

Intense theoretical activity on the study of magnetic impurities in graphene and their
consequences for the Kondo effect has increased recently [11, 17, 39, [40L [41] 42, 43, [44],
45, [46]. The conditions necessary for the presence of localized magnetic moments on
adatoms with inner shell electrons in graphene are established in Ref. [40]. Interestingly,
it is pointed out that in graphene the formation of localized magnetic moments can be
controlled by an electric field [40]. Analysis of Kondo physics shows interesting results
such as gate-dependent critical coupling J. [41) 42] and Kondo temperature Ty |11, [44].
Despite the theoretical advances on the Kondo effect in graphene due to magnetic adatoms,
the literature contains scarce experimental material on this issue. The only published
experimental work, so far, makes use of a scanning tunnelling microscope to manipulateFE]
and probe C'o adatoms on the graphene sheet deposited on an insulating SiO, substrate.
However, a clear-cut signature of the Kondo effect is not observed in the experiment [4§].
Interestingly, the emergence of magnetism associated with defects are detected in this

study [48].

In general, magnetism is associated to systems with d or f electrons. However, the
possibility of magnetism with p electrons has been pointed out in carbon systems due
to the presence of defects or edge effects [49]. Defect-induced magnetism in graphene
provides other interesting route for exploration of the Kondo effect rather than magnetic
atoms. One such kind of defect is a vacancy. A vacancy occurs when an atom is re-
moved from the sheet. This action results in the formation of local moments which were
predicted theoretically [50, 51, 49, 62] and the onset of vacancy magnetism confirmed
by experiments [1, 2] 53] 54]. The interaction between these vacancy-induced local mo-
ments with graphene conduction electrons can lead to the Kondo effect. In this scenario,

experimental observation of the Kondo effect in graphene has been reported [I].

10This route was successfully adopted to address the Kondo effect in metallic systems [39} 47].
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1.4 Outline

In this thesis we give a theoretical approach to the problem of the Kondo effect in
graphene arising from vacancies. The remaining of this work is separated in four parts.
In Chapter [2] we present in some detail the experiment that served as a motivation to
this work. In Chapter [3| the background for a theoretical approach to the Kondo effect
is constructed. We introduce the Anderson and Kondo models [8] and discuss the main
results and ideas derived by these authors for the Kondo effect in metallic systems. A
schematics of the NRG method developed by Wilson [10, [36], 55] is conducted. We end the
chapter discussing the physics of pseudogap systems making a comparative study between
the differences with the metallic case and address some theoretical results developed for
the Kondo effect in graphene. Chapter [ presents our theoretical modelling to the problem
of the Kondo effect in graphene showing how disorder plays a key part in this process.

Finally, in Chapter |5 we bring our conclusions.
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2 Experitmental Motivation

The Kondo effect has been recently observed in graphene by the Maryland group
[1]. The experiment consists of the bombardment of a graphene sheet, deposited on SiOx,
with 500eV He™ in ultra-high vacuum. The process originates vacancies in graphene. The
resistivity o(V;,T’) of the irradiated samples was analized as a function of gate voltage
V, and temperature 7. The authors claim that o(V,,T) shows a temperature-dependent
contribution ok (V,, T') which follows the universal dependence expected for spin-1/2 single
parameter Kondo scattering. Below we review in more detail the experiment and its main

findings.

Repeating sample preparation of a previous work [56], graphene deposited over SiO,
was irradiated with 500eV He™ in ultra-high vacuum (UHV) at low temperature. After-
wards the sample was annealed overnight at 490K and air exposed during transfer to an
*He cryostat. The conductivity o(V;) was measured before and after sample irradiation
(but before annealing) at 7" = 17K, and after the annealing at 7' = 300mK. Figure
shows the curves obtained. The estimated mobilities in each of these stages were, respec-
tively: 4000, 300 and 2000cm?V~'s~!. Due to disorder, the irradiated sample shows a
lower mobility than the pristine one. But what is the nature of the defects caused by
irradiation? The experimental evidence for defect mediated intervalley scattering is the
observation of a D band peak in the Raman spectra presented after annealing and air
exposure, see Fig. [6] This is evidence of short range scattering, which could be a vacancy,

a larger damaged region or a Stone-Wales defect (a kind of local reconstruction) [16].

Another evidence of short range disorder in the irradiated sample comes from the
study of weak localization (WL) which manifest in the observation of the sample mag-
netoresistance (see below). One important aspect about short range scattering is that
it may cause localization. The interaction of localized states with the band conduction
electrons is key to understand the Kondo physics. An appropriate model to deal with the
scattering of conduction electrons by a localized state is the so-called Anderson model, and

in the next sections we will present the ideas behind this model and the numerical renor-
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Figure 5: o(V,) of graphene sample before He* irradiation (black solid line), after ir-
radiation (red dashed line) and after annealing at 7' = 490K (blue short-dashed line).
Extracted from Ref. [1].
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Figure 6: Raman expectra before a and after b irradion of graphene with He™. Extracted
from Ref. [1].

malization group (NRG) technique, another tool of major importance in the theoretical

understanding of the Kondo effect.

The influence of the perpendicular magnetic field on the resistivity o(B) of the irra-
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diated sample was investigated at T' = 300mK and different gate levels, see Fig. [7| (top).
Weak localization is observed at small B fields. This influence is best seen in Fig.
(bottom) which displays a detail of the magnetoresistance at small B at 7" = 300mK and
Vo= Vymin = —65Vﬂ One should note that for fields close to B = 17T, weak localization is
suppressed. At higher fields, the authors claim that SdH oscillations were also observed.
Then, their strategy to skip the effects of WL and SdH oscillations was to measure the
resistivity o(V,,T') under a perpendicular magnetic field equal to B = 1T, large enough
to dissipate the effect of WL but not so large for Shubnikov-de Haas (SdH) oscillations

to manifest.

A strong experimental evidence for the Kondo effect is a logarithmic dependence of
o(V,,T) on T, hence the resistivity o(V,,T") was measured as a function of temperature for
different gate voltages while B = 1T, see Fig. |8/ The authors [I] claim that in the region
of temperatures close to 200K and beyond, phonon contributions become significant and
positive dp/dT are seenﬂ in the resistivities curves for V, not to near V, ;. However, for
temperatures in the range of 10 — 100K the derivative becomes negative and the resistivity
follows a logarithmic increase as temperature is lowered. For even lower temperatures

resistivity saturates.

The measured o(V,,T) was compared with the expressions developed in theories of
the "metallic" Kondo effect [57, 58]. For low temperatures (up to 10K) the data should
obey the Fermi liquid behavior whose theory predicts the expression [57]:

b <g)4 <TK?‘G))2

At the intermediate temperature regime (from 10 to ~ 100K) where the logarithmic

o(Vy, T) = 0a(Vy) + 0x0(Vy) (2.1)

behavior presents, the derived expression is [58]:

o(V,, T) = 0wa(V;) + QK%(VQ) [1 ~0.4701n (Tﬁ‘jf;)ﬂ . (2.2)

In Egs. and oxo is the Kondo resistivity at zero temperature, o, and oz are
the resistivity temperature-independent contribution and Tk is the Kondo temperature.
If the resistivity follows the universal Kondo form, g.; = o.. This fact was explored in
the paper to test the model consistency. Since o(V,,T = 0) is known from the data, Eqs.
(2.1) and have actually three degrees of freedom for each V: o.1, 02 and Tk. The

YV, min is the gate voltage at which the conductivity has a minimum. The encountered values were
8V, 5V and 5.3V; for pristine, irradiated and annealed graphene, respectively.
2This is better visualized in Fig. [10| bottom.
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Figure 7: Top: Magnetoresistance as a function of perpendicular magnetic field for several
dopings V, for irradiated and annealed graphene. Bottom: Effect of the weak localization
at small fields displayed in the magnetoresistance of the irradiated and annealed sample
at Vy — Vymin = —65V and T' = 300mK. Extracted from Ref. [IJ.

remaining parameters were then estimated via a least squares fit to Eqgs. and .
In Fig. [9 is presented the adjusted parameters, on the top are displayed the results for
0c1 and o, and on the bottom the data for the Kondo resistivity subtracted by o.;. The
behavior in the two plots is similar exhibiting a maximum near V, = 5.3V, where the
conductivity has a minimum. One can see that the agreement of the adjusted parameters
0c1 and o is very good supporting the conclusion that the logarithmic divergence and

T? saturation originates from the same phenomenon: the Kondo effect.
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Figure 8: o(V,,T') for different doping levels and perpendicular field equal to B = 1T.
Extracted from Ref. [I].

The dependence of the estimated Kondo temperatures on the gate voltage is displayed
in Fig. [I0] The curve in black corresponds to data from the sample (Q6) from which
were obtained the data discussed above. The blue curve was obtained from the analysis of
another sample (I.2). In both curves we observe similar aspects as: the gate dependency
of Ty, which is slightly particle-hole asymmetric; minimum 7Ty occurring close to the
minimum of conductivity and high values of Tk (of order 50K). The slightly lower values of
Ty found in sample L2 were speculated as coming from two factors [I]: 1) after annealing
the temperature base measurement of sample 1.2 was T' = 1.7K against T' = 0.3K for
sample Q6. It was argued that the higher base measurement could result in smaller 7'k
estimates for each V, as was observed for sample L2. 2) The second possibility pointed

was disorder, which vary from sample to sample and could also influence the estimates.

Finally, the o(V,,T) curves of Fig. |8 were scaled by the calculated parameters g,
oxo and Tk, and the outcomes were compared to theoretical results calculated using the
NRG method [58]. In Fig. is plotted the normalized resistivity (o(V,,T') — 0c1)/0k0
versus renormalized temperature T'/Ty for the different sets of curves of Fig. [8] The data
collapse is very nice for the range between 0.003 < T'/Tx < 3. The match between the
NRG curve and the experimental data is very impressive, indicating a very robust Kondo
effect. In the range of temperatures where the data depart from the theoretical curve,
phonon contributions should manifest which would increase the resistivity explaining the
positive deviation for the higher fillings. On the other hand, the negative deviation

encountered for lower fillings could be an effect of thermal activation of carriers [IJ.
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Figure 9: Top: Estimates of g.; and g, obtained from least squares fits of Eqgs. (2.1)) and
(2.2) at different doping levels V. Bottom: Estimates of zero temperature resistivity oo
at several V,. Extracted from Ref. [1].

It is quite surprising that the experimental data fits so well a metallic Kondo theory.
As we mentioned earlier, systems which have a density of states that vanishes at the
Fermi level as p(€) oc |e|* are known as pseudogap systems. Graphene belongs to this
class, n = 1 is expected in this case. The Kondo effect exhibited for pseudogaped systems
differs substantially in many aspects by that presented in metallic systems which have a
constant density of states [38]. This puzzle might be attributed to disorder which could be

responsible for the "conversion" of graphene into a standard metal. In a later chapter we
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Figure 10: Top: Kondo temperatures estimated from least squares fits for two samples,
Q6 (the one to which all the others analysis refer) and L2. Bottom: Comparison between
scaled resistivity curves with the parameters adjusted for each V, and theoretical result
from NRG calculations. Extracted from Ref. [I].

will explore this influence and try to understand until what extent disorder is responsible

for such "conversion".

Although the data is fitted by a "metallic" Kondo Theory, the predicted relation
kpTyx ~ De1//eler) (2.3)

(where kg is Boltzmann’s constant, D the bandwidth, J the coupling constant between

the localized state and conduction electrons, g(er) the metal’s density of states at the
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Fermi energy) which is valid for metals, fails in predicting the estimate of Tk at zero
doping, which for neutral graphene implies Tx = 0 since it’s density of states vanishes at
the Dirac point. Another interesting aspect of Eq. and the temperatures displayed
in Fig. [L0|is that temperatures ~ 50K would imply a very strong coupling J between the
localized state and the conduction electrons since the density of states is very small close

to the Dirac point.

The interpretation of the logarithmic resistivity as a manifestation of Kondo effect
has been contested [59). It was argued that actually the logarithmic resistivity was due to
electron-electron interactions in the presence of disorder [59, 60], which would cause the
Altshueler-Aronov effect. The hypothesis of the Altshueler-Aronov effect was pointed in
the Kondo experiment [I], but it was ruled out trough the argument that the Altshueler-
Aronov effect should be present even at high fields, and that would imply in corrections
to Hall coefficients which they did not observe [I]. This explanation was also contested by
Jobst et al [59] who argued that universal conductance fluctuations or non-ideal alignment
of the Hall leads could obscure the interpretation of the Hall data from Ref. [I]. Chen
et al finally keep the interpretation of the Kondo effect as the correct explanation of the
logarithmic resistivity by showing that the Altshuler-Aronov theory fails in overestimating
their observed magnetoresistance and in the predictions of the saturation temperature of

the resistivity [61].

We finish this section emphasising that the discussed experiment serves as a motiva-
tion for the model we use to study the Kondo effect in disordered graphene. Our goal is
to provide qualitative understanding of the data. A quantitative analysis would involve a
better knowledge of the defects in the sample, and, more importantly the description of

a disordered Kondo lattice. This is beyond the scope of this study.
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3 Theoretical Background on the
Kondo effect

3.1 Anderson Model: Mean Field Solution

One of the prototype models for describing microscopically the interaction between
a localized magnetic moment and a bath of conduction electrons is the so-called An-
derson model, proposed by P. W. Anderson in 1961 [34]. This model shed light on an
important question in condensed matter physics, namely: a metallic atom immersed in a

nonmagnetic metallic host would still remain magnetic?

The Anderson model has very few elements. The conduction electrons of the host are
represented by a band whose single-particle energies, measured with respect to the Fermi
sea, are given by €. The impurity is treated simply as a local single electronic orbital
with an energy ¢4. Orbital degeneracy, typical of metallic five-fold degenerate impurities
(Fe, for instance) is not considered. The additional ingredients of the model are the
charging energy U, which is the cost for double occupancy of the localized orbital of
the impurity due to the electrons Coulomb interaction, and the coupling matrix element
~Ykd, responsible for electrons of the conduction band hop into the impurity orbital and

vice-versa. The model Hamiltonian reads [6]:

Hy = Z EkCLgcko + Z Gdcgacdg + Z(’ydeTkUCdU + ’YItdCLJCkg) + UndTndi, (31)
k,o o k,o

where, in Eq. B.1), ¢l (cko) creates (destroys) electrons with spin ¢ in the conduction

band and CLU (c4s) creates (destroys) electrons with spin o in the impurity. ng, = czlacdg

is the number operator for a localized electron with spin o.

Despite its simplicity, Eq. (3.1]) poses a non-trivial many-body problem. The solution
relies, for instance, in the numerical renormalization group method developed by [10), 36,

53], which we will describe in a future section.
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In order to extract insightful physics from Eq. (3.1), Anderson made use of a mean

field (or Hartree-Fock) approximation, namely [6]:
UndTndi ~U <ndT> Na| + UndT <nd¢> . (32)

The approximated Hamiltonian reads [6]:

HI{{F = Z ﬁkCLnga + Z Edgc:rigcdg + Z(’kaCLgcda + ”YfidCIzaCka)’ (33)
ko o k,o

where the impurity energy is renormalized as [6)]
Edg = €4+ U <nd_g> . (34)

Here we will sketch the most important results obtained by the mean field solution. The

complete derivation can be found in [6, [34].

By means of the Hartree-Fock approximation, the Anderson Hamiltonian is bilin-
ear in the localized and band operators, therefore it can be diagonalized by an unitary

transformation [6]:

o = Z(na!ka)cfw + (noldo)c),, (3.5)
K

|do) and |ko) are impurity and conduction states, respectively, and |no) denotes the
states in the diagonal basis. In the eigenstates basis, the Hamiltonian can be written as
a single-particle term [6]:

HF = Z €noCl Cno. (3.6)

no

The single-particle energy levels €,, can be determined through the equations of motion

for operators.

The most important quantity required to understand the local moment formation is
the net occupancy of the impurity states per spin [6]:
S

(i) = 3 Ntnoldo) P = [ depunt) (3.7)

€no €F >

where |(no|do)|? is the overlap probability of the system eigenstates with the impurity

site, ep is the Fermi energy, and py, denotes the impurity density of states, that is [6]

pas() = 3 8(ens — )| (nor|da) . (3.8)

Local moment will arise as long as (ng,) # (n4—,). To establish whether this condition
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is satisfied, the impurity density of states can be calculated through the impurity’s Green
function [6]:

1
pao(€) = ——lim Im G, (e + in). (3.9)

T n—0

For the single-particle Hamiltonian H4*', the matrix elements of G obey the relation [6]:

Z(E+in_HfF)a/BGﬁu(€+in> = Ooyp- (3.10)
B

Collecting terms in Eq. (3.10) and solving the resulting equations for G9, results [6]:

2
Gaale+in) = |e+in—Fa, — Y  ——— +’Z“d_’ - . (3.11)
K n ko

Rewriting the summation term in Eq. (3.11)) as [6]

|7kd\ o €—
§ § , 3.12
T in — Wkd\ o 772 (3.12)

and taking the limit n — 0 [6]:

. \’ka| ”ka’
1 =P E E d(e — 3.13
nlgtl) €+ 11 — €xo € — €k - e d| (€ =) ( )

The first term in Eq. is the principal value of the function under parentheses and
is a real quantity, therefore entailing a shift of the impurity energy level. For a constant
density of states, which is a good model for the metallic host, in the range of variation
of E4, the fluctuation caused by this term is small, allowing it to be discarded [6]. The
second term is a relevant contribution and m Y, [yka|?d(e — ex) = T' is denoted as the
hybridization function. Its relevance transcends the mean field solution of the Anderson

model, being of major importance in the implementation of the NRG method structure.

In the present context the hybridization function is responsible for a broadening of

the impurity’s level, which can be seen more clearly if we insert the result Eq. (3.13)) back

into Eq. (3.11)) [6]:

1
Gy, ) = . 3.14
aale +in) €t in— By +il (3.14)
Finally, inserting result Eq. (3.14) into Eq. (3.9) we find [6]:
1 r
pao(€) = — (3.15)

(e — By )%+ ()%

Equation (3.15) is a Lorentzian distribution whose width is controlled by the param-
eter I'. Tt should be noticed that in the limit of I' — 0 (no hybridization), Eq. (3.15)
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approaches a Dirac d-function. The effect of hybridization is now quite clear: when the
hybridization is absent, the impurity states are eigenstates of the Hamiltonian separated
by the charging energy U. One can then associate an infinite lifetime to this state. Once
the hybridization is turned on, the effect of mixing is that the impurity states are no
longer eigenstates, so an electron at one of these states will acquire a finite lifetime 7 to
decay into other states, this decay will be faster the larger is I', which can be established

more rigorously through Fermi’s golden rule resulting the relation 7 = h/2I" [6].

The mean occupation per spin is evaluated as [6]:

r 1 Ey,
(Ngy) = / depgs(€) = %arccot (Td) : (3.16)

but, since Ey, = €4+ U{ng_,) it follows that [6]:

cot (m(ngy)) = w. (3.17)

The pair of coupled equations (one for each o) Eq. defines the parameter regime

at which the system will exhibit magnetic solutions. As expected, for U = 0 the system
is nonmagnetic, since (ngy) = (ng). This is also the case for an infinite hybridization
I' = oo which results in (ng) = (nq) = 1/2. As shown in Fig. a magnetic regime is
expected for the case in which the impurity lies below the Fermi energy e; < € (so that
in thermal equilibrium the impurity will be at least singly occupied) and, besides, that
the cost of doubly occupying the impurity exceeds the Fermi energy ¢; + U > er which
inhibits the double occupation. The phase diagram for the complete range of magnetic
parameters is displayed in Fig. where use of the transformed dimensionless variables
r = —€4/U and y = U/I" have been adopted. The points z = 0 and x = 1 are the
limits for the magnetic region since z = 0 corresponds to ¢4 = ez = 0 and z = 1 to

€a + U = e = 0. The most favorable case for magnetism to emerge is ©z = 1/2.

It should be noticed that the magnetic limit is valid in the range within which the
impurity is weakly coupled to the electron gas and the charging energy is large U/T" > 1.
In such a limit the system presents only spin fluctuations, charge fluctuations are vanishing
small. This spin dynamics was explored by Kondo in a famous study of the scattering
of conduction electrons by a magnetic impurity [35] that we discuss in the following. In
appendix [A] we show that, in the magnetic limit, the Anderson model can be mapped into

the model analyzed by Kondo.
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Figure 11: Schematics of the energy levels of the Anderson model in the magnetic case.
Extracted from Ref. [6].
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Figure 12: Phase diagram for the mean field solution of the Anderson model. Extracted
from Ref. [6].

3.2 Kondo effect and Kondo problem

In his seminal paper [35], Kondo was interested in studying how the low temperature
resistivity and magnetic properties of a host metal are affected by a magnetic impurity.
He was motivated by experimental results due to Sarachick et al [7] who made a series

of measurements of the resistivities of Mo — Nb alloys containing F'e impurities. The
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experimental data of the alloys resistivities is shown in Fig. The measurements show
that the resistivities decrease logarithmically as the temperature is lowered until they
reach a minimum. When the temperature is reduced even more, the resistivity inverts
its behavior and starts to grow (logarithmically) reaching a finite value. This result is in
strong contrast to the resistivity of a pure metal that tends to zero monotonically as the

temperature decreases [6].
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Figure 13: Resistance measurements for F'e in a series of Mo— Nb alloys. Extracted from
Ref. [7].

Kondo explored the interaction of the localized moment with the conduction electrons

through the so-called Kondo (or s-d) Hamiltonian [§]:

Hy = —% Z [S*chckq + SchTck/i + 9, <01T{Tck/¢ — CL¢Ck/¢)] , (3.18)

KK/
where ST (S7) denotes the raising (lowering) spin operator of the impurity and S, is
the z component of the impurity spin operator. ¢} (cx,) creates (annihilates) a conduc-
tion electron in the state k with spin 0. J denotes the coupling between the impurity

and conduction electrons. Besides, the simplification of a k independent interaction is

assumed.

The Hamiltonian Eq. describes the interaction of an impurity with an internal
spin degree of freedom with the conduction electrons of the host. As we will present
in the sequence, this setting involves the integration of the whole Fermi distribution in
the scattering calculations of the conduction electrons by the impurity. The scattering

problem therefore turns into a true many-body problem, with all electrons entering the
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theory trough the Fermi function [62]. This is in marked contrast to the problem of
electron scattering by nonmagnetic impurities, where the Fermi distribution does not
appear in the calculations and the computation of the scattering cross section is a purely
one-electron scattering one. This explains why Drude could construct a successful theory
of electrical conductivity before the advent of quantum mechanics since the occurrence of
the Fermi distribution is a consequence of Pauli’s exclusion principle, which is a hallmark

of quantum mechanics.

Kondo explained the connection between the existence of magnetic impurities and
the occurrence of the resistance minimum calculating the scattering probability of the
conduction electrons to second ordelﬂ in the parameter J (H is treated as a perturbation
to the conduction electrons Hamiltonian). To this order the logarithmic behavior of the

resistivity appears as a consequence of the spin degrees of freedom of the impurity.

The calculation of the resistivity involves the knowledge of the elements of the T'(e™)

matrix, which is defined as [8]:
T (€+) = Hipy + Hth(J)ert + HintGgHintGgHint + ..., (3.19)

where €T = e+in and G denotes the Green function of the non-interacting system. Trans-
port properties are obtained through the Boltzmann equation formalism which relates the
inverse transport time and the 7" matrix through [8]:

!/

ik
- / 5ex — )| Trae (1 — cos ¢) (3.20)

(2m)’

where 7(k) denotes the transport time, c¢;,, is the impurity concentration, Ty is the T

7(k)

matrix elements between the initial k and the final state k” and 6’ is the angle between k

and k'. Access to the conductivity (resistivity) is given by [8]:

2
o= L(kF)j (3.21)
m

where n is the number of electrons per unit volume, e the electron charge and m the

electron mass.

To first order, T (e") = H;,y = Hg. Calculating, for instance, the matrix element

(k" 1 |T(e*)|k 1)@y (the subindex 1 denotes that this is a first order process) we obtain

[8:

JS,
s

(K Tk Dy = — (3.22)

!Third order in the conductivity [S].
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With similar terms for (k' 1 |T(e")[k 1)), (k" | [T(e")k 1)y and (k' | [T(e")[k 1)q),
with S, in Eq. (3.22)) replaced by ST, S~ and —5,, respectively.

Collecting the above results and substituting into Eqs. (3.20) and (3.21]), one obtains

a temperature independent contribution to the resistivity, namely [8]:

3rmJ2S (S + 1) Cimp
= 2
e0 2e2hep ’ (3:23)

where use of the relation 252+ S*S~+ 5~ ST = h?S(S+1) has been made. S is the total
spin of the impurity.

The extension of scattering calculations to second order Born approximation requires
calculation of the matrix elements |§]:

1
<k/0/|HK
€

—— Hglk 3.24
+Z77—H0 K| 0>, ( )

where ko (k'o’) labels the conduction electrons initial (final) states.

Among all possible different process represented by Eq. , the most important
terms are those in which the spins of the conduction and localized electrons are flipped
during the scattering process. As we show below those terms are responsible for the rise
of a temperature dependence of the resistivity. The diagrams representing these processes

are displayed in Fig. for the case in which the initial and final electron spin states are
up.

k1 k't
k1t k"1

oS sy sy st

Figure 14: Spin flip diagrams for the second order scattering process in which the initial
electron state is k 1 and the final is k' 1. The curved lines represents the electron and the
straight line the impurity. In the left panel the intermediate state is an electron while in
the right it is a hole, which is represented by the backward arrow. Extracted from Ref.

I9].

In the scattering process represented in the left panel of Fig. [14] the k 1 conduction
electron is first scattered into the unoccupied state ky | with a corresponding spin flip of
the impurity. In the following, the electron is scattered with spin flip into the final state

k' flipping the spin impurity again. This contribution to the element (k' 1|7 (¢*) [k 1))
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(the subindex 2 denotes that this is a second order contribution) is written as [§]:

J? B 1
= >, 18 C1T<1¢Ckg¢m—_H5+CL2¢Ck’2T|k - (3.25)
K1,k Ko kb 1= Ho
After some algebra this term reduces to [§]:
J2 1 — f (Gk )
— S—ot— L x2l 3.26
h? ; €+1in — €, (3:26)
2

In Eq. (3.26) the function f(e,) is the Fermi distribution and the factor 1 — f (ey,)

guarantees that the intermediate state is unoccupied.

The diagram in the right of Fig. represents the second main scattering process.
In this situation, an occupied state ks | is scattered with spin flip into the final state
k' 1 leaving a hole state behind, which is the reason why the k, state is represented by
a backward arrow in the diagram. In the sequence the k 1 initial state scatters into the
k, | state with a corresponding spin flip of the impurity. This process contributes to
(k' 11T (¢*) |k 1)(2) through the term [§]:

7 3 srg- () (3.27)

Now one notes the presence of the factor f(e,) which accounts for the fact that the
intermediate state should be occupied in this processes. The order in which the lowering
and raising operators spin operators appear in Eq. are opposite to the one in Eq.
reflecting the inversion in the order at which the impurity spin is lowered or raised
in the two diagrams. Since ST and S~ do not commute, one shows that summing the
terms in Eq. and Eq. results in a term which is still dependent on the Fermi

distribution, namely:

J_2S2Z ot Zf ) (3.28)
R A= et in — e, e+m—ek2' '
2 2

In the derivation of Eq. we made use of the relations STS~ = S=S* + 25, and
S-S+ — 25 — 52 _ ..

We now see that the appearance of the Fermi distribution is a result of the spin degree
of freedom of the impurity since it is a consequence of the difference in the sequence of
the S operators acting on the impurity states and the creation of particle intermediate
states. The many-body aspects, which enter through the Fermi function, imply that all

electrons contribute to the scattering matrix of a given conduction electron.
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Collecting the first and the second order terms from the perturbative calculations, for
the process where the initial and final conduction states have spin up, results [§]:

W IT () ) = =55 | 1-239) (3.29)

where in passing from Eq. to Eq. only the temperature dependent term was
retained. The other term can be neglected as its contribution corresponds to correction
factors of order J/ep or higher to the resistivity [8], which are negligible in the standard
physical situations corresponding to J < ep. The function g (€) reads [62]:

Zf ) —1/2. (3.30)

€+ 1 — ex

When squaring expression Eq. (3.29)) only the real part of g(e) remains. This reads

[62]:
%P /_Z dx—tanl; (_Bf/2> = poln (/@LT)’ (3.31)

where pg is a constant density of states and D is the bandwidth.

Calculating the other T-matrix elements (k' | [T (e") |k 1), (k' + [T (e") |k |) and
(k" | |T'(¢") |k {) results in terms similar to that found in Eq. (3.29), but with S,
substituted by S—, ST and —S,, respectively. Collecting all these contributions, the
resistivity to third order in J is given by [8]:

=00l +4JpoIn (kgT/D)]. (3.32)

Eq. shows how the logarithmic dependence on the temperature emerges. In Eq.
0p is the first order contribution encountered in Eq. . As opposed to the
phonon contribution, the resistivity due to the impurity increases as the temperature is
decreased for an antiferromagnetic coupling (J < 0). Combining the phonon contribution
to the resistivity to the one due to the impurity, Kondo proposed a phenomenological

expression for the total resistivity of the form [§]:
o(T) = aT® + cimpRo — CimpRa In (kgT/ D), (3.33)

where, a, Ry and R, are positive constants, c;,, is the impurity concentration and the
first term accounts for the phonons contribution and the remaining are the impurity

contributions calculated above. Equation (3.33) has a minimum at a temperature T,,;,
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and is given by [6]:

R\
T = (52) i (3.34)

This is the main result derived by Kondo, who showed that this result fits the exper-
imental observation nicely [35]. Because this successful explanation of the minimum of

the resistivity in metallic alloys, this phenomenon was named the Kondo Effectfl

However, the Kondo perturbative approach does not entirely solve the problem. Con-
trary to what is observed in the experiments (see Fig. , the resistivity predicted in Eq.
(3.33) diverges logarithmically as temperature tends to zero. The search for a solution

valid at low temperatures is the so-called Kondo Problem.

3.3 Poor Man’s scaling

An important contribution for the understanding of this problem is the poor man’s

scaling analysis put forward by Anderson in the context of the Kondd?| model [64].

It is expected that at low temperatures only those states close in energy to the Fermi
level will be determinant for the system physical properties. The goal of the scaling
analysis is to eliminate the high-energy excitations in a sequence of steps and describe the
system within a limited region of the energy spectrum close to the Fermi level in such a
way that the effect of the high-energy excitations is absorbed as a renormalization of the

coupling terms of an effective Hamiltonian representing the "reduced" system.

For the implementation of the scaling proceeding, the method considers a band of
width 2D, centered at the Fermi energy (e = 0), and step-by-step reduces the cut-off
energy D to D — |dD|, eliminating particle states lying at the upper band edge or holes
in the lower band edges (see Fig. . These high-energy excitations are mapped into
intermediate states in perturbation theory. Anderson carried the calculations up to second
order in perturbation theory which is the reason of the name poor man’s scaling [6]. The
basic idea is to consider the scattering processes that enter in the second order transition
amplitude and to determine how they change when the bandwidth is decreased by the
amount |[0D|. As result, the effect of the elimination of high-energy states is absorbed
by a renormalization of the coupling constants of the reduced system. The poor man’s

scaling gives a set of equations relating the original couplings to those of the new system.

2In the literature this designation is also used to designate the quenching of the local moment by the
conduction electrons.
3The approach was later developed for the Anderson single-impurity model by Haldane [, 63]
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Figure 15: Schematics of the states that will be eliminated in the scaling procedure.
Extracted from Ref. [§].

The starting point of the method considers the Kondo Hamiltonian with anisotropic
exchange couplings [8]:

1

H/:HK:—E

Z [JJrS*cLick/T + J,S’CLTCk/¢ + J.S. (CLTCk/T — CLCk’i)] . (3.35)

kk’

The diagrams representing the scattering process of conduction electrons into the band
edges are essentially the same as those treated above in the calculations of the elements
of the T matrix (ko|T(e*)[k'0’) (see Fig. [14).

Considering first the scattering process of Fig. [L6f, where a conduction electron k with
spin up is scattered into the intermediateE] state q J in the upper band edge and then to
a final state k' 1, the contribution, to lowest order correction in H’, of this diagram to

the scattering process is given by [8]:

JyJ_ _ _
;12 > S awicqr (E—Ho)™' ) STeq o, (3.36)
q !

q
where Hj is a single-particle conduction electron Hamiltonian.
Considering that the band edge state is unoccupied in the initial and final states, it

implies that cq iCL/ | = Oq,q- With this in mind and remembering that the summations in

q in Eq. (3.36) are restricted to states within an energy [0D| of the band edge, after some

4The intermediate state is represented by a dashed line because this is the high-energy state which
will be eliminated in the scaling process.
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Figure 16: Two-spin-flip process in which particle (i) and hole (ii) high-energy excited
states will be eliminated (dashed lines). Extracted from Ref. [§].

lengthy algebra (for more details see Ref. [6]) Eq. (3.36) can be cast in the form [§]:

JoJ. 2 T »
= poldD| 5 hS. | ey (B — D+ e, (3.37)

where pg is a constant density of states and use of the relation S™ST = h?/2 — hS, has

been made.

The diagram in Fig. [I6]i represents the scattering process in which the intermediate
state to be eliminated is a hole state within a energy range 6 D of the bottom of the band

—D. Similar approximations as those conducted above leads to the expression [§]:

JoJ 12 T B
72 p0’6D| 7 + ﬁSZ Ck,TCkT (E — D — Ek/) s (338)

where the identity STS™ = h?/2 + hS, is used in deriving the result in Eq. (3.38).

Similar contributions arise when considering two-spin-flip process in which the initial
and final states have spin down. One may see that Eqs. and have the sameﬂ
structure as the longitudinal term in Eq. , hence elimination of high energy states
through the process above leads to a renormalization of the longitudinal coupling given
by J, — J, + d§J, where [§]:

1 1

0J. = J4J-polo Dl F—D+tea E—-D—e

(3.39)

Similarly, one obtains a renormalization of the transverse couplings when eliminating
high-energy excitations through one-spin-flip process (see Fig. for instance). Collect-

ing the contributions from those kind of scattering process leads to a renormalization of

5The spin independent terms give rise to a scattering potential and a term responsible for shift the
ground state energy. The former is discarded since its magnitude is small close to the Fermi energy. The
latter is incorporated into Hj in the scaling process [64]
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the transverse couplings given by [8]:

1 1
(5Ji = Jisz0|5D‘ E—D+€k + E—D—Ek/ (340)
k*t L
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Figure 17: One-spin-flip process in which particle (i) and hole (ii) high-energy excited
states will be eliminated (dashed lines). These process contribute to the renormalization
of the transverse couplings. Extracted from Ref. [§].

Considering excitations low in energy with respect to D, and for scattering of con-
duction electrons near the Fermi level, Egs. (3.39) and (3.40) can be written as [§]:

dJy
dln D

dl. .
=2pod.J+ and D 2p0J7%, (3.41)

where we set J, = J_ = Jy [0, §].

The most important result of the scaling process is obtained through the solution of

this pair of coupled equations which gives a family of hyperbolic curves [§]
J2— Ji =k, (3.42)

with k a constant.

Substituting Eq. (3.42) in the scaling equation for J. clarifies the interpretation of
the results [6]:

dJy { —2pgJir/k + J3 for J, >0 (ferromagnetic), (3.43)

dInD| 2p0)xn/K + J2 for J, <0 (antiferromagnetic).

Thus we see that for the ferromagnetic case the effect of scaling is to reduce the
strength of the effective transverse coupling, meaning that J. flows to zero in this case.
For the antiferromagnetic situation the opposite occurs and the renormalized couplings
increase in magnitude as the scaling procedure is performed until |JL| — oo where the

perturbative approach breaks down. This is the strong coupling regime in which the
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Kondo effect occurs. This scaling analysis is illustrated in the diagram of Fig.

1 g

| 7,11

-
>

J

2

Figure 18: Scaling diagram obtained by the poor man’s scaling. The straight line repre-
sents the situation in which coupling is isotropic. For positive coupling J, (ferromagnetic
case) the couplings renormalizes to zero while for J, < 0 (antiferromagnetic case) the
system flows to strong coupling regime. Extracted from Ref. [6].

For simplicity, the scale at which the perturbation theory breaks down is obtained
for the antiferromagnetic model with J. = J, = J through integration of the resulting
differential equation Eq. from an initial cut-off D and coupling J through the new
cut-off D and renormalized coupling .J, this leads to [8]:

De Y290 — De=V/2I0 kT (3.44)

where Ty ~ e~1/2770 is defined as the Kondo temperature and characterizes the trajectories
resulting from the scaling process. In other words, systems with different parameters D,
J that lie in the same trajectory are equivalent and have the same low energy behavior,
which is determined by Tk. In this sense, Tk acts as a scale invariant of the theory and all
the thermodynamics quantities depend only on the single energy scale Ty [§] (provided
we are in the limit of validity of the scaling theory, which is the weak coupling where

We see that for the ferromagnetic case a complete solution of the problem through
scaling is provided since scaling can be conducted down to D — 0. In this case, J — 0
and the system has an uncoupled spin. Hence, the impurity spin becomes asymptotically

free giving a Curie law contribution to the impurity susceptibility [8].

For the antiferromagnetic model, the reduction of the band width is only possible
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until D ~ kgTx beyond which perturbation theory breaks down.

A complete solution for this problem requires a non-perturbative approach capable of
describing the thermodynamic properties of the impurity system in the strong coupling

regime. This will be the topic we treat in the following.

3.4 The numerical renormalization group method (NRG)
and the pseudogap impurity problem

3.4.1 Introductory remarks

An important advance in solving the Kondo problem was achieved in 1975 by K. G.
Wilson [36], who developed a nonperturbative approach, called Numerical Renormaliza-
tion Group (NRG) method, which managed to describe the low temperature behavior of
the thermodynamic properties of the Kondo model. Initially, Wilson applied the method
to calculate the zero temperature limit of the susceptibility and specific heat of the Kondo
Hamiltonian [8], [36]. Later on, the method was extended to the Anderson model |10} 55].
In these works the authors give a clear and profound exposition of the method and apply
it to determine the low temperature behavior of both the symmetric (¢, = —U/2) [10]
and asymmetric (e; # —U/2) [55] Anderson model.

Before presenting the NRG method, we first bring to light the special aspect about
studying the Kondo effect in graphene. Even though the results presented in the above
works contain some of the key ideas for the development of theoretical physics in the last
century, they are not straightforwardly applicable to graphene. But why this is so? A
most careful reader probably knows the answer: graphene’s linear density of states that

vanishes at the Dirac point.

So far all the results we have been discussing concern an impurity immersed in a
nonmagnetic metal, whose density of states is a constant. These results are universal,
that is, they are independent of the details of the microscopic models studied and the
system specific features are encoded in Tx. The low energy band structure gives graphene

a special status in the Kondo story, it belongs to the so-called pseudogap Kondo systems.

This kind of problem was first addressed in the early 90’s by Withoff and Fradkin [37],

whose theoretical approach considered a density of states which vanishes at the Fermi level
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(er = 0) and follos a power-law of the form [38]:

(3.45)

{ polel”,  forle] < D
ple) = .

0, otherwise .
where D is the band’s half-width. Based on perturbative methods such as the poor man’s
scaling for the spin 1/2 Kondo model, the authors found important features of systems
with power-law density of states such as the existence of a critical value for the coupling
constant J, under which no screening takes place. This is very different from the usual
Kondo effect where the local moment is always screened. This result was supported by
a large-N (N meaning the impurity’s degeneracy) expansion to the Coqgblin-Schrieffer
model| that produced similar results to those derived for the Kondo model [37]. The
study addressed a restricted range of r values, namely, 0 < r < 1/2. Subsequent works

[65, [66] expanded the validity of the results to all positive 7.

Poor man’s scaling was also used to analyse the Anderson model in the context of
pseudogap systems [67]. Again it is found that in a finite region of the parameter space
the impurity remains unscreened down to 7' — 0. This behavior is associated with the
occurrence of a quantum phase transition. It was identified that the size of the parameter

space region of this "unscreened impurity" regime grows with r [67].

The quantum critical behavior of pseudogap systems and the important role played
by particle-hole symmetry is fully explored in Ref. [38]. Under particle-hole symmetry,
for instance, the critical coupling J, is shown to be infinite for values of r > 1/2 [38, [6§],
meaning that the impurity spin is never screened in this cases. Such behavior is not seen

in the asymmetric case where J. remains finite for » > 1/2 38|, [68].

As in the regular Kondo problem a thorough study of a magnetic impurity in a pseu-
dogap system requires the use of the NRG method. For that purpose Wilson’s ideas were
generalized to treat impurity models with an energy dependent hybridization function
[38].

Our work does not contain a further development of the NRG method. However, we
apply the method in a new context, namely, disordered pseudogap systems (results are

presented in the next chapter).

We now turn to a brief discussion of the schematics of the NRG applied to the An-

derson Hamiltonian already adapted for the pseudogap problem [38] and discuss some

6A description of this model is found in [§].
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main results obtained from it for the pseudogap and usual impurity problems. The liter-
ature contains very nice and detailed accounts on the NRG method for both, the metallic

[10, 36l 55] and pseudogap [9, B8] problems.

3.4.2 Schematics of the method

First it should be stated that the NRG is applied to systems which involve a quantum
mechanical impurity with a small number of degrees of freedom coupled to a band of non-
interacting electrons (extension to the bosonic system is also possible [9]). For models
where the band electrons show correlations, the problem should be first mapped onto
non-interacting impurity models through the dynamical mean field theory (DMFT) and
then NRG is applied [9].

We now summarize the description of the NRG method for a pseudogap system for

the Anderson Hamiltonian found in [3§].

3.4.2.1 Structure of the Hamiltonian

The method addresses the Anderson Hamiltonian Eq. (3.1)). Assuming, for simplicity,
spatially isotropy one writes ex = € and 7 = 7(€)x) which means that the impurity
interacts only with s-wave states centered on the impurity site. This simplification allows

to express the Anderson Hamiltonian in a one dimensional energy representation[] [38].

Hgate = Z €d Ndo + Ungyng,

ez

D—p
Hyana = / dwwcl c,,

—D—u
D—p

Hyop = / dwy/T(w) /7 (czlacw —|—H.c.) ) (3.46)
—D—p

where Hj = Hgtate + Hpand + Hiop- It is assumed that the s-wave energies are contained in
the interval —D < g < D, and we introduce for convenience the variable w = €| — 1 to
account the effect of a finite chemical potential y. The operator ¢/ creates an electron in a
s-wave state with energy w and is supposed to be normalized as {c! _, c,yor} = 0(wW—w')ger.
|2

The quantity I'(w) = mp(w)|y(w)|* is the hybridization function which we encountered

earlier in the context of the mean field solution of the Anderson model.

The appearance of the hybridization function on the hopping Hamiltonian means that

TA detailed account on this procedure can be found in Ref. [10].
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the interaction of the impurity with the band is mediated only by this quantity. In other
words, the functional dependence of the density of states and the hopping integrals with
energy as separated quantities are unimportantﬂ as long as their combination gives the
same hybridization function. Hence, different expressions of the Anderson Hamiltonian
are allowed [9]. We keep Eq. because it is suitable for the pseudogap problem. As
in Ref. |38], we consider a power-law hybridization function

I(w) = (3.47)

LColw|” for —D—p<w<D-—yu
0 otherwise.

where Iy is a reference value [38]. In the next chapter we will analyse results obtained for

a similar structure for the case of graphene.

In the subsequent derivations we use a dimensionless energy ¢ = w/D and chemical

potential p/ = 11/ D following the treatment of Ref. [38].

3.4.2.2 Logarithmic discretization

Poor man’s scaling shows how different band energy intervals contributes to the log-
arithmic divergences encountered in the resistivity obtained from the analysis of the An-
derson Hamiltonian [8, 36} [63]. A suitable treatment of the band electron was proposed
by Wilson, who put forth a logarithmic discretization of the ¢ space whose domain is
spanned by a set of intervals controlled by a discretization parameter A (> 1) [10] 36]
shown in Fig. [I9a. This process guarantees that energy values close to the Fermi level,

which determine the low temperature physics of the system, are well sampled [10] (see
Fig. [19b).
The procedure consists in dividing the band into two sets of logarithmic bins, one for

positive values €| < e < ¢, where [3§]

e =1-u, € =0—-p )N m>0, (3.48)

m

and another for negative energies €;, <€ <€, |, where [3§]

€ =—(1+4), e=—1+p A" m>0. (3.49)

The discretization parameter usually takes values A ~ 2 — 3. Originally Wilson

used A = 2.5, ¢/ = 0 and z = 1 [10, B6]. Introduction of the parameter z # 1 was

8The only exception to this is on the calculation of the host thermodynamic properties without the
magnetic impurity, in which the precise form of the density of states should be considered [38].
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proposed as a useful tool to approach the "exact" results of the continuum limit A — 1
for thermodynamic [69] and dynamical |[70] quantities, and also allows the use of larger
A (for instance, A = 9 is used in Ref. [38]). This is accomplished by averaging the
physical quantities over different z values for a fixed A. For more details on the use of

this technique see Refs. [9) 69, [70] [71].

a)
| R |
| ] [N LA | ]
| 1 g | 1
| I e | I
I 1 Foregre I 1
| ] [N LA | |
i - i -
-1 L N S S 1 €
i —
-1 1 €
c)

€9 €, €, €,
Q-0 000

Figure 19: a) Logarithimic discretization of the conduction electron band. b) The contin-
uum of states within each bin is substituted by a single value after discarding of the ¢ # 0
modes. ¢) Semi-infinite chain form of the system. The first site (green circle) denotes the
impurity which couples to the first conduction site through I''/2. Each site is incorporated
in one iterative step and couples to the last site of the smaller chain through the hoppings
ti, i =0,1,.... Extracted from Ref. [9].

Within each positive (negative) nth interval is introduced a set of orthonormal func-
tions 138 (€) (1 (¢) ) and a set of destruction operators a\y (6% ), where ¢ = 0, £1,£2, ....

Outside the bins the functions are null. In this basis, the conduction band operators read
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[38]:

o =3 3 [0laD + 02 (b2] (3.50)

n=0 g=—o0

Originally, Wilson adopted the set of functions [9} 10]:

1, 1 |
¢gzg(e):_\/d_ewnqe and —=—= A9 (¢) = e wnae, (3.51)

with w, o« 1/d,, d, being the width of the n-th logarithmic bin. For a metallic system
the hybridization function I'(e) is a constant. In this case, it is easy to see that due
to the orthogonality of the ¢’s, substitution of Eqs. and into the hopping
Hamiltonian Eq. filters only the ¢ = 0 mode from the expansion Eq. (3.50).

A crucial piece in Wilson’s reasoning for mapping the original problem into a semi-
infinite chain form is to make the impurity couple only to the ¢ = 0 mode of the conduction
band states of every energy bin. For pseudogap systems it is also possible to proceed in
the same way, but it requires the introduction of a weighting function. By defining the

zero-mode functions in each bin as [38]:

+ -
69 (6) = W(e)/Fon, fore,,, <e<el (3.52)
0, otherwise ;
152)(6) _ W(e)/Fyn, fore, <e<e, ., (3.53)
0, otherwise ,
and upon the definition of the weighting function W(e) as [38]:
W(e) = [[(eD)/To]"/?, (3.54)

(with T'(e) and Ty defined in Eq. (3.47))) the zero mode wavefunctions v (€) and @Dég)(e)
possess the same energy dependence as the hybridization function in the Hamiltonian
Hypop in Eq. (3.46). The orthonormality condition on the 1 functions implies [38]

e:'{ €
2 2 2 [ 2
F. = de W (6), Fy, = de W (6) (3.55)
+ —
€n+1 €n

Due to the construction above, orthogonality guarantees that only the zero mode

functions in the expansion Eq. (3.50) are retainedﬂ when this is inserted into Hyp in Eq.

9An alternative route to filter the zero-mode wavefunctions is proposed by Bulla and collaborators,
arriving at the same physics [9].
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(3.46). This process leads to the hopping Hamiltonian [38]:

Hyop = \/ToD /7 | ¢}y > (Fanal + Fyb2) + H.c. (3.56)
n=0

In terms of the expansion Eq. (3.50)), the conduction band Hamiltonian is written as
[38]:

/

1—p / ’
Hyna =Dy / de e [0 (s (Yaltals) + it (eyfs (UL . (3.57)
(1+p')

/
n7g7q7q

Until now the results presented are exact. From Eq. we see that the higher
q modes only couple to the impurity indirectly via the non-diagonal terms of Eq.
which involve the ¢ = 0 mode. For a flat band, Wilson showed that the coupling between
the modes ¢ # ¢’ vanishes as the continuum limit A — 1 is approached [9, 36] and made
the approximationm of discarding those terms for A > 1. For pseudogap systems, one
can show that the coefficients of the ¢ # ¢’ terms of Hy,,q in Eq. are proportional
to 1 — A~! [9], also vanishing as A — 1. Hence, the same reasoning applied by Wilson
is employed. With this approximation, the ¢ # 0 modes decouple from the impurity and
contribute to the kinetic energy in Eq. a constant term which is dropped [38]. This
role process corresponds to substituting the continuum of energies within each bin by a
single value as shown in Fig. [9]. The resulting Hamiltonian is [3§]:

[e.9]

Hyona = DY (€anal1al + e, b0100)) (3.58)

n=0
where the energies €,, and ¢, are given by [38]:
+

e [f 2 s [ 2
€an = F,; dee W(e), €, = F,, de e W=(e). (3.59)

+ €
n+1 n
3.4.2.3 Mapping on a semi-infinite chain

The logarithmic discretization leads to the hopping and band contributions of the
Anderson Hamiltonian given by Eqs. (3.56) and (3.58)), respectively. The following step

of the method is to transform the resulting Anderson model into a semi-infinite chain

10An estimate of this "discretization" error is given in Sec. V of [38].



41

Hamiltonian. This is achieved in two stages. First, by defining the operator [3§]

_r 12[ wmal® + FOpO0 | (3.60)

n=0

where the normalization factor F reads [38]:

FQZ/I_“/ de W2 (e). (3.61)

—(1+p)

After the transformation, the hopping Hamiltonian Eq. (3.56)) reads [38]:

Hyop = \/ToD /7 F Z ( £ cap + H. c> (3.62)

Now, a new basis of operators {f,,} orthogonal to fy, should be constructed using
the original operators {a;‘?, bﬁPJ}. There are many ways of constructing such a basis, but
each one would transform the band Hamiltonian Eq. into a non-diagonal form.
The most convenient choice is the basis where the new operators are only coupled to their

nearest neighbors [38]:

Hband =D Z [enfq];ofrw + Tn (f:wfn—la + HC)} ) (363)

n=0,0

where in Eq. (3.63) the energies and hoppings are given by the recursive relations [38]:

€n = (fno|Hoana/ D\ fro) (3.64)
Tot1lfoiro) = (Hoana/D — €n) [fno) = Tal fa-10), (3.65)
(fotio|fatio) =1, (3.66)

| fao) = flolvacuum). (3.67)

|[vacuum) is the system vacuum.

The operators f,, are expressed in terms of the {am, bm} basis as [38]:

o0

oo =Y (tnmal) + vnmb)) | (3.68)

n=0
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with woy, = Fom/F and vy, = Fy,/F. The remaining u,,, and v,,, being determined by
the recursion equations Eqgs. (3.64))-(3.67).

One can interpret the sites of the obtained semi-infinite chain as follows: the first site of
the chain is the impurity and the others are conduction electron sites which are aggregated
to the chain at each iterative step as shown in Fig. [[9c. The physical meaning attributed
to the conduction band sites by Wilson is that [36]: the first site of the conduction electron
chain corresponds to the shell with maximum of its wavefunction close to the impurity.

This shell couples to a shell further away from the impurity and so on (see Fig..

Impurity

Figure 20: Schematic representation of the wavefunctions represented by the f,, elec-
tron states. As n increases the states become more spread about the impurity position.
Extracted from Ref. [10]

3.4.2.4 Tterative Diagonalization

A natural question to ask is why perform all this work and by the end be stuck to
a Hamiltonian which still has infinite degrees of freedom? The first part of the answer
relies on the fact that the semi-infinite chain impurity Hamiltonian is solved conveniently
by iterative diagonalization, that is, a new conduction electron site is added to the chain
at each iteration step and the enlarged Hamiltonian is diagonalized. The second point is

n/2

that the hopping coefficients 7,, typically decrease as A="/* for large n and ¢,, drops off at

least that fast [38]™]

The concept of the renormalization group enters in the context through this energy

dependence of the 7,: the introduction of a new site to the chain reduces the relevant

1 Analytical expressions for these hoppings were derived for metallic and pseudogap cases in [36] and
[72], respectively.
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energy scale by A'/2. Because the 7, falls off exponentially, only states of the shorter chain
within a comparatively reduced window are relevant for the interaction with the new site.
This picture allows the truncation of the energy spectrum obtained at each step of the
iterative process and the construction of the extended Hamiltonian from this truncated

basis. We develop these ideas in the following.

The infinite chain Hamiltonian may be written as the limit of a sequence of Hamilto-

nians [38]:

H = lim aDA N2 Hy, (3.69)
where
1
a=g(1+A7) A3 (3.70)

is a conventional factor that approaches unity as A — 1 [3§].

The Hamiltonian Hy, defined for N > 0, denotes a (N + 2)—sith_7] chain Hamiltonian
constructed from the sum of the discretized band Eq. (restricting the sum to the
maximum value n = N), the hopping term Eq. and the impurity contribution
Hg e from Eq. . Hamiltonian Hy_; and Hy, resulting after the incorporation of a

new site to Hy_1, are related by a recursion relation [38§]:
Hy = AVHy )+ en flo fvo + ty ( oy + H.c.) ~ B, (3.71)
where e, and ¢, are on-site and hopping energies [38|
en =a 'A%, and t,=a 'A"?r, (3.72)

scaled in such a way as to cancel the A="/2 decay of the original parameters (e, and 7,)

as n gets large.

Subtraction of the ground state Eg y assures that the ground state energy of Hy is

set to zero in each step.

The starting point of the sequence Eq. (3.69) is given by the atomic limit of the
impurity problem H, [38]:

Hy=e0 Y fl,for + €ama+ Ungng, + T2 ( £ car + H.c.) — Eey (3.73)

(e

with scaled parameters [38]:

5 €4 ~ U ~ F?T,
€d aD’ v aD’ rTa2D (3.74)

12N 41 conduction electrons sites plus the impurity one.
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The character of the renormalization group shows up more clearly if we interpret the
Hamiltonian Hy in Eq. as a result of a renormalization group (RG) transformation
R over Hy_; [9):

Hy =R(Hn-1). (3.75)

However this is not an usual RG transformation where one goes from an Hamiltonian
H(K) dependent on the set of parameters K to a transformed Hamiltonian H(K') with
a new set of parameters K'. This kind of representation is hardly obtained for the Hy
resulting from NRG iterative process [9]. In this case, Hy and the RG flow are character-
ized directly by the many-particle energies En(r) which obey the characteristic equation
9l

Hy|r)y = Ex(r)|r)n, r=1,2,..., N, (3.76)

with N the dimension of Hy.

Hence, once the Hamiltonian Hy has been diagonalized, its eigenstates in connection
with a basis for the new site are used to construct one basis for Hy, using Eq. (3.71])
(for details of this process see Refs. [9] and [10]). The Hyy; obtained is diagonalized and

its "eigenbasis" will be used for the construction of a basis for Hy .

As one can see from Eq. (3.71), before each step the Hamiltonian whose spectrum
was already calculated Hy_; is rescaled by the factor AY? in order to always keep the

smallest energy scale in the spectrum of order unity [38].

A drawback of the method is that the Hilbert space increases exponentially (~ 22(V+2))
when new sites are aggregated to the chain, transforming the diagonalization of such
large-sized matrices numerically prohibitive. This problem is circumvented by setting a

truncation scheme which only keeps the lowest M energy states of the spectrum of H NFEI

Wilson justified this procedure arguing that for calculating low temperature properties
of a system the low-lying energy states are the most relevant [I0, 36]. In this way, an
important observation is that neglecting the high-energy spectrum does not spoil the
low-energy one in subsequent iterations [9]. Also, as the addition of a new site can be
viewed as a perturbation of relative strength A~'/2, high-energy states become less and
less important as the number of sites increases. Of course on approaching the continuum

limit A — 1, an increasing number of states should be retained to ascertain liable results.

It should be noticed that the outputs of the method are obtained from a compromise

between two conflicting goals: first, one wishes accurate results which implies the choice

13 Alternatively one may keep the states within a range of energy E. of the ground state energy [38].
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of a "small" A (close to unity) to minimize discretization error and making M large
to reduce truncation error, both requiring extensive computational demand; Second, a

shorter computational time, implying to larger A and smaller M [38].

The procedure in going from step N to N + 1 is summarized in Fig. . In a) is the
truncated spectrum of Hy with its ground state set to zero. b) shows the same spectrum
scaled by the factor A'/2. The spectrum after the new site is added is shown in ¢) and d)

presents what it looks like after truncation and setting the ground state energy to zero.

This closes our discussion on the basic scheme of the NRG method. In the next topic

we approach on the interpretation of the NRG outputs.

a) b) . c) d)
Eq(r) AT E_(n) .0 after truncation

m

z
=
+

Figure 21: Tllustration of how one passes from Hy to Hy 1 in the NRG. a) Lowest energy
levels of the chain Hamiltonian Hy. Note that the ground state is set to zero. b) Scaling
of the states in a) by the factor A'/2. ¢) Low-energy states of Hy 1. d) Spectrum of Hy,
after truncation and setting the ground state energy to zero. Extracted from Ref. [9].

3.4.3 Overview on the physics of fixed points

An example of the eigenvalues flow calculated through the iterative procedure by
Krishna-Murthy et al [10] is shown in Fig. 22| for the symmetric Anderson model with
a flat band. The plot is clearly characterized by three regions, separated by crossover
regimes, where the solutions remain almost invariant as N changes. In this case the

eigensolutions approach a so-called fized point of the system.

A fixed point H* of the transformation R is defined by the condition| R? (H*) = H*.

14The transformation R itself does not have fixed points because the spectra due to a chain with
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The fixed points are numerically characterized by the condition that Hy and Hy.o
have the same low-energy spectra and that matrix elements of any significant operator O
obtained by the low-lying eigenstates of Hy coincide with the elements calculated using

the low-lying eigenstates of Hy o [10, [36].

L 1 1 1 1 1

A
5 15 25 35 45 55 N(odd)

Figure 22: Eigenvalues flow for the lowest energy states of the symmetric Anderson model
with a flat band from Ref. [I0]. The vertical axis correspond the fixed point eigenstates
shown in Fig. @ and S are "good" quantum numbers that allows optimization in the
diagonalization process (see Ref. |[10] for further discussion). Extracted from Ref. [10].

By setting the parameters of the Anderson model €, U, T in Eq. either to
zero or to infinity one obtains the weak- and strong-coupling fixed points of the model.
These particular fixed points are very important in the analysis and understanding of the
NRG results for two main reasons: i) They can be represented by a sum of effective single
particle Hamiltonians due to the impurity and to the conduction band, whose contribution

writes [38]:
N
H](VL) _ Z AN=n)/2 [enfggfna +t, (f;ggfn—lo + HC)} , (377)
n=L

where L determines the innermost shell f; onto which conduction electrons can hop,

which implies t;, = 0;

ii) The spectrum flow and thermodynamic properties of the semi-infinite chain Hamil-

tonian in the intermediate coupling regime (general values of €, U,rT ) are, in almost all

even and odd number of sites do not coincide. A good example is given in [38] which cites particle-hole
symmetry as responsible for the existence of a zero eigenvalue in a chain with odd sites that does not
exist for the even situation.
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situations, well described in terms of the results of the weak- and strong-coupling fixed
pointg™]

The realization that the physics of the weak and strong-coupling fixed points could be
extracted from the understanding of the structure of the conduction band Hamiltonian
is one of the many clever insights in Wilson’s approach: because H](VL) has a quadratic
form, the Hamiltonian Eq. can be diagonalized exactly. Since Eq. satisfies
the recursive relation Eq. , fixed point condition is attained through numerical
diagonalization of Eq. and observation that for large NV the eigenvalues approach
a limiting se@ invariant with N.

Figure 23| shows the lowest order eigenvalues for the weak- and strong-coupling fixed
points of the symmetric Anderson model obtained by Krishna-Murthy et al in Ref. [10]
for a flat band (r = 0). The fixed point Hamiltonians Hro, Hyy and Hge denote the free
orbital (also named free impurity [38]), local moment and strong coupling fixed points,

respectively [10].

Charge Spin Index Energy in X
Q S r Hyo Hi'w Hsc
1 0 1 0 . 0
2 n Ing n
3 2y 7 297
4 2n; 2} +n3 29;
5 Int 29t +93 3:?).1‘
1 6 n 20t +n3 3
2 T 1 n 20} th
2 20y 0+ 2%
3 Int n +m3 30y
4 n Int +n3 o
5 nf4n3  3ni 4wl A +a
6 nt +n} 23 A+ @

Figure 23: Lowest energy states for the free orbital, local moment, and strong coupling
odd-N fixed point Hamiltonians of the symmetric Anderson model with a flat band, r = 0.
Extracted from Ref. [10].

The Symmetric Anderson model has three fixed points. The free orbital fixed point

15 This is true for the metallic case. However, for pseudogap systems there are intermediate coupling
fixed points that are only accessible by a full implementation of the NRG [38§].
16 Actually there will be two sets of limiting values, for odd and even N.
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corresponds to the choice €, = U = I' = 0 in Eq. and is described by the sum of H](\?)
in Eq. and a free impurity orbital of zero energy [10, B8 55]. The Local-moment
fixed point corresponds to the configuration I =0and U = —2¢;, = co. The effective
Hamiltonian describing this process is again given by the conduction electron term H](g),
but now the impurity state is restricted to the single occupied configuration [10] B8], [55].
The symmetri strong coupling fixed point occurs when I' — oo, U and I' remains finite.
In this case an infinite gap separates the ground state and excited states, whose energies
~ I''/2 (see Table I in [I0]), of the atomic Hamiltonian. In this situation the coupling
between the impurity state and the conduction electrons is so strong at the impurity site
that hopping of conduction electrons onto or off shell 0 is completely suppressed. As a
consequence the fy degrees of freedom are "frozen out" [38]. Hence, the conduction-band
excitations of this system are described by H](\}) in Eq. .

We now have the tools to understand the eigenvalue flow diagram of Fig. 22| The
data was obtained from NRG calculations by setting U/D = 1073, U/#x[' = 12.66 and
eq = —U/2 [10]. Comparing the eigenvalues in Fig. 23|and the energy values in the vertical
axis of Fig. We recognize that the system starts in the free orbital regime (5 < N < 15)
and, as the system evolves, it enters the local moment regime (15 < N < 55) and ends at

the strong coupling phase (61 < N).

Understanding the energy flow such as the one in Fig. is very helpful for the
interpretation of the behavior of the thermodynamics quantities calculated through the
NRG, since they resemble the same features as the energy flow. This is illustrated in Fig.
where the numerical results for the impurity susceptibility corresponding to the flux
in Fig. 22| are given by the curve denoted by A.

This picture suggests that the iterative process sets up a temperature scale where
higher values of the iterative step N is associated to lower temperatures. With this in
mind we immediately identify the pattern of Fig. in curve A of Fig. for high
temperatures the system is in the free orbital regime whose susceptibility approaches
ksTx/(gug)? = 1/8, where g is the gyromagnetic factor and pp is the Bohr magneton
[10]. As the temperature is decreased, the system crosses over to the local moment phase
and the susceptibility is increased to the value kgT'x/(gug)? = 1/4 characteristic of a
free spin-1/2 impurity. A further temperature decrease drives the system to the strong-
coupling regime where the local moment is screened, a signature of the Kondo effect, and

ksTx/(gup)? vanishes.

7"There still exists an asymmetric strong coupling fixed point for the asymmetric version of the An-
derson Hamiltonian [3§].
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Figure 24: Impurity susceptibility for the metallic symmetric Anderson model calculated
in Ref. [10]. We see that the pattern presented in the energy flow in Fig. 22]is reproduced
in curve A. Extracted from Ref. [10].

We note that the curve denoted B has a very different behavior, crossing from the
free orbital phase straight to the strong coupling one. In this case U/D = 1072 and
€q = —U/2 as in curve A, but the ratio U/7[' = 1.013. In this case, the increase in the
coupling inhibits the existence of a local moment and hence this phase is not present in
the susceptibility curve B in Fig [24] (a similar pattern is seen in the energy flow, see Fig.
6 of Ref. [10]).

An important difference between curves "A" and "B" is that, as long as there is no
local moment to be screened in "B", the vanishing of the susceptibility in this case is not

attributable to the Kondo effect.

This discussion shows that the symmetric Anderson model is very useful for intro-
ducing the main ideas in the analysis of the NRG results. However, the susceptibilities
calculations that we perform consider the most general situation where e¢; # U/2, this

leads to the asymmetric version of Anderson’s model.

The analysis of the NRG results for the asymmetric Anderson model is similar to
the symmetric case. However, now the physics is enriched by the appearance of other
weak- and strong-coupling fixed points [38, [55]. Besides the free impurity, local-moment
and strong-coupling encountered earlier, we also have a valence fluctuation fixed point,
which consists in choosing €, = I' = 0 and U = oo. It is described by the effective
Hamiltonian H](\?) and an impurity part where doubly occupied configurations are ruled
out the Hilbert space. Another novelty is the frozen-impurity fixed point which is obtained

when €; = co. Under this condition the impurity level is completely depopulated. The
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electronic excitations are again represented by H](\?) in Eq. . There also exists
an asymmetric strong coupling fixed point [38] obtained by adding to the conditions of
symmetric strong-coupling the requirement that e; — oo in Eq. . In this case the f;
degree of freedom is also frozen and the effective Hamiltonian describing the system will
be given by H](\?) [38]. In Ref. [38] it is argued that the frozen impurity and asymmetric
strong-coupling are physically equivalent. Hence analysis of the Anderson Hamiltonian

properties can be focused only on the frozen impurity one.

Another aspect of major importance in the analysis of the NRG results is the discus-
sion of the stability of the fixed points [10, 36l B8, 55]. As we saw from Figs. 22 and [24]
as the Hamiltonians Hy were iterated the system passed through the free orbital regime,
local-moment and apparently remained still in the strong-coupling phase. The immediate
questions that rise are: why the solutions evolve in this way and how can one guarantee

that the solutions will not evolve forever?

Suppose that Hy is close to a fixed point solution H*. It has been shown [I0] that
the deviation from the fixed point Hamiltonian can be written as a linear combination of

operators O; associated with the active degrees of freedom at the fixed point [38]

where ¢; denotes the coefficients of the expansion and \; are the eigenvalues associated
to the operators O;. The eigenvalues \; will determine whether the fixed point will be
stable or not. The operators O; may be classified according to the eigenvalues associated
to them as: relevant (\; > 1), irrelevant (\; < 1) or marginal (A; = 1] A fixed point
that has relevant perturbations is unstable, this implies that if the solution is close to this
fixed point the perturbations will drive the system away from it. If the fixed point has
only irrelevant perturbations the opposite occurs and this fixed point is denoted as stable.
For the case of marginal perturbation the analysis is not so simple and the system may
be stable or unstabld’l

Coming back to our example of Figs. and [24] we see that the flux flow indicates
that the free-orbital and local-moment fixed points are unstable and the strong-coupling

is stable, consistent with the more detailed analysis presented in Ref. [10].

Marked differences appear in the analysis of the fixed points for pseudogap systems

as compared to the metallic case. For instance, the local moment is always stable, ir-

18See Ref. [10] for a more complete discussion.
19GSee Ref. [36] for a full account of this problem.
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respective of the sign of the Kondo model coupling J, for the pseudogap while for an
antiferromagnet coupling the fixed point is always unstable for a flat band [38]. Another
significant departure occurs for the symmetric strong-coupling fixed point that is only
stable under very restricted conditions (for > 1/2 it is always unstable, for example) for

the pseudogap and is always marginally stable for » = 0 [38].

The differences presented in the stability of the fixed points for the pseudogap model
have profound consequences and put this impurity problem in a distinct universality class

than the "conventional" r = 0 problem.

Next we address in more detail some manifestations of the distinct character of these

systems, in particular, the impurity susceptibilities.

3.4.4 Numerical evaluation of thermodynamic properties. A com-
paritive analysis between the metallic and pseudogap cases.

Experimentally, the contribution of an impurity to the thermodynamic property A of
a system is given by the comparison of the measured property for the whole system where
the impurity is immersed and a reference system without impurity. Based on this, the
effect on the quantity A of adding a single impurity to a host is defined as [38]:
0)
Aimp = (Aimp = (A) = (A)o = lim_[Tr (A=) = Ty (AeIN) | (3.79)
—00

!

where A is an operator which depends on the property of interest, "Try" means a trace

over an impurity-free system and the factor Sy is defined as [3§]:

By = aDAN2(kgT) ™" = BaDAN/2, (3.80)

Wilson showed that the error committed in estimating A;p,, for a finite IV is of order
By /A |10, 36]. Hence, to compute thermodynamic properties for a whole sequence of
temperatures Ty, associated with the Hamiltonians Hpy, within a certain degree of pre-
cision, all one needs is to select an appropriate 3 and make By = 3 in Eq. . A
logarithmic temperature scale T is obtained from the 7’s given by Eq. for each
NRG step. The Ay, calculated from Eq. , for a given N, is associated with the
temperature Ty. Naively one can be tempted to take 3 vanishingly small aiming at high
precision estimates. However, another factor "forbids" this choice: the truncation scheme
on the energy spectra of Hy (which throws out the high energy states). To minimize the

contribution of missing states to A;y,;,, one should make BE, as large as possible, where
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E, is the maximum energy kept with respect to the ground state. In practice, 8 used for

the NRG simulations takes a value slightly smaller than unity [10] 38].

Measuring the quantity A, for the same temperature calculated using different 3 is
a rough indicative of the accuracy of the numerical results [10]. More discussion on the

estimate of the discretization error is found in Sec. V. C. of Ref. [38].

Now we focus on the analysis of the numerical results for the impurity contribution
to the zero-field magnetic susceptibility, which is expressed as [3§]:

—BNHY)
kT X Tr (S2e—BnHNY Ty (Sge N)
BB~ Ximp _ lim T< = )— ) (3.81)

(g1p)° N—roo N Z](\?)

where pp is the Bohr magneton, g is the Landé g factor, Zx denotes the system partition
function and Sy is the z component of the total spin of the system. In the remaining of
this section we set kg = g = up = 1 in order to adopt a more compact notation for the

susceptibility.

It should be mentioned that close to the fixed points an analytical approach of the
impurity properties is available based on a perturbative treatment of the fixed point
effective Hamiltonians we mentioned earlier. These results give an important support
in the analysis of the numerical data. A good account of the analytical treatment for
the Anderson model is encountered in [I0, 55| for the metallic case and in [38] for the

pseudogap one.

Besides the susceptibility study, the ground state occupation of the system is an
important tool to complement the fixed point analysis, which is based on low-energy
excitations relative to the ground state. As expected, at high temperatures the Anderson
model exhibits charge fluctuations due to population of different ny subspaces. However,
these fluctuations are strongly suppressed as temperature drops below a value Tr =
max(|eq|, ') (U > T, |eq| ) [38]. In this case the ground state occupation is well described
by one of the three configurations [38]: i) local moment (ng) ~ 1; ii) empty impurity
(ng) = 0; iii) mixed-valence which involves significant occupation of more than one ng4
value. As we will show, a system can flow to the same fixed point but with different

ground state occupations.

Figure [25[shows the results obtained from NRG calculations of the magnetic suscepti-
bility for the pseudogap Anderson model for the case of graphene (r = 1), with U = 0.5D,
[y = 0.016D and varying level position €, (see Fig. [26).
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Figure 25: Ground state occupation (top) and impurity susceptibility (bottom) of the
pseudogap Anderson model with » = 1, U = 0.5D, I'y = 0.016D and varying level
position €, (see Fig. :

Figure 26: Illustration of the levels positions for the pseudogap model of Fig. for ¢4
below a) and above b) the critical level ¢,.

Here, the low temperature dependency is remarkably distinct from the metallic case
(see Figs. and [27| for a comparison). At high temperatures, the system is close to the
free orbital fixed point and Ty, = 1/8. As the temperature is lowered, the susceptibility
behavior becomes dependent on the position of the impurity level relative to the Fermi

energy. Clearly, two distinct regimes appear separated by a curve obtained for the level

at the critical energy e, .

For e > €4,, the system flows to the frozen impurity fixed point where 1"\, — 0.
However, no Kondo screening occurs in this situation because the ground state occupation

is null and there is no local moment to be screened (see the ground state occupation curves
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for e4 > €4, in Fig. [25).

The susceptibilities curves for which ¢; < €4, flow to T'\imp = 1/4 which is the
characteristic value of a free spin 1/2. This is supported by the occupancy curves in
Fig. [25| which confirm that a free spin survives all the way down to 7" = 0. This "weak-
coupling” limit in which the local moment fixed point is stable is a special aspect of the
pseudogap systems [38], as we mentioned when discussing the fixed points of the Anderson

model.

Another novelty is the "intermediate-coupling” fixed point at ¢; = €4,. This charac-
terizes a quantum phase transition which has no counterpart in the metallic case. Also,
its behavior is not compatible with any of the other fixed points we discussed and is only
obtained through a fine tuning®|of €;. Gonzalez-Buxton and Ingersent [38] identified this
fixed point as a manifestation in the Anderson model of the fixed point discovered by

Withoff and Fradkin in the Kondo model expressed by the critical coupling J = J. [37].

An extensive study on the importance of the value of the exponent r of the hybridiza-
tion function and the role played by particle-hole symmetry is found in Ref. [38]. The
authors confirm the prediction, originally derived from scaling theory [67], that the local
moment ground state configurations is favored by an increase in r at the expense of a
shrinking of the parameter space for which the mixed valence phase is attainable. This
can be observed in the results of Fig. where the system goes straight from the free-
impurity regime to the local moment one (see also Fig. 3 in Ref. [67] and Figs. 7-9 and
12 in Ref. [38]).

For situations of particle-hole symmetry, it was observed that for r > 1/2 the value
of the critical coupling J., which the system has to overcome in order to Kondo screen a
local moment, diverges (see Fig. 1 of Ref. [68]). If the symmetry is broken, the critical
coupling is finite, but Kondo screening gets harder to achieve for increasing r 38, 67, 68].
According to scaling arguments, increasing r implies in a reduction of the coupling J and
the condition for Kondo screening poJ. ~ r [37] (po given in Eq. (3.45))) is restricted to
smaller parameters windows for growing . For r > 1 scaling indicates that the condition
is hardly satisfied (see Fig. 2 in Ref [67]). Numerical results in Refs. |38, 67| give support

to those results.

Another important aspect is the observation of two distinct intermediate-coupling
fixed points associated to the existence or absence of particle-hole symmetry, denoted as

SCR and ACR, respectively. The physics is significantly different whether r < r* = 0.3754

20Tt can also be achieved by fixing e, and varying U or 'y instead, see Sec. VI in Ref. [3§].
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where particle-hole symmetry is marginally irrelevant and only SCR exists [38], or r > rx
where ACR emerges (see Refs. |38, [39] for a thorough discussion).

We now turn to the analysis of the results of Fig. [27] We see here how the above

picture changes in a metallic system.
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Figure 27: Left: "level" position associated to the "full impurity" (top), "Kondo" (middle)
and "empty impurity" (bottom) curves. Right: ground state occupation (top) and impu-
rity susceptibility (bottom) for the metallic Anderson model with U = 0.5D, I'y = 0.15D
and varying "level position" de.

We see that susceptibilities always vanishes in this "vanilla" (conventional) case sig-
nalizing that the system always flows to a strong-coupling regime, where any net moment

formed is screened.

The importance of the analysis of the ground state occupancy is key here: even though
the three curves flow to the strong-coupling regime, each one presents a different ground
state configuration?] This observation allows one to understand the different behaviors
of the curves in Fig. 27]

We first consider the situation represented by the blue curve labeled "Kondo". In
this case the impurity is placed at an energy de (= €5 — i) below the Fermi energy but in
such a way that de + U lies above the Fermi energy (e, + U > 0) Fig. The manifold
of states for the Anderson Hamiltonian in this configuration is represented in Fig.
where the unoccupied and double occupied states are high excited states with respect to

the single occupied one.

21 See also Fig. 1 and discussion on sec. VI A. 1. in Ref [3§].
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Figure 28: Manifold of states for the "Kondo" a), "empty-empurity" b) and "full-
impurity" c) configurations in Fig.

For very high temperatures (7" > U), the three impurity states are effectively de-
generate, due to hybridization with conduction electrons, and the free-orbital regime is
observed (the region with 7'y, ~ 1/8 in Fig. . As temperature drops slightly be-
low D, the ng; = 2 subspace is thermally depopulated but ny = 0 and ny = 1 are still
equally thermally populated leading the system to the valence-fluctuation regime where
TXimp =~ 1/6. This fixed point is highly unstable and for the parameters used the system
is not strongly attracted to this, only touching T'x;.,, ~ 1/6 and rapidly flowing away
from it. Further decrease of temperature depopulates the ny; = 0 subspace leaving only
nqg = 1 subspace thermally available (which explains why the ground state has occupation
(ng) = 1) and resulting in the formation of a local-moment regime characterized by the
climb of the susceptibility until 7'y, =~ 1/4, characteristic of a free spin-1/2. Finally,
cooling the system even more leads to the strong-coupling regime where the conduction
electrons "freeze" the local moment resulting in a vanishing susceptibility due to the

Kondo effect.

The other two curves in Fig. show a high temperature behavior similar to the
Kondo curve, the physics is the same as the one we have just discussed above. We focus

on the analysis of the low temperature physics.

The black curve, which we call "empty-impurity" for reasons that will be clear soon,
corresponds to the choice of a positive value of de in such a way that the single occupation
level will lie above the Fermi sea (Fig. bottom left). The impurity configuration in
which ny = 0 now is lower in energy than the ny, = 1 case. The manifold of states for the

Anderson model is represented in Fig. 28p.

When the system temperature is lowered, the only thermally populated configuration
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is the ngy = 0 one (which explains the origin of the "empty-impurity" term). This is the
reason for the absence of a local moment regime in this case. Instead, the system flows
directly from the free-orbital to the frozen-impurity phase. Even though T"x;;,, — 0 at low

temperatures, the Kondo Effect does not occur since there is no moment to be screened.

The last scenario is the one described by the "full impurity" curve, which represents
the situation at which the impurity level is drown in the Fermi sea as shown in Fig.
top left.

The level configuration in which ny, = 2, whose energy is 2¢; + U, now becomes the
lowest in energy (see Fig. [28). If the level is not immersed very deeply, single and
double occupancy might be close in energy and eventually become hybridized if the level
difference is < I'. This explains why the ground state mean occupancy takes the value close
to 1.5. Further immersion of the level into the Fermi sea rise the energy difference between
ng = 1 and ng = 2 configurations and the ground state mean occupancy approaches 2 as

temperature is lowered.

Here again, as there is no significant net moment, the local moment regime does not
develop and the system flow from the free-orbital phase to the strong-coupling without

presenting the Kondo Effect.

The Kondo temperature Tk is determined through the criterion T X;m,(Tx) = 0.0701
[10]. For the cases where the Kondo screening does not occur, like in the full and empty
impurity susceptibility curves of Fig. and in the pseudogap results of Fig. [25] the
temperature satisfying the above criterion (7% X;m,(T*) = 0.0701) is denominated as a

crossing temperature 7™ which is dissociated from the Kondo Effect.

We now call the attention for two aspects of major relevance concerning the results
of Fig. 27 First, it should be noted that, as represented in the left panels of this figure,
the metallic Kondo encountered is not associated to a flat band, but to graphene’s linear
density of states. Obviously, the special features of the pseudogap are "lost"??| when the
Fermi level is displaced away from the Dirac point resulting in a system whose properties
resemble those of a metallic system. This observation sheds some light in the fact that the
resistivities encountered by the Maryland’s group in Fig. fit so well the NRG results
derived for the metallic system in Ref. [58].

The second point is that, contrary to the pseudogap susceptibilities that were obtained

by varying the level position respective to the Fermi level, the "Kondo", "empty-impurity"

22 According to Ref. [I1], the influence of the pseudogap still has very important consequences on this
system.
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and "full-impurity" configurations in Fig [27] results from the variation of the Fermi level
while keeping the impurity level fixed. This "tunability" of the Kondo effect in graphene
is another unusual aspect of this material. It stems from the allowance of the system in

being electron/hole doped easily over an appreciable energy range [13].

The issue of the Kondo problem for a system with a linear density of states such as
graphene was already addressed in the context of d-wave superconductors |37, 38|, 65], 60,
67). However the tunable character of the Kondo effect in graphene is a unique property

(over many other special ones) of this system.

The matter of a tunable Kondo effect was previously addressed by Vojta et al [11] who
considered the effect of the gate potential to dope graphene and explored its consequences
for the Kondo physics near criticality, which in terms of the Kondo coupling is expressed

by the relation J ~ J..

According to the authors [IT], the influence of the asymmetrical critical (ACR) fixed
point, encountered for the pseudogap Kondo Model, for » > r* = 0.375 at u = 0 [38],
should also appear in the results obtained for p # 0 as well [I1, 39] for the case of
graphene, r = 1, as shown in the phase diagram of Fig. 29}

A
SC (screened)

LM (unscreened) A ASC (screened)
\é o .‘/ -
Jo

Chemical potential p
(]

SC (screened)

Figure 29: Phase diagram for the pseudogap Kondo impurity with » = 1 as a function
of doping p and Kondo coupling J. Close to criticality the doped system still suffers
influence from the pseudogap. Extracted from Ref. [LI].

They performed an analytical study of the dependence of Tx on p through a field
theory technique applied to a model equivalent to a maximally asymmetric (U = oo)

Anderson model, suitable for the description of the ACR fixed point physics [11] B39].

For r < 1 the Kondo temperature was found to obey the relation Tx = k4 |u| where
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K4 is a constant factor valid for p = 0 [11]. Except for the particle-hole character of the
relation, this result keeps great similarity to one derived by scaling arguments which gives

Tk = k|u| [42] with x a universal prefactor depending on r [111 39].

The situation changes drastically for » = 1 where a large particle-hole asymmetry
manifests in Tk according to the sign of u. For p < 0 the former relation still applies,
but for positive u Tk was found to obey Ty o |u|* where z ~ 2.6 is a universal constant
[111 39].

The special behavior of » = 1 is associated to the fact that this case plays the role of
an upper critical dimension of the pseudogap Kondo problem (hybridization is relevant
(irrelevant) for r < 1 (r > 1)) and in this case the RG flow presents logarithmic corrections

that lead to the distinct behavior of Ty [11], 39).

Support to the analytical treatment results was obtained through the use of NRG
calculations [IT]. The susceptibilities shown in Fig. are consistent with particle-hole
asymmetry showing Kondo screening for © > 0 and a behavior similar to the full impurity

or empty-impurity, we discussed earlier, for p < 0 [11].

The authors mention that this particle-hole asymmetry is closely related to the asym-
metry of the critical fixed point ACR with little influence of particle-hole asymmetry of
the hybridization function [TT]. Tt is also argued that due to the relation Ty o< |ul|”, the
low-energy physics is governed by two distinct scales: p and Ty [I1].

Motivated by the possibility of adsorption of magnetic atoms at the graphene surface
and considering DFT results for a C'o atom in the center of a graphene hexagon, Ref. [11]

constructs a microscopic model and tests their predictions for this model.

The asymmetric behavior of Tk at the critical coupling was confirmed with the ob-
servation of linear and power-law dependency of Tk on p for negative and positive bias,
respectively (see Fig. ) The system behavior near criticality was also explored and
reveals close similarity to the critical one, but with the minimum of Ty at positive bias
for J # J. [11].

Although the theory of Kondo effect in doped graphene developed in Ref. [I1] presents
very interesting results, they are not in accordance with the experimental data of Ref. [I]
which presents only a small particle-hole asymmetry in the Tk estimates and these do not
show power-law dependency on p (see Fig. . Also, the data fits a single parameter scale
which is not consistent with Ref. [IT] which predicts the breakdown of single parameter

scaling.
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Figure 30: a) Susceptibility curves obtained from NRG for the critical coupling for differ-
ent chemical potential u. b) NRG calculated Kondo temperatures as a function of doping
for Kondo couplings near criticality. Extracted from Ref. [I1].

In the next chapter we put forward an alternative model for studying the effects of
vacancies on the Kondo physics of graphene. As we show, there is an important piece

which was not considered so far: disorder.
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4 Kondo effect in disordered
graphene

4.1 Nature of the defects

The induction of magnetism in graphene through the introduction of defects in the
graphene sheet is a matter of long debate [17, 149, 50]. A particular case of such defects is
a vacancy, which is characterized by the removal of a carbon atom from the honeycomb
lattice structure (see Fig. 31]). This can be achieved through ion irradiation as conducted
by the Maryland’s group experiment, discussed in Sec. 2l The same setup has been used
by other experimental groups [2, 53, 54, [73].

The appearance of magnetic moments due to vacancies was experimentally confirmed
1L 2, 53], 54 [73, [74]. However, the explanations for the origin of this magnetism are still
controversial [2], 12, 50}, BT, B2, [75] 76 [77, [78], and much of this stems from the complex

structure of the vacancy.

In real graphene, the removal of a carbon atom originates three dangling bonds com-
posed of "orphan" o orbitals which were part of the bond between the removed atom
and its nearest neighbors (see Fig. ) This structure is highly unstable, and can give
origin to different kinds of lattice reconstructions [12 50l 51} 52} [75] [76] 77, [78], depending
whether the graphene is suspended or deposited over a substrate whose mutual interac-
tions play an important contribution to reconstruction. Besides, the dangling bonds are
extremely reactive and can easily be passivated by foreign species such as H. Because

all these variables, a complete theoretical description of such structure requires extensive
ab-initio (DFT) studies.

Many works based on DFT calculations have been put forward to study this issue, but
the results are contentious. One of the major discrepancies, for instance, is that magnetic
moment varies in estimates in the range mp = lug — 2up [50, BIl, 2] 75 76, [77, [78].

Magnetic moments greater than 1up are attributed to m and o contributions to the va-



62

Figure 31: (a) Illustration of a carbon vacancy; (b) Reconstruction after the Jahn-Teller
distortion forming a pentagonal structure; (¢) Out-of-plane displacement of the apical
atom. Extracted from Ref. [12].

cancy magnetism [51), [75] [76], [77, [78]. Other calculations indicate that 7 magnetism should
vanish for any concentration of vacancies realizable in experiments unless the three o dan-
gling bonds are fully passivated by H [52]. On the other hand, recent experimental results
support the scenario of vacancy magnetism as having a twofold contribution emanating

from o and 7 orbitals [2].

According to DF'T, due to Jahn-Teller distortions, two of the dangling bonds recon-
struct forming a pentagonal structure (see Fig. ) The remaining dangling bond hosts
the localized o orbital and, hence, is responsible for the emergence of the o magnetism
[51]. Whether the apical atom stands in the sheet plane or forms a non-planar structure
(see Fig. [B1k) is another issue where the DFT results diverge. Most of the more recent
DFT results claim that the equilibrium solution is the planar configuration [511 52} [75], [76]
but a very recent study argue that those solutions are very close in energy and the ground

state could also be the non-planar configuration [77].

The above discussion is crucial in the context of the Kondo effect, since several works
[79, 80, 81l [82] attribute the occurrence of the effect to the quench of the localized o
moment. However, coupling of the conduction 7 electrons and the o orbital is only
possible in the non-planar scenario [51], the reason is that those studies do not consider
other disorder mechanisms, hence, due to orthogonality the coupling does not occur.
Also, it was pointed out that magnetism survives only under small distortions of the

lattice [75} (78], making the Kondo effect due to o orbitals more improbable.

The other contribution to vacancy magnetism is the one from the 7 states. Theory
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predicts that the effect of the vacancy in the m band is to create a resonant state in
the midgap region which is localized in the majority sublattice and whose wave-function
decays like the inverse distance from the vacancy position [51] B3] (a further discussion of
this result is given in the next section). The formation of a local moment associated to
this state is supported by DFT results [5I]. 7 magnetism is also predicted theoretically
by a tight-binding model which shows that after removal of a carbon atom, a substantial
amount of magnetization is transferred to the vacancy neighbors [45], however, the study
claims that in clean graphene a local moment should remain unscreened down to low

temperatures [45].

Once a local moment is formed, by including the Coulomb repulsion and couplingﬂ
with the conduction band, the ingredients necessary for the rise of the Kondo effect are

all set.

Below we propose a model to study the Kondo effect in the context of 7 local moments.
We do not attempt to consider lattice reconstructions. In this way, our modelling amounts
to the ideal case where the lattice remains undistorted or, more realistically, that the
dangling bonds are all passivated for foreign species such as H. Although this seems to
be a great simplification, it is energetically favourable due to the high reactivity of the

dangling bonds as was found in the literature [76].

4.2 The model

We investigate the occurrence of Kondo effect due to a single monovacancy in a
graphene sheet. The relevance of the model to the experiment [I] is supported by the
fact that the irradiated samples used in the experiments were submitted to a irradiation
time chosen to guarantee a very diluted concentration of vacancies [T}, 2], 53], 56]. Besides,
molecular dynamics studies have been developed to simulate and model the behavior
of graphene patterned by focused ion beams (FIBs). According to these calculations,

irradiation of graphene monolayers by Ne and He up to 1 keV only monovacancies are
formed [85].

As we discuss in the sequence, a vacancy gives raise to a localized state that is coupled

by disorder to the graphene electronic extended states with a non-uniform DoS.

! Although the Kondo effect found in the experiment of Ref. [1] requires a antiferromagnetic coupling,
a study based on dynamical mean field theory found a Curie-type susceptibility and attributed that to a
ferromagnetic coupling of the impurity and the conduction band [84].
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The remaining of this section justifies the elements of the model Hamiltonian we

adopt. For that purpose we switch the notation to first quantization.

4.2.1 Localized state

We begin considering a nearest neighbor tight-binding Hamiltonian for a pristine

monolayer graphene sheet with a single vacancy at the site v, that reads
Hy=—tY |i)(i[+t> V)il +He, (4.1)
(i.7) (v.i)

where (---) indicates a sum over nearest-neighbor atomic sites and ¢ is the hopping term.
The second term decouples the v-site from the honeycomb lattice. We remove the resulting

state from the Hilbert space, mimicking a vacancy.

The solution to the eigenvalue problem

Hy|p) = €4|0) (4.2)

gives extended states with non-zero energy {|v)} and a single zero-energy localized state
0) [4], see Fig. 32] We solve Eq. numerically using periodic boundary conditions
with supercell sizes N; > 1. Since the supercell is very large we consider that the Brillouin
zone can be well represented by a single value k = 0. In Fig. we show the localized
and a typical extended state obtained from our numerical calculations, this is in good
agreement with earlier results reported in the literature (see Fig. 4 in Ref. [4]). The
black dot in the center of the lattice is the vacancy position and the circles radius on
each lattice site are proportional to the wavefunction amplitude at the corresponding site.
Thus, larger circles correspond to higher amplitudes. Blue (red) circles denote positive

(negative) signs of the amplitude at each site.

For the model Hamiltonian Eq. , the presence of the zero mode is mathematically
guaranteed by a theorem demonstrated in Ref. [4]. According to this theorem, for any
bipartite lattice with nearest neighbor interactions plus a local energy (e, e€p) for each
sublattice, whenever there is an imbalance in the number of sites of the two sublattices
n = Ny — Np > 0, there are n degenerate eigensolutions associated to the eigenvalue €4,
the on-site energy of the majority lattice. For neutral graphene €4 = 0, this is the origin
of the zero modes, also known as midgap states since they are localized precisely at the
Fermi level. Another important characteristic resulting from the theorem is that the zero

modes are localized only on the majority sublattice A [4] (an alternative derivation for this
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characteristic is found in Ref. [51]). This can be observed in the wavefunction associated

to the eigenvalue ¢g = 0, obtained from exact diagonalization of the Hamiltonian Eq.
(4.1)), displayed in the right panel of Fig.
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Figure 32: Wave functions of a typical delocalized state (left) and the quasi-localized state
(right). The black dot in the center of the lattice denotes the vacancy.

The wave function associated to the midgap state has an approximate analytical form,

first derived in Ref. [83], which in coordinate representation reads:

aKTr eU{r

— + — .
r+wy =y

Yo(z,y) ~ (4.3)

This result was further improved to account for the oscillatory behavior of the wave
function due to the interference of the two Dirac cones using the Lippmann-Schwinger
equation formalism and modelling the vacancy as (the infinite limit of) a localized impurity

potential [51]:

bolr) = j\rsin (K—-K')-r/2—0,]cos[(K+K') -7/2 —7T/3]7 (4.4)

r

where in Eqs. (4.3) and ({@.4), K = 2ma~'37%/2(~1,v/3), K’ = 2ra~'37%2(1,/3) denotes

the two inequivalent Dirac points in the first Brillouin zone, 7 is a coordinate vector with

origin at the vacancy site, and for the remaining terms in Eq. (4.4]), N is the normalization

constant and 6, = arctan(z/y) with z and y denoting the coordinates of the vector 7.

Our numerics agree with the results derived from Eq. making us confident with

the supercell size choice.

The important point about the zero-mode wavefunction is that it decays with the
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distance from the vacancy as ~ 1/r [see Egs. and (4.4)] and thus has a "quasilo-
calized" character. This designation was given by the authors of Refs. [4] [83] because,
due to the 1/r decay, 1y is not normalizable in the limit of infinitely large lattice sizes.
The remaining states are delocalized as demonstrated by measurements of the inverse
participation ratio (IPR)P| for those states in Ref. [4] (for more details see Fig. 5a in this

work), in good conformation with similar calculations that we performed.

The fact that the eigenstates associated with the vacancy Hamiltonian Eq. (4.1)) are
represented by a localized state in the Fermi level and the set of extended states has a
density of states with a linear dependence is key in the Anderson-like model we construct

in the following.

Before introducing interaction and disorder to map Hamiltonian FEq. into an
Anderson-like one, we should keep in mind that in this study we treat the case of a single
vacancy and the experiments deal with diluted vacancies. To make contact with the
experiment we assume that hybridization effects between quasilocalized states centered
at distinct vacancies are very small due to the 1/r decay. Hence, one expects states very
similar to the ones given by Eq. centered at each vacancy, namely, 1o(r — R;), where

R, is a lattice site.

4.2.2 Mapping into the Anderson Hamiltonian

According to the Hamiltonian Eq. the creation of a vacancy provides us a single
localized state and a "band" continuum of extended states. Recalling the reasoning of the
Anderson modelling we discussed in Sec. [3.1} upon coupling of the localized state with
the band and inclusion of Coulomb interactions we have all the necessary ingredients for
the onset of localized moments. As we show below, the mapping into the Anderson model
is not a straightforward matter because the extended states {|v)} and the localized one
|0) are not coupled. This is easily by seen by introducing projection operators into the

extended and localized subspaces, defined as:
P=> "|v){v| and Q=0)(0]. (4.5)
v#0

(P and @ have the usual projector operator properties, namely, P? = P, Q* = @, and
PQ = QP = 0) P and @ span the whole Hilbert space and define the completeness

2The IPR is a tool to measure the degree of localization of a wavefunction. It is defined as P(Ey) =
> W, (r;)|*, where n labels the eigenenergies and respective states, and i denotes the sites position. If
a state is delocalized P(FEx) ~ 1/N whereas for a localized state it approaches unity.
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relation P 4+ @ = 1. Since H, is diagonal in the {|v)},|0) basis, PH,Q = QH,P = 0.
This is one of the ways the algebra tells us that |0) and |v) are uncoupled.

If we wish this model to display any Kondo effect, we need a mechanism that couples
the vacancy-induced localized state and the m-band states (otherwise the local moment
will never be quenched). At this point the contact to the experiment’s "real" world plays
in our favour once one realize that real samples are disordered. As we show, disorder
provides a natural mechanism to couple the localized state |0) to the extended ones,
{|v)}. For simplicity we avoid disorder mechanisms that can give additional localized
states, potentially obscuring our analysis. For that reason we consider only long range

disorder due, for instance, to charge puddles, ripples etc [16].

The modified Hamiltonian that accounts for the presence of disorder is given by
H = H, + Ugs (4.6)

where Uyg;s accounts for long range disorder sources (Ug;s is addressed in detail in Sec.
4.2.3). The disorder potential Uy can be represented in a site basis. For simplicity, let

us assume that Uy is local and write

Usis = ) [)Ui] (4.7)

1#£v
in the site basis.

The Hamiltonian H, Eq. (4.6)), can be expressed in terms of P and @, namely
H:(P+Q)H<P+Q)EHPP+HPQ+HQP+HQQ, (48)

with obvious notational convenience. The projector operator decomposition of Eq. (4.8)
separates the single-particle Hamiltonian into three parts. We associate Hpp with a band,

Hgq with the localized state, and Hpg (Hgp) to their coupling.

The Hamiltonian corresponding to the localized state reads
Hoq = [0){0|(Hy + Uais)|0)(0] = [0)e5™(0] (4.9)

since H,|0) = 0, €d® = (0|Uq4;5|0). The energy shift of the localized state energy, €3, can

be either positive or negative, depending on the disorder realization potential.
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The coupling term is written as
Hpg =Y [v){#|Uais|0)(0], (4.10)

since H,|0) = 0.

The projection into extended states reads

HPP*Z! Yeo (] + > 1) (| Uais/) (V). (4.11)

v,V

In general (v|Ugs|t') # 0. Hence, Hpp is not diagonal in the {|v)} basis. To map our

model into the single-impurity Anderson model, we still need to diagonalize Hpp,

Hpp|B) = €§°(8) (4.12)

and write the Hamiltonian H in the "new" {|3)} basis. For that purpose, we introduce

=> 183 (4.13)
B

and write the single-particle model hamiltonian as

the projection operator

HZHPIPI+HPIQ+HQPI+HQQ. (4.14)

While Hgg remains unchanged, the projection of H into extended states now reads

Hp/p/‘ﬁ> = €d15‘5> (415)

The [ states are all extended by construction, a property that is desirable for the band

states. The modified coupling term is
Hprg = Z 18)(B|Uais]0)(0] = Z [8)t40(0 (4.16)

where the hopping coeflicients t5y = (5|Uqis|0) fluctuate with § and disorder realization.

The terms in Eqgs. (4.9), (4.15) and (4.16)) can be identified (upon switching to second
quantization) with the impurity, hopping and band terms entering the Anderson Hamil-
tonian in Eq. (3.1). The mapping is complete after inclusion of the charging term U

addressed below.
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4.2.2.1 Charging energy U

The charging energy U corresponds to the Coulomb energy associated with a double
occupation of the localized state |0). It is rather tempting to use the localized wave
function ¥y(r) to evaluate U, namelyf| [79)]

U — 62/d27"/d27“/ WO(T)‘QWO(T/)P. (4.17)

Lt

As we show below this is not correct.

Equation (4.17)) gives U in terms of a two-dimensional integral of the electronic density.
The latter is expressed as a function of the envelop function ¢ (7) [see Eq. (4.4)]. In what

follows we show how the Coulomb interaction obtained from a three-dimensional integral
over the charge density is not reduced to Eq. (4.17)).

In general, the tight-binding basis is given by [26]:
1 kR /
(1) = E e r—t,— R), 4.18
Xk:@( ) \/N — ¢5( ) ( )

where ¢; is one element of the N;-dimensional primitive unit cell (PUC) basis and denotes
the position of the i-th atom in the PUC, R’ is the translation vector, N is the number
of unit cells, and ¢y(7) is the ¢-th atomic orbital wave function. Accordingly, the crystal

electronic single-particle eigenstates read [20]:
or (1) = chéi Xkti - (4.19)
0

where n labels the N; system states.

As standard, we use a single orbital, / = p., to describe the low-energy graphene
electronic structure. To address disorder effects, we consider large supercells, N; > 1,
with periodic boundary conditions. Hence, any k point is representative of the Brillouin

zone. We take k = 0 to write

1 ,
Xi(r) = Ny ;%z (r—ti— R (4.20)

3In the calculations of this section, for notation compactness, we write the charging energy U in the
vacuum. If graphene is in contact with another medium the calculated expressions should be divided by
the corresponding dielectric constant ¢q.
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(from now on we will omit the index p, in the orbital ¢) and
o) =3 (r), (4.21)
where

<m:{mwzvﬁmm> for n=v#0, 42)

' (i]0) = VA o(r;) for n=0
are the wave functions amplitudes on each lattice site obtained from the eigenstates of

H, and A is the supercell area.

In the tight-binding basis, the charge density associated to the localized state is

> e xi(r)

%

2

—eS Y (c§0>)* Xi(P)X (). (4.23)

1]

p(r)=e

Using the tight-binding orthogonal basis approximation

o= S|

the charging energy U is written as

(4.24)

U=c¢

‘ /ds /d3 , bl ‘T’_‘X;/(‘ ) ‘ (4.25)

Next we insert the explicit expression for the tight-binding basis, given by Eq. (4.20)), into

Eq. (4.25), namely

3 s Ixi(r | X (r 3 3,/
for [orbGIRIEE = [or far T o - -
2
1 / /
X X ‘\/N;qﬁ(r t,— R (4.26)

For N; > 1, we neglect contributions of order 1/4/N; from atomic orbitals located at
the edges of neighboring supercells and assume that the atomic orbital overlap vanishes,
unless R = R'.

Thus,

U—e Z) (0‘ /d3 /d3 , lo(r |T’_‘¢TE/| t;)” ’ (4.27)

which, by introducing the change on integration variables r — r —¢; and v’ — ' —t;, is
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more conveniently written as

o 10 PIo(r)P

d3
T—T/+t t]’

U= (4.28)

We are now ready to relate Eq. (4.17)) to Eq. (4.28)). Let us explicitly separate the
diagonal and the off-diagonal contributions to the sum at the r.h.s. of Eq. (4.28)), namely

U = Udiag + Uoﬁ

‘ /d3 /d3 ,lo(r |_|¢T(/| )|

‘ /d3 /d3 / T_T‘J:bt( _)‘z‘ (4.29)

+

Z#J

The diagonal contribution is

Udiag = (430)

where Ugpital 18 the p-orbital charging energy given by

S /f/fJ¢|w<ﬂ' )

|r — 7|

On the other hand, according to Pereira and collaboratorT] [4],

4 1
(0)
2N g (632
and thus
Uorbital
Udiag ~ (lOg N2)2 (433)
The off-diagonal contribution can be written as
0| 6() o)
i T r
U=y ﬁ / d*r / R , (4.34)
iz 0 orf* | 207 - (ti —t))
14
[t — &5 [t — &

where r = r — 7',

The orbital wave functions amplitudes ¢(r) decay very quickly for r/a 2 1 (a being

the carbon-carbon distance in graphene) and more so the overlaps of the wave functions

4Cazalilla et al [79] expresses the scaling in a different manner as ~ (InL)~2, with L the system’s
linear size. As N; ~ L2, due to the In factor the scaling will be the same for both quantities. When
studying the scaling of the charging energy we will adopt the second form, in accordance with Ref. [79]
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evaluated at distances |r — 7'|/a 2 1. These observations suggest that U,g can be ap-

proximated by the lowest order Taylor expansion in powers of |d7|/|dt| of the square root
at the r.h.s. of Eq. (4.34). Hence,

i#]

2
U e S ik [ [ @ ot Plotf
2

~ e? , (4.35)
2 ti — t]

i#£]
since the orbitals are normalized.

(0)

By identifying the coefficients cio with the localized wave function amplitudes given

by Eq. (4.4) and using the long wavelength approximation, we obtain the desired result,

Uoff ~ 62/d27“/d27’/ \T/JO(T)\QWO(T/)P (436)

7]

namely

Note that, as long as |0t| = [t; — t;]| > a (distant atoms), the higher order powers of the
Taylor expansion are negligible compared to the zeroth order term, and the approximation
is accurate. If the atoms are close, higher order terms should be considered to increase

the estimates precision.

Hence we have shown that the charging energy U is given by Eq. (4.17)) as originally
proposed in Ref. [79], plus an additional on-site contribution term given by Eq. (4.33)

which has been overlooked so far.

4.2.2.2 Numerical estimates of Ugiag and Uyg

Since the typical system sizes achievable in our numerical calculations are much
smaller than real graphene flakes, an important issue to consider is how the charging
energy scales with the system size. Cazalilla et al [T9] propose that U scales with system

linear size as’t )

U~ -~ LY i~ oy (4.37)
~ — w1 — ) e .
€oapg \2mIn L €000 ’

where in Eq. (4.37)) L is the system’s linear size and ag ~ 0.248 nm is the lattice parameter.

The influence of the medium in which graphene is immersed is taken into account through

the dielectric constant €y. The estimate given by Eq. (4.37) is consistent with the dielectric

5Strictly speaking this relation is wrong since the argument of the In should be dimensionless and L
has the dimension of a length. A more appropriate manner of writing this term is In(L/a), where the
linear size is expressed in terms of a reference length such as the carbon-carbon distance a. Note that
this do not change the scaling behavior.
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constant obtained for graphene deposited on top of SiOs, € = 4 [17].

We check explicitly the scaling of the system by numerically calculating the diagonal
Eq. (4.30) and off-diagonal Eq. (4.35) contributions of the charging energy U for different
lattice sizes. Since the experiments of Refs. [ 2] were realized on top of SiO,, we take

this into account and introduce the dielectric constant of this material into our estimates.

We consider a vacancy at the center of the lattice and the system size is varied from
L =100, ..., 1000 in steps of 20 (100 for the larger sizes). The amplitudes at each site, cgo),
are evaluated from Eq. and we recall that distances are measured relative to the
vacancy site v. The use of the envelope function Eq. is necessary in order to obtain
estimates for large system sizes which are not accessible through exact diagonalization
of our tight binding Hamiltonian. We have compared the wave functions due to exact
diagonalization for small lattice sizes with the envelope functions Eq. , and we have
obtained a very good agreement between them. This result make us confident of adopting

the envelope functions for the large system sizes estimates of the charging energy.

Considering first the diagonal term Ugi,, we find that the estimates of >, |¢;|* in Eq.
lie in the range 0.017 < > |¢;|* < 0.037. The lower (upper) bound corresponds
to the size L = 1000 (L = 100). The term Uymita in Eq. has been estimated in
the literature as Uympital &~ 3.3t = 8.18 €V for ¢t ~ 2.8V [86]. This leads to an estimate of
Udiag:

0.139eV < Ugiag < 0.302¢V. (4.38)

For the off-diagonal term, our numerical calculations find:

0.0431 < 3 “t—”t’ < 0.0885, (4.39)
(G

where the lower (upper) bound corresponds to L = 1000 (L = 100).

The estimates of U,y are obtained multiplying the values we find in Eq. (4.39) by
e?/eq, where €y = 4 for SiO, [17]. This leads to:

1.859¢V < Upg < 3.723eV. (4.40)

In Fig. we plot the separate contribution of each term Ui,y and Uyg as a function
of the system linear size L. Figure [33| confirms that both contributions to the charging
energy follow the scaling predicted in Ref. [79]. According to this, the charging energy

vanishes in the L — oo limit. This behavior is a consequence of the 1/r decay of the
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localized state. However, according to our results this decay is slow and we find values
of order 1eV for system sizes up to L = 1000 which are already of the order of typical

samples (10° atoms).

These estimates are consistent with a recent study [86] based on the Hubbard model
which points the value U = 1.6t as the value adequate to describe Coulomb interactions
in defective graphene. This is also consistent with U estimates found in Refs. [45], 87]. In
our calculations we will adopt the value U = 0.5D, where D ~ 3t is the half bandwidth,
in agreement with the value suggested in Ref. [86] and the estimates we calculate. It
should be mentioned that our results are in contrast to those found in Ref. [79], which
found U ~ 1meV for L = 107 through evaluation of Eq. (4.37). Values of the same order
of magnitude are found for L = 1000.
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Figure 33: Scaling of the diagonal and off-diagonal charging terms U,z and Ugi,s as a
function of system size. Circles: off-diagonal contribution. Triangles: estimates of the
diagonal term. Values are in eV.

4.2.3 Long Range Disorder Model

In this topic we detail the disorder model we have adopted in our calculations. We
assume that the disorder in the graphene sheet, in addition to the single-vacancy, is pre-
dominantly due to long-ranged scattering processes. Accordingly, we model the disorder

by a random superposition of V., scattering centers of range { > a. For simplicity we
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model the scatterers by uncorrelated Gaussian-shaped local potentials. The local disorder

potential Eq. (4.6)) at site i reads

N —(ri— Ry

Ui = Udis(/ri) = Z VV] € 252 ) (441)
j=1

where the jth potential center is placed at R, corresponding to the position of a lattice
site picked at random, while the potential strengths W; follow a Gaussian distribution
with

(W) =0, and (W;W,) = (§W)25;;. (4.42)
Typical values of the parameters &, W and Ny, are £ 2 3a, 0W < t and Ny, ~ N;/10,

where a is the carbon-carbon distance in graphene.

The disorder potential covariance reads

Nimp

(Udgis(7)Uagis (7)) = DWW,y <exp (_ r — Ri|22+§2|r’ - Rj|2) >R7 (4.43)

1,7=1

where (---)y and (---)gr denote averages over the potential strengths and positions,

respectively.

The average over W is straightforward. Using Eq. (4.42) we obtain

Nimp

Vs (P)Uas () = S (6W)? <eXp (— Ir = RZ":;'T/ - RZ’P) >R. (4.44)

=1

Let us now evaluate the average over the positions R;. To this end, it is convenient to

write

P — R|*+|r' — R =2|R,)* + |r)* + || = 2R; - (r + 1)
e =)
2

(r+7')

5 (4.45)

~2|R -

and to insert Eq. (4.45)) into Eq. (4.44), namely,
[r =" N _2|RZ‘—(’I“—|—’I“/)/2|2

(Uais(P) Ui () = (6W)2e 487 Z<e 267 > (4.46)

=1
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Since the {R;} follow an uniform distribution over the graphene sheet area A, we write
[R; — (r +1)/2[’ R — (r +1)/2’

2 1 - 2
<e § >R - z/AdRie £ . (4.47)

The above integral is simplified by changing the integration variables, namely, R, =

R; — (r +7')/2. Equation (4.47) now reads

|Ri — (r+71)/2" X |R|”
- 2 ;2
<e § >R = z/dRZ. e & . (4.48)

A

Since £ /A'Y? < 1, the Gaussian scattering centers close to the graphene sheet edges give

only a small contribution to Eq. (4.48). Hence, it is accurate to write

2
Lk z?

1 = N Y R B e
X/AdRie § ~ /_Oodxef = (VT = —. (4.49)

Finally, collecting the result Eq. (4.49) and inserting into Eq. (4.46)), we obtain

r—rp

Ul Uan(r)) = w2 (w2 a8 (450)

The above equation justifies why this model is frequently called Gaussian correlated dis-

order model.

4.2.4 NRG inputs

The tight-binding model Eq. provides the inputs necessary for the implemen-
tation of the NRG method, namely, localized state energy €3, the hoppings tgy and the
B-states eigenvalues e3. The eigenvalues eg will be used to construct the density of states of
the disordered system pgis(w) (w being the energy measured from the Fermi levelf) which
is key in the calculation of the hybridization function Tgis(w) = 7 35 [tg0|*6(w — €5), the

central quantity in the NRG.

As we saw in Sec. the NRG method is the tool that allows to calculate the
impurity (here represented by the vacancy) properties. In our approach, input parameters

necessary for the NRG implementation are generated after each disorder realization and

6This notation will be useful when we introduce the chemical potential in our NRG simulations
discussed in Sec.
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the calculations of these inputs are described below.

4.2.4.1 Calculation of €g*

The localized state energy €3 reads

el = (OlU10) = S~ (01U (i10) (451)
In Fig. we plot the distribution of the localized energies €l obtained after N, =
10® disorder realizations with 6W = t/10, range ¢ = 3a and two distinct numbers of
scattering centers: N, = N;/10 (top panel) and N;,, = N;/100 (bottom panel), where
N; = 20x20. The results show that the localized energies typically follow a Gaussian-like

distribution. This same behavior is observed with different disorder parameters.
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Figure 34: Distribution (not normalized) of localized state energy €l (in eV). Histograms
obtained for two distinct sets of parameters, W = t/10, { = 3a and Niy, = N;/10 (top)
and Ninp, = N;/10 (bottom). We also run simulations with other parameters and always
observed Gaussian-like distributions (obviously) with different widths.
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4.2.4.2 Calculation of pgis(w)

We obtain the density of states pgis(w) = >_56(w — €g) of the disordered system by
directly calculating the number of tight-binding states[] N(w) between energies £ — AFE /2
and £+ AFE/2 and then approximating pais(w) ~ N(w)/AE. Due to the finite size effects
(finite PUC and few k-points), the spectrum of the €5 has a small gap at low energies (see,
e.g., Fig. . Therefore, the choice of AFE is a compromise between the enhancement of
the fluctuations due to disorder and the smearing of the finite-size gap. As shown in Fig.
choosing AFE = 0.1D (D ~ 3t the half bandwidth) gives reasonable results, displaying

the familiar linear behavior of the graphene density of states at low energies (see the inset
of Fig. [35).

We note that due to the small gap at low energies it is essential the calculation of
the continuous curve of pgis(w). This stems from the fact that the NRG requires access
to very low energy values to construct a Wilson chain with a suitable number of sites to
allow a full characterization of the low energy behavior of the system. The chain obtained
straight from the tight-binding eigenvalues contains only a reduced number of sites, hence

the necessity for the continuous approximation of pgis(w).

4.2.4.3 Calculation of tg,

Recalling that Uy is represented in the atomic sites basis, it is useful to write the states

|f) and |0) in terms of |i). As a result of the diagonalization of H,, the transformations
v) = Z [@)(ilv) and |0) = Z [4)(i]0) (4.52)

are known. Likewise, the unitary transformation
18) =Y ){vIB) (4.53)

is obtained from the diagonalization of Hpp.

Hence,

tgo =(B|Uais|0)
:Z<ﬁ|i><i|Udis\i')<i'!0> = (Bli)Ui(i|0). (4.54)

]

"The eigenvalues €5 are calculated through diagonalization of the band term Eq. (#.11). In this
process, the largest supercell we used has size N = 40 x 40 and we used a single k = 0 point.
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N(w)/AE (a.)

Figure 35: Density of states N(w)/AFE (normalized by the total number of states) for a
single realization and different choices of AFE

The coefficients (5]i) are obtained from Eq. (4.53), namely

(ilB) = (ilv)(v|B) (4.55)

v

In Fig. two typical outcomes of the squared hoppings [tg|* are displayed. The
small energy gap discussed above is seen close to zero energy and is attributable to finite
size effects. The results show that disorder couples the midgap state with states overall
the energy range of band. The smoothed curve represented by the filled squares in the
top panel of Fig. denotes the quantity [¢(w)|?, defined as the average of |tg|* in the
window w — AE/2 < ¢ < w+ AFE/2 using the same AE adopted in the calculation of
pdis(w). The result shows that |t(w)|? is essentially independent of energy for large w but
quite sensitive to the fluctuations in small energy windows (compare panels (a) and (b) in
Fig. , since the number of states in this region is relatively small, leading to important

consequences for the Kondo physics once this is the region of interest for the effect.
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Figure 36: (a) Raw data for [tg|* in a single realization (dots) and the corresponding

energy-averaged |t(w)|? (filled squares).
resulting hybridization function Tgis(w) = 7|t(w)[*pais(w). (b) Tgis(w) for different choices

of AFE.

Also shown: density of states pgis(w) and the
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With the necessary parameters to implement the NRG at hand, in the following we
discuss the results obtained by this method.

b
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Figure 37: Illustration of the low energy fluctuations on the hoppings |t(w)|? and how

this influences the hybridization function estimates in this region. For some realizations,
panel (b), strong fluctuations leads to a non-linear behavior in I'(w). In this cases, the
"metallic" character I'gis(w = 0) # 0 of the system is emphasized.

4.3 NRG calculations

The arguments presented in the previous section justify the use of the Anderson-like
model of a localized state coupled to a continuum band with a density of states pgis(w).
The variable w = € — pu(V}) is suitable for treating the cases with nonzero doping. The
energy w varies within the range —D — Ap < w < D — Ay, where Ap = p(Vy) — po is
the change in the Fermi level energy, set by the introduction of gate voltage V, relative

to charge neutrality and D is the half-bandwidth.

The model Hamiltonian is written as H4 = Hgate + Hpand + Hnop Where, in energy
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representation]
Hgate = 0€ noe + Ungpngy
D—Ap
Hpana = / dw w CI)UCWU
—D—-Ap
D—-Ap
Huop = / muﬂ@$@M(%ww+h@>, (4.56)
—D—-Ap

where de = €3 — u(V,) is the midgap state energy relative to the Fermi level, located
at 1(Vy), U is the Coulomb repulsion at the localized state (see Sec. , b (coo)
is the creation (destruction)P] operator of an electron with spin o at the |0) state (ng, =
cgacog is the number operator). The electron band states 5 are treated in the energy
representation. Accordingly, ¢!  (c.,) is a creation (destruction) operator of an electron
with spin ¢ and energy w in the (disordered) graphene band. The coupling between
the band and the localized state is written in terms of an energy-dependent hybridization
function Tgis(w) = 7 Y4 [ts0|*d(w —€5), which will undergo the standard NRG logarithmic

discretization of the conduction band [9, 38| we discussed in Sec.

4.3.1 "Weak disorder" toy model

Before addressing the effects of disorder, it is instructive to consider a simple toy
model. This will give support to the analysis we present for the disordered case. In the

absence of disorder or vacancies the band density of states is written as:
p(w) = polw — Apl. (4.57)

We consider that the hybridization function is given by I'(w) = 7|tpep|>p(w) = Tolw — Ap|
and 'y = Wtﬁoppo, where I'y is chosen as the hybridization energy scale at the band edge
[38]. At this point, the choice of T'y seems rather arbitrary. It will be justified when we

discuss the effects of disorder on the determination of the hybridization function.

In this simple model, both p and T' are linear in w (see dashed curve in Figs.
and ) and disorder manifests only through a variation in the energy €J*. We call this
the "weak disorder" limit. Note that when Ap = 0 (charge neutrality point) we have a
realization of the pseudogap model we discussed earlier (see Sec. .

By setting I'(w) = I'g, the model displays the metallic behavior characterized in Figs.

8This is the same procedure carried out in Sec. [3.4.2.1
9We adopt this notation, instead of the one with the d subscript used earlier, in allusion to the
vacancy-induced localized state.
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B8a-b (compare with Figs. and 27). Model parameters are Iy = 0.016D, U = 0.5D,
—0.25D < de < 0.25D and the step in de equals 0.01D. The results show that as the
impurity level gets more immersed into the Fermi sea (decreasing de) the system goes
from the empty-orbital ({(ng) ~ 0) to the Kondo regime ({ng) ~ 1), crossing a region
of mixed valence (0.25 < (ng) < 0.75). The magnetic susceptibility T'ximp(T) (we are
setting kp = g = up = 1) always vanished!” as T — 0 (see Fig. [38p) in agreement with
the discussion presented in Sec. [3.4.4 Kondo screening occurs for de < 0, but sufficiently
apart from dc = 0 to enter the Kondo regime. For the more general case I'(w) = Ig|w],
the model reproduces the magnetic susceptibility and ground state occupation for the
pseudogap situation as presented in Figs. —d (see also Fig. , where 'y = 0.016D
and —0.02D < de < —0.0001D. The system presents a quantum phase transition at
de = de. = —0.00253724D separating the empty-orbital (ée > de.) and local moment
phases (de < de..). Note the absence of intermediate values of the occupation (ng) for this
case, consistent with what is expected for pseudogaped systems with small Iy values [38].
The physics background of these results was discussed in Sec. Here we focus on the
results of such model to help in the interpretation of the disordered scenario we present

below.

4.3.2 Disordered case

We now consider the disordered case, in which the (realization-dependent) parameters
from tight-binding calculations (e3®, €5 and |tgy|?) enter the model either directly or
through the hybridization function I'gis(w). Those effects are realization-dependent and
thus one can think in terms of a disordered effective Anderson model 88 [89, 90 O]
describing the low-energy physics of the system. Hence, for a given disorder realization,
the first step in the NRG analysis is to obtain an energy-dependent hybridization function

[gis(w) from the tight-binding results.

For each disorder realization, the hybridization is constructed from the effective cou-
plings |t(w)|? and the disordered density of states pais(w), derived in Secs. |4.2.4.2 and

4.2.4.3] and reads Igis(w) ~ 7|t(w)]?pais(w) (see the diamonds in Figs. and [37). The
choice of the parameter AE used to determine |t(w)|* and pgis(w) has little influence on
the low-energy part of ['gis(w) (compare curves in the bottom panel of Fig. as long

as AF is small, typically of order of the finite-size-induced gap. In Fig. one sees that

10Tn the scale of Fig. [38p, the lowest temperature value shown is 7 = 10~7D. Some of the blue curves
have Tk lower than this value. The susceptibilities vanish in these cases when simulations are carried
out down to T = 10714D.
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Figure 38: Level occupation (ng)(7) (a,c) and impurity magnetic susceptibility 7 Ximp(T)
(b,d) for the metallic (left panels) and pseudogap (right) Anderson models. In the pseu-
dogap model, a quantum phase transition (QPT) occurs at de = de. separating empty-
orbital ((ng)(T" — 0) ~ 0 and TXimp(T — 0) ~ 0 for de > de.) and local-moment
((no)(T = 0) ~ 1 and T'Ximp(T — 0) ~ 1 for de < de.) phases. This is in contrast with
the smooth crossover from Kondo screening to the empty-orbital regime in the metallic
Anderson model (a,b).

the behavior of Iyis(w) suffers a strong influence from the hoppings fluctuations in the
low-energy region. We see that the disordered hybridization functions obtained (dashed
lines) can be expressed as [gqis(w) =~ I'g(w) + 7, meaning that disorder not only implies in
different inclinations but also to a filling of the pseudogap . This mechanism is the one
responsible for giving a "metallic" character to the disordered system. Figure illus-
trates that in some cases such fluctuations can lead to a large nonzero value of I'gis(w = 0)
and a nonlinear behavior of 'gqis(w) at w ~ 0 (this occurs at a small number 5 — 10 per-
cent of the disorder realizations). In these cases the "metallic" character of T'gis(w) is
reinforced. Since the density of states, in general, retain its characteristic linear energy

dependence in this region, the effect is exclusively due to the hoppings fluctuations.
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Figure 39: Hybridization functions obtained from different disorder realizations (dashed
lines). Solid lines illustrates what would be the behavior for I'(w) = T'g|w| with varying
Lo.

We are now in a position to apply the NRG method to study the disordered case. The
Kondo temperature Tk or the crossing temperature 7™ are obtained from the analysis of

the NRG results for the magnetic susceptibility and ground state occupation (ng) as
previously discussed in Sec. [3.4]

We first address the charge neutrality situation. Figure [40shows the NRG results for
the crossover temperature 7% and ground state occupation (ng) for ~ 1000 realizations
for U = 0.5D. The realization parameters are 6W = 0.32t, Ny, = N;/10, N; = 40 x 40
and & = 3a. For practical purposes, we have stopped the NRG calculations at scales of
the order 1072°D. This scale (dashed line) defines "zero temperature". We keep 1000
states in each NRG iteration and the parameter 3 is taken as 8 = 0.727.

For a comparison with the "weak-disorder" toy model case, we also show results

using ['(w) = [ylw| with Ty = 0.064D (squares), 0.16D (circles) and 0.32D (triangles)

(disorder here enters only through €d®). For each of the above values of Ty, a quantum

phase transition is observed at values around €} ~ —0.01D (squares), —0.025D (circles)
and —0.05D (triangles) separating empty-orbital (el > ¢}) and local-moment (el <€)

phases. The latter is characterized by vanishing T and (ng) — 1 while the former has
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non-zero 7 and (ng) — 0. As the hybridization "strength" increases, the transition shifts
to lower values of €l implying in the diminishment of the region of localized moments.
The rise of a mixed valence regime with increasing I'y is also consistent with results in

the literature (see Fig. 7 in Ref. [38]).
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Figure 40: Crossover temperature 7* (a) and ground-state occupation (ng) (b) for different

disorder realizations, each giving a different €J. Solid lines: predictions of the weak

disorder pseudogap model (I'(w) = I'y|w| with [y = 0.064D (squares), 0.16D (circles) and
0.32D (triangles). The diamonds are outputs of the disordered situation.

The disordered case (filled diamonds) shows important differences: fluctuations in the
disorder potential will lead to Kondo ground states, characterized by (ng) — 0.8—1.0 with
a non-vanishing 7™, which, in this case, corresponds to the Kondo temperature Tk . Sharp
features of pseudogap-related quantum phase transitions are no longer evident. Instead,
as pointed above, the disorder induces a filling of the pseudogap (see Figs. and and

leads to the formation of Kondo singlets which dominate the low temperature properties.

Disorder leads to a scenario where the vacancy state behaves as an Anderson impurity
embedded in a "disordered metal" [88] [89, 90, OT], where different model parameters are

realization-dependent. This is explored in Fig. [41] which shows distributions P(T™*) (or
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P(Tk) in the Kondo regime) and ground state impurity occupation P ((ng)) for the same
~ 1000 disorder realizations of Fig. and different values of Ap.

The panels (e) and (f) of Fig. [41] confirm and clarify the conclusions drawn from Fig.
The distribution P(7T*) displays two clear features: a sharp peak at larger values
of T* and a longer, log-distributed tail. As expected from the analysis of Fig. the
realizations contributing to the peak in P(T™*) correspond to small values of (ng), related
to the large number of points agglutinated close to g > 0.02 in Fig. which gives rise
to the "tail" in P ((ng)) (note that the histograms are built for log-distributed values)

shown in Fig. [A1F.

Figure shows another interesting aspect, namely, the presence of intermediate
values of the localized state occupation (ng), characteristic of a mixed valence phase, in a
large region of the parameter space. For a pseudogaped system with » = 1 this regime is
diminished in favor of the local moment phase [38, [67], so this is another indicator that

disorder changes the pseudogap nature of the system into a "metallic" one.

In Ref. [90] the Kondo temperature distribution P(Tk) obtained for metallic disor-
dered system has a bimodal character. We do not observe such behavior in our simula-

tions, however, the unimodal distributions we find are in accordance with those observed
in Refs. [88, ©1].

In order to make contact with the experimental situation described in Ref. [I], we
explore the influence of a nonzero chemical potential on the Ty and (ng) distributions.
We see that for large negative values of Ay there is a predominance of positive values
of de which favor small occupations ({ng) ~ 0). This is indeed the case already for
Ap = —0.05D, as shown in Fig. [{Ip. This leads to relatively large crossover temperatures
T* into the empty-orbital regime (see Fig. ) As Ay increases, this scenario changes
qualitatively. Already at Ay = —0.02D, distinct "tails" in the distributions of (ng) and
T* can be seen (see, for instance, Figs. [1k-d), with (ng) ~ 0.8 for some realizations.

For positive values of Ay, the disordered Kondo phase clearly dominates, characterized

by P(Tk) with long logarithmic tails along with a sharp peak in P ({ng)) around (ng) ~ 1
(see Figs. |41g-j).

According to Ref. [80], the conversion of the gate potential V; into x for the Maryland
experiment [I] leads to |u] < 0.2eV. Since our estimates leads to D = 3t = 8.4eV,
this implies p ~ 0.025D, showing that the values are in good correspondence with the

experimental setup [I].
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Figure 41: Normalized distributions for the crossover/Kondo temperature (left) and im-
purity occupation (right) for different values of the chemical potential Ag.

Typical values of Tk emerging from our data (see Fig. are T ~ 107D — 1073D
which means T ~ 1K —100K. This is in good accordance with the range of temperature

estimates found in Ref. [I].

Figure summarizes the results of Fig. presenting the distributions for the
crossover/Kondo temperatures, Fig. , and ground state occupation, Fig. , dis-
tributions for different dopings in the same frame. The transition in these distributions
as the system is filled, passing from the empty-orbital regime to the Kondo one, is clearly
seen. The variable y = log(Tk[T™*]/D) is used for better visualization of the different
curves in the same plot. We find that for negative values of Ap the distributions follow a
log-normal distribution. However, as the chemical potential is increased the distribution
departs from this behavior and no longer retains its log-normal form. Instead, a long
tail emerges on the low-Tx side. A similar behavior is shown in Fig. 1 of Ref. [88], al-

though the transition observed there occurs due to direct varation of the disorder strength
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whereas here it is due to a variation of the chemical potential.

A more careful analysis shows that, for small values of Ty, the Kondo temperature
distributions follow a power-law behavior P(Tk) o Tl(f_l) [88, 02]. The exponents « can
be easily obtained through the distributions of y = log(T) whose probability distribution
is given by P(y = log(Tk)) o< T5t. The derivation of this result can be obtained through
the use of a theorem from probability theory (see Appendix .

In the inset of Fig. 42| we show that the estimates obtained from the log — log plot of
y = log (Tk) lead to @ = 0.1 — 0.2, depending weakly on Ap. Such behavior has been
previously found in disordered Anderson systems [88, [89], where the interpretation for
the divergent behavior of P(Tk) for small T with non-universal exponents was given in

terms of a Griffiths phase and disorder-induced non-Fermi-liquid behavior [92] 93] 04].
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Figure 42: Normalized distributions for the crossover/Kondo temperature (left) and impu-
rity occupation (right) for different values of the chemical potential Au. Inset: Power-law
behavior of the low T distributions, and corresponding exponent «, for varying Apu.

The exponent « is known to depend on the disorder strength and one expects a <1
and divergent behavior in P(T) only for strong disorder [88,189]. Interestingly, in Fig. [42]
the disorder strength was kept fixed at the value W = 0.32¢ and even then we obtained
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a ~ 0.1 — 0.2, with a weak dependency with Au. We attribute these features as an
enhancement of the disorder strength due to Kondo correlations. As the system enters
deeper in the Kondo regime (increasing Ap), small fluctuations in the single-particle
parameters produces large fluctuations in the Kondo scale [95]. Thus, the low-temperature
properties are more strongly affected by the disorder potential, yielding a large effective

disorder strength in the Kondo regime.
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5 Conclusions

In this thesis we have addressed the problem of the Kondo effect generated by the
presence of vacancies in a monolayer graphene sheet. We show that disorder plays a central
role for the appearance of Kondo effect in graphene. To the best of our knowledge, this
work is pioneering in presenting a systematic study of the Kondo effect in a disordered

system with Dirac fermions.

We showed that long range disorder provides a natural coupling mechanism between
the localized midgap state and the conduction band, opening the possibility of observing
the Kondo effect due to m magnetism in graphene. This is in contrast with the existing
works in the literature which only considered lattice reconstructions as a source of disorder
and attributed ¢ magnetism as the responsible for the onset of Kondo physics. We find
that the resulting distributions of Kondo temperatures P(Tk) depends on the disorder

strength and, in a more subtle manner, on the chemical potential.

Based on estimates of the ground state occupancy and the magnetic susceptibility, we
observed that at charge neutrality the effect of disorder is to dress graphene with a metallic
character and "spoil" the quantum critical behavior expected for pseudogaped systems.
This result is in agreement with the metallic Kondo behavior namely, the single-parameter

scaling observed in the experiments of Ref. [I] as discussed in Chapter

Our modelling can also offer a conciliatory scenario between the experiments of Refs.
[1] and [2]. Our findings suggest that sufficiently low disorder can imply in a very low value
of Tx that may not be accessible through the experiments. This is a possible reason why
the experiment conducted by Manchester’s group [2] observes a Curie-like susceptibility
since the samples they use appear to be cleaner than those used in the Maryland’s exper-
iment [I]. It should also be mentioned that the Manchester group measured the magnetic
susceptibility whereas the Maryland group presents resistivity data. This is also an im-
portant aspect to consider since presence of any weakly-screened (i.e. low Tk ) magnetic

moments will dominate the results of susceptibility measurements. On the other hand,
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electric resistivity receives contributions from strongly screened (i.e. high Tk ) moments
and hence measurement of transport data are more likely to display Kondo screening

traces.

We have also explored the effect of doping for the Kondo effect in graphene. In order
to be in close contact to the experimental environment, we adopt doping levels consistent
to those used in Ref. [I]. According to Ref. [80], the mapping of V, into p for this
experiment leads to |u| < 0.2eV (=~ 0.025D for D = 8eV, the value we use). As expected
for metallic systems, a negative doping tends to favor the empty orbital regime, consistent
with the probability distributions of (ng) and 7™ we find. The Kondo screening scenario
is recovered as the doping is increased. This situation contrasts with the experimental
results [I] which display a nearly particle-hole symmetric behavior of Tx. However, the
Ty estimates we obtain are Tx ~ 107D —1073D which means Tx ~ 1K —100K, this is in
good agreement with the experiment [I]. Our results show that increasing disorder leads
to an increase in the width of P(Tk). Then, for sufficiently low disorder strength, narrow
distributions should rise opening the possibility for an approximately single-parameter

scaling regime to hold and support the behavior observed in Ref. [1].

An important outcome of our study is the observation of long tails in the distribution
of P(Tk) and as p is increased, the occurrence of power-law divergence at low Tx — 0.
This is consistent with the presence of a Griffiths phase. Unlike the metallic situation,
where this phenomenon is observed trough a variation of the disorder strength [88], we
observe the onset of Griffiths phase due to doping variation while the disorder strength

remains fixed.

Our results suggest interesting routes for experiments. First, by gradually introducing
disorder to the graphene sheet it may be verified the transition from the local moment
scenario to a screened one. This may be tested for instance by exploring Kondo effect
in graphene deposited in different substrates such as Si0O, and BN, as disorder effects
are expected to be very different in these composites. The second interesting route is
the exploration of non-Fermi-liquid behavior in transport experiments or measurements
of thermodynamics quantities in graphene sheets by varying the doping in graphene dis-

ordered samples.

A straightforward extension of our work is to calculate transport properties via the
NRG method. Also, a systematic variation of the disorder parameters and observation
of how this affects the distributions of P(Tk) and P({ng)) is also one of our tasks for a

future work. Another interesting possibility is try to perform more realistic calculations
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treating the case of several vacancies. The study of the contribution of ¢ magnetism in

the disordered context is also an interesting issue still not addressed in the literature.

The long range disorder model with vacancies discussed in this thesis can also be
explored to model the spin relaxation in diffusive graphene samples. There is experimental
evidence [96] that vacancies and local magnetic moments play an important role in the fast
spin relaxation rate observed experimentally [97] which is orders of magnitude smaller than
theoretical predictions [98]. Our model of charge puddles offers a possible solution for the
puzzle of spin relaxation times in graphene. Local fluctuations of the chemical potential
enhance the transition rates at the charge neutrality point, dramatically suppressing the

charge relaxation times. This study is in course, but it is not included in this thesis.
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APPENDIX A - The Schrieffer- Wolff
transformation: Anderson

meets Kondo

In Sec. [3.I] we saw how one can determine a range of values for U and 7, required for a
crossover between magnetic and nonmagnetic limits and hence establish why, in empirical
observations, some transition elements with partially-filled d-shells remain magnetic when

diluted in some but not all host metals.

In the magnetic case, the impurity state is singly occupied with a two-fold degeneracy
corresponding to spin 1/2. By assuming that such configuration is the ground state,
the empty and doubly occupied cases will be higher excited states. With the additional
condition that vy, is small compared to €; and U, charge fluctuations in the impurity will
be small. This observation suggests that such fluctuations might be eliminated altogether.
This procedure is achieved by a canonical transformation developed by Schrieffer and Wolff
[99], which replaces the charge fluctuations by an effective interaction between the spins
of the conduction band and the impurity. As we will see, the transformation is equivalent
to a diagonalization of the Anderson Hamiltonian in the subspace of the singly occupied

impurity states.

The first step to develop the transformation is to separate the Anderson Hamiltonian

into a zeroth-order part:

H() = Z GkC;r{UCko + Z GdCIIJCdU + Z +UndTnd¢ (Al)

k,o k,o
and a "perturbation",

H, = nykd(cltacdg + czackg) (A.2)
k,o
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The similarity transformation applied to the Hamiltonian H, = Hy + H; reads:

H = e°Hpe™®
1
= HA+[S,HA]+§[S[S,HA]]+...

= Hot Hy 1S Hol + S, Hi] + 5[5, [, Hl) + 5[5, (S Hu) + ... (A3)

where S is a similarity matrix chosen to eliminate the coupling between conduction band
and impurity states to leading order in 4. According to Eq. (A.3), this is accomplished
through the condition:

[S, Ho| + H, = 0. (A.4)

Insertion of Eq. (A.4) into Eq. (A.3) results

1 1
H = Hy+[S, H|+ §[S, —Hy] + Q[S, (S, Hi]] + ...

Q

Eﬁa&my (A.5)

The second step is the construction of the similarity matrix S. Through the observa-
tion that [S, Hy) = —Hj, one concludes that S must contain terms o CL,Cda- Furthermore,
as the commutator of CLUCda with Ungng, is proportional to nd,ocLchU, a nice try is the

assumption that the transformation takes the form

S = Z (Ax + Bxng—o) CLUcdg — H.e. (A.6)
k,o
The condition that S is antihermitian relies on the fact that e is an unitary transforma-

tion.

After some algebra one obtains [0]:
[Hg, S] = Z [(Ek - €d> Ak + (Ek — €4 — U) nd_gBk - Und_gAk] CLTCdg + H.c. (A?)
k,o

To satisty Eq. (A.7)) it is required that [6]

1 1
Mhed and Bk = Ykd - . (Ag)

€k — €4 Ek—(€d+U) €k — €4

Ag =

Inserting the results of Eq. (A.8) back into Eq. (A.6) defines the Schrieffer-Wolff trans-

formation.
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The last step of the transformation is the calculation of the commutator [S, H;| aiming

at finding the expression of H.

We adopt the simplified notation pyg, = cfwcda and write the commutator as

1 1 .
5[5, H| = 3 > {Ak'Yk’d [Prdos Prdor] + Ax Vi [pkdU;ka/dJ/] + BiYwa [Na-o Prdos Pido’]
kk'o,0’
+ Bk’}/* n f — Al | ol = AR i f
Kd |d—oPkdos Py gor kKVK'd |Prdos P do kVk'd |Pkdos Py’ do’
— Bia [nd—apldgapk/do’} — B [nd—apldg,pf{/dgl} } (A.9)
Performing the algebra of commutators and anti-commutators of the terms Eq. (A.9))
we write:
1 1 * x T
5[5, Hy| = 5 Z [(Ax + Bxng—o) Yighdo + H.c] + Z [Akyk/dckack/g + H.c}
k,o kk' .o
- Z (B aPrdoprra—o + H.c] + Z [Bkﬁfd (nd—aCLJCk'a + Pkdaﬂk'd—g>
k.k' o k.k' o
+ H.(]} (A.10)
The terms in Eq. (A.10) can still be arranged in a more enlightening format, to wit,
1
5[57 Hl] - Hexchange + Hband + Hsingle + Hdoublea (Al]-)
where

He:cchange = - Z % (Z CTkoSao-’Ck’g/> : ( Z CLU//SU//O'///CdO'///> s (A12)

1" 1

k,k’ o0’ oo
1
Hyana = Z |:wkk’ + ZJkk’ (nar + ndi)} Z CchoCk/m (A.13)
k.k’ o
Hsingle - - Wkk + 1<]kknd—0' Ndo (A14)
- 2
1
Haoubte = _5 Z [ka}/k/dcll/,gc;r(acdgcd—o— + Hci| . (A15)
k' o

In the above expressions, the spin "vector" reads S = (h/2)o, where o = (04, 0y, 0>)



97

and o, , are the Pauli matrices. Also wyy and Jy are given by [6]

* 1 1
O = VkdVierg i ] (A.16)
2 €k — €4 € — €4
1 1 1 L
o . _ _ , A7
kk' = VkdVk'd ex — (ea+ U) 6k—€d+€k/—<€d+U) Ek’_Ed:| ( )

In the regime of single occupancy of the localized state, we see that the term H joupe
can be neglected since it changes the occupancy of the impurity by two, hence, it does
not connect the part of the Hilbert space having one d electron (the case of interest) with

the remainder of the Hilbert space, i.e., 0 or 2 d electrons [99].

As ngt + ng; = 1, Hpana reduces to a one-body potential which can be eliminated by
a transformation of the k states to a set of one-electron conduction states which include
this direct scattering term. The resulting shift in the conduction states energies may be

incorporated in H,.

The term Hy;,g4 renormalizes the energy of the localized state:

€q — €4 = €4 — Zwkk. (A18)
k

The only important term to be retained for the Kondo physics is the exchange Hamil-
tonian Eq. (A.12), reducing the transformed Hamiltonian to

H = HO + Hexchange7 (Alg)

which may be explicitly written as

[ ‘]kk/
H = Z €kCLg—CkO' - Z F Z CI(O-SO'O'/Ck/O'/ . Z CLO—//SO'”J’”CdO'/”
0,0 g’,0

k,G’ k kl s ! ll7 m

= Y ad S Jik!

= €kCiyCko — FS - S. (AQO)
k.o kk’

We used the fact that the impurity terms in Hy will only shift the system energy
in the impurity single occupation limit to drop the ¢; and U terms. In the interacting
term, s denotes the conduction electron spins and S the impurity spin. The interacting
part in Hamiltonian Eq. is denoted as the Kondo Hamiltonian (also known as s-d
model)[8].

One aspect of major importance about the exchange coupling is that it is negative.
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This assertion is proved by setting ex = ¢ = ep in Eq. (A.17)), resulting [6]

Jxpkp = —2 (W) < 0. (A.21)

This result entails an antiferromagnetic coupling between the band electrons and the
impurity one. The character of this interaction is responsible for the formation of a

singlet state at the d-impurity below the Kondo temperature Tk.
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APPENDIX B - Derivation of the
P(y = log(Tk)) distribution

In order to derive the distribution of y = log(Tk), it is useful to make use of the

following theorem from probability theory [100]:

Theorem 1 Let X be a continuous random variable with probability density f(x), where
f(z) > 0 for a < x <b. Suppose that y = H(zx) is a strictly monotone (increasing or
decreasing) function of x. Assume that this function is differentiable (and hence continu-

ous) for all x. Then the random variable Y defined asY = H(X) has a probability density

function g given by:
dz

ol (B.1)

g(y) = f(x)

where x is expressed in terms of y.

For our case, identifying X = e¥ = T we have dx/dy = e¥ = Tk, hence, making use
of the Theorem 1:
P(y =log(Tx)) o< T& T o< T (B.2)
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