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Abstract

Recent experiments found evidences that vacancies give rise to local magnetic mo-
ments in graphene sheets. This vacancy-mediated magnetism has renewed the interest
on Kondo physics in graphene systems. The Kondo e�ect is singular in graphene due to
its vanishing density of states at low energies, which puts graphene in the class of the so-
called pseudogap systems. The pseudogap leads to a Kondo physics that is signi�cantly
di�erent than that of the metallic case. There is a recent report on the observation of the
Kondo e�ect in graphene in the literature [1]. However, this result has been contested in
favor of a Curie-like paramagnetism persistent down to temperatures as low as 2K [2]. In
this cloudy scenario, theory can o�er valuable support to elucidate this puzzle.

In this thesis we put forward a theoretical model to address the Kondo e�ect in
graphene with vacancies. We show that disorder plays a central role for the Kondo
physics in graphene being the mechanism responsible for the coupling between the local
moment created by the vacancy and the conduction band electrons. Our study shows
that graphene's nearest neighbors tight-binding Hamiltonian can, upon inclusion of the
long-range disorder term, be mapped into a single impurity Anderson-like model. This An-
derson Hamiltonian provides the necessary inputs to implement the Numerical Renormal-
ization Group method (NRG), that allows a full characterization of the low-temperature
behavior of the system physical properties.

We perform NRG simulations and analyze the system's magnetic susceptibility. We
�nd that disorder "spoils" the pseudogap character of graphene since our results are
consistent with those of a "standard" metal. We also use the NRG method to study the
distributions of Kondo temperatures P (TK). We �nd that the resulting P (TK) depends on
the disorder strength and, in a more subtle manner, on the chemical potential. We show
that disorder can lead to long logarithmic tails in P (TK), consistent with a quantum
Gri�ths phase, opening the possibility of observation of non-Fermi-liquid behavior in
graphene. Finally, we argue that our study can also o�er a conciliatory scenario to the
contentious experimental results reported in the literature about the low-temperature
behavior of local magnetic moments generated by vacancies in graphene.



Resumo

Experimentos recentes encontraram evidências que vacâncias dão origem a momentos
magnéticos locais em folhas de grafeno. Este magnetismo mediado por vacâncias renovou
o interesse na física de Kondo em grafeno. O efeito Kondo em grafeno é singular devido à
sua densidade de estados ir a zero a baixas energias, colocando-o na classe dos chamados
sistemas de pseudogap. O pseudogap leva a uma física de Kondo signi�cativamente difer-
ente da de sistemas metálicos. Na literatura, há relato recente de observação do efeito
Kondo em grafeno [1]. No entanto, este resultado foi contestado em favor da observação
de paramagnetismo do tipo lei de Curie persistente a temperaturas baixas até 2K [2]. Em
meio a este cenário controverso, a teoria pode fornecer uma ajuda valiosa para elucidar
este problema.

Nesta tese, nós propomos um modelo teórico para tratar o efeito Kondo em grafeno
com vacâncias. Nós mostramos que a desordem tem um papel central para a física de
Kondo no grafeno, sendo responsável pelo acoplamento entre o momento localizado gerado
pela vacância e os elétrons da banda de condução. Nosso estudo mostra que o Hamilto-
niano de ligações fortes de primeiros vizinhos do grafeno pode, após inclusão do termo de
desordem de longo alcance, ser mapeado num modelo do tipo Anderson de uma impureza.
Este modelo de Anderson fornece as entradas necessárias para implementação do método
do Grupo de Renormalização Numérico (NRG), que permite uma caracterização completa
do comportamento a baixas temperaturas das propriedades físicas do sistema.

Nós realizamos simulações via NRG e analisamos a susceptibilidade magnética do
sistema. Deste estudo observamos que a desordem "arruína" o caráter de pseudogap do
grafeno pois nossos resultados são consistentes com o esperado para metais "comuns".
Também aplicamos o método do NRG para avaliar as distribuições de temperaturas de
Kondo P (TK). Observamos que as distribuições P (TK) dependem do grau da desordem
e, de uma maneira mais sutil, do potencial químico. Mostramos que a desordem pode
levar a P (TK) com caudas logarítmicas longas, consistente com uma fase de Gri�ths
quântica. Isto abre a possibilidade da observação de comportamento do tipo não líquido
de Fermi em grafeno. Finalmente, argumentamos que nosso estudo pode oferecer um
cenário conciliatório para os resultados experimentais con�ituosos na literatura acerca do
comportamento a baixas temperaturas de momentos magnéticos localizados gerados por
vacâncias em grafeno.
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1

1 Introduction

1.1 Introductory remarks on graphene

Less than a decade has elapsed since the realization of the experiment [13], conducted

by the Manchester Group headed by Andre Geim and Kostya Novoselov, that �rst isolated

and identi�ed a truly (one-atom-thick) 2D crystal: graphene. This discovery triggered

the scienti�c community to explore the properties of this new material with such an

engagement probably never seen before. As a recon for the importance of their pioneering

work, Geim and Novoselov were awarded with the 2010 Nobel prize in Physics.

Graphene attracted the attention of the scienti�c community due to its unique chem-

ical, mechanical, optical, thermal and electronic properties [3, 5, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25]. Many of the promising properties are yet to be explored, but some of

the already known aspects are: exquisite chemical sensitivity to foreign molecules [5] and

ability to adsorb and desorb various atoms and molecules [15], impermeability to gases

[5, 15], breaking strength 200 times greater then steel and the largest tensile strength

measured so far [5], �exibility [15], very high thermal and electrical conductivity [3, 5, 15]

and transparency [5].

The combination of such superb characteristics into a single material makes graphene

a potential candidate to be used in technological applications and has stimulated the

interest on graphene across the physics frontiers to disciplinary areas such as chemistry,

biology and engineering. Just to mention some possibilities under investigation we have

the use in touch screens, e-paper, transistors, photodetectors, solar cells, sensors, tissue-

engineering etc [23].

The two questions that naturally rise at this point are: What is graphene? and What

makes it so special? It is known since a long date that carbon atoms can combine in

di�erent manners forming distinct allotropes. Graphene is a monolayer of carbon atoms

tightly packed in a two-dimensional honeycomb lattice and may be thought as a single
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layer of graphite (see Fig. 1)1

Figure 1: (Left) Graphene honeycomb lattice. (Right) Graphite is composed of stacks of
graphene. Adapted from Ref. [3]

The electronic con�guration of atomic carbon is 1s2 2s2 2p2. Single carbon atoms

are extremely unstable and have the natural tendency to combine with other atoms to

form more stable structures, such as solids or molecules. In carbon-carbon bonds, the s

and p orbitals combine themselves forming the so-called s− p hybridized orbitals [26, 27].

The 1s electrons form the core nucleus and constitute a deep valence band, hence the

properties of carbon materials are essentially determined by the 2s and 2px, 2py and 2pz

orbitals2 [21]. There are di�erent possibilities of combinations of these orbitals, and this

is the reason for the existence of di�erent allotropes with such distinct properties as those

found in graphite and diamond, for instance [21, 27]. For the case of graphene, the 2s

orbital combines with two 2p's (generally called px and py), forming what is called a

sp2 hybridization [27]. These three hybridized orbitals (denominated σ orbitals) form a

trigonal planar structure (see Fig. 2a) which, in combination with the same structure of

other carbon atoms, form a covalent (σ) bond between carbon atoms separated by 1.42A

(see Fig. 2b). These bonds are very strong, being responsible for the great robustness of

graphene's lattice. The saturation of the resulting σ bonding orbitals leaves an extra p

orbital (also denoted π or pz orbital) which is orthogonal to the planar structure and hosts

a single electron. These p-orbitals form a band that is usually considered in theoretical

studies of low-energy electronic properties of graphene [3].

As we show below, three ingredients are determinant for the unusual electronic prop-

erties of graphene: 2D character, the lattice geometry and the fact that it is composed

solely by carbon atoms.

The lattice structure of graphene is shown in Fig. 2b. The honeycomb lattice is not a

1This is actually the way it was �rst obtained, stripped from graphite crystals using scotch tapes [13].
2In the presence of other atoms, such as H, O or other C atoms, it is energetically favorable to promote

one electron from the 2s orbital to one 2p orbital in order to form covalent bonds with these atoms.
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Figure 2: (a) Trigonal planar structure formed by the sp2 hybridization. (b) Bipartite
nature of the graphene lattice also denoted the lattice vectors a1 and a2 and �rst neighbors
vectors δi, i = 1, 2, 3. (c) Representation of the �rst Brilloin zone of graphene with the
high symmetry points Γ, M , K and K ′. Adapted from Ref. [4].

Bravais lattice [28]. Instead, it can be viewed as being composed of two interpenetrating

triangular sublattices A and B in such a way that sites of one sublattice have only nearest

neighbors of the opposite sublattice. As a consequence, the unit cell has two atoms, one

in each sublattice. The primitive vectors are given by a1 and a2. The corresponding �rst

Brillouin zone of the associated reciprocal lattice is displayed in Fig. 2c.

Even though we mentioned that graphene was only experimentally isolated recently

[13], a theoretical model to describe the basic electronic properties of graphene was de-

veloped a long time ago by Wallace [29], who was interested in studying Graphite's band

structure and used graphene as an example to illustrate the model. The electronic struc-

ture of graphene is well described by tight binding model for the π electrons. Considering

that electrons hop only to nearest neighbors, the model Hamiltonian reads [3]

H = −t
∑
〈i,j〉

[
a†i,σbj,σ +H.c

]
(1.1)

where t ≈ 2.8eV [3] is the hopping integral, a†i,σ (ai,σ) creates (annihilates) an electron

with spin σ on site Ri on sublattice A and an analogous de�nition applies to b†j,σ (bj,σ).

The square brackets indicate that the sum is restricted to nearest neighbors only. To take

into account the translation symmetry of the lattice, a transformation to the momentum

representation is necessary. In this representation the Hamiltonian is written as a 2 × 2
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matrix (due to the two atoms in the unit cell) cast as3 [25]:

H =

(
0 −tS(k)

−tS∗(k) 0

)
, (1.2)

where the function S(k) reads [25]:

S(k) =
∑
n

eik·δn , n = 1, 2, 3, (1.3)

where δn denotes the three nearest neighbors vectors (see Fig. 2b).

The simple structure of the Hamiltonian, Eq. 1.2, with null terms in the main diagonal

is a consequence that the graphene unit cell possess only identical atoms 4. This gives a

gapless band structure, as we show below.

The diagonalization of Eq. (1.2) leads to the dispersion relation [25]:

E±(k) = ±|t|
√

3 + f(k), (1.4)

where f(k) is [25]:

f(k) = 2 cos
(√

3kya
)

+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
, (1.5)

with a ≈ 1.42A the lattice parameter.

The result found in Eq. (1.4) shows that the system is particle-hole symmetric, a

consequence of the bipartite nature of the lattice [4].

The system is gapless since the valence and conduction band touch each other at six

points which correspond to the corners of the Brilloun zone (see Fig. 2c). From these six

corners only two K and K ′ are inequivalent, the others being connected by reciprocal

lattice vectors.

The two energy bands are represented in Fig. 3. As there are two π electrons in the

unit cell, neutral graphene is half-�lled. Due to the characteristics of the bands described

above, the low energy physics of the system is determined by the behavior of the dispersion

relation close to the Brillouin zone corners. Taylor expanding Eq. (1.4) close to one such

3For more details on this calculations see Ref. [27]
4If the atoms were not equal, the onsite energies would di�er and there would be non-null terms in

the main diagonal. A �nite term on the main diagonal also appears under consideration of next nearest
neighbors, but this e�ect is considerably smaller [3].



5

Figure 3: (a) Graphene band structure. (b) Conical relation obtained in the low-energy
limit close to the K (or K ′) point. Extracted from Ref. [5]

point, K for instance5, one obtains [3]:

E±(q) = ±vF |q|, (1.6)

where k = K + q, |q| � |K| and q is the momentum measured relative to K. vF =

3ta/2} ≈ 106m/s is the Fermi velocity. In Fig. 3b is plotted the band structure close to

one of the corners con�rming the behavior described by Eq. (1.4).

The result presented by Eq. (1.4) has a striking consequence for the physics of

graphene: its low energy spectra is governed by a Dirac-like (relativistic) equation6 in-

stead of the usual situation, governed by the Schrodinger equation for systems where the

energy dispersion is given by a quadratic relation E(k) = k2/2m, with m the electron

mass. Hence, the electrons in graphene behave as massless Dirac fermions, but instead of

the light velocity c, with a Fermi velocity vF ≈ c/300. This has enormous consequences for

the observation of phenomena of the realm of QED in graphene. Successfully experiments

on graphene have already observed the ocurrence of a minimum in the conductivity when

the carriers density tends to zero [14], Klein tunneling (insensitivity of Dirac Fermions to

electrostatic potentials barriers) [3], anomalous integer quantum Hall e�ect [30, 31] which

can be observed even at room temperature [32].

Note that since the Dirac points K and K ′ are inequivalent, the complete descrip-

tion of the electrons of graphene is given by a 4-dimensional spinor, accounting to the

5A similar result is found for K ′.
6For this reason, the K and K ′ points are usually denoted Dirac points (cones). The term valley is

also very frequent.
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informations respective of each sublattice and "valley", reading [3, 25]:

Ψ =


ΨK
A

ΨK
B

ΨK′
A

ΨK′
B

 , (1.7)

where the spin index is omitted since for pristine graphene there is no process distinguish-

ing any spin direction and it enters only as a degeneracy factor.

For pristine graphene, the Dirac Hamiltonian which acts on this spinor has no terms

connecting the K and K ′ valleys [25]:

H =


0 kx − iky 0 0

kx + iky 0 0 0

0 0 0 −kx + iky

0 0 −kx − iky 0

 , (1.8)

where in the Hamiltonian Eq. (1.8), the upper (lower) block corresponds to K (K ′)

Dirac point. This particular con�guration allows to separate each block and derive two

e�ective reduced Hamiltonians for each valley. Hence the contribution of each valley may

be described by a 2-dimensional spinor [3]. This scenario has to be revised under the

introduction of mechanisms that generates coupling of the two valleys. A particular case

where this happens is the presence of short-range disorder in the system. In this case the

full 4-dimensional structure has to be considered [16].

The density of states derived for graphene has also a peculiar form (see Fig. 4). As

expected it embodies the particle-hole symmetric character of this system7. A remarkable

aspect is that, due to the linear dispersion, in the low-energy regime ρ(ε) ∝ |ε|/v2
F [3],

hence the density of states vanishes linearly close to charge neutrality (ε = 0). This means

that pristine graphene is not a metal, since ρ(ε) vanishes for ε→ 0, nor an insulator since

it possess no band gap. Depending on the community it is called a gapless semiconductor

or a semimetal [3]. This state of a�airs is crucial for the e�ects of electron-electron

interactions in this system and in particular for the problem we address in this thesis,

namely, the Kondo e�ect in graphene.

7Valid when only nearest neighbor interactions are taken into account. Depart from this form due to
inclusion of next nearest neighbors interactions may be seen in Fig. 5 of [3].
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Figure 4: (Left) Graphene density of states. (Right) The region in the inset shows a linear
shape as energy goes down to ε = 0. Extracted from Ref. [3]

1.2 Introductory remarks on the Kondo e�ect

The Kondo e�ect is known to the condensed matter community for many decades.

The �rst experimental observations of its signature remounting back to the 1930's [8].

Contrary to what was expected, it was observed that by cooling down a piece of a metal

the resistivity decreased monotonically until a certain temperature, where it reached a

minimum. Chilling below this point however produced an increase in the resistivity until

a saturation at a �nite value. Later it was discovered that the occurrence of such phe-

nomenon was connected to the presence of very diluted magnetic impurities in the metal

host8. Since most of the early experiments dealt with very diluted concentrations of im-

purities in the host metal, to a �rst approximation, the latter do not interact with each

other, hence the phenomenon can be essentially considered as due to a single magnetic

impurity in a metal. By a magnetic impurity we mean any atom with an un�lled shell,

so that unpaired electrons form a magnetic moment [33]. Experimentally, the e�ect of

these localized moments show up as a Curie-like contribution to the magnetic suscepti-

bility, but answering the questions of how this localized moment survives in the metallic

environment and how this a�ect the conduction electrons of the metal took decades to be

developed [8].

A complete understanding of the Kondo e�ect in metallic systems was only accom-

plished �fty years after its �rst experimental observation. On the theoretical side, contri-

butions of P. W. Anderson, J. Kondo and K. Wilson were essential for the construction

of a complete solution to the problem. In chronological order, to mention some of these

outstanding contributions, we can cite the theoretical modelling derived by Anderson that

8A few parts per million of iron in gold, for instance [33].
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was able to establish the conditions whether a magnetic impurity immersed in a metal

"remains" magnetic or not [34]; Kondo's perturbative approach that accounted for the

minimum of the resistivity observed in the experiments [35]; Wilson's development of the

numerical renormalization group (NRG) scheme, responsible for the full characterization

of the low-temperature physical properties of the system [36].

The heuristic picture that emerges from the theory and explains the puzzle has in its

origin the fact that atoms with unpaired electrons tend to form bonds or spin singlets in

order to spread their electrons over a larger region of space and minimize their kinetic

energy [33]. As mentioned above, impurities in the system were ideally so diluted that

they do not interact. In this case, the way the impurity �nds to form the bond is via

the surrounding conduction electrons. The picture here is slightly di�erent then bonding

in molecules such as H2 where the two electrons are localized. Here only the electron

impurity is localized and the initially delocalized conduction electrons have to somehow

localize forming a strongly correlated state through an energy-cost process to originate the

"bond". As an outcome of this process, the bond is rather weak and only appears at very

low temperatures9 (tens of Kelvin [33]). Electronic transport is severely in�uenced when

a bond is formed since the conduction electrons take part on it. In this case, a conduction

electron passing by the impurity will not be simply scattered in a new direction and give

as a by-product an increase in the resistivity. Now, these conduction electrons will have to

take part in the bond during an amount of time before being scattered in a new random

direction [33]. Hence, at su�ciently low temperatures, when the "bond" is well developed

the resistivity stops to rise and saturates at a new level. In this point the conduction

electrons "quench" (are paired with) the local moment of the impurity and the Curie

signature in the magnetic susceptibility disappears.

1.3 Kondo e�ect in graphene

The vanishing density of states at the charge neutrality point puts graphene in a class

of systems denoted as pseudogap systems [37]. Kondo physics in these systems reveals

new aspects such as the presence of quantum critical behavior [38]. Depletion of conduc-

tion electrons at very low energies may lead to a failure in the bond formation between

the conduction electrons and the impurity. In this situation the localized spin remains

unquenched down to extremely low temperatures [37, 38]. Pseudogap Kondo physics has

been extensively studied [38], but its physical realization was generally addressed in the

9Compare for instance the case of bonds in molecules, where they are stable even at room temperature.
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context of d-wave superconductors [37, 38]. Graphene, besides o�ering another platform

of realization of pseudogap Kondo e�ect, has the advantage of having additional handle

with respect to the superconductors. Since graphene can easily be doped (by electrons or

holes) [13], it allows the possibility of study how Kondo physics is a�ected by the tuning

of a chemical potential [39].

Intense theoretical activity on the study of magnetic impurities in graphene and their

consequences for the Kondo e�ect has increased recently [11, 17, 39, 40, 41, 42, 43, 44,

45, 46]. The conditions necessary for the presence of localized magnetic moments on

adatoms with inner shell electrons in graphene are established in Ref. [40]. Interestingly,

it is pointed out that in graphene the formation of localized magnetic moments can be

controlled by an electric �eld [40]. Analysis of Kondo physics shows interesting results

such as gate-dependent critical coupling Jc [41, 42] and Kondo temperature TK [11, 44].

Despite the theoretical advances on the Kondo e�ect in graphene due to magnetic adatoms,

the literature contains scarce experimental material on this issue. The only published

experimental work, so far, makes use of a scanning tunnelling microscope to manipulate10

and probe Co adatoms on the graphene sheet deposited on an insulating SiO2 substrate.

However, a clear-cut signature of the Kondo e�ect is not observed in the experiment [48].

Interestingly, the emergence of magnetism associated with defects are detected in this

study [48].

In general, magnetism is associated to systems with d or f electrons. However, the

possibility of magnetism with p electrons has been pointed out in carbon systems due

to the presence of defects or edge e�ects [49]. Defect-induced magnetism in graphene

provides other interesting route for exploration of the Kondo e�ect rather than magnetic

atoms. One such kind of defect is a vacancy. A vacancy occurs when an atom is re-

moved from the sheet. This action results in the formation of local moments which were

predicted theoretically [50, 51, 49, 52] and the onset of vacancy magnetism con�rmed

by experiments [1, 2, 53, 54]. The interaction between these vacancy-induced local mo-

ments with graphene conduction electrons can lead to the Kondo e�ect. In this scenario,

experimental observation of the Kondo e�ect in graphene has been reported [1].

10This route was successfully adopted to address the Kondo e�ect in metallic systems [39, 47].
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1.4 Outline

In this thesis we give a theoretical approach to the problem of the Kondo e�ect in

graphene arising from vacancies. The remaining of this work is separated in four parts.

In Chapter 2 we present in some detail the experiment that served as a motivation to

this work. In Chapter 3 the background for a theoretical approach to the Kondo e�ect

is constructed. We introduce the Anderson and Kondo models [8] and discuss the main

results and ideas derived by these authors for the Kondo e�ect in metallic systems. A

schematics of the NRG method developed by Wilson [10, 36, 55] is conducted. We end the

chapter discussing the physics of pseudogap systems making a comparative study between

the di�erences with the metallic case and address some theoretical results developed for

the Kondo e�ect in graphene. Chapter 4 presents our theoretical modelling to the problem

of the Kondo e�ect in graphene showing how disorder plays a key part in this process.

Finally, in Chapter 5 we bring our conclusions.
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2 Experimental Motivation

The Kondo e�ect has been recently observed in graphene by the Maryland group

[1]. The experiment consists of the bombardment of a graphene sheet, deposited on SiO2,

with 500eV He+ in ultra-high vacuum. The process originates vacancies in graphene. The

resistivity %(Vg, T ) of the irradiated samples was analized as a function of gate voltage

Vg and temperature T . The authors claim that %(Vg, T ) shows a temperature-dependent

contribution %K(Vg, T ) which follows the universal dependence expected for spin-1/2 single

parameter Kondo scattering. Below we review in more detail the experiment and its main

�ndings.

Repeating sample preparation of a previous work [56], graphene deposited over SiO2

was irradiated with 500eV He+ in ultra-high vacuum (UHV) at low temperature. After-

wards the sample was annealed overnight at 490K and air exposed during transfer to an
3He cryostat. The conductivity σ(Vg) was measured before and after sample irradiation

(but before annealing) at T = 17K, and after the annealing at T = 300mK. Figure 5

shows the curves obtained. The estimated mobilities in each of these stages were, respec-

tively: 4000, 300 and 2000cm2V−1s−1. Due to disorder, the irradiated sample shows a

lower mobility than the pristine one. But what is the nature of the defects caused by

irradiation? The experimental evidence for defect mediated intervalley scattering is the

observation of a D band peak in the Raman spectra presented after annealing and air

exposure, see Fig. 6. This is evidence of short range scattering, which could be a vacancy,

a larger damaged region or a Stone-Wales defect (a kind of local reconstruction) [16].

Another evidence of short range disorder in the irradiated sample comes from the

study of weak localization (WL) which manifest in the observation of the sample mag-

netoresistance (see below). One important aspect about short range scattering is that

it may cause localization. The interaction of localized states with the band conduction

electrons is key to understand the Kondo physics. An appropriate model to deal with the

scattering of conduction electrons by a localized state is the so-called Anderson model, and

in the next sections we will present the ideas behind this model and the numerical renor-
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Figure 5: σ(Vg) of graphene sample before He+ irradiation (black solid line), after ir-
radiation (red dashed line) and after annealing at T = 490K (blue short-dashed line).
Extracted from Ref. [1].

Figure 6: Raman expectra before a and after b irradion of graphene with He+. Extracted
from Ref. [1].

malization group (NRG) technique, another tool of major importance in the theoretical

understanding of the Kondo e�ect.

The in�uence of the perpendicular magnetic �eld on the resistivity %(B) of the irra-



13

diated sample was investigated at T = 300mK and di�erent gate levels, see Fig. 7 (top).

Weak localization is observed at small B �elds. This in�uence is best seen in Fig. 7

(bottom) which displays a detail of the magnetoresistance at small B at T = 300mK and

Vg−Vg,min = −65V 1. One should note that for �elds close to B = 1T, weak localization is

suppressed. At higher �elds, the authors claim that SdH oscillations were also observed.

Then, their strategy to skip the e�ects of WL and SdH oscillations was to measure the

resistivity %(Vg, T ) under a perpendicular magnetic �eld equal to B = 1T, large enough

to dissipate the e�ect of WL but not so large for Shubnikov-de Haas (SdH) oscillations

to manifest.

A strong experimental evidence for the Kondo e�ect is a logarithmic dependence of

%(Vg, T ) on T , hence the resistivity %(Vg, T ) was measured as a function of temperature for

di�erent gate voltages while B = 1T, see Fig. 8. The authors [1] claim that in the region

of temperatures close to 200K and beyond, phonon contributions become signi�cant and

positive d%/dT are seen2 in the resistivities curves for Vg not to near Vg,min. However, for

temperatures in the range of 10−100K the derivative becomes negative and the resistivity

follows a logarithmic increase as temperature is lowered. For even lower temperatures

resistivity saturates.

The measured %(Vg, T ) was compared with the expressions developed in theories of

the "metallic" Kondo e�ect [57, 58]. For low temperatures (up to 10K) the data should

obey the Fermi liquid behavior whose theory predicts the expression [57]:

%(Vg, T ) = %c1(Vg) + %K,0(Vg)

[
1−

(π
2

)4
(

T

TK(Vg)

)2
]
. (2.1)

At the intermediate temperature regime (from 10 to ∼ 100K) where the logarithmic

behavior presents, the derived expression is [58]:

%(Vg, T ) = %c2(Vg) +
%K,0(Vg)

2

[
1− 0.470 ln

(
1.2T

TK(Vg)

)]
. (2.2)

In Eqs. (2.1) and (2.2) %K0 is the Kondo resistivity at zero temperature, %c1 and %c2 are

the resistivity temperature-independent contribution and TK is the Kondo temperature.

If the resistivity follows the universal Kondo form, %c1 = %c2. This fact was explored in

the paper to test the model consistency. Since %(Vg, T = 0) is known from the data, Eqs.

(2.1) and (2.2) have actually three degrees of freedom for each Vg: %c1, %c2 and TK . The

1Vg,min is the gate voltage at which the conductivity has a minimum. The encountered values were
8V, 5V and 5.3V; for pristine, irradiated and annealed graphene, respectively.

2This is better visualized in Fig. 10 bottom.
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Figure 7: Top: Magnetoresistance as a function of perpendicular magnetic �eld for several
dopings Vg for irradiated and annealed graphene. Bottom: E�ect of the weak localization
at small �elds displayed in the magnetoresistance of the irradiated and annealed sample
at Vg − Vg,min ≈ −65V and T = 300mK. Extracted from Ref. [1].

remaining parameters were then estimated via a least squares �t to Eqs. (2.1) and (2.2).

In Fig. 9 is presented the adjusted parameters, on the top are displayed the results for

%c1 and %c2 and on the bottom the data for the Kondo resistivity subtracted by %c1. The

behavior in the two plots is similar exhibiting a maximum near Vg = 5.3V, where the

conductivity has a minimum. One can see that the agreement of the adjusted parameters

%c1 and %c2 is very good supporting the conclusion that the logarithmic divergence and

T 2 saturation originates from the same phenomenon: the Kondo e�ect.
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Figure 8: %(Vg, T ) for di�erent doping levels and perpendicular �eld equal to B = 1T.
Extracted from Ref. [1].

The dependence of the estimated Kondo temperatures on the gate voltage is displayed

in Fig. 10. The curve in black corresponds to data from the sample (Q6) from which

were obtained the data discussed above. The blue curve was obtained from the analysis of

another sample (L2). In both curves we observe similar aspects as: the gate dependency

of TK , which is slightly particle-hole asymmetric; minimum TK occurring close to the

minimum of conductivity and high values of TK (of order 50K). The slightly lower values of

TK found in sample L2 were speculated as coming from two factors [1]: 1) after annealing

the temperature base measurement of sample L2 was T = 1.7K against T = 0.3K for

sample Q6. It was argued that the higher base measurement could result in smaller TK

estimates for each Vg as was observed for sample L2. 2) The second possibility pointed

was disorder, which vary from sample to sample and could also in�uence the estimates.

Finally, the %(Vg, T ) curves of Fig. 8 were scaled by the calculated parameters %c1,

%K0 and TK , and the outcomes were compared to theoretical results calculated using the

NRG method [58]. In Fig. 10 is plotted the normalized resistivity (%(Vg, T ) − %c1)/%K0

versus renormalized temperature T/TK for the di�erent sets of curves of Fig. 8. The data

collapse is very nice for the range between 0.003 < T/TK . 3. The match between the

NRG curve and the experimental data is very impressive, indicating a very robust Kondo

e�ect. In the range of temperatures where the data depart from the theoretical curve,

phonon contributions should manifest which would increase the resistivity explaining the

positive deviation for the higher �llings. On the other hand, the negative deviation

encountered for lower �llings could be an e�ect of thermal activation of carriers [1].
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Figure 9: Top: Estimates of %c1 and %c2 obtained from least squares �ts of Eqs. (2.1) and
(2.2) at di�erent doping levels Vg. Bottom: Estimates of zero temperature resistivity %K0

at several Vg. Extracted from Ref. [1].

It is quite surprising that the experimental data �ts so well a metallic Kondo theory.

As we mentioned earlier, systems which have a density of states that vanishes at the

Fermi level as %(ε) ∝ |ε|n are known as pseudogap systems. Graphene belongs to this

class, n = 1 is expected in this case. The Kondo e�ect exhibited for pseudogaped systems

di�ers substantially in many aspects by that presented in metallic systems which have a

constant density of states [38]. This puzzle might be attributed to disorder which could be

responsible for the "conversion" of graphene into a standard metal. In a later chapter we
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Figure 10: Top: Kondo temperatures estimated from least squares �ts for two samples,
Q6 (the one to which all the others analysis refer) and L2. Bottom: Comparison between
scaled resistivity curves with the parameters adjusted for each Vg and theoretical result
from NRG calculations. Extracted from Ref. [1].

will explore this in�uence and try to understand until what extent disorder is responsible

for such "conversion".

Although the data is �tted by a "metallic" Kondo Theory, the predicted relation

kBTK ≈ De−1/J%(εF ), (2.3)

(where kB is Boltzmann's constant, D the bandwidth, J the coupling constant between

the localized state and conduction electrons, %(εF ) the metal's density of states at the
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Fermi energy) which is valid for metals, fails in predicting the estimate of TK at zero

doping, which for neutral graphene implies TK = 0 since it's density of states vanishes at

the Dirac point. Another interesting aspect of Eq. (2.3) and the temperatures displayed

in Fig. 10 is that temperatures ∼ 50K would imply a very strong coupling J between the

localized state and the conduction electrons since the density of states is very small close

to the Dirac point.

The interpretation of the logarithmic resistivity as a manifestation of Kondo e�ect

has been contested [59]. It was argued that actually the logarithmic resistivity was due to

electron-electron interactions in the presence of disorder [59, 60], which would cause the

Altshueler-Aronov e�ect. The hypothesis of the Altshueler-Aronov e�ect was pointed in

the Kondo experiment [1], but it was ruled out trough the argument that the Altshueler-

Aronov e�ect should be present even at high �elds, and that would imply in corrections

to Hall coe�cients which they did not observe [1]. This explanation was also contested by

Jobst et al [59] who argued that universal conductance �uctuations or non-ideal alignment

of the Hall leads could obscure the interpretation of the Hall data from Ref. [1]. Chen

et al �nally keep the interpretation of the Kondo e�ect as the correct explanation of the

logarithmic resistivity by showing that the Altshuler-Aronov theory fails in overestimating

their observed magnetoresistance and in the predictions of the saturation temperature of

the resistivity [61].

We �nish this section emphasising that the discussed experiment serves as a motiva-

tion for the model we use to study the Kondo e�ect in disordered graphene. Our goal is

to provide qualitative understanding of the data. A quantitative analysis would involve a

better knowledge of the defects in the sample, and, more importantly the description of

a disordered Kondo lattice. This is beyond the scope of this study.
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3 Theoretical Background on the

Kondo e�ect

3.1 Anderson Model: Mean Field Solution

One of the prototype models for describing microscopically the interaction between

a localized magnetic moment and a bath of conduction electrons is the so-called An-

derson model, proposed by P. W. Anderson in 1961 [34]. This model shed light on an

important question in condensed matter physics, namely: a metallic atom immersed in a

nonmagnetic metallic host would still remain magnetic?

The Anderson model has very few elements. The conduction electrons of the host are

represented by a band whose single-particle energies, measured with respect to the Fermi

sea, are given by εk. The impurity is treated simply as a local single electronic orbital

with an energy εd. Orbital degeneracy, typical of metallic �ve-fold degenerate impurities

(Fe, for instance) is not considered. The additional ingredients of the model are the

charging energy U , which is the cost for double occupancy of the localized orbital of

the impurity due to the electrons Coulomb interaction, and the coupling matrix element

γkd, responsible for electrons of the conduction band hop into the impurity orbital and

vice-versa. The model Hamiltonian reads [6]:

HA =
∑
k,σ

εkc
†
kσckσ +

∑
σ

εdc
†
dσcdσ +

∑
k,σ

(γkdc
†
kσcdσ + γ∗kdc

†
dσckσ) + Und↑nd↓, (3.1)

where, in Eq. (3.1), c†kσ (ckσ) creates (destroys) electrons with spin σ in the conduction

band and c†dσ (cdσ) creates (destroys) electrons with spin σ in the impurity. ndσ = c†dσcdσ

is the number operator for a localized electron with spin σ.

Despite its simplicity, Eq. (3.1) poses a non-trivial many-body problem. The solution

relies, for instance, in the numerical renormalization group method developed by [10, 36,

55], which we will describe in a future section.
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In order to extract insightful physics from Eq. (3.1), Anderson made use of a mean

�eld (or Hartree-Fock) approximation, namely [6]:

Und↑nd↓ ≈ U 〈nd↑〉nd↓ + Und↑ 〈nd↓〉 . (3.2)

The approximated Hamiltonian reads [6]:

HHF
A =

∑
k,σ

εkc
†
kσckσ +

∑
σ

Edσc
†
dσcdσ +

∑
k,σ

(γkdc
†
kσcdσ + γ∗kdc

†
dσckσ), (3.3)

where the impurity energy is renormalized as [6]

Edσ = εd + U 〈nd−σ〉 . (3.4)

Here we will sketch the most important results obtained by the mean �eld solution. The

complete derivation can be found in [6, 34].

By means of the Hartree-Fock approximation, the Anderson Hamiltonian is bilin-

ear in the localized and band operators, therefore it can be diagonalized by an unitary

transformation [6]:

c†nσ =
∑
k

〈nσ|kσ〉c†kσ + 〈nσ|dσ〉c†dσ, (3.5)

|dσ〉 and |kσ〉 are impurity and conduction states, respectively, and |nσ〉 denotes the

states in the diagonal basis. In the eigenstates basis, the Hamiltonian can be written as

a single-particle term [6]:

HHF
A =

∑
nσ

εnσc
†
nσcnσ. (3.6)

The single-particle energy levels εnσ can be determined through the equations of motion

for operators.

The most important quantity required to understand the local moment formation is

the net occupancy of the impurity states per spin [6]:

〈ndσ〉 =
∑

εnσ≤εF

|〈nσ|dσ〉|2 =

∫ εF

−∞
dερdσ(ε), (3.7)

where |〈nσ|dσ〉|2 is the overlap probability of the system eigenstates with the impurity

site, εF is the Fermi energy, and ρdσ denotes the impurity density of states, that is [6]

ρdσ(ε) =
∑
n

δ(εnσ − ε)|〈nσ|dσ〉|2. (3.8)

Local moment will arise as long as 〈ndσ〉 6= 〈nd−σ〉. To establish whether this condition
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is satis�ed, the impurity density of states can be calculated through the impurity's Green

function [6]:

ρdσ(ε) = − 1

π
lim
η→0

ImGσ
dd(ε+ iη). (3.9)

For the single-particle Hamiltonian HHF
A , the matrix elements of G obey the relation [6]:

∑
β

(ε+ iη −HHF
A )αβGβµ(ε+ iη) = δαµ. (3.10)

Collecting terms in Eq. (3.10) and solving the resulting equations for Gσ
dd results [6]:

Gσ
dd(ε+ iη) =

[
ε+ iη − Edσ −

∑
k

|γkd|2

ε+ iη − εkσ

]−1

. (3.11)

Rewriting the summation term in Eq. (3.11) as [6]∑
k

|γkd|2

ε+ iη − εkσ
=
∑
k

|γkd|2
ε− εk − iη

(ε− εk)2 + η2
, (3.12)

and taking the limit η → 0 [6]:

lim
η→0

∑
k

|γkd|2

ε+ iη − εkσ
= P

(∑
k

|γkd|2

ε− εk

)
− iπ

∑
k

|γkd|2δ(ε− εk). (3.13)

The �rst term in Eq. (3.13) is the principal value of the function under parentheses and

is a real quantity, therefore entailing a shift of the impurity energy level. For a constant

density of states, which is a good model for the metallic host, in the range of variation

of Edσ the �uctuation caused by this term is small, allowing it to be discarded [6]. The

second term is a relevant contribution and π
∑

k |γkd|2δ(ε − εk) = Γ is denoted as the

hybridization function. Its relevance transcends the mean �eld solution of the Anderson

model, being of major importance in the implementation of the NRG method structure.

In the present context the hybridization function is responsible for a broadening of

the impurity's level, which can be seen more clearly if we insert the result Eq. (3.13) back

into Eq. (3.11) [6]:

Gσ
dd(ε+ iη) =

1

ε+ iη − Edσ + iΓ
. (3.14)

Finally, inserting result Eq. (3.14) into Eq. (3.9) we �nd [6]:

ρdσ(ε) =
1

π

Γ

(ε− Edσ)2 + (Γ)2
. (3.15)

Equation (3.15) is a Lorentzian distribution whose width is controlled by the param-

eter Γ. It should be noticed that in the limit of Γ → 0 (no hybridization), Eq. (3.15)
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approaches a Dirac δ-function. The e�ect of hybridization is now quite clear: when the

hybridization is absent, the impurity states are eigenstates of the Hamiltonian separated

by the charging energy U . One can then associate an in�nite lifetime to this state. Once

the hybridization is turned on, the e�ect of mixing is that the impurity states are no

longer eigenstates, so an electron at one of these states will acquire a �nite lifetime τ to

decay into other states, this decay will be faster the larger is Γ, which can be established

more rigorously through Fermi's golden rule resulting the relation τ = }/2Γ [6].

The mean occupation per spin is evaluated as [6]:

〈ndσ〉 =

∫ εF

−∞
dερdσ(ε) =

1

π
arccot

(
Edσ
Γ

)
, (3.16)

but, since Edσ = εd + U〈nd−σ〉 it follows that [6]:

cot (π〈ndσ〉) =
εd + U〈nd−σ〉

Γ
. (3.17)

The pair of coupled equations (one for each σ) Eq. (3.16) de�nes the parameter regime

at which the system will exhibit magnetic solutions. As expected, for U = 0 the system

is nonmagnetic, since 〈nd↑〉 = 〈nd↓〉. This is also the case for an in�nite hybridization

Γ→∞ which results in 〈nd↑〉 = 〈nd↓〉 = 1/2. As shown in Fig. 11, a magnetic regime is

expected for the case in which the impurity lies below the Fermi energy εd < εF (so that

in thermal equilibrium the impurity will be at least singly occupied) and, besides, that

the cost of doubly occupying the impurity exceeds the Fermi energy εd + U > εF which

inhibits the double occupation. The phase diagram for the complete range of magnetic

parameters is displayed in Fig. 12, where use of the transformed dimensionless variables

x = −εd/U and y = U/Γ have been adopted. The points x = 0 and x = 1 are the

limits for the magnetic region since x = 0 corresponds to εd = εF = 0 and x = 1 to

εd + U = εF = 0. The most favorable case for magnetism to emerge is x = 1/2.

It should be noticed that the magnetic limit is valid in the range within which the

impurity is weakly coupled to the electron gas and the charging energy is large U/Γ� 1.

In such a limit the system presents only spin �uctuations, charge �uctuations are vanishing

small. This spin dynamics was explored by Kondo in a famous study of the scattering

of conduction electrons by a magnetic impurity [35] that we discuss in the following. In

appendix A we show that, in the magnetic limit, the Anderson model can be mapped into

the model analyzed by Kondo.
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Figure 11: Schematics of the energy levels of the Anderson model in the magnetic case.
Extracted from Ref. [6].

Figure 12: Phase diagram for the mean �eld solution of the Anderson model. Extracted
from Ref. [6].

3.2 Kondo e�ect and Kondo problem

In his seminal paper [35], Kondo was interested in studying how the low temperature

resistivity and magnetic properties of a host metal are a�ected by a magnetic impurity.

He was motivated by experimental results due to Sarachick et al [7] who made a series

of measurements of the resistivities of Mo − Nb alloys containing Fe impurities. The
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experimental data of the alloys resistivities is shown in Fig. 13. The measurements show

that the resistivities decrease logarithmically as the temperature is lowered until they

reach a minimum. When the temperature is reduced even more, the resistivity inverts

its behavior and starts to grow (logarithmically) reaching a �nite value. This result is in

strong contrast to the resistivity of a pure metal that tends to zero monotonically as the

temperature decreases [6].

Figure 13: Resistance measurements for Fe in a series ofMo−Nb alloys. Extracted from
Ref. [7].

Kondo explored the interaction of the localized moment with the conduction electrons

through the so-called Kondo (or s-d) Hamiltonian [8]:

HK = −J
}
∑
kk′

[
S+c†k↓ck′↑ + S−c†k↑ck′↓ + Sz

(
c†k↑ck′↑ − c

†
k↓ck′↓

)]
, (3.18)

where S+ (S−) denotes the raising (lowering) spin operator of the impurity and Sz is

the z component of the impurity spin operator. c†kσ (ckσ) creates (annihilates) a conduc-

tion electron in the state k with spin σ. J denotes the coupling between the impurity

and conduction electrons. Besides, the simpli�cation of a k independent interaction is

assumed.

The Hamiltonian Eq. (3.18) describes the interaction of an impurity with an internal

spin degree of freedom with the conduction electrons of the host. As we will present

in the sequence, this setting involves the integration of the whole Fermi distribution in

the scattering calculations of the conduction electrons by the impurity. The scattering

problem therefore turns into a true many-body problem, with all electrons entering the



25

theory trough the Fermi function [62]. This is in marked contrast to the problem of

electron scattering by nonmagnetic impurities, where the Fermi distribution does not

appear in the calculations and the computation of the scattering cross section is a purely

one-electron scattering one. This explains why Drude could construct a successful theory

of electrical conductivity before the advent of quantum mechanics since the occurrence of

the Fermi distribution is a consequence of Pauli's exclusion principle, which is a hallmark

of quantum mechanics.

Kondo explained the connection between the existence of magnetic impurities and

the occurrence of the resistance minimum calculating the scattering probability of the

conduction electrons to second order1 in the parameter J (HK is treated as a perturbation

to the conduction electrons Hamiltonian). To this order the logarithmic behavior of the

resistivity appears as a consequence of the spin degrees of freedom of the impurity.

The calculation of the resistivity involves the knowledge of the elements of the T (ε+)

matrix, which is de�ned as [8]:

T
(
ε+
)

= Hint +HintG
+
0 Hint +HintG

+
0 HintG

+
0 Hint + . . . , (3.19)

where ε+ = ε+iη and G0 denotes the Green function of the non-interacting system. Trans-

port properties are obtained through the Boltzmann equation formalism which relates the

inverse transport time and the T matrix through [8]:

1

τ(k)
= 2πcimp

∫
δ(εk − εk′)|Tkk′|2(1− cos θ′)

dk′

(2π)3
, (3.20)

where τ(k) denotes the transport time, cimp is the impurity concentration, Tkk′ is the T

matrix elements between the initial k and the �nal state k′ and θ′ is the angle between k

and k′. Access to the conductivity (resistivity) is given by [8]:

σ =
ne2τ(kF )

m
, (3.21)

where n is the number of electrons per unit volume, e the electron charge and m the

electron mass.

To �rst order, T (ε+) = Hint = HK . Calculating, for instance, the matrix element

〈k′ ↑ |T (ε+)|k ↑〉(1) (the subindex 1 denotes that this is a �rst order process) we obtain

[8]:

〈k′ ↑ |T (ε+)|k ↑〉(1) = −JSz
}
. (3.22)

1Third order in the conductivity [8].
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With similar terms for 〈k′ ↑ |T (ε+)|k ↓〉(1), 〈k′ ↓ |T (ε+)|k ↑〉(1) and 〈k′ ↓ |T (ε+)|k ↓〉(1),

with Sz in Eq. (3.22) replaced by S+, S− and −Sz, respectively.

Collecting the above results and substituting into Eqs. (3.20) and (3.21), one obtains

a temperature independent contribution to the resistivity, namely [8]:

%0 =
3πmJ2S (S + 1) cimp

2e2}εF
, (3.23)

where use of the relation 2S2
z +S+S−+S−S+ = }2S(S+1) has been made. S is the total

spin of the impurity.

The extension of scattering calculations to second order Born approximation requires

calculation of the matrix elements [8]:

〈k′σ′|HK
1

ε+ iη −H0

HK |kσ〉, (3.24)

where kσ (k′σ′) labels the conduction electrons initial (�nal) states.

Among all possible di�erent process represented by Eq. (3.24), the most important

terms are those in which the spins of the conduction and localized electrons are �ipped

during the scattering process. As we show below those terms are responsible for the rise

of a temperature dependence of the resistivity. The diagrams representing these processes

are displayed in Fig. 14 for the case in which the initial and �nal electron spin states are

up.

Figure 14: Spin �ip diagrams for the second order scattering process in which the initial
electron state is k ↑ and the �nal is k′ ↑. The curved lines represents the electron and the
straight line the impurity. In the left panel the intermediate state is an electron while in
the right it is a hole, which is represented by the backward arrow. Extracted from Ref.
[8].

In the scattering process represented in the left panel of Fig. 14, the k ↑ conduction
electron is �rst scattered into the unoccupied state k2 ↓ with a corresponding spin �ip of

the impurity. In the following, the electron is scattered with spin �ip into the �nal state

k′ �ipping the spin impurity again. This contribution to the element 〈k′ ↑ |T (ε+) |k ↑〉(2)
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(the subindex 2 denotes that this is a second order contribution) is written as [8]:

J2

}2

∑
k1,k

′
1,k2,k

′
2

〈k′ ↑ |S−c†k1↑ck′1↓
1

ε+ iη −H0

S+c†k2↓ck′2↑|k ↑〉. (3.25)

After some algebra this term reduces to [8]:

J2

}2

∑
k2

S−S+ 1− f (εk2)

ε+ iη − εk2

. (3.26)

In Eq. (3.26) the function f (εk2) is the Fermi distribution and the factor 1 − f (εk2)

guarantees that the intermediate state is unoccupied.

The diagram in the right of Fig. 14 represents the second main scattering process.

In this situation, an occupied state k2 ↓ is scattered with spin �ip into the �nal state

k′ ↑ leaving a hole state behind, which is the reason why the k2 state is represented by

a backward arrow in the diagram. In the sequence the k ↑ initial state scatters into the

k2 ↓ state with a corresponding spin �ip of the impurity. This process contributes to

〈k′ ↑ |T (ε+) |k ↑〉(2) through the term [8]:

J2

}2

∑
k2

S+S−
f (εk2)

ε+ iη − εk2

. (3.27)

Now one notes the presence of the factor f (εk2) which accounts for the fact that the

intermediate state should be occupied in this processes. The order in which the lowering

and raising operators spin operators appear in Eq. (3.27) are opposite to the one in Eq.

(3.26) re�ecting the inversion in the order at which the impurity spin is lowered or raised

in the two diagrams. Since S+ and S− do not commute, one shows that summing the

terms in Eq. (3.26) and Eq. (3.27) results in a term which is still dependent on the Fermi

distribution, namely:

J2

}2
S2
∑
k2

1

ε+ iη − εk2

+ 2
J2

}2
Sz
∑
k2

f (εk2)− 1/2

ε+ iη − εk2

. (3.28)

In the derivation of Eq. 3.28, we made use of the relations S+S− = S−S+ + 2Sz and

S−S+ = }2S2 − S2
z − Sz.

We now see that the appearance of the Fermi distribution is a result of the spin degree

of freedom of the impurity since it is a consequence of the di�erence in the sequence of

the S operators acting on the impurity states and the creation of particle intermediate

states. The many-body aspects, which enter through the Fermi function, imply that all

electrons contribute to the scattering matrix of a given conduction electron.
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Collecting the �rst and the second order terms from the perturbative calculations, for

the process where the initial and �nal conduction states have spin up, results [8]:

〈k′ ↑ |T
(
ε+
)
|k ↑〉 = −Sz

J

}

[
1− 2

J

}
g (ε)

]
, (3.29)

where in passing from Eq. (3.28) to Eq. (3.29) only the temperature dependent term was

retained. The other term can be neglected as its contribution corresponds to correction

factors of order J/εF or higher to the resistivity [8], which are negligible in the standard

physical situations corresponding to J � εF . The function g (ε) reads [62]:

g (ε) =
∑
k

f (εk)− 1/2

ε+ iη − εk
. (3.30)

When squaring expression Eq. (3.29) only the real part of g(ε) remains. This reads

[62]:
ρ0

2
P

∫ D

−D
dx

tanh (βx/2)

x− ε
= ρ0 ln

(
D

kBT

)
, (3.31)

where ρ0 is a constant density of states and D is the bandwidth.

Calculating the other T -matrix elements 〈k′ ↓ |T (ε+) |k ↑〉, 〈k′ ↑ |T (ε+) |k ↓〉 and
〈k′ ↓ |T (ε+) |k ↓〉 results in terms similar to that found in Eq. (3.29), but with Sz

substituted by S−, S+ and −Sz, respectively. Collecting all these contributions, the

resistivity to third order in J is given by [8]:

% = %0 [1 + 4Jρ0 ln (kBT/D)] . (3.32)

Eq. (3.32) shows how the logarithmic dependence on the temperature emerges. In Eq.

(3.32) %0 is the �rst order contribution encountered in Eq. (3.23). As opposed to the

phonon contribution, the resistivity due to the impurity increases as the temperature is

decreased for an antiferromagnetic coupling (J < 0). Combining the phonon contribution

to the resistivity to the one due to the impurity, Kondo proposed a phenomenological

expression for the total resistivity of the form [8]:

%(T ) = aT 5 + cimpR0 − cimpR1 ln (kBT/D), (3.33)

where, a, R0 and R1 are positive constants, cimp is the impurity concentration and the

�rst term accounts for the phonons contribution and the remaining are the impurity

contributions calculated above. Equation (3.33) has a minimum at a temperature Tmin
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and is given by [6]:

Tmin =

(
R1

5a

)1/5

c
1/5
imp. (3.34)

This is the main result derived by Kondo, who showed that this result �ts the exper-

imental observation nicely [35]. Because this successful explanation of the minimum of

the resistivity in metallic alloys, this phenomenon was named the Kondo E�ect2.

However, the Kondo perturbative approach does not entirely solve the problem. Con-

trary to what is observed in the experiments (see Fig. 13), the resistivity predicted in Eq.

(3.33) diverges logarithmically as temperature tends to zero. The search for a solution

valid at low temperatures is the so-called Kondo Problem.

3.3 Poor Man's scaling

An important contribution for the understanding of this problem is the poor man's

scaling analysis put forward by Anderson in the context of the Kondo3 model [64].

It is expected that at low temperatures only those states close in energy to the Fermi

level will be determinant for the system physical properties. The goal of the scaling

analysis is to eliminate the high-energy excitations in a sequence of steps and describe the

system within a limited region of the energy spectrum close to the Fermi level in such a

way that the e�ect of the high-energy excitations is absorbed as a renormalization of the

coupling terms of an e�ective Hamiltonian representing the "reduced" system.

For the implementation of the scaling proceeding, the method considers a band of

width 2D, centered at the Fermi energy (εF = 0), and step-by-step reduces the cut-o�

energy D to D − |δD|, eliminating particle states lying at the upper band edge or holes

in the lower band edges (see Fig. 15). These high-energy excitations are mapped into

intermediate states in perturbation theory. Anderson carried the calculations up to second

order in perturbation theory which is the reason of the name poor man's scaling [6]. The

basic idea is to consider the scattering processes that enter in the second order transition

amplitude and to determine how they change when the bandwidth is decreased by the

amount |δD|. As result, the e�ect of the elimination of high-energy states is absorbed

by a renormalization of the coupling constants of the reduced system. The poor man's

scaling gives a set of equations relating the original couplings to those of the new system.

2In the literature this designation is also used to designate the quenching of the local moment by the
conduction electrons.

3The approach was later developed for the Anderson single-impurity model by Haldane [8, 63]
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Figure 15: Schematics of the states that will be eliminated in the scaling procedure.
Extracted from Ref. [8].

The starting point of the method considers the Kondo Hamiltonian with anisotropic

exchange couplings [8]:

H ′ = HK = − 1

}2

∑
kk′

[
J+S

+c†k↓ck′↑ + J−S
−c†k↑ck′↓ + JzSz

(
c†k↑ck′↑ − c

†
k↓ck′↓

)]
. (3.35)

The diagrams representing the scattering process of conduction electrons into the band

edges are essentially the same as those treated above in the calculations of the elements

of the T matrix 〈kσ|T (ε+)|k′σ′〉 (see Fig. 14).

Considering �rst the scattering process of Fig. 16i, where a conduction electron k with

spin up is scattered into the intermediate4 state q ↓ in the upper band edge and then to

a �nal state k′ ↑, the contribution, to lowest order correction in H ′, of this diagram to

the scattering process is given by [8]:

J+J−
}2

∑
q

S−ck′↑cq↓ (E −H0)−1
∑
q′

S+cq′↓ck↑, (3.36)

where H0 is a single-particle conduction electron Hamiltonian.

Considering that the band edge state is unoccupied in the initial and �nal states, it

implies that cq↓c
†
q′↓ = δq,q′ . With this in mind and remembering that the summations in

q in Eq. (3.36) are restricted to states within an energy |δD| of the band edge, after some

4The intermediate state is represented by a dashed line because this is the high-energy state which
will be eliminated in the scaling process.
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Figure 16: Two-spin-�ip process in which particle (i) and hole (ii) high-energy excited
states will be eliminated (dashed lines). Extracted from Ref. [8].

lengthy algebra (for more details see Ref. [6]) Eq. (3.36) can be cast in the form [8]:

J+J−
}2

ρ0|δD|
(
}2

2
− }Sz

)
c†k↑ck′↑ (E −D + εk)−1 , (3.37)

where ρ0 is a constant density of states and use of the relation S−S+ = }2/2 − }Sz has
been made.

The diagram in Fig. 16ii represents the scattering process in which the intermediate

state to be eliminated is a hole state within a energy range δD of the bottom of the band

−D. Similar approximations as those conducted above leads to the expression [8]:

J+J−
}2

ρ0|δD|
(
}2

2
+ }Sz

)
ck′↑c

†
k↑ (E −D − εk′)−1 , (3.38)

where the identity S+S− = }2/2 + }Sz is used in deriving the result in Eq. (3.38).

Similar contributions arise when considering two-spin-�ip process in which the initial

and �nal states have spin down. One may see that Eqs. (3.37) and (3.38) have the same5

structure as the longitudinal term in Eq. (3.35), hence elimination of high energy states

through the process above leads to a renormalization of the longitudinal coupling given

by Jz → Jz + δJz where [8]:

δJz = J+J−ρ0|δD|
[

1

E −D + εk
+

1

E −D − εk′

]
. (3.39)

Similarly, one obtains a renormalization of the transverse couplings when eliminating

high-energy excitations through one-spin-�ip process (see Fig. 17, for instance). Collect-

ing the contributions from those kind of scattering process leads to a renormalization of

5The spin independent terms give rise to a scattering potential and a term responsible for shift the
ground state energy. The former is discarded since its magnitude is small close to the Fermi energy. The
latter is incorporated into H0 in the scaling process [64]
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the transverse couplings given by [8]:

δJ± = J±Jzρ0|δD|
[

1

E −D + εk
+

1

E −D − εk′

]
. (3.40)

Figure 17: One-spin-�ip process in which particle (i) and hole (ii) high-energy excited
states will be eliminated (dashed lines). These process contribute to the renormalization
of the transverse couplings. Extracted from Ref. [8].

Considering excitations low in energy with respect to D, and for scattering of con-

duction electrons near the Fermi level, Eqs. (3.39) and (3.40) can be written as [8]:

dJ±
d lnD

= 2ρ0JzJ± and
dJz
d lnD

= 2ρ0J
2
±, (3.41)

where we set J+ = J− = J± [6, 8].

The most important result of the scaling process is obtained through the solution of

this pair of coupled equations which gives a family of hyperbolic curves [8]

J2
z − J2

± = κ, (3.42)

with κ a constant.

Substituting Eq. (3.42) in the scaling equation for J± clari�es the interpretation of

the results [6]:

dJ±
d| lnD|

=

{
−2ρ0J±

√
κ+ J2

± for Jz > 0 (ferromagnetic),

2ρ0J±
√
κ+ J2

± for Jz < 0 (antiferromagnetic).
(3.43)

Thus we see that for the ferromagnetic case the e�ect of scaling is to reduce the

strength of the e�ective transverse coupling, meaning that J± �ows to zero in this case.

For the antiferromagnetic situation the opposite occurs and the renormalized couplings

increase in magnitude as the scaling procedure is performed until |J±| → ∞ where the

perturbative approach breaks down. This is the strong coupling regime in which the
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Kondo e�ect occurs. This scaling analysis is illustrated in the diagram of Fig. 18.

Figure 18: Scaling diagram obtained by the poor man's scaling. The straight line repre-
sents the situation in which coupling is isotropic. For positive coupling Jz (ferromagnetic
case) the couplings renormalizes to zero while for Jz < 0 (antiferromagnetic case) the
system �ows to strong coupling regime. Extracted from Ref. [6].

For simplicity, the scale at which the perturbation theory breaks down is obtained

for the antiferromagnetic model with J± = Jz = J through integration of the resulting

di�erential equation Eq. (3.41) from an initial cut-o� D and coupling J through the new

cut-o� D̃ and renormalized coupling J̃ , this leads to [8]:

De−1/2Jρ0 = D̃e−1/2J̃ρ0 ∼ kBTK , (3.44)

where TK ∼ e−1/2J̃ρ0 is de�ned as the Kondo temperature and characterizes the trajectories

resulting from the scaling process. In other words, systems with di�erent parameters D,

J that lie in the same trajectory are equivalent and have the same low energy behavior,

which is determined by TK . In this sense, TK acts as a scale invariant of the theory and all

the thermodynamics quantities depend only on the single energy scale TK [8] (provided

we are in the limit of validity of the scaling theory, which is the weak coupling where

ρ0J � 1).

We see that for the ferromagnetic case a complete solution of the problem through

scaling is provided since scaling can be conducted down to D̃ → 0. In this case, J̃ → 0

and the system has an uncoupled spin. Hence, the impurity spin becomes asymptotically

free giving a Curie law contribution to the impurity susceptibility [8].

For the antiferromagnetic model, the reduction of the band width is only possible
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until D̃ ∼ kBTK beyond which perturbation theory breaks down.

A complete solution for this problem requires a non-perturbative approach capable of

describing the thermodynamic properties of the impurity system in the strong coupling

regime. This will be the topic we treat in the following.

3.4 The numerical renormalization group method (NRG)

and the pseudogap impurity problem

3.4.1 Introductory remarks

An important advance in solving the Kondo problem was achieved in 1975 by K. G.

Wilson [36], who developed a nonperturbative approach, called Numerical Renormaliza-

tion Group (NRG) method, which managed to describe the low temperature behavior of

the thermodynamic properties of the Kondo model. Initially, Wilson applied the method

to calculate the zero temperature limit of the susceptibility and speci�c heat of the Kondo

Hamiltonian [8, 36]. Later on, the method was extended to the Anderson model [10, 55].

In these works the authors give a clear and profound exposition of the method and apply

it to determine the low temperature behavior of both the symmetric (εd = −U/2) [10]
and asymmetric (εd 6= −U/2) [55] Anderson model.

Before presenting the NRG method, we �rst bring to light the special aspect about

studying the Kondo e�ect in graphene. Even though the results presented in the above

works contain some of the key ideas for the development of theoretical physics in the last

century, they are not straightforwardly applicable to graphene. But why this is so? A

most careful reader probably knows the answer: graphene's linear density of states that

vanishes at the Dirac point.

So far all the results we have been discussing concern an impurity immersed in a

nonmagnetic metal, whose density of states is a constant. These results are universal,

that is, they are independent of the details of the microscopic models studied and the

system speci�c features are encoded in TK . The low energy band structure gives graphene

a special status in the Kondo story, it belongs to the so-called pseudogap Kondo systems.

This kind of problem was �rst addressed in the early 90's by Witho� and Fradkin [37],

whose theoretical approach considered a density of states which vanishes at the Fermi level
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(εF = 0) and follos a power-law of the form [38]:

ρ(ε) =

{
ρ0|ε|r, for |ε| ≤ D

0, otherwise .
(3.45)

where D is the band's half-width. Based on perturbative methods such as the poor man's

scaling for the spin 1/2 Kondo model, the authors found important features of systems

with power-law density of states such as the existence of a critical value for the coupling

constant Jc under which no screening takes place. This is very di�erent from the usual

Kondo e�ect where the local moment is always screened. This result was supported by

a large-N (N meaning the impurity's degeneracy) expansion to the Coqblin-Schrie�er

model6 that produced similar results to those derived for the Kondo model [37]. The

study addressed a restricted range of r values, namely, 0 ≤ r < 1/2. Subsequent works

[65, 66] expanded the validity of the results to all positive r.

Poor man's scaling was also used to analyse the Anderson model in the context of

pseudogap systems [67]. Again it is found that in a �nite region of the parameter space

the impurity remains unscreened down to T → 0. This behavior is associated with the

occurrence of a quantum phase transition. It was identi�ed that the size of the parameter

space region of this "unscreened impurity" regime grows with r [67].

The quantum critical behavior of pseudogap systems and the important role played

by particle-hole symmetry is fully explored in Ref. [38]. Under particle-hole symmetry,

for instance, the critical coupling Jc is shown to be in�nite for values of r > 1/2 [38, 68],

meaning that the impurity spin is never screened in this cases. Such behavior is not seen

in the asymmetric case where Jc remains �nite for r > 1/2 [38, 68].

As in the regular Kondo problem a thorough study of a magnetic impurity in a pseu-

dogap system requires the use of the NRG method. For that purpose Wilson's ideas were

generalized to treat impurity models with an energy dependent hybridization function

[38].

Our work does not contain a further development of the NRG method. However, we

apply the method in a new context, namely, disordered pseudogap systems (results are

presented in the next chapter).

We now turn to a brief discussion of the schematics of the NRG applied to the An-

derson Hamiltonian already adapted for the pseudogap problem [38] and discuss some

6A description of this model is found in [8].
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main results obtained from it for the pseudogap and usual impurity problems. The liter-

ature contains very nice and detailed accounts on the NRG method for both, the metallic

[10, 36, 55] and pseudogap [9, 38] problems.

3.4.2 Schematics of the method

First it should be stated that the NRG is applied to systems which involve a quantum

mechanical impurity with a small number of degrees of freedom coupled to a band of non-

interacting electrons (extension to the bosonic system is also possible [9]). For models

where the band electrons show correlations, the problem should be �rst mapped onto

non-interacting impurity models through the dynamical mean �eld theory (DMFT) and

then NRG is applied [9].

We now summarize the description of the NRG method for a pseudogap system for

the Anderson Hamiltonian found in [38].

3.4.2.1 Structure of the Hamiltonian

The method addresses the Anderson Hamiltonian Eq. (3.1). Assuming, for simplicity,

spatially isotropy one writes εk ≡ ε|k| and γk ≡ γ(ε|k|) which means that the impurity

interacts only with s-wave states centered on the impurity site. This simpli�cation allows

to express the Anderson Hamiltonian in a one dimensional energy representation7 [38].

Hstate =
∑
σ

εd ndσ + Und↑nd↓

Hband =

∫ D−µ

−D−µ
dω ω c†ωσcωσ

Hhop =

∫ D−µ

−D−µ
dω
√

Γ(ω)/π
(
c†dσcωσ + H.c.

)
, (3.46)

where HA = Hstate+Hband+Hhop. It is assumed that the s-wave energies are contained in

the interval −D ≤ εk ≤ D, and we introduce for convenience the variable ω ≡ ε|k| − µ to

account the e�ect of a �nite chemical potential µ. The operator c†ωσ creates an electron in a

s-wave state with energy ω and is supposed to be normalized as {c†ωσ, cω′σ′} = δ(ω−ω′)δσσ′ .
The quantity Γ(ω) = πρ(ω)|γ(ω)|2 is the hybridization function which we encountered

earlier in the context of the mean �eld solution of the Anderson model.

The appearance of the hybridization function on the hopping Hamiltonian means that

7A detailed account on this procedure can be found in Ref. [10].
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the interaction of the impurity with the band is mediated only by this quantity. In other

words, the functional dependence of the density of states and the hopping integrals with

energy as separated quantities are unimportant8 as long as their combination gives the

same hybridization function. Hence, di�erent expressions of the Anderson Hamiltonian

are allowed [9]. We keep Eq. (3.46) because it is suitable for the pseudogap problem. As

in Ref. [38], we consider a power-law hybridization function

Γ(ω) =

{
Γ0|ω|r for −D − µ ≤ ω ≤ D − µ
0 otherwise .

(3.47)

where Γ0 is a reference value [38]. In the next chapter we will analyse results obtained for

a similar structure for the case of graphene.

In the subsequent derivations we use a dimensionless energy ε = ω/D and chemical

potential µ′ = µ/D following the treatment of Ref. [38].

3.4.2.2 Logarithmic discretization

Poor man's scaling shows how di�erent band energy intervals contributes to the log-

arithmic divergences encountered in the resistivity obtained from the analysis of the An-

derson Hamiltonian [8, 36, 63]. A suitable treatment of the band electron was proposed

by Wilson, who put forth a logarithmic discretization of the ε space whose domain is

spanned by a set of intervals controlled by a discretization parameter Λ (> 1) [10, 36]

shown in Fig. 19a. This process guarantees that energy values close to the Fermi level,

which determine the low temperature physics of the system, are well sampled [10] (see

Fig. 19b).

The procedure consists in dividing the band into two sets of logarithmic bins, one for

positive values ε+m+1 < ε ≤ ε+m, where [38]

ε+0 = 1− µ′, ε+m = (1− µ′)Λ1−z−m, m > 0, (3.48)

and another for negative energies ε−m ≤ ε < ε−m+1, where [38]

ε−0 = −(1 + µ′), ε−m = −(1 + µ′)Λ1−z−m, m > 0. (3.49)

The discretization parameter usually takes values Λ ∼ 2 − 3. Originally Wilson

used Λ = 2.5, µ′ = 0 and z = 1 [10, 36]. Introduction of the parameter z 6= 1 was

8The only exception to this is on the calculation of the host thermodynamic properties without the
magnetic impurity, in which the precise form of the density of states should be considered [38].
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proposed as a useful tool to approach the "exact" results of the continuum limit Λ → 1

for thermodynamic [69] and dynamical [70] quantities, and also allows the use of larger

Λ (for instance, Λ = 9 is used in Ref. [38]). This is accomplished by averaging the

physical quantities over di�erent z values for a �xed Λ. For more details on the use of

this technique see Refs. [9, 69, 70, 71].

Figure 19: a) Logarithimic discretization of the conduction electron band. b) The contin-
uum of states within each bin is substituted by a single value after discarding of the q 6= 0
modes. c) Semi-in�nite chain form of the system. The �rst site (green circle) denotes the
impurity which couples to the �rst conduction site through Γ̃1/2. Each site is incorporated
in one iterative step and couples to the last site of the smaller chain through the hoppings
ti, i = 0, 1, . . .. Extracted from Ref. [9].

Within each positive (negative) nth interval is introduced a set of orthonormal func-

tions ψ(q)
an (ε) (ψ

(q)
bn (ε) ) and a set of destruction operators a(q)

nσ ( b
(q)
nσ ), where q = 0,±1,±2, ....

Outside the bins the functions are null. In this basis, the conduction band operators read
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[38]:

cεσ =
∞∑
n=0

∞∑
q=−∞

[
ψ(q)
an (ε)a(q)

nσ + ψ
(q)
bn (ε)b(q)

nσ

]
. (3.50)

Originally, Wilson adopted the set of functions [9, 10]:

ψ(q)
an (ε) =

1√
dn
eiωnqε and

1√
dn
ψ

(q)
bn (ε) = e−iωnqε, (3.51)

with ωn ∝ 1/dn, dn being the width of the n-th logarithmic bin. For a metallic system

the hybridization function Γ(ε) is a constant. In this case, it is easy to see that due

to the orthogonality of the ψ's, substitution of Eqs. (3.50) and (3.51) into the hopping

Hamiltonian Eq. (3.46) �lters only the q = 0 mode from the expansion Eq. (3.50).

A crucial piece in Wilson's reasoning for mapping the original problem into a semi-

in�nite chain form is to make the impurity couple only to the q = 0 mode of the conduction

band states of every energy bin. For pseudogap systems it is also possible to proceed in

the same way, but it requires the introduction of a weighting function. By de�ning the

zero-mode functions in each bin as [38]:

ψ(0)
an (ε) =

{
W(ε)/Fan, for ε+n+1 < ε ≤ ε+n

0, otherwise ;
(3.52)

ψ
(0)
bn (ε) =

{
W(ε)/Fbn, for ε−n ≤ ε < ε−n+1

0, otherwise ,
(3.53)

and upon the de�nition of the weighting function W(ε) as [38]:

W(ε) = [Γ(εD)/Γ0]1/2 , (3.54)

(with Γ(ε) and Γ0 de�ned in Eq. (3.47)) the zero mode wavefunctions ψ(0)
an (ε) and ψ(0)

bn (ε)

possess the same energy dependence as the hybridization function in the Hamiltonian

Hhop in Eq. (3.46). The orthonormality condition on the ψ functions implies [38]

F 2
an =

∫ ε+n

ε+n+1

dεW2(ε), F 2
bn =

∫ ε−n+1

ε−n

dεW2(ε). (3.55)

Due to the construction above, orthogonality guarantees that only the zero mode

functions in the expansion Eq. (3.50) are retained9 when this is inserted into Hhop in Eq.

9An alternative route to �lter the zero-mode wavefunctions is proposed by Bulla and collaborators,
arriving at the same physics [9].



40

(3.46). This process leads to the hopping Hamiltonian [38]:

Hhop =
√

Γ0D/π

[
c†dσ

∞∑
n=0

(
Fana

(0)
nσ + Fbnb

(0)
nσ

)
+H.c.

]
. (3.56)

In terms of the expansion Eq. (3.50), the conduction band Hamiltonian is written as

[38]:

Hband = D
∑
n,σ,q,q′

∫ 1−µ′

−(1+µ′)

dε ε
[
ψ(q)∗
an (ε)ψ(q′)

an (ε)a(q)†
nσ a

(q′)
nσ + ψ

(q)∗
bn (ε)ψ

(q′)
bn (ε)b(q)†

nσ b
(q′)
nσ

]
. (3.57)

Until now the results presented are exact. From Eq. (3.57) we see that the higher

q modes only couple to the impurity indirectly via the non-diagonal terms of Eq. (3.57)

which involve the q = 0 mode. For a �at band, Wilson showed that the coupling between

the modes q 6= q′ vanishes as the continuum limit Λ→ 1 is approached [9, 36] and made

the approximation10 of discarding those terms for Λ > 1. For pseudogap systems, one

can show that the coe�cients of the q 6= q′ terms of Hband in Eq. (3.57) are proportional

to 1 − Λ−1 [9], also vanishing as Λ → 1. Hence, the same reasoning applied by Wilson

is employed. With this approximation, the q 6= 0 modes decouple from the impurity and

contribute to the kinetic energy in Eq. (3.57) a constant term which is dropped [38]. This

role process corresponds to substituting the continuum of energies within each bin by a

single value as shown in Fig. 19b [9]. The resulting Hamiltonian is [38]:

Hband
∼= D

∞∑
n=0

(
εana

(0)†
nσ a

(0)
nσ + εbnb

(0)†
nσ b

(0)
nσ

)
, (3.58)

where the energies εan and εbn are given by [38]:

εan = F−2
an

∫ ε+n

ε+n+1

dε εW2(ε), εbn = F−2
bn

∫ ε−n+1

ε−n

dε εW2(ε). (3.59)

3.4.2.3 Mapping on a semi-in�nite chain

The logarithmic discretization leads to the hopping and band contributions of the

Anderson Hamiltonian given by Eqs. (3.56) and (3.58), respectively. The following step

of the method is to transform the resulting Anderson model into a semi-in�nite chain

10An estimate of this "discretization" error is given in Sec. V of [38].
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Hamiltonian. This is achieved in two stages. First, by de�ning the operator [38]

f0σ = F−1

∞∑
n=0

[
Fana

(0)
nσ + F

(0)
bn b

(0)
nσ

]
, (3.60)

where the normalization factor F reads [38]:

F 2 =

∫ 1−µ′

−(1+µ′)

dεW2(ε). (3.61)

After the transformation, the hopping Hamiltonian Eq. (3.56) reads [38]:

Hhop =
√

Γ0D/πF
∑
σ

(
f †0σcdσ +H.c

)
. (3.62)

Now, a new basis of operators {fnσ} orthogonal to f0σ should be constructed using

the original operators
{
a

(0)
nσ , b

(0)
nσ

}
. There are many ways of constructing such a basis, but

each one would transform the band Hamiltonian Eq. (3.58) into a non-diagonal form.

The most convenient choice is the basis where the new operators are only coupled to their

nearest neighbors [38]:

Hband = D
∞∑

n=0,σ

[
εnf

†
nσfnσ + τn

(
f †nσfn−1σ +H.c

)]
, (3.63)

where in Eq. (3.63) the energies and hoppings are given by the recursive relations [38]:

εn = 〈fnσ|Hband/D|fnσ〉, (3.64)

τn+1|fn+1,σ〉 = (Hband/D − εn) |fnσ〉 − τn|fn−1,σ〉, (3.65)

〈fn+1σ|fn+1σ〉 = 1, (3.66)

|fnσ〉 = f †nσ|vacuum〉. (3.67)

|vacuum〉 is the system vacuum.

The operators fnσ are expressed in terms of the
{
a

(0)
nσ , b

(0)
nσ

}
basis as [38]:

fnσ ≡
∞∑
n=0

(
unma

(0)
mσ + vnmb

(0)
mσ

)
, (3.68)
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with u0m = Fam/F and v0m = Fbm/F . The remaining unm and vnm being determined by

the recursion equations Eqs. (3.64)-(3.67).

One can interpret the sites of the obtained semi-in�nite chain as follows: the �rst site of

the chain is the impurity and the others are conduction electron sites which are aggregated

to the chain at each iterative step as shown in Fig. 19c. The physical meaning attributed

to the conduction band sites by Wilson is that [36]: the �rst site of the conduction electron

chain corresponds to the shell with maximum of its wavefunction close to the impurity.

This shell couples to a shell further away from the impurity and so on (see Fig.20).

Figure 20: Schematic representation of the wavefunctions represented by the fnσ elec-
tron states. As n increases the states become more spread about the impurity position.
Extracted from Ref. [10]

3.4.2.4 Iterative Diagonalization

A natural question to ask is why perform all this work and by the end be stuck to

a Hamiltonian which still has in�nite degrees of freedom? The �rst part of the answer

relies on the fact that the semi-in�nite chain impurity Hamiltonian is solved conveniently

by iterative diagonalization, that is, a new conduction electron site is added to the chain

at each iteration step and the enlarged Hamiltonian is diagonalized. The second point is

that the hopping coe�cients τn typically decrease as Λ−n/2 for large n and εn drops o� at

least that fast [38]11.

The concept of the renormalization group enters in the context through this energy

dependence of the τn: the introduction of a new site to the chain reduces the relevant

11Analytical expressions for these hoppings were derived for metallic and pseudogap cases in [36] and
[72], respectively.
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energy scale by Λ1/2. Because the τn falls o� exponentially, only states of the shorter chain

within a comparatively reduced window are relevant for the interaction with the new site.

This picture allows the truncation of the energy spectrum obtained at each step of the

iterative process and the construction of the extended Hamiltonian from this truncated

basis. We develop these ideas in the following.

The in�nite chain Hamiltonian may be written as the limit of a sequence of Hamilto-

nians [38]:

H = lim
N→∞

αDΛ−N/2HN , (3.69)

where

α =
1

2

(
1 + Λ−1

)
Λ3/2−z (3.70)

is a conventional factor that approaches unity as Λ→ 1 [38].

The Hamiltonian HN , de�ned for N > 0, denotes a (N + 2)-site12 chain Hamiltonian

constructed from the sum of the discretized band Eq. (3.63) (restricting the sum to the

maximum value n = N), the hopping term Eq. (3.62) and the impurity contribution

Hstate from Eq. (3.46). Hamiltonian HN−1 and HN , resulting after the incorporation of a

new site to HN−1, are related by a recursion relation [38]:

HN = Λ1/2HN−1 + eNf
†
NσfNσ + tN

(
f †NσfN−1,σ +H.c.

)
− EG,N , (3.71)

where en and tn are on-site and hopping energies [38]

en = α−1Λn/2εn and tn = α−1Λn/2τn (3.72)

scaled in such a way as to cancel the Λ−n/2 decay of the original parameters (εn and τn)

as n gets large.

Subtraction of the ground state EG,N assures that the ground state energy of HN is

set to zero in each step.

The starting point of the sequence Eq. (3.69) is given by the atomic limit of the

impurity problem H0 [38]:

H0 = e0

∑
σ

f †0σf0σ + ε̃dnd + Ũnd↑nd↓ + Γ̃1/2
∑
σ

(
f †0σcdσ +H.c.

)
− EG,0 (3.73)

with scaled parameters [38]:

ε̃d =
εd
αD

, Ũ =
U

αD
, Γ̃ =

F 2Γ0

πα2D
. (3.74)

12N + 1 conduction electrons sites plus the impurity one.
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The character of the renormalization group shows up more clearly if we interpret the

Hamiltonian HN in Eq. (3.71) as a result of a renormalization group (RG) transformation

R over HN−1 [9]:

HN = R (HN−1) . (3.75)

However this is not an usual RG transformation where one goes from an Hamiltonian

H(K) dependent on the set of parameters K to a transformed Hamiltonian H(K′) with

a new set of parameters K′. This kind of representation is hardly obtained for the HN

resulting from NRG iterative process [9]. In this case, HN and the RG �ow are character-

ized directly by the many-particle energies EN(r) which obey the characteristic equation

[9]

HN |r〉N = EN(r)|r〉N , r = 1, 2, ..., Ns, (3.76)

with Ns the dimension of HN .

Hence, once the Hamiltonian HN has been diagonalized, its eigenstates in connection

with a basis for the new site are used to construct one basis for HN+1 using Eq. (3.71)

(for details of this process see Refs. [9] and [10]). The HN+1 obtained is diagonalized and

its "eigenbasis" will be used for the construction of a basis for HN+2.

As one can see from Eq. (3.71), before each step the Hamiltonian whose spectrum

was already calculated HN−1 is rescaled by the factor Λ1/2 in order to always keep the

smallest energy scale in the spectrum of order unity [38].

A drawback of the method is that the Hilbert space increases exponentially (∼ 22(N+2))

when new sites are aggregated to the chain, transforming the diagonalization of such

large-sized matrices numerically prohibitive. This problem is circumvented by setting a

truncation scheme which only keeps the lowest M energy states of the spectrum of HN
13.

Wilson justi�ed this procedure arguing that for calculating low temperature properties

of a system the low-lying energy states are the most relevant [10, 36]. In this way, an

important observation is that neglecting the high-energy spectrum does not spoil the

low-energy one in subsequent iterations [9]. Also, as the addition of a new site can be

viewed as a perturbation of relative strength Λ−1/2, high-energy states become less and

less important as the number of sites increases. Of course on approaching the continuum

limit Λ→ 1, an increasing number of states should be retained to ascertain liable results.

It should be noticed that the outputs of the method are obtained from a compromise

between two con�icting goals: �rst, one wishes accurate results which implies the choice

13Alternatively one may keep the states within a range of energy Ec of the ground state energy [38].
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of a "small" Λ (close to unity) to minimize discretization error and making M large

to reduce truncation error, both requiring extensive computational demand; Second, a

shorter computational time, implying to larger Λ and smaller M [38].

The procedure in going from step N to N + 1 is summarized in Fig. 21. In a) is the

truncated spectrum of HN with its ground state set to zero. b) shows the same spectrum

scaled by the factor Λ1/2. The spectrum after the new site is added is shown in c) and d)

presents what it looks like after truncation and setting the ground state energy to zero.

This closes our discussion on the basic scheme of the NRG method. In the next topic

we approach on the interpretation of the NRG outputs.

Figure 21: Illustration of how one passes from HN to HN+1 in the NRG. a) Lowest energy
levels of the chain Hamiltonian HN . Note that the ground state is set to zero. b) Scaling
of the states in a) by the factor Λ1/2. c) Low-energy states of HN+1. d) Spectrum of HN+1

after truncation and setting the ground state energy to zero. Extracted from Ref. [9].

3.4.3 Overview on the physics of �xed points

An example of the eigenvalues �ow calculated through the iterative procedure by

Krishna-Murthy et al [10] is shown in Fig. 22, for the symmetric Anderson model with

a �at band. The plot is clearly characterized by three regions, separated by crossover

regimes, where the solutions remain almost invariant as N changes. In this case the

eigensolutions approach a so-called �xed point of the system.

A �xed point H∗ of the transformation R2 is de�ned by the condition14 R2 (H∗) = H∗.

14The transformation R itself does not have �xed points because the spectra due to a chain with
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The �xed points are numerically characterized by the condition that HN and HN+2

have the same low-energy spectra and that matrix elements of any signi�cant operator O

obtained by the low-lying eigenstates of HN coincide with the elements calculated using

the low-lying eigenstates of HN+2 [10, 36].

Figure 22: Eigenvalues �ow for the lowest energy states of the symmetric Anderson model
with a �at band from Ref. [10]. The vertical axis correspond the �xed point eigenstates
shown in Fig. 23. Q and S are "good" quantum numbers that allows optimization in the
diagonalization process (see Ref. [10] for further discussion). Extracted from Ref. [10].

By setting the parameters of the Anderson model ε̃d, Ũ , Γ̃ in Eq. (3.74) either to

zero or to in�nity one obtains the weak- and strong-coupling �xed points of the model.

These particular �xed points are very important in the analysis and understanding of the

NRG results for two main reasons: i) They can be represented by a sum of e�ective single

particle Hamiltonians due to the impurity and to the conduction band, whose contribution

writes [38]:

H
(L)
N =

N∑
n=L

Λ(N−n)/2
[
enf

†
nσfnσ + tn

(
f †nσfn−1σ +H.c.

)]
, (3.77)

where L determines the innermost shell fL onto which conduction electrons can hop,

which implies tL = 0;

ii) The spectrum �ow and thermodynamic properties of the semi-in�nite chain Hamil-

tonian in the intermediate coupling regime (general values of ε̃d, Ũ , Γ̃ ) are, in almost all

even and odd number of sites do not coincide. A good example is given in [38] which cites particle-hole
symmetry as responsible for the existence of a zero eigenvalue in a chain with odd sites that does not
exist for the even situation.
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situations, well described in terms of the results of the weak- and strong-coupling �xed

points15.

The realization that the physics of the weak and strong-coupling �xed points could be

extracted from the understanding of the structure of the conduction band Hamiltonian

is one of the many clever insights in Wilson's approach: because H(L)
N has a quadratic

form, the Hamiltonian Eq. (3.77) can be diagonalized exactly. Since Eq. (3.77) satis�es

the recursive relation Eq. (3.71), �xed point condition is attained through numerical

diagonalization of Eq. (3.77) and observation that for large N the eigenvalues approach

a limiting set16 invariant with N .

Figure 23 shows the lowest order eigenvalues for the weak- and strong-coupling �xed

points of the symmetric Anderson model obtained by Krishna-Murthy et al in Ref. [10]

for a �at band (r = 0). The �xed point Hamiltonians HFO, HLM and HSC denote the free

orbital (also named free impurity [38]), local moment and strong coupling �xed points,

respectively [10].

Figure 23: Lowest energy states for the free orbital, local moment, and strong coupling
odd-N �xed point Hamiltonians of the symmetric Anderson model with a �at band, r = 0.
Extracted from Ref. [10].

The Symmetric Anderson model has three �xed points. The free orbital �xed point

15This is true for the metallic case. However, for pseudogap systems there are intermediate coupling
�xed points that are only accessible by a full implementation of the NRG [38].

16Actually there will be two sets of limiting values, for odd and even N .
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corresponds to the choice ε̃d = Ũ = Γ̃ = 0 in Eq. (3.73) and is described by the sum ofH(0)
N

in Eq. (3.77) and a free impurity orbital of zero energy [10, 38, 55]. The Local-moment

�xed point corresponds to the con�guration Γ̃ = 0 and Ũ = −2ε̃d = ∞. The e�ective

Hamiltonian describing this process is again given by the conduction electron term H
(0)
N ,

but now the impurity state is restricted to the single occupied con�guration [10, 38, 55].

The symmetric17 strong coupling �xed point occurs when Γ̃→∞, Ũ and Γ̃ remains �nite.

In this case an in�nite gap separates the ground state and excited states, whose energies

∼ Γ̃1/2 (see Table I in [10]), of the atomic Hamiltonian. In this situation the coupling

between the impurity state and the conduction electrons is so strong at the impurity site

that hopping of conduction electrons onto or o� shell 0 is completely suppressed. As a

consequence the f0 degrees of freedom are "frozen out" [38]. Hence, the conduction-band

excitations of this system are described by H(1)
N in Eq. (3.77).

We now have the tools to understand the eigenvalue �ow diagram of Fig. 22. The

data was obtained from NRG calculations by setting U/D = 10−3, U/πΓ = 12.66 and

εd = −U/2 [10]. Comparing the eigenvalues in Fig. 23 and the energy values in the vertical

axis of Fig. 22 we recognize that the system starts in the free orbital regime (5 < N < 15)

and, as the system evolves, it enters the local moment regime (15 < N < 55) and ends at

the strong coupling phase (61 < N).

Understanding the energy �ow such as the one in Fig. 22 is very helpful for the

interpretation of the behavior of the thermodynamics quantities calculated through the

NRG, since they resemble the same features as the energy �ow. This is illustrated in Fig.

24 where the numerical results for the impurity susceptibility corresponding to the �ux

in Fig. 22 are given by the curve denoted by A.

This picture suggests that the iterative process sets up a temperature scale where

higher values of the iterative step N is associated to lower temperatures. With this in

mind we immediately identify the pattern of Fig. 22 in curve A of Fig. 24: for high

temperatures the system is in the free orbital regime whose susceptibility approaches

kBTχ/(gµB)2 = 1/8, where g is the gyromagnetic factor and µB is the Bohr magneton

[10]. As the temperature is decreased, the system crosses over to the local moment phase

and the susceptibility is increased to the value kBTχ/(gµB)2 = 1/4 characteristic of a

free spin-1/2 impurity. A further temperature decrease drives the system to the strong-

coupling regime where the local moment is screened, a signature of the Kondo e�ect, and

kBTχ/(gµB)2 vanishes.

17There still exists an asymmetric strong coupling �xed point for the asymmetric version of the An-
derson Hamiltonian [38].
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Figure 24: Impurity susceptibility for the metallic symmetric Anderson model calculated
in Ref. [10]. We see that the pattern presented in the energy �ow in Fig. 22 is reproduced
in curve A. Extracted from Ref. [10].

We note that the curve denoted B has a very di�erent behavior, crossing from the

free orbital phase straight to the strong coupling one. In this case U/D = 10−3 and

εd = −U/2 as in curve A, but the ratio U/πΓ = 1.013. In this case, the increase in the

coupling inhibits the existence of a local moment and hence this phase is not present in

the susceptibility curve B in Fig 24 (a similar pattern is seen in the energy �ow, see Fig.

6 of Ref. [10]).

An important di�erence between curves "A" and "B" is that, as long as there is no

local moment to be screened in "B", the vanishing of the susceptibility in this case is not

attributable to the Kondo e�ect.

This discussion shows that the symmetric Anderson model is very useful for intro-

ducing the main ideas in the analysis of the NRG results. However, the susceptibilities

calculations that we perform consider the most general situation where εd 6= U/2, this

leads to the asymmetric version of Anderson's model.

The analysis of the NRG results for the asymmetric Anderson model is similar to

the symmetric case. However, now the physics is enriched by the appearance of other

weak- and strong-coupling �xed points [38, 55]. Besides the free impurity, local-moment

and strong-coupling encountered earlier, we also have a valence �uctuation �xed point,

which consists in choosing ε̃d = Γ̃ = 0 and Ũ = ∞. It is described by the e�ective

Hamiltonian H(0)
N and an impurity part where doubly occupied con�gurations are ruled

out the Hilbert space. Another novelty is the frozen-impurity �xed point which is obtained

when ε̃d = ∞. Under this condition the impurity level is completely depopulated. The
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electronic excitations are again represented by H
(0)
N in Eq. (3.77). There also exists

an asymmetric strong coupling �xed point [38] obtained by adding to the conditions of

symmetric strong-coupling the requirement that e1 →∞ in Eq. (3.71). In this case the f1

degree of freedom is also frozen and the e�ective Hamiltonian describing the system will

be given by H(2)
N [38]. In Ref. [38] it is argued that the frozen impurity and asymmetric

strong-coupling are physically equivalent. Hence analysis of the Anderson Hamiltonian

properties can be focused only on the frozen impurity one.

Another aspect of major importance in the analysis of the NRG results is the discus-

sion of the stability of the �xed points [10, 36, 38, 55]. As we saw from Figs. 22 and 24,

as the Hamiltonians HN were iterated the system passed through the free orbital regime,

local-moment and apparently remained still in the strong-coupling phase. The immediate

questions that rise are: why the solutions evolve in this way and how can one guarantee

that the solutions will not evolve forever?

Suppose that HN is close to a �xed point solution H∗. It has been shown [10] that

the deviation from the �xed point Hamiltonian can be written as a linear combination of

operators Oi associated with the active degrees of freedom at the �xed point [38]

δHN = HN −H∗ =
∑
i

ciλiOi, (3.78)

where ci denotes the coe�cients of the expansion and λi are the eigenvalues associated

to the operators Oi. The eigenvalues λi will determine whether the �xed point will be

stable or not. The operators Oi may be classi�ed according to the eigenvalues associated

to them as: relevant (λi > 1), irrelevant (λi < 1) or marginal (λi = 1)18. A �xed point

that has relevant perturbations is unstable, this implies that if the solution is close to this

�xed point the perturbations will drive the system away from it. If the �xed point has

only irrelevant perturbations the opposite occurs and this �xed point is denoted as stable.

For the case of marginal perturbation the analysis is not so simple and the system may

be stable or unstable19.

Coming back to our example of Figs. 22 and 24, we see that the �ux �ow indicates

that the free-orbital and local-moment �xed points are unstable and the strong-coupling

is stable, consistent with the more detailed analysis presented in Ref. [10].

Marked di�erences appear in the analysis of the �xed points for pseudogap systems

as compared to the metallic case. For instance, the local moment is always stable, ir-

18See Ref. [10] for a more complete discussion.
19See Ref. [36] for a full account of this problem.
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respective of the sign of the Kondo model coupling J , for the pseudogap while for an

antiferromagnet coupling the �xed point is always unstable for a �at band [38]. Another

signi�cant departure occurs for the symmetric strong-coupling �xed point that is only

stable under very restricted conditions (for r > 1/2 it is always unstable, for example) for

the pseudogap and is always marginally stable for r = 0 [38].

The di�erences presented in the stability of the �xed points for the pseudogap model

have profound consequences and put this impurity problem in a distinct universality class

than the "conventional" r = 0 problem.

Next we address in more detail some manifestations of the distinct character of these

systems, in particular, the impurity susceptibilities.

3.4.4 Numerical evaluation of thermodynamic properties. A com-

paritive analysis between the metallic and pseudogap cases.

Experimentally, the contribution of an impurity to the thermodynamic property A of

a system is given by the comparison of the measured property for the whole system where

the impurity is immersed and a reference system without impurity. Based on this, the

e�ect on the quantity A of adding a single impurity to a host is de�ned as [38]:

Aimp = 〈A〉imp = 〈A〉 − 〈A〉0 = lim
N→∞

[
Tr
(
Ae−βNHN

)
− Tr0

(
Ae−βNH

(0)
N

)]
, (3.79)

where A is an operator which depends on the property of interest, "Tr0" means a trace

over an impurity-free system and the factor βN is de�ned as [38]:

βN = αDΛ−N/2(kBT )−1 = βαDΛ−N/2. (3.80)

Wilson showed that the error committed in estimating Aimp for a �nite N is of order

βN/Λ [10, 36]. Hence, to compute thermodynamic properties for a whole sequence of

temperatures TN , associated with the Hamiltonians HN , within a certain degree of pre-

cision, all one needs is to select an appropriate β̄ and make βN = β̄ in Eq. (3.80). A

logarithmic temperature scale TN is obtained from the T 's given by Eq. (3.80) for each

NRG step. The Aimp calculated from Eq. (3.79), for a given N , is associated with the

temperature TN . Naively one can be tempted to take β̄ vanishingly small aiming at high

precision estimates. However, another factor "forbids" this choice: the truncation scheme

on the energy spectra of HN (which throws out the high energy states). To minimize the

contribution of missing states to Aimp, one should make β̄Ec as large as possible, where
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Ec is the maximum energy kept with respect to the ground state. In practice, β̄ used for

the NRG simulations takes a value slightly smaller than unity [10, 38].

Measuring the quantity Aimp for the same temperature calculated using di�erent β̄ is

a rough indicative of the accuracy of the numerical results [10]. More discussion on the

estimate of the discretization error is found in Sec. V. C. of Ref. [38].

Now we focus on the analysis of the numerical results for the impurity contribution

to the zero-�eld magnetic susceptibility, which is expressed as [38]:

kBTχimp

(gµB)2 = lim
N→∞

Tr (S2
ze
−βNHN

)
ZN

−
Tr0

(
S2
ze
−βNH

(0)
N

)
Z

(0)
N

 , (3.81)

where µB is the Bohr magneton, g is the Landé g factor, ZN denotes the system partition

function and SZ is the z component of the total spin of the system. In the remaining of

this section we set kB = g = µB = 1 in order to adopt a more compact notation for the

susceptibility.

It should be mentioned that close to the �xed points an analytical approach of the

impurity properties is available based on a perturbative treatment of the �xed point

e�ective Hamiltonians we mentioned earlier. These results give an important support

in the analysis of the numerical data. A good account of the analytical treatment for

the Anderson model is encountered in [10, 55] for the metallic case and in [38] for the

pseudogap one.

Besides the susceptibility study, the ground state occupation of the system is an

important tool to complement the �xed point analysis, which is based on low-energy

excitations relative to the ground state. As expected, at high temperatures the Anderson

model exhibits charge �uctuations due to population of di�erent nd subspaces. However,

these �uctuations are strongly suppressed as temperature drops below a value TF =

max(|εd|,Γ) (U > Γ, |εd| ) [38]. In this case the ground state occupation is well described

by one of the three con�gurations [38]: i) local moment 〈nd〉 ≈ 1; ii) empty impurity

〈nd〉 ≈ 0; iii) mixed-valence which involves signi�cant occupation of more than one nd

value. As we will show, a system can �ow to the same �xed point but with di�erent

ground state occupations.

Figure 25 shows the results obtained from NRG calculations of the magnetic suscepti-

bility for the pseudogap Anderson model for the case of graphene (r = 1), with U = 0.5D,

Γ0 = 0.016D and varying level position εd (see Fig. 26).
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Figure 25: Ground state occupation (top) and impurity susceptibility (bottom) of the
pseudogap Anderson model with r = 1, U = 0.5D, Γ0 = 0.016D and varying level
position εd (see Fig. 26) .

Figure 26: Illustration of the levels positions for the pseudogap model of Fig. 25 for εd
below a) and above b) the critical level εd.

Here, the low temperature dependency is remarkably distinct from the metallic case

(see Figs. 24 and 27 for a comparison). At high temperatures, the system is close to the

free orbital �xed point and Tχimp ≈ 1/8. As the temperature is lowered, the susceptibility

behavior becomes dependent on the position of the impurity level relative to the Fermi

energy. Clearly, two distinct regimes appear separated by a curve obtained for the level

at the critical energy εdc .

For εd > εdc , the system �ows to the frozen impurity �xed point where Tχimp → 0.

However, no Kondo screening occurs in this situation because the ground state occupation

is null and there is no local moment to be screened (see the ground state occupation curves
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for εd > εdc in Fig. 25).

The susceptibilities curves for which εd < εdc �ow to Tχimp = 1/4 which is the

characteristic value of a free spin 1/2. This is supported by the occupancy curves in

Fig. 25 which con�rm that a free spin survives all the way down to T = 0. This "weak-

coupling" limit in which the local moment �xed point is stable is a special aspect of the

pseudogap systems [38], as we mentioned when discussing the �xed points of the Anderson

model.

Another novelty is the "intermediate-coupling" �xed point at εd = εdc . This charac-

terizes a quantum phase transition which has no counterpart in the metallic case. Also,

its behavior is not compatible with any of the other �xed points we discussed and is only

obtained through a �ne tuning20 of εd. Gonzalez-Buxton and Ingersent [38] identi�ed this

�xed point as a manifestation in the Anderson model of the �xed point discovered by

Witho� and Fradkin in the Kondo model expressed by the critical coupling J = Jc [37].

An extensive study on the importance of the value of the exponent r of the hybridiza-

tion function and the role played by particle-hole symmetry is found in Ref. [38]. The

authors con�rm the prediction, originally derived from scaling theory [67], that the local

moment ground state con�gurations is favored by an increase in r at the expense of a

shrinking of the parameter space for which the mixed valence phase is attainable. This

can be observed in the results of Fig. 25 where the system goes straight from the free-

impurity regime to the local moment one (see also Fig. 3 in Ref. [67] and Figs. 7-9 and

12 in Ref. [38]).

For situations of particle-hole symmetry, it was observed that for r ≥ 1/2 the value

of the critical coupling Jc, which the system has to overcome in order to Kondo screen a

local moment, diverges (see Fig. 1 of Ref. [68]). If the symmetry is broken, the critical

coupling is �nite, but Kondo screening gets harder to achieve for increasing r [38, 67, 68].

According to scaling arguments, increasing r implies in a reduction of the coupling J and

the condition for Kondo screening ρ0Jc ≈ r [37] (ρ0 given in Eq. (3.45)) is restricted to

smaller parameters windows for growing r. For r ≥ 1 scaling indicates that the condition

is hardly satis�ed (see Fig. 2 in Ref [67]). Numerical results in Refs. [38, 67] give support

to those results.

Another important aspect is the observation of two distinct intermediate-coupling

�xed points associated to the existence or absence of particle-hole symmetry, denoted as

SCR and ACR, respectively. The physics is signi�cantly di�erent whether r < r∗ = 0.3754

20It can also be achieved by �xing εd and varying U or Γ0 instead, see Sec. VI in Ref. [38].
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where particle-hole symmetry is marginally irrelevant and only SCR exists [38], or r > r∗
where ACR emerges (see Refs. [38, 39] for a thorough discussion).

We now turn to the analysis of the results of Fig. 27. We see here how the above

picture changes in a metallic system.

Figure 27: Left: "level" position associated to the "full impurity" (top), "Kondo" (middle)
and "empty impurity" (bottom) curves. Right: ground state occupation (top) and impu-
rity susceptibility (bottom) for the metallic Anderson model with U = 0.5D, Γ0 = 0.15D
and varying "level position" δε.

We see that susceptibilities always vanishes in this "vanilla" (conventional) case sig-

nalizing that the system always �ows to a strong-coupling regime, where any net moment

formed is screened.

The importance of the analysis of the ground state occupancy is key here: even though

the three curves �ow to the strong-coupling regime, each one presents a di�erent ground

state con�guration21. This observation allows one to understand the di�erent behaviors

of the curves in Fig. 27.

We �rst consider the situation represented by the blue curve labeled "Kondo". In

this case the impurity is placed at an energy δε (= εd− µ) below the Fermi energy but in

such a way that δε + U lies above the Fermi energy (εd + U > 0) Fig. 27. The manifold

of states for the Anderson Hamiltonian in this con�guration is represented in Fig. 28a

where the unoccupied and double occupied states are high excited states with respect to

the single occupied one.

21 See also Fig. 1 and discussion on sec. Vl A. 1. in Ref [38].
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Figure 28: Manifold of states for the "Kondo" a), "empty-empurity" b) and "full-
impurity" c) con�gurations in Fig. 27.

For very high temperatures (T � U), the three impurity states are e�ectively de-

generate, due to hybridization with conduction electrons, and the free-orbital regime is

observed (the region with Tχimp ≈ 1/8 in Fig. 27). As temperature drops slightly be-

low D, the nd = 2 subspace is thermally depopulated but nd = 0 and nd = 1 are still

equally thermally populated leading the system to the valence-�uctuation regime where

Tχimp ≈ 1/6. This �xed point is highly unstable and for the parameters used the system

is not strongly attracted to this, only touching Tχimp ≈ 1/6 and rapidly �owing away

from it. Further decrease of temperature depopulates the nd = 0 subspace leaving only

nd = 1 subspace thermally available (which explains why the ground state has occupation

〈nd〉 = 1) and resulting in the formation of a local-moment regime characterized by the

climb of the susceptibility until Tχimp ≈ 1/4, characteristic of a free spin-1/2. Finally,

cooling the system even more leads to the strong-coupling regime where the conduction

electrons "freeze" the local moment resulting in a vanishing susceptibility due to the

Kondo e�ect.

The other two curves in Fig. 27 show a high temperature behavior similar to the

Kondo curve, the physics is the same as the one we have just discussed above. We focus

on the analysis of the low temperature physics.

The black curve, which we call "empty-impurity" for reasons that will be clear soon,

corresponds to the choice of a positive value of δε in such a way that the single occupation

level will lie above the Fermi sea (Fig. 27 bottom left). The impurity con�guration in

which nd = 0 now is lower in energy than the nd = 1 case. The manifold of states for the

Anderson model is represented in Fig. 28b.

When the system temperature is lowered, the only thermally populated con�guration
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is the nd = 0 one (which explains the origin of the "empty-impurity" term). This is the

reason for the absence of a local moment regime in this case. Instead, the system �ows

directly from the free-orbital to the frozen-impurity phase. Even though Tχimp → 0 at low

temperatures, the Kondo E�ect does not occur since there is no moment to be screened.

The last scenario is the one described by the "full impurity" curve, which represents

the situation at which the impurity level is drown in the Fermi sea as shown in Fig. 27

top left.

The level con�guration in which nd = 2, whose energy is 2εd + U , now becomes the

lowest in energy (see Fig. 28c). If the level is not immersed very deeply, single and

double occupancy might be close in energy and eventually become hybridized if the level

di�erence is. Γ. This explains why the ground state mean occupancy takes the value close

to 1.5. Further immersion of the level into the Fermi sea rise the energy di�erence between

nd = 1 and nd = 2 con�gurations and the ground state mean occupancy approaches 2 as

temperature is lowered.

Here again, as there is no signi�cant net moment, the local moment regime does not

develop and the system �ow from the free-orbital phase to the strong-coupling without

presenting the Kondo E�ect.

The Kondo temperature TK is determined through the criterion TKχimp(TK) = 0.0701

[10]. For the cases where the Kondo screening does not occur, like in the full and empty

impurity susceptibility curves of Fig. 27 and in the pseudogap results of Fig. 25, the

temperature satisfying the above criterion (T ∗χimp(T∗) = 0.0701) is denominated as a

crossing temperature T ∗ which is dissociated from the Kondo E�ect.

We now call the attention for two aspects of major relevance concerning the results

of Fig. 27. First, it should be noted that, as represented in the left panels of this �gure,

the metallic Kondo encountered is not associated to a �at band, but to graphene's linear

density of states. Obviously, the special features of the pseudogap are "lost"22 when the

Fermi level is displaced away from the Dirac point resulting in a system whose properties

resemble those of a metallic system. This observation sheds some light in the fact that the

resistivities encountered by the Maryland's group in Fig. 10 �t so well the NRG results

derived for the metallic system in Ref. [58].

The second point is that, contrary to the pseudogap susceptibilities that were obtained

by varying the level position respective to the Fermi level, the "Kondo", "empty-impurity"

22According to Ref. [11], the in�uence of the pseudogap still has very important consequences on this
system.
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and "full-impurity" con�gurations in Fig 27 results from the variation of the Fermi level

while keeping the impurity level �xed. This "tunability" of the Kondo e�ect in graphene

is another unusual aspect of this material. It stems from the allowance of the system in

being electron/hole doped easily over an appreciable energy range [13].

The issue of the Kondo problem for a system with a linear density of states such as

graphene was already addressed in the context of d-wave superconductors [37, 38, 65, 66,

67]. However the tunable character of the Kondo e�ect in graphene is a unique property

(over many other special ones) of this system.

The matter of a tunable Kondo e�ect was previously addressed by Vojta et al [11] who

considered the e�ect of the gate potential to dope graphene and explored its consequences

for the Kondo physics near criticality, which in terms of the Kondo coupling is expressed

by the relation J ≈ Jc.

According to the authors [11], the in�uence of the asymmetrical critical (ACR) �xed

point, encountered for the pseudogap Kondo Model, for r > r∗ = 0.375 at µ = 0 [38],

should also appear in the results obtained for µ 6= 0 as well [11, 39] for the case of

graphene, r = 1, as shown in the phase diagram of Fig. 29.

Figure 29: Phase diagram for the pseudogap Kondo impurity with r = 1 as a function
of doping µ and Kondo coupling J . Close to criticality the doped system still su�ers
in�uence from the pseudogap. Extracted from Ref. [11].

They performed an analytical study of the dependence of TK on µ through a �eld

theory technique applied to a model equivalent to a maximally asymmetric (U = ∞)

Anderson model, suitable for the description of the ACR �xed point physics [11, 39].

For r < 1 the Kondo temperature was found to obey the relation TK = κ±|µ| where
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κ± is a constant factor valid for µ ≷ 0 [11]. Except for the particle-hole character of the

relation, this result keeps great similarity to one derived by scaling arguments which gives

TK = κ|µ| [42] with κ a universal prefactor depending on r [11, 39].

The situation changes drastically for r = 1 where a large particle-hole asymmetry

manifests in TK according to the sign of µ. For µ < 0 the former relation still applies,

but for positive µ TK was found to obey TK ∝ |µ|x where x ≈ 2.6 is a universal constant

[11, 39].

The special behavior of r = 1 is associated to the fact that this case plays the role of

an upper critical dimension of the pseudogap Kondo problem (hybridization is relevant

(irrelevant) for r < 1 (r > 1)) and in this case the RG �ow presents logarithmic corrections

that lead to the distinct behavior of TK [11, 39].

Support to the analytical treatment results was obtained through the use of NRG

calculations [11]. The susceptibilities shown in Fig. 30a are consistent with particle-hole

asymmetry showing Kondo screening for µ > 0 and a behavior similar to the full impurity

or empty-impurity, we discussed earlier, for µ < 0 [11].

The authors mention that this particle-hole asymmetry is closely related to the asym-

metry of the critical �xed point ACR with little in�uence of particle-hole asymmetry of

the hybridization function [11]. It is also argued that due to the relation TK ∝ |µ|x, the
low-energy physics is governed by two distinct scales: µ and TK [11].

Motivated by the possibility of adsorption of magnetic atoms at the graphene surface

and considering DFT results for a Co atom in the center of a graphene hexagon, Ref. [11]

constructs a microscopic model and tests their predictions for this model.

The asymmetric behavior of TK at the critical coupling was con�rmed with the ob-

servation of linear and power-law dependency of TK on µ for negative and positive bias,

respectively (see Fig. 30b). The system behavior near criticality was also explored and

reveals close similarity to the critical one, but with the minimum of TK at positive bias

for J 6= Jc [11].

Although the theory of Kondo e�ect in doped graphene developed in Ref. [11] presents

very interesting results, they are not in accordance with the experimental data of Ref. [1]

which presents only a small particle-hole asymmetry in the TK estimates and these do not

show power-law dependency on µ (see Fig. 10). Also, the data �ts a single parameter scale

which is not consistent with Ref. [11] which predicts the breakdown of single parameter

scaling.
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Figure 30: a) Susceptibility curves obtained from NRG for the critical coupling for di�er-
ent chemical potential µ. b) NRG calculated Kondo temperatures as a function of doping
for Kondo couplings near criticality. Extracted from Ref. [11].

In the next chapter we put forward an alternative model for studying the e�ects of

vacancies on the Kondo physics of graphene. As we show, there is an important piece

which was not considered so far: disorder.
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4 Kondo e�ect in disordered

graphene

4.1 Nature of the defects

The induction of magnetism in graphene through the introduction of defects in the

graphene sheet is a matter of long debate [17, 49, 50]. A particular case of such defects is

a vacancy, which is characterized by the removal of a carbon atom from the honeycomb

lattice structure (see Fig. 31). This can be achieved through ion irradiation as conducted

by the Maryland's group experiment, discussed in Sec. 2. The same setup has been used

by other experimental groups [2, 53, 54, 73].

The appearance of magnetic moments due to vacancies was experimentally con�rmed

[1, 2, 53, 54, 73, 74]. However, the explanations for the origin of this magnetism are still

controversial [2, 12, 50, 51, 52, 75, 76, 77, 78], and much of this stems from the complex

structure of the vacancy.

In real graphene, the removal of a carbon atom originates three dangling bonds com-

posed of "orphan" σ orbitals which were part of the bond between the removed atom

and its nearest neighbors (see Fig. 31a). This structure is highly unstable, and can give

origin to di�erent kinds of lattice reconstructions [12, 50, 51, 52, 75, 76, 77, 78], depending

whether the graphene is suspended or deposited over a substrate whose mutual interac-

tions play an important contribution to reconstruction. Besides, the dangling bonds are

extremely reactive and can easily be passivated by foreign species such as H. Because

all these variables, a complete theoretical description of such structure requires extensive

ab-initio (DFT) studies.

Many works based on DFT calculations have been put forward to study this issue, but

the results are contentious. One of the major discrepancies, for instance, is that magnetic

moment varies in estimates in the range mB = 1µB − 2µB [50, 51, 52, 75, 76, 77, 78].

Magnetic moments greater than 1µB are attributed to π and σ contributions to the va-
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Figure 31: (a) Illustration of a carbon vacancy; (b) Reconstruction after the Jahn-Teller
distortion forming a pentagonal structure; (c) Out-of-plane displacement of the apical
atom. Extracted from Ref. [12].

cancy magnetism [51, 75, 76, 77, 78]. Other calculations indicate that π magnetism should

vanish for any concentration of vacancies realizable in experiments unless the three σ dan-

gling bonds are fully passivated by H [52]. On the other hand, recent experimental results

support the scenario of vacancy magnetism as having a twofold contribution emanating

from σ and π orbitals [2].

According to DFT, due to Jahn-Teller distortions, two of the dangling bonds recon-

struct forming a pentagonal structure (see Fig. 31b). The remaining dangling bond hosts

the localized σ orbital and, hence, is responsible for the emergence of the σ magnetism

[51]. Whether the apical atom stands in the sheet plane or forms a non-planar structure

(see Fig. 31c) is another issue where the DFT results diverge. Most of the more recent

DFT results claim that the equilibrium solution is the planar con�guration [51, 52, 75, 76]

but a very recent study argue that those solutions are very close in energy and the ground

state could also be the non-planar con�guration [77].

The above discussion is crucial in the context of the Kondo e�ect, since several works

[79, 80, 81, 82] attribute the occurrence of the e�ect to the quench of the localized σ

moment. However, coupling of the conduction π electrons and the σ orbital is only

possible in the non-planar scenario [51], the reason is that those studies do not consider

other disorder mechanisms, hence, due to orthogonality the coupling does not occur.

Also, it was pointed out that magnetism survives only under small distortions of the

lattice [75, 78], making the Kondo e�ect due to σ orbitals more improbable.

The other contribution to vacancy magnetism is the one from the π states. Theory
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predicts that the e�ect of the vacancy in the π band is to create a resonant state in

the midgap region which is localized in the majority sublattice and whose wave-function

decays like the inverse distance from the vacancy position [51, 83] (a further discussion of

this result is given in the next section). The formation of a local moment associated to

this state is supported by DFT results [51]. π magnetism is also predicted theoretically

by a tight-binding model which shows that after removal of a carbon atom, a substantial

amount of magnetization is transferred to the vacancy neighbors [45], however, the study

claims that in clean graphene a local moment should remain unscreened down to low

temperatures [45].

Once a local moment is formed, by including the Coulomb repulsion and coupling1

with the conduction band, the ingredients necessary for the rise of the Kondo e�ect are

all set.

Below we propose a model to study the Kondo e�ect in the context of π local moments.

We do not attempt to consider lattice reconstructions. In this way, our modelling amounts

to the ideal case where the lattice remains undistorted or, more realistically, that the

dangling bonds are all passivated for foreign species such as H. Although this seems to

be a great simpli�cation, it is energetically favourable due to the high reactivity of the

dangling bonds as was found in the literature [76].

4.2 The model

We investigate the occurrence of Kondo e�ect due to a single monovacancy in a

graphene sheet. The relevance of the model to the experiment [1] is supported by the

fact that the irradiated samples used in the experiments were submitted to a irradiation

time chosen to guarantee a very diluted concentration of vacancies [1, 2, 53, 56]. Besides,

molecular dynamics studies have been developed to simulate and model the behavior

of graphene patterned by focused ion beams (FIBs). According to these calculations,

irradiation of graphene monolayers by Ne and He up to 1 keV only monovacancies are

formed [85].

As we discuss in the sequence, a vacancy gives raise to a localized state that is coupled

by disorder to the graphene electronic extended states with a non-uniform DoS.

1Although the Kondo e�ect found in the experiment of Ref. [1] requires a antiferromagnetic coupling,
a study based on dynamical mean �eld theory found a Curie-type susceptibility and attributed that to a
ferromagnetic coupling of the impurity and the conduction band [84].
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The remaining of this section justi�es the elements of the model Hamiltonian we

adopt. For that purpose we switch the notation to �rst quantization.

4.2.1 Localized state

We begin considering a nearest neighbor tight-binding Hamiltonian for a pristine

monolayer graphene sheet with a single vacancy at the site v, that reads

Hv = −t
∑
〈i,j〉

|i〉〈j|+ t
∑
〈v,i〉

|v〉〈i|+ H.c., (4.1)

where 〈· · · 〉 indicates a sum over nearest-neighbor atomic sites and t is the hopping term.

The second term decouples the v-site from the honeycomb lattice. We remove the resulting

state from the Hilbert space, mimicking a vacancy.

The solution to the eigenvalue problem

Hv|φ〉 = εφ|φ〉 (4.2)

gives extended states with non-zero energy {|ν〉} and a single zero-energy localized state

|0〉 [4], see Fig. 32. We solve Eq. (4.2) numerically using periodic boundary conditions

with supercell sizes Ni � 1. Since the supercell is very large we consider that the Brillouin

zone can be well represented by a single value k = 0. In Fig. 32 we show the localized

and a typical extended state obtained from our numerical calculations, this is in good

agreement with earlier results reported in the literature (see Fig. 4 in Ref. [4]). The

black dot in the center of the lattice is the vacancy position and the circles radius on

each lattice site are proportional to the wavefunction amplitude at the corresponding site.

Thus, larger circles correspond to higher amplitudes. Blue (red) circles denote positive

(negative) signs of the amplitude at each site.

For the model Hamiltonian Eq. (4.1), the presence of the zero mode is mathematically

guaranteed by a theorem demonstrated in Ref. [4]. According to this theorem, for any

bipartite lattice with nearest neighbor interactions plus a local energy (εA, εB) for each

sublattice, whenever there is an imbalance in the number of sites of the two sublattices

n = NA −NB > 0, there are n degenerate eigensolutions associated to the eigenvalue εA,

the on-site energy of the majority lattice. For neutral graphene εA = 0, this is the origin

of the zero modes, also known as midgap states since they are localized precisely at the

Fermi level. Another important characteristic resulting from the theorem is that the zero

modes are localized only on the majority sublattice A [4] (an alternative derivation for this
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characteristic is found in Ref. [51]). This can be observed in the wavefunction associated

to the eigenvalue ε0 = 0, obtained from exact diagonalization of the Hamiltonian Eq.

(4.1), displayed in the right panel of Fig. 32.
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Figure 32: Wave functions of a typical delocalized state (left) and the quasi-localized state
(right). The black dot in the center of the lattice denotes the vacancy.

The wave function associated to the midgap state has an approximate analytical form,

�rst derived in Ref. [83], which in coordinate representation reads:

ψ0(x, y) ≈ eiK
′·r

x+ iy
+

eiK·r

x− iy
. (4.3)

This result was further improved to account for the oscillatory behavior of the wave

function due to the interference of the two Dirac cones using the Lippmann-Schwinger

equation formalism and modelling the vacancy as (the in�nite limit of) a localized impurity

potential [51]:

ψ0(r) = N
sin [(K −K ′) · r/2− θr] cos [(K +K′) · r/2− π/3]

r
, (4.4)

where in Eqs. (4.3) and (4.4),K = 2πa−13−3/2(−1,
√

3),K′ = 2πa−13−3/2(1,
√

3) denotes

the two inequivalent Dirac points in the �rst Brillouin zone, r is a coordinate vector with

origin at the vacancy site, and for the remaining terms in Eq. (4.4), N is the normalization

constant and θr = arctan(x/y) with x and y denoting the coordinates of the vector r.

Our numerics agree with the results derived from Eq. 4.4 making us con�dent with

the supercell size choice.

The important point about the zero-mode wavefunction is that it decays with the
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distance from the vacancy as ∼ 1/r [see Eqs. (4.3) and (4.4)] and thus has a "quasilo-

calized" character. This designation was given by the authors of Refs. [4, 83] because,

due to the 1/r decay, ψ0 is not normalizable in the limit of in�nitely large lattice sizes.

The remaining states are delocalized as demonstrated by measurements of the inverse

participation ratio (IPR)2 for those states in Ref. [4] (for more details see Fig. 5a in this

work), in good conformation with similar calculations that we performed.

The fact that the eigenstates associated with the vacancy Hamiltonian Eq. (4.1) are

represented by a localized state in the Fermi level and the set of extended states has a

density of states with a linear dependence is key in the Anderson-like model we construct

in the following.

Before introducing interaction and disorder to map Hamiltonian Eq. (4.1) into an

Anderson-like one, we should keep in mind that in this study we treat the case of a single

vacancy and the experiments deal with diluted vacancies. To make contact with the

experiment we assume that hybridization e�ects between quasilocalized states centered

at distinct vacancies are very small due to the 1/r decay. Hence, one expects states very

similar to the ones given by Eq. (4.3) centered at each vacancy, namely, ψ0(r−Ri), where

Ri is a lattice site.

4.2.2 Mapping into the Anderson Hamiltonian

According to the Hamiltonian Eq. (4.1) the creation of a vacancy provides us a single

localized state and a "band" continuum of extended states. Recalling the reasoning of the

Anderson modelling we discussed in Sec. 3.1, upon coupling of the localized state with

the band and inclusion of Coulomb interactions we have all the necessary ingredients for

the onset of localized moments. As we show below, the mapping into the Anderson model

is not a straightforward matter because the extended states {|ν〉} and the localized one

|0〉 are not coupled. This is easily by seen by introducing projection operators into the

extended and localized subspaces, de�ned as:

P =
∑
ν 6=0

|ν〉〈ν| and Q = |0〉〈0|. (4.5)

(P and Q have the usual projector operator properties, namely, P 2 = P,Q2 = Q, and

PQ = QP = 0) P and Q span the whole Hilbert space and de�ne the completeness

2The IPR is a tool to measure the degree of localization of a wavefunction. It is de�ned as P(EN ) =∑
i |Ψn(ri)|4, where n labels the eigenenergies and respective states, and i denotes the sites position. If

a state is delocalized P(EN ) ∼ 1/N whereas for a localized state it approaches unity.
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relation P + Q = 1. Since Hv is diagonal in the {|ν〉}, |0〉 basis, PHvQ = QHvP = 0.

This is one of the ways the algebra tells us that |0〉 and |ν〉 are uncoupled.

If we wish this model to display any Kondo e�ect, we need a mechanism that couples

the vacancy-induced localized state and the π-band states (otherwise the local moment

will never be quenched). At this point the contact to the experiment's "real" world plays

in our favour once one realize that real samples are disordered. As we show, disorder

provides a natural mechanism to couple the localized state |0〉 to the extended ones,

{|ν〉}. For simplicity we avoid disorder mechanisms that can give additional localized

states, potentially obscuring our analysis. For that reason we consider only long range

disorder due, for instance, to charge puddles, ripples etc [16].

The modi�ed Hamiltonian that accounts for the presence of disorder is given by

H = Hv + Udis (4.6)

where Udis accounts for long range disorder sources (Udis is addressed in detail in Sec.

4.2.3). The disorder potential Udis can be represented in a site basis. For simplicity, let

us assume that Udis is local and write

Udis =
∑
i 6=v

|i〉Ui〈i| (4.7)

in the site basis.

The Hamiltonian H, Eq. (4.6), can be expressed in terms of P and Q, namely

H = (P +Q)H(P +Q) ≡ HPP +HPQ +HQP +HQQ, (4.8)

with obvious notational convenience. The projector operator decomposition of Eq. (4.8)

separates the single-particle Hamiltonian into three parts. We associate HPP with a band,

HQQ with the localized state, and HPQ (HQP ) to their coupling.

The Hamiltonian corresponding to the localized state reads

HQQ = |0〉〈0|(Hv + Udis)|0〉〈0| = |0〉εdis
0 〈0| (4.9)

since Hv|0〉 = 0, εdis
0 = 〈0|Udis|0〉. The energy shift of the localized state energy, εdis

0 , can

be either positive or negative, depending on the disorder realization potential.
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The coupling term is written as

HPQ =
∑
ν

|ν〉〈ν|Udis|0〉〈0|, (4.10)

since Hv|0〉 = 0.

The projection into extended states reads

HPP =
∑
ν

|ν〉εν〈ν|+
∑
ν,ν′

|ν〉〈ν|Udis|ν ′〉〈ν ′|. (4.11)

In general 〈ν|Udis|ν ′〉 6= 0. Hence, HPP is not diagonal in the {|ν〉} basis. To map our

model into the single-impurity Anderson model, we still need to diagonalize HPP ,

HPP |β〉 = εdis
β |β〉 (4.12)

and write the Hamiltonian H in the "new" {|β〉} basis. For that purpose, we introduce

the projection operator

P ′ =
∑
β

|β〉〈β| (4.13)

and write the single-particle model hamiltonian as

H = HP ′P ′ +HP ′Q +HQP ′ +HQQ. (4.14)

While HQQ remains unchanged, the projection of H into extended states now reads

HP ′P ′|β〉 = εdis
β |β〉. (4.15)

The β states are all extended by construction, a property that is desirable for the band

states. The modi�ed coupling term is

HP ′Q =
∑
β

|β〉〈β|Udis|0〉〈0| ≡
∑
β

|β〉tβ0〈0|, (4.16)

where the hopping coe�cients tβ0 ≡ 〈β|Udis|0〉 �uctuate with β and disorder realization.

The terms in Eqs. (4.9), (4.15) and (4.16) can be identi�ed (upon switching to second

quantization) with the impurity, hopping and band terms entering the Anderson Hamil-

tonian in Eq. (3.1). The mapping is complete after inclusion of the charging term U

addressed below.
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4.2.2.1 Charging energy U

The charging energy U corresponds to the Coulomb energy associated with a double

occupation of the localized state |0〉. It is rather tempting to use the localized wave

function ψ0(r) to evaluate U , namely3 [79]

U = e2

∫
d2r

∫
d2r′
|ψ0(r)|2|ψ0(r′)|2

|r − r′|
. (4.17)

As we show below this is not correct.

Equation (4.17) gives U in terms of a two-dimensional integral of the electronic density.

The latter is expressed as a function of the envelop function ψ0(r) [see Eq. (4.4)]. In what

follows we show how the Coulomb interaction obtained from a three-dimensional integral

over the charge density is not reduced to Eq. (4.17).

In general, the tight-binding basis is given by [26]:

χk`i(r) =
1√
N

∑
R′

eik·R
′
φ`(r − ti −R′), (4.18)

where ti is one element of the Ni-dimensional primitive unit cell (PUC) basis and denotes

the position of the i-th atom in the PUC, R′ is the translation vector, N is the number

of unit cells, and φ`(r) is the `-th atomic orbital wave function. Accordingly, the crystal

electronic single-particle eigenstates read [26]:

ϕ
(n)
k (r) =

∑
`,i

c
(n)
k`i χk`i . (4.19)

where n labels the Ni system states.

As standard, we use a single orbital, ` = pz, to describe the low-energy graphene

electronic structure. To address disorder e�ects, we consider large supercells, Ni � 1,

with periodic boundary conditions. Hence, any k point is representative of the Brillouin

zone. We take k = 0 to write

χi(r) =
1√
N

∑
R′

φpz(r − ti −R′) (4.20)

3In the calculations of this section, for notation compactness, we write the charging energy U in the
vacuum. If graphene is in contact with another medium the calculated expressions should be divided by
the corresponding dielectric constant ε0.
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(from now on we will omit the index pz in the orbital φ) and

ϕ(n)(r) =
∑
i

c
(n)
i χi(r), (4.21)

where

c
(n)
i =

{
〈i|ν〉 =

√
Aψν(ri) for n = ν 6= 0,

〈i|0〉 =
√
Aψ0(ri) for n = 0

(4.22)

are the wave functions amplitudes on each lattice site obtained from the eigenstates of

Hv and A is the supercell area.

In the tight-binding basis, the charge density associated to the localized state is

ρ(r) = e

∣∣∣∣∣∑
i

c
(0)
i χi(r)

∣∣∣∣∣
2

= e
∑
i,j

c
(0)
i

(
c

(0)
j

)∗
χi(r)χ∗j(r). (4.23)

Using the tight-binding orthogonal basis approximation

ρ(r) ≈ e
∑
i

∣∣∣c(0)
i

∣∣∣2 |χi(r)|2 (4.24)

the charging energy U is written as

U = e2
∑
i,j

∣∣∣c(0)
i c

(0)
j

∣∣∣2 ∫ d3r

∫
d3r′
|χi(r)|2|χj(r′)|2

|r − r′|
. (4.25)

Next we insert the explicit expression for the tight-binding basis, given by Eq. (4.20), into

Eq. (4.25), namely

∫
d3r

∫
d3r′
|χi(r)|2|χj(r′)|2

|r − r′|
=

∫
d3r

∫
d3r′

∣∣∣∣∣ 1√
N

∑
R

φ(r − ti −R)

∣∣∣∣∣
2

×

× 1

|r − r′|
×

∣∣∣∣∣ 1√
N

∑
R′

φ(r′ − tj −R′)

∣∣∣∣∣
2

. (4.26)

For Ni � 1, we neglect contributions of order 1/
√
Ni from atomic orbitals located at

the edges of neighboring supercells and assume that the atomic orbital overlap vanishes,

unless R = R′.

Thus,

U = e2
∑
i,j

∣∣∣c(0)
i c

(0)
j

∣∣∣2 ∫ d3r

∫
d3r′
|φ(r − ti)|2|φ(r′ − tj)|2

|r − r′|
, (4.27)

which, by introducing the change on integration variables r → r− ti and r′ → r′ − tj, is
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more conveniently written as

U = e2
∑
i,j

∣∣∣c(0)
i c

(0)
j

∣∣∣2 ∫ d3r

∫
d3r′

|φ(r)|2|φ(r′)|2

|r − r′ + ti − tj|
. (4.28)

We are now ready to relate Eq. (4.17) to Eq. (4.28). Let us explicitly separate the

diagonal and the o�-diagonal contributions to the sum at the r.h.s. of Eq. (4.28), namely

U = Udiag + Uoff

= e2
∑
i

∣∣∣c(0)
i

∣∣∣4 ∫ d3r

∫
d3r′
|φ(r)|2|φ(r′)|2

|r − r′|
+

+ e2
∑
i 6=j

∣∣∣c(0)
i c

(0)
j

∣∣∣2 ∫ d3r

∫
d3r′

|φ(r)|2|φ(r′)|2

|r − r′ + ti − tj|
. (4.29)

The diagonal contribution is

Udiag = Uorbital

∑
i

∣∣∣c(0)
i

∣∣∣4 , (4.30)

where Uorbital is the p-orbital charging energy given by

Uorbital = e2

∫
d3r

∫
d3r′
|φ(r)|2|φ(r′)|2

|r − r′|
. (4.31)

On the other hand, according to Pereira and collaborators4 [4],∑
i

∣∣∣c(0)
i

∣∣∣4 ∼ 1

(logNi)2
, (4.32)

and thus

Udiag ∼
Uorbital

(logNi)2
. (4.33)

The o�-diagonal contribution can be written as

Uoff = e2
∑
i 6=j

∣∣∣c(0)
i c

(0)
j

∣∣∣2
|ti − tj|

∫
d3r

∫
d3r′

|φ(r)|2|φ(r′)|2√
1 +

|δr|2

|ti − tj|2
+

2δr · (ti − tj)
|ti − tj|2

, (4.34)

where δr = r − r′.

The orbital wave functions amplitudes φ(r) decay very quickly for r/a & 1 (a being

the carbon-carbon distance in graphene) and more so the overlaps of the wave functions

4Cazalilla et al [79] expresses the scaling in a di�erent manner as ∼ (lnL)−2, with L the system's
linear size. As Ni ∼ L2, due to the ln factor the scaling will be the same for both quantities. When
studying the scaling of the charging energy we will adopt the second form, in accordance with Ref. [79]
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evaluated at distances |r − r′|/a & 1. These observations suggest that Uoff can be ap-

proximated by the lowest order Taylor expansion in powers of |δr|/|δt| of the square root
at the r.h.s. of Eq. (4.34). Hence,

Uoff ≈ e2
∑
i 6=j

∣∣∣c(0)
i c

(0)
j

∣∣∣2
|δt|

∫
d3r

∫
d3r′ |φ(r)|2|φ(r′)|2

≈ e2
∑
i 6=j

∣∣∣c(0)
i c

(0)
j

∣∣∣2
|ti − tj|

, (4.35)

since the orbitals are normalized.

By identifying the coe�cients c(0)
i with the localized wave function amplitudes given

by Eq. (4.4) and using the long wavelength approximation, we obtain the desired result,

namely

Uoff ≈ e2

∫
d2r

∫
d2r′
|ψ0(r)|2|ψ0(r′)|2

|r − r′|
(4.36)

Note that, as long as |δt| = |ti − tj| � a (distant atoms), the higher order powers of the

Taylor expansion are negligible compared to the zeroth order term, and the approximation

is accurate. If the atoms are close, higher order terms should be considered to increase

the estimates precision.

Hence we have shown that the charging energy U is given by Eq. (4.17) as originally

proposed in Ref. [79], plus an additional on-site contribution term given by Eq. (4.33)

which has been overlooked so far.

4.2.2.2 Numerical estimates of Udiag and Uoff

Since the typical system sizes achievable in our numerical calculations are much

smaller than real graphene �akes, an important issue to consider is how the charging

energy scales with the system size. Cazalilla et al [79] propose that U scales with system

linear size as5:

U ∼ e2

ε0a0

(
1

2π lnL

)2

with
e2

ε0a0

≈ 10eV, (4.37)

where in Eq. (4.37) L is the system's linear size and a0 ' 0.248nm is the lattice parameter.

The in�uence of the medium in which graphene is immersed is taken into account through

the dielectric constant ε0. The estimate given by Eq. (4.37) is consistent with the dielectric

5Strictly speaking this relation is wrong since the argument of the ln should be dimensionless and L
has the dimension of a length. A more appropriate manner of writing this term is ln(L/a), where the
linear size is expressed in terms of a reference length such as the carbon-carbon distance a. Note that
this do not change the scaling behavior.
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constant obtained for graphene deposited on top of SiO2, ε = 4 [17].

We check explicitly the scaling of the system by numerically calculating the diagonal

Eq. (4.30) and o�-diagonal Eq. (4.35) contributions of the charging energy U for di�erent

lattice sizes. Since the experiments of Refs. [1, 2] were realized on top of SiO2, we take

this into account and introduce the dielectric constant of this material into our estimates.

We consider a vacancy at the center of the lattice and the system size is varied from

L = 100, ..., 1000 in steps of 20 (100 for the larger sizes). The amplitudes at each site, c(0)
i ,

are evaluated from Eq. (4.4) and we recall that distances are measured relative to the

vacancy site v. The use of the envelope function Eq. (4.4) is necessary in order to obtain

estimates for large system sizes which are not accessible through exact diagonalization

of our tight binding Hamiltonian. We have compared the wave functions due to exact

diagonalization for small lattice sizes with the envelope functions Eq. (4.4), and we have

obtained a very good agreement between them. This result make us con�dent of adopting

the envelope functions for the large system sizes estimates of the charging energy.

Considering �rst the diagonal term Udiag we �nd that the estimates of
∑

i |ci|4 in Eq.

(4.30) lie in the range 0.017 ≤
∑

i |ci|4 ≤ 0.037. The lower (upper) bound corresponds

to the size L = 1000 (L = 100). The term Uorbital in Eq. (4.30) has been estimated in

the literature as Uorbital ≈ 3.3t = 8.18 eV for t ≈ 2.8 eV [86]. This leads to an estimate of

Udiag:

0.139eV ≤ Udiag ≤ 0.302eV. (4.38)

For the o�-diagonal term, our numerical calculations �nd:

0.0431 ≤
∑
i 6=j

∣∣∣c(0)
i c

(0)
j

∣∣∣2
|ti − tj|

≤ 0.0885, (4.39)

where the lower (upper) bound corresponds to L = 1000 (L = 100).

The estimates of Uoff are obtained multiplying the values we �nd in Eq. (4.39) by

e2/ε0, where ε0 = 4 for SiO2 [17]. This leads to:

1.859eV ≤ Uoff ≤ 3.723eV. (4.40)

In Fig. 33 we plot the separate contribution of each term Udiag and Uoff as a function

of the system linear size L. Figure 33 con�rms that both contributions to the charging

energy follow the scaling predicted in Ref. [79]. According to this, the charging energy

vanishes in the L → ∞ limit. This behavior is a consequence of the 1/r decay of the
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localized state. However, according to our results this decay is slow and we �nd values

of order 1 eV for system sizes up to L = 1000 which are already of the order of typical

samples (106 atoms).

These estimates are consistent with a recent study [86] based on the Hubbard model

which points the value U = 1.6t as the value adequate to describe Coulomb interactions

in defective graphene. This is also consistent with U estimates found in Refs. [45, 87]. In

our calculations we will adopt the value U = 0.5D, where D ∼ 3t is the half bandwidth,

in agreement with the value suggested in Ref. [86] and the estimates we calculate. It

should be mentioned that our results are in contrast to those found in Ref. [79], which

found U ∼ 1meV for L = 107 through evaluation of Eq. (4.37). Values of the same order

of magnitude are found for L = 1000.
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Figure 33: Scaling of the diagonal and o�-diagonal charging terms Uoff and Udiag as a
function of system size. Circles: o�-diagonal contribution. Triangles: estimates of the
diagonal term. Values are in eV.

4.2.3 Long Range Disorder Model

In this topic we detail the disorder model we have adopted in our calculations. We

assume that the disorder in the graphene sheet, in addition to the single-vacancy, is pre-

dominantly due to long-ranged scattering processes. Accordingly, we model the disorder

by a random superposition of Nimp scattering centers of range ξ > a. For simplicity we
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model the scatterers by uncorrelated Gaussian-shaped local potentials. The local disorder

potential Eq. (4.6) at site i reads

Ui ≡ Udis(ri) =

Nimp∑
j=1

Wj e

−(ri −Rj)
2

2ξ2
, (4.41)

where the jth potential center is placed at Rj corresponding to the position of a lattice

site picked at random, while the potential strengths Wj follow a Gaussian distribution

with

〈Wi〉 = 0, and 〈WiWj〉 = (δW )2δij. (4.42)

Typical values of the parameters ξ, δW and Nimp are ξ & 3a, δW < t and Nimp ≈ Ni/10,

where a is the carbon-carbon distance in graphene.

The disorder potential covariance reads

〈Udis(r)Udis(r
′)〉 =

Nimp∑
i,j=1

〈WiWj〉W

〈
exp

(
−|r −Ri|2 + |r′ −Rj|2

2ξ2

)〉
R

, (4.43)

where 〈· · · 〉W and 〈· · · 〉R denote averages over the potential strengths and positions,

respectively.

The average over W is straightforward. Using Eq. (4.42) we obtain

〈Udis(r)Udis(r
′)〉 =

Nimp∑
i=1

(δW )2

〈
exp

(
−|r −Ri|2 + |r′ −Ri|2

2ξ2

)〉
R

. (4.44)

Let us now evaluate the average over the positions Ri. To this end, it is convenient to

write

|r −Ri|2 + |r′ −Ri|2 = 2|Ri|2 + |r|2 + |r′|2 − 2Ri · (r + r′)

= 2

∣∣∣∣Ri −
(r + r′)

2

∣∣∣∣2 +
|r − r′|2

2
. (4.45)

and to insert Eq. (4.45) into Eq. (4.44), namely,

〈Udis(r)Udis(r
′)〉 = (δW )2 e

−
|r− r′|2

4ξ2
Nimp∑
i=1

〈
e
−

2 |Ri − (r + r′)/2|2

2ξ2

〉
R

. (4.46)
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Since the {Ri} follow an uniform distribution over the graphene sheet area A, we write

〈
e
−
|Ri − (r + r′)/2|2

ξ2

〉
R

=
1

A

∫
A

dRi e
−
|Ri − (r + r′)/2|2

ξ2
. (4.47)

The above integral is simpli�ed by changing the integration variables, namely, R′i =

Ri − (r + r′)/2. Equation (4.47) now reads

〈
e
−
|Ri − (r + r′)/2|2

ξ2

〉
R

=
1

A

∫
A

dR′i e
−
|R′i|2

ξ2
. (4.48)

Since ξ/A1/2 � 1, the Gaussian scattering centers close to the graphene sheet edges give

only a small contribution to Eq. (4.48). Hence, it is accurate to write

1

A

∫
A

dR′i e
−
|R′i|2

ξ2 ≈ 1

A

∫ ∞
−∞

dx e
−
x2

ξ2


2

=
1

A
(
√
πξ)2 =

πξ2

A
. (4.49)

Finally, collecting the result Eq. (4.49) and inserting into Eq. (4.46), we obtain

〈Udis(r)Udis(r
′)〉 = πξ2(δW )2Nimp

A
e
−
|r− r′|2

4ξ2
. (4.50)

The above equation justi�es why this model is frequently called Gaussian correlated dis-

order model.

4.2.4 NRG inputs

The tight-binding model Eq. (4.6) provides the inputs necessary for the implemen-

tation of the NRG method, namely, localized state energy εdis
0 , the hoppings tβ0 and the

β-states eigenvalues εβ. The eigenvalues εβ will be used to construct the density of states of

the disordered system ρdis(ω) (ω being the energy measured from the Fermi level6) which

is key in the calculation of the hybridization function Γdis(ω) = π
∑

β |tβ0|2δ(ω − εβ), the

central quantity in the NRG.

As we saw in Sec. 3.4, the NRG method is the tool that allows to calculate the

impurity (here represented by the vacancy) properties. In our approach, input parameters

necessary for the NRG implementation are generated after each disorder realization and

6This notation will be useful when we introduce the chemical potential in our NRG simulations
discussed in Sec. 4.3.
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the calculations of these inputs are described below.

4.2.4.1 Calculation of εdis
0

The localized state energy εdis
0 reads

εdis
0 = 〈0|Udis|0〉 =

∑
i

〈0|i〉Ui〈i|0〉 (4.51)

In Fig. 34 we plot the distribution of the localized energies εdis
0 obtained after Nr =

103 disorder realizations with δW = t/10, range ξ = 3a and two distinct numbers of

scattering centers: Nimp = Ni/10 (top panel) and Nimp = Ni/100 (bottom panel), where

Ni = 20 x 20. The results show that the localized energies typically follow a Gaussian-like

distribution. This same behavior is observed with di�erent disorder parameters.
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Figure 34: Distribution (not normalized) of localized state energy εdis
0 (in eV). Histograms

obtained for two distinct sets of parameters, δW = t/10, ξ = 3a and Nimp = Ni/10 (top)
and Nimp = Ni/10 (bottom). We also run simulations with other parameters and always
observed Gaussian-like distributions (obviously) with di�erent widths.
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4.2.4.2 Calculation of ρdis(ω)

We obtain the density of states ρdis(ω) =
∑

β δ(ω − εβ) of the disordered system by

directly calculating the number of tight-binding states7 N(ω) between energies E−∆E/2

and E+∆E/2 and then approximating ρdis(ω) ≈ N(ω)/∆E. Due to the �nite size e�ects

(�nite PUC and few k-points), the spectrum of the εβ has a small gap at low energies (see,

e.g., Fig. 36). Therefore, the choice of ∆E is a compromise between the enhancement of

the �uctuations due to disorder and the smearing of the �nite-size gap. As shown in Fig.

35, choosing ∆E = 0.1D (D ∼ 3t the half bandwidth) gives reasonable results, displaying

the familiar linear behavior of the graphene density of states at low energies (see the inset

of Fig. 35).

We note that due to the small gap at low energies it is essential the calculation of

the continuous curve of ρdis(ω). This stems from the fact that the NRG requires access

to very low energy values to construct a Wilson chain with a suitable number of sites to

allow a full characterization of the low energy behavior of the system. The chain obtained

straight from the tight-binding eigenvalues contains only a reduced number of sites, hence

the necessity for the continuous approximation of ρdis(ω).

4.2.4.3 Calculation of tβ0

Recalling that Udis is represented in the atomic sites basis, it is useful to write the states

|β〉 and |0〉 in terms of |i〉. As a result of the diagonalization of Hv, the transformations

|ν〉 =
∑
i

|i〉〈i|ν〉 and |0〉 =
∑
i

|i〉〈i|0〉 (4.52)

are known. Likewise, the unitary transformation

|β〉 =
∑
ν

|ν〉〈ν|β〉 (4.53)

is obtained from the diagonalization of HPP .

Hence,

tβ0 =〈β|Udis|0〉

=
∑
i,i′

〈β|i〉〈i|Udis|i′〉〈i′|0〉 =
∑
i

〈β|i〉Ui〈i|0〉. (4.54)

7The eigenvalues εβ are calculated through diagonalization of the band term Eq. (4.11). In this
process, the largest supercell we used has size N = 40 × 40 and we used a single k = 0 point.
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Figure 35: Density of states N(ω)/∆E (normalized by the total number of states) for a
single realization and di�erent choices of ∆E

The coe�cients 〈β|i〉 are obtained from Eq. (4.53), namely

〈i|β〉 =
∑
ν

〈i|ν〉〈ν|β〉 (4.55)

In Fig. 36 two typical outcomes of the squared hoppings |tβ0|2 are displayed. The

small energy gap discussed above is seen close to zero energy and is attributable to �nite

size e�ects. The results show that disorder couples the midgap state with states overall

the energy range of band. The smoothed curve represented by the �lled squares in the

top panel of Fig. 36 denotes the quantity |t(ω)|2, de�ned as the average of |tβ0|2 in the

window ω − ∆E/2 ≤ εβ ≤ ω + ∆E/2 using the same ∆E adopted in the calculation of

ρdis(ω). The result shows that |t(ω)|2 is essentially independent of energy for large ω but

quite sensitive to the �uctuations in small energy windows (compare panels (a) and (b) in

Fig. 37), since the number of states in this region is relatively small, leading to important

consequences for the Kondo physics once this is the region of interest for the e�ect.
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Figure 36: (a) Raw data for |tβ0|2 in a single realization (dots) and the corresponding
energy-averaged |t(ω)|2 (�lled squares). Also shown: density of states ρdis(ω) and the
resulting hybridization function Γdis(ω) ≡ π|t(ω)|2ρdis(ω). (b) Γdis(ω) for di�erent choices
of ∆E.
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With the necessary parameters to implement the NRG at hand, in the following we

discuss the results obtained by this method.
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Figure 37: Illustration of the low energy �uctuations on the hoppings |t(ω)|2 and how
this in�uences the hybridization function estimates in this region. For some realizations,
panel (b), strong �uctuations leads to a non-linear behavior in Γ(ω). In this cases, the
"metallic" character Γdis(ω = 0) 6= 0 of the system is emphasized.

4.3 NRG calculations

The arguments presented in the previous section justify the use of the Anderson-like

model of a localized state coupled to a continuum band with a density of states ρdis(ω).

The variable ω = ε − µ(Vg) is suitable for treating the cases with nonzero doping. The

energy ω varies within the range −D − ∆µ ≤ ω ≤ D − ∆µ, where ∆µ = µ(Vg) − µ0 is

the change in the Fermi level energy, set by the introduction of gate voltage Vg, relative

to charge neutrality and D is the half-bandwidth.

The model Hamiltonian is written as HA = Hstate + Hband + Hhop where, in energy
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representation8,

Hstate = δε n0σ + Un0↑n0↓

Hband =

∫ D−∆µ

−D−∆µ

dω ω c†ωσcωσ

Hhop =

∫ D−∆µ

−D−∆µ

dω
√

Γdis(ω)/π
(
c†0σcωσ + h.c.

)
, (4.56)

where δε = εdis
0 − µ(Vg) is the midgap state energy relative to the Fermi level, located

at µ(Vg), U is the Coulomb repulsion at the localized state (see Sec. 4.2.2.1), c†0σ (c0σ)

is the creation (destruction)9 operator of an electron with spin σ at the |0〉 state (n0σ =

c†0σc0σ is the number operator). The electron band states β are treated in the energy

representation. Accordingly, c†ωσ (cωσ) is a creation (destruction) operator of an electron

with spin σ and energy ω in the (disordered) graphene band. The coupling between

the band and the localized state is written in terms of an energy-dependent hybridization

function Γdis(ω) = π
∑

β |tβ0|2δ(ω−εβ), which will undergo the standard NRG logarithmic

discretization of the conduction band [9, 38] we discussed in Sec. 3.4.

4.3.1 "Weak disorder" toy model

Before addressing the e�ects of disorder, it is instructive to consider a simple toy

model. This will give support to the analysis we present for the disordered case. In the

absence of disorder or vacancies the band density of states is written as:

ρ(ω) = ρ0|ω −∆µ|. (4.57)

We consider that the hybridization function is given by Γ(ω) = π|thop|2ρ(ω) = Γ0|ω−∆µ|
and Γ0 = πt2hopρ0, where Γ0 is chosen as the hybridization energy scale at the band edge

[38]. At this point, the choice of Γ0 seems rather arbitrary. It will be justi�ed when we

discuss the e�ects of disorder on the determination of the hybridization function.

In this simple model, both ρ and Γ are linear in ω (see dashed curve in Figs. 36

and 37a) and disorder manifests only through a variation in the energy εdis
0 . We call this

the "weak disorder" limit. Note that when ∆µ = 0 (charge neutrality point) we have a

realization of the pseudogap model we discussed earlier (see Sec. 3.4).

By setting Γ(ω) = Γ0, the model displays the metallic behavior characterized in Figs.

8This is the same procedure carried out in Sec. 3.4.2.1.
9We adopt this notation, instead of the one with the d subscript used earlier, in allusion to the

vacancy-induced localized state.
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38a-b (compare with Figs. 24 and 27). Model parameters are Γ0 = 0.016D, U = 0.5D,

−0.25D ≤ δε ≤ 0.25D and the step in δε equals 0.01D. The results show that as the

impurity level gets more immersed into the Fermi sea (decreasing δε) the system goes

from the empty-orbital (〈n0〉 ∼ 0) to the Kondo regime (〈n0〉 ∼ 1), crossing a region

of mixed valence (0.25 . 〈n0〉 . 0.75). The magnetic susceptibility Tχimp(T ) (we are

setting kB = g = µB = 1) always vanishes10 as T → 0 (see Fig. 38b) in agreement with

the discussion presented in Sec. 3.4.4. Kondo screening occurs for δε < 0, but su�ciently

apart from δε = 0 to enter the Kondo regime. For the more general case Γ(ω) = Γ0|ω|,
the model reproduces the magnetic susceptibility and ground state occupation for the

pseudogap situation as presented in Figs. 38c-d (see also Fig. 25), where Γ0 = 0.016D

and −0.02D . δε . −0.0001D. The system presents a quantum phase transition at

δε = δεc = −0.00253724D separating the empty-orbital (δε > δεc) and local moment

phases (δε < δεc). Note the absence of intermediate values of the occupation 〈n0〉 for this
case, consistent with what is expected for pseudogaped systems with small Γ0 values [38].

The physics background of these results was discussed in Sec. 3.4. Here we focus on the

results of such model to help in the interpretation of the disordered scenario we present

below.

4.3.2 Disordered case

We now consider the disordered case, in which the (realization-dependent) parameters

from tight-binding calculations (εdis
0 , εβ and |tβ0|2) enter the model either directly or

through the hybridization function Γdis(ω). Those e�ects are realization-dependent and

thus one can think in terms of a disordered e�ective Anderson model [88, 89, 90, 91]

describing the low-energy physics of the system. Hence, for a given disorder realization,

the �rst step in the NRG analysis is to obtain an energy-dependent hybridization function

Γdis(ω) from the tight-binding results.

For each disorder realization, the hybridization is constructed from the e�ective cou-

plings |t(ω)|2 and the disordered density of states ρdis(ω), derived in Secs. 4.2.4.2 and

4.2.4.3, and reads Γdis(ω) ≈ π|t(ω)|2ρdis(ω) (see the diamonds in Figs. 36 and 37). The

choice of the parameter ∆E used to determine |t(ω)|2 and ρdis(ω) has little in�uence on

the low-energy part of Γdis(ω) (compare curves in the bottom panel of Fig. 36) as long

as ∆E is small, typically of order of the �nite-size-induced gap. In Fig. 39 one sees that

10In the scale of Fig. 38b, the lowest temperature value shown is T = 10−7D. Some of the blue curves
have TK lower than this value. The susceptibilities vanish in these cases when simulations are carried
out down to T = 10−14D.
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Figure 38: Level occupation 〈n0〉(T ) (a,c) and impurity magnetic susceptibility Tχimp(T )
(b,d) for the metallic (left panels) and pseudogap (right) Anderson models. In the pseu-
dogap model, a quantum phase transition (QPT) occurs at δε = δεc separating empty-
orbital (〈n0〉(T → 0) ∼ 0 and Tχimp(T → 0) ∼ 0 for δε > δεc) and local-moment
(〈n0〉(T → 0) ∼ 1 and Tχimp(T → 0) ∼ 1

4
for δε < δεc) phases. This is in contrast with

the smooth crossover from Kondo screening to the empty-orbital regime in the metallic
Anderson model (a,b).

the behavior of Γdis(ω) su�ers a strong in�uence from the hoppings �uctuations in the

low-energy region. We see that the disordered hybridization functions obtained (dashed

lines) can be expressed as Γdis(ω) ≈ Γ0(ω) + γ, meaning that disorder not only implies in

di�erent inclinations but also to a �lling of the pseudogap γ. This mechanism is the one

responsible for giving a "metallic" character to the disordered system. Figure 37b illus-

trates that in some cases such �uctuations can lead to a large nonzero value of Γdis(ω = 0)

and a nonlinear behavior of Γdis(ω) at ω ≈ 0 (this occurs at a small number 5 − 10 per-

cent of the disorder realizations). In these cases the "metallic" character of Γdis(ω) is

reinforced. Since the density of states, in general, retain its characteristic linear energy

dependence in this region, the e�ect is exclusively due to the hoppings �uctuations.
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Figure 39: Hybridization functions obtained from di�erent disorder realizations (dashed
lines). Solid lines illustrates what would be the behavior for Γ(ω) = Γ0|ω| with varying
Γ0.

We are now in a position to apply the NRG method to study the disordered case. The

Kondo temperature TK or the crossing temperature T ∗ are obtained from the analysis of

the NRG results for the magnetic susceptibility and ground state occupation 〈n0〉 as
previously discussed in Sec. 3.4.

We �rst address the charge neutrality situation. Figure 40 shows the NRG results for

the crossover temperature T ∗ and ground state occupation 〈n0〉 for ≈ 1000 realizations

for U = 0.5D. The realization parameters are δW = 0.32t, Nimp = Ni/10, Ni = 40 × 40

and ξ = 3a. For practical purposes, we have stopped the NRG calculations at scales of

the order 10−20D. This scale (dashed line) de�nes "zero temperature". We keep 1000

states in each NRG iteration and the parameter β̄ is taken as β̄ = 0.727.

For a comparison with the "weak-disorder" toy model case, we also show results

using Γ(ω) = Γ0|ω| with Γ0 = 0.064D (squares), 0.16D (circles) and 0.32D (triangles)

(disorder here enters only through εdis
0 ). For each of the above values of Γ0, a quantum

phase transition is observed at values around ε∗0 ≈ −0.01D (squares), −0.025D (circles)

and −0.05D (triangles) separating empty-orbital (εdis
0 > ε∗0) and local-moment (εdis

0 < ε∗0)

phases. The latter is characterized by vanishing T ∗ and 〈n0〉 → 1 while the former has
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non-zero T ∗ and 〈n0〉 → 0. As the hybridization "strength" increases, the transition shifts

to lower values of εdis
0 implying in the diminishment of the region of localized moments.

The rise of a mixed valence regime with increasing Γ0 is also consistent with results in

the literature (see Fig. 7 in Ref. [38]).

Figure 40: Crossover temperature T ∗ (a) and ground-state occupation 〈n0〉 (b) for di�erent
disorder realizations, each giving a di�erent εdis

0 . Solid lines: predictions of the weak
disorder pseudogap model (Γ(ω) = Γ0|ω| with Γ0 = 0.064D (squares), 0.16D (circles) and
0.32D (triangles). The diamonds are outputs of the disordered situation.

The disordered case (�lled diamonds) shows important di�erences: �uctuations in the

disorder potential will lead to Kondo ground states, characterized by 〈n0〉 → 0.8−1.0 with

a non-vanishing T ∗, which, in this case, corresponds to the Kondo temperature TK . Sharp

features of pseudogap-related quantum phase transitions are no longer evident. Instead,

as pointed above, the disorder induces a �lling of the pseudogap (see Figs. 37 and 39) and

leads to the formation of Kondo singlets which dominate the low temperature properties.

Disorder leads to a scenario where the vacancy state behaves as an Anderson impurity

embedded in a "disordered metal" [88, 89, 90, 91], where di�erent model parameters are

realization-dependent. This is explored in Fig. 41, which shows distributions P (T ∗) (or
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P (TK) in the Kondo regime) and ground state impurity occupation P (〈n0〉) for the same

≈ 1000 disorder realizations of Fig. 40 and di�erent values of ∆µ.

The panels (e) and (f) of Fig. 41 con�rm and clarify the conclusions drawn from Fig.

40. The distribution P (T ∗) displays two clear features: a sharp peak at larger values

of T ∗ and a longer, log-distributed tail. As expected from the analysis of Fig. 40, the

realizations contributing to the peak in P (T ∗) correspond to small values of 〈n0〉, related
to the large number of points agglutinated close to εdis

0 > 0.02 in Fig. 40, which gives rise

to the "tail" in P (〈n0〉) (note that the histograms are built for log-distributed values)

shown in Fig. 41f.

Figure 40 shows another interesting aspect, namely, the presence of intermediate

values of the localized state occupation 〈n0〉, characteristic of a mixed valence phase, in a

large region of the parameter space. For a pseudogaped system with r = 1 this regime is

diminished in favor of the local moment phase [38, 67], so this is another indicator that

disorder changes the pseudogap nature of the system into a "metallic" one.

In Ref. [90] the Kondo temperature distribution P (TK) obtained for metallic disor-

dered system has a bimodal character. We do not observe such behavior in our simula-

tions, however, the unimodal distributions we �nd are in accordance with those observed

in Refs. [88, 91].

In order to make contact with the experimental situation described in Ref. [1], we

explore the in�uence of a nonzero chemical potential on the TK and 〈n0〉 distributions.
We see that for large negative values of ∆µ there is a predominance of positive values

of δε which favor small occupations (〈n0〉 ∼ 0). This is indeed the case already for

∆µ = −0.05D, as shown in Fig. 41b. This leads to relatively large crossover temperatures

T ∗ into the empty-orbital regime (see Fig. 41a). As ∆µ increases, this scenario changes

qualitatively. Already at ∆µ = −0.02D, distinct "tails" in the distributions of 〈n0〉 and
T ∗ can be seen (see, for instance, Figs. 41c-d), with 〈n0〉 ∼ 0.8 for some realizations.

For positive values of ∆µ, the disordered Kondo phase clearly dominates, characterized

by P (TK) with long logarithmic tails along with a sharp peak in P (〈n0〉) around 〈n0〉 ∼ 1

(see Figs. 41g-j).

According to Ref. [80], the conversion of the gate potential Vg into µ for the Maryland

experiment [1] leads to |µ| ≤ 0.2eV. Since our estimates leads to D = 3t = 8.4eV,

this implies µ ' 0.025D, showing that the values are in good correspondence with the

experimental setup [1].
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Figure 41: Normalized distributions for the crossover/Kondo temperature (left) and im-
purity occupation (right) for di�erent values of the chemical potential ∆µ.

Typical values of TK emerging from our data (see Fig. 41) are TK ∼ 10−5D − 10−3D

which means TK ∼ 1K−100K. This is in good accordance with the range of temperature

estimates found in Ref. [1].

Figure 42 summarizes the results of Fig. 41 presenting the distributions for the

crossover/Kondo temperatures, Fig. 42a, and ground state occupation, Fig. 42b, dis-

tributions for di�erent dopings in the same frame. The transition in these distributions

as the system is �lled, passing from the empty-orbital regime to the Kondo one, is clearly

seen. The variable y = log(TK [T ∗]/D) is used for better visualization of the di�erent

curves in the same plot. We �nd that for negative values of ∆µ the distributions follow a

log-normal distribution. However, as the chemical potential is increased the distribution

departs from this behavior and no longer retains its log-normal form. Instead, a long

tail emerges on the low-TK side. A similar behavior is shown in Fig. 1 of Ref. [88], al-

though the transition observed there occurs due to direct varation of the disorder strength
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whereas here it is due to a variation of the chemical potential.

A more careful analysis shows that, for small values of TK , the Kondo temperature

distributions follow a power-law behavior P (TK) ∝ T
(α−1)
K [88, 92]. The exponents α can

be easily obtained through the distributions of y = log(TK) whose probability distribution

is given by P (y = log(TK)) ∝ TαK . The derivation of this result can be obtained through

the use of a theorem from probability theory (see Appendix B).

In the inset of Fig. 42 we show that the estimates obtained from the log− log plot of

y = log (TK) lead to α = 0.1 − 0.2, depending weakly on ∆µ. Such behavior has been

previously found in disordered Anderson systems [88, 89], where the interpretation for

the divergent behavior of P (TK) for small TK with non-universal exponents was given in

terms of a Gri�ths phase and disorder-induced non-Fermi-liquid behavior [92, 93, 94].
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Figure 42: Normalized distributions for the crossover/Kondo temperature (left) and impu-
rity occupation (right) for di�erent values of the chemical potential ∆µ. Inset: Power-law
behavior of the low TK distributions, and corresponding exponent α, for varying ∆µ.

The exponent α is known to depend on the disorder strength and one expects α< 1

and divergent behavior in P (TK) only for strong disorder [88, 89]. Interestingly, in Fig. 42,

the disorder strength was kept �xed at the value W = 0.32t and even then we obtained
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α ∼ 0.1 − 0.2, with a weak dependency with ∆µ. We attribute these features as an

enhancement of the disorder strength due to Kondo correlations. As the system enters

deeper in the Kondo regime (increasing ∆µ), small �uctuations in the single-particle

parameters produces large �uctuations in the Kondo scale [95]. Thus, the low-temperature

properties are more strongly a�ected by the disorder potential, yielding a large e�ective

disorder strength in the Kondo regime.
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5 Conclusions

In this thesis we have addressed the problem of the Kondo e�ect generated by the

presence of vacancies in a monolayer graphene sheet. We show that disorder plays a central

role for the appearance of Kondo e�ect in graphene. To the best of our knowledge, this

work is pioneering in presenting a systematic study of the Kondo e�ect in a disordered

system with Dirac fermions.

We showed that long range disorder provides a natural coupling mechanism between

the localized midgap state and the conduction band, opening the possibility of observing

the Kondo e�ect due to π magnetism in graphene. This is in contrast with the existing

works in the literature which only considered lattice reconstructions as a source of disorder

and attributed σ magnetism as the responsible for the onset of Kondo physics. We �nd

that the resulting distributions of Kondo temperatures P (TK) depends on the disorder

strength and, in a more subtle manner, on the chemical potential.

Based on estimates of the ground state occupancy and the magnetic susceptibility, we

observed that at charge neutrality the e�ect of disorder is to dress graphene with a metallic

character and "spoil" the quantum critical behavior expected for pseudogaped systems.

This result is in agreement with the metallic Kondo behavior namely, the single-parameter

scaling observed in the experiments of Ref. [1] as discussed in Chapter 2.

Our modelling can also o�er a conciliatory scenario between the experiments of Refs.

[1] and [2]. Our �ndings suggest that su�ciently low disorder can imply in a very low value

of TK that may not be accessible through the experiments. This is a possible reason why

the experiment conducted by Manchester's group [2] observes a Curie-like susceptibility

since the samples they use appear to be cleaner than those used in the Maryland's exper-

iment [1]. It should also be mentioned that the Manchester group measured the magnetic

susceptibility whereas the Maryland group presents resistivity data. This is also an im-

portant aspect to consider since presence of any weakly-screened (i.e. low TK) magnetic

moments will dominate the results of susceptibility measurements. On the other hand,
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electric resistivity receives contributions from strongly screened (i.e. high TK) moments

and hence measurement of transport data are more likely to display Kondo screening

traces.

We have also explored the e�ect of doping for the Kondo e�ect in graphene. In order

to be in close contact to the experimental environment, we adopt doping levels consistent

to those used in Ref. [1]. According to Ref. [80], the mapping of Vg into µ for this

experiment leads to |µ| ≤ 0.2eV (' 0.025D for D ≈ 8eV, the value we use). As expected

for metallic systems, a negative doping tends to favor the empty orbital regime, consistent

with the probability distributions of 〈n0〉 and T ∗ we �nd. The Kondo screening scenario

is recovered as the doping is increased. This situation contrasts with the experimental

results [1] which display a nearly particle-hole symmetric behavior of TK . However, the

TK estimates we obtain are TK ∼ 10−5D−10−3D which means TK ∼ 1K−100K, this is in

good agreement with the experiment [1]. Our results show that increasing disorder leads

to an increase in the width of P (TK). Then, for su�ciently low disorder strength, narrow

distributions should rise opening the possibility for an approximately single-parameter

scaling regime to hold and support the behavior observed in Ref. [1].

An important outcome of our study is the observation of long tails in the distribution

of P (TK) and as µ is increased, the occurrence of power-law divergence at low TK → 0.

This is consistent with the presence of a Gri�ths phase. Unlike the metallic situation,

where this phenomenon is observed trough a variation of the disorder strength [88], we

observe the onset of Gri�ths phase due to doping variation while the disorder strength

remains �xed.

Our results suggest interesting routes for experiments. First, by gradually introducing

disorder to the graphene sheet it may be veri�ed the transition from the local moment

scenario to a screened one. This may be tested for instance by exploring Kondo e�ect

in graphene deposited in di�erent substrates such as SiO2 and BN , as disorder e�ects

are expected to be very di�erent in these composites. The second interesting route is

the exploration of non-Fermi-liquid behavior in transport experiments or measurements

of thermodynamics quantities in graphene sheets by varying the doping in graphene dis-

ordered samples.

A straightforward extension of our work is to calculate transport properties via the

NRG method. Also, a systematic variation of the disorder parameters and observation

of how this a�ects the distributions of P (TK) and P (〈n0〉) is also one of our tasks for a

future work. Another interesting possibility is try to perform more realistic calculations
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treating the case of several vacancies. The study of the contribution of σ magnetism in

the disordered context is also an interesting issue still not addressed in the literature.

The long range disorder model with vacancies discussed in this thesis can also be

explored to model the spin relaxation in di�usive graphene samples. There is experimental

evidence [96] that vacancies and local magnetic moments play an important role in the fast

spin relaxation rate observed experimentally [97] which is orders of magnitude smaller than

theoretical predictions [98]. Our model of charge puddles o�ers a possible solution for the

puzzle of spin relaxation times in graphene. Local �uctuations of the chemical potential

enhance the transition rates at the charge neutrality point, dramatically suppressing the

charge relaxation times. This study is in course, but it is not included in this thesis.
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APPENDIX A -- The Schrie�er-Wol�

transformation: Anderson

meets Kondo

In Sec. 3.1 we saw how one can determine a range of values for U and γkd required for a

crossover between magnetic and nonmagnetic limits and hence establish why, in empirical

observations, some transition elements with partially-�lled d-shells remain magnetic when

diluted in some but not all host metals.

In the magnetic case, the impurity state is singly occupied with a two-fold degeneracy

corresponding to spin 1/2. By assuming that such con�guration is the ground state,

the empty and doubly occupied cases will be higher excited states. With the additional

condition that γkd is small compared to εd and U , charge �uctuations in the impurity will

be small. This observation suggests that such �uctuations might be eliminated altogether.

This procedure is achieved by a canonical transformation developed by Schrie�er andWol�

[99], which replaces the charge �uctuations by an e�ective interaction between the spins

of the conduction band and the impurity. As we will see, the transformation is equivalent

to a diagonalization of the Anderson Hamiltonian in the subspace of the singly occupied

impurity states.

The �rst step to develop the transformation is to separate the Anderson Hamiltonian

into a zeroth-order part:

H0 =
∑
k,σ

εkc
†
kσckσ +

∑
σ

εdc
†
dσcdσ +

∑
k,σ

+Und↑nd↓ (A.1)

and a "perturbation",

H1 =
∑
k,σ

γkd(c
†
kσcdσ + c†dσckσ) (A.2)
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The similarity transformation applied to the Hamiltonian HA = H0 +H1 reads:

H̃ = eSHAe
−S

= HA + [S,HA] +
1

2
[S[S,HA]] + . . .

= H0 +H1 + [S,H0] + [S,H1] +
1

2
[S, [S,H0]] +

1

2
[S, [S,H1]] + . . . , (A.3)

where S is a similarity matrix chosen to eliminate the coupling between conduction band

and impurity states to leading order in γkd. According to Eq. (A.3), this is accomplished

through the condition:

[S,H0] +H1 = 0. (A.4)

Insertion of Eq. (A.4) into Eq. (A.3) results

H̃ = H0 + [S,H1] +
1

2
[S,−H1] +

1

2
[S, [S,H1]] + . . .

≈ H0 +
1

2
[S,H1]. (A.5)

The second step is the construction of the similarity matrix S. Through the observa-

tion that [S,H0] = −H1, one concludes that S must contain terms ∝ c†kσcdσ. Furthermore,

as the commutator of c†kσcdσ with Und↑nd↓ is proportional to nd−σc
†
kσcdσ, a nice try is the

assumption that the transformation takes the form

S =
∑
k,σ

(Ak +Bknd−σ) c†kσcdσ −H.c. (A.6)

The condition that S is antihermitian relies on the fact that eS is an unitary transforma-

tion.

After some algebra one obtains [6]:

[H0, S] =
∑
k,σ

[(εk − εd)Ak + (εk − εd − U)nd−σBk − Und−σAk] c†kσcdσ +H.c. (A.7)

To satisfy Eq. (A.7) it is required that [6]

Ak =
γkd

εk − εd
and Bk = γkd

[
1

εk − (εd + U)
− 1

εk − εd

]
. (A.8)

Inserting the results of Eq. (A.8) back into Eq. (A.6) de�nes the Schrie�er-Wol� trans-

formation.
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The last step of the transformation is the calculation of the commutator [S,H1] aiming

at �nding the expression of H̃.

We adopt the simpli�ed notation ρkdσ = c†kσcdσ and write the commutator as

1

2
[S,H1] =

1

2

∑
k,k′σ,σ′

{
Akγk′d [ρkdσ, ρk′dσ′ ] + Akγ

∗
k′d

[
ρkdσ, ρ

†
k′dσ′

]
+Bkγk′d [nd−σρkdσ, ρk′dσ′ ]

+ Bkγ
∗
k′d

[
nd−σρkdσ, ρ

†
k′dσ′

]
− A∗kγk′d

[
ρ†kdσ, ρk′dσ′

]
− A∗kγ∗k′d

[
ρ†kdσ, ρ

†
k′dσ′

]
− B∗kγk′d

[
nd−σρ

†
kdσ, ρk′dσ′

]
−B∗kγ∗k′d

[
nd−σρ

†
kdσ, ρ

†
k′dσ′

]}
. (A.9)

Performing the algebra of commutators and anti-commutators of the terms Eq. (A.9)

we write:

1

2
[S,H1] =

1

2

∑
k,σ

[(Ak +Bknd−σ) γ∗kdndσ +H.c] +
∑
k,k′,σ

[
Akγ

∗
k′dc

†
kσck′σ +H.c

]
−

∑
k,k′,σ

[Bkγk′dρkdσρk′d−σ +H.c] +
∑
k,k′,σ

[
Bkγ

∗
k′d

(
nd−σc

†
kσck′σ + ρkdσρk′d−σ

)
+ H.c]} (A.10)

The terms in Eq. (A.10) can still be arranged in a more enlightening format, to wit,

1

2
[S,H1] = Hexchange +Hband +Hsingle +Hdouble, (A.11)

where

Hexchange = −
∑
k,k′

Jkk′

}2

(∑
σ,σ′

c†kσSσσ′ck′σ′

)
·

(∑
σ′′,σ′′′

c†dσ′′Sσ′′σ′′′cdσ′′′

)
, (A.12)

Hband =
∑
k,k′

[
wkk′ +

1

4
Jkk′ (nd↑ + nd↓)

]∑
σ

c†kσck′σ, (A.13)

Hsingle = −
∑
k,σ

[
wkk +

1

2
Jkknd−σ

]
ndσ, (A.14)

Hdouble = −1

2

∑
k,k′,σ

[
Bkγk′dc

†
k′−σc

†
kσcdσcd−σ +H.c

]
. (A.15)

In the above expressions, the spin "vector" reads S = (}/2)σ, where σ = (σx, σy, σz)
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and σx,y,z are the Pauli matrices. Also wkk′ and Jkk′ are given by [6]

wkk′ =
γkdγ

∗
k′d

2

[
1

εk − εd
+

1

εk′ − εd

]
(A.16)

Jkk′ = γkdγ
∗
k′d

[
1

εk − (εd + U)
− 1

εk − εd
+

1

εk′ − (εd + U)
− 1

εk′ − εd

]
. (A.17)

In the regime of single occupancy of the localized state, we see that the term Hdouble

can be neglected since it changes the occupancy of the impurity by two, hence, it does

not connect the part of the Hilbert space having one d electron (the case of interest) with

the remainder of the Hilbert space, i.e., 0 or 2 d electrons [99].

As nd↑ + nd↓ = 1, Hband reduces to a one-body potential which can be eliminated by

a transformation of the k states to a set of one-electron conduction states which include

this direct scattering term. The resulting shift in the conduction states energies may be

incorporated in H0.

The term Hsingle renormalizes the energy of the localized state:

εd → ε̃d = εd −
∑
k

wkk. (A.18)

The only important term to be retained for the Kondo physics is the exchange Hamil-

tonian Eq. (A.12), reducing the transformed Hamiltonian to

H̃ = H0 +Hexchange, (A.19)

which may be explicitly written as

H̃ =
∑
k,σ

εkc
†
kσckσ −

∑
k,k′

Jkk′

}2

(∑
σ,σ′

c†kσSσσ′ck′σ′

)
·

(∑
σ′′,σ′′′

c†dσ′′Sσ′′σ′′′cdσ′′′

)

=
∑
k,σ

εkc
†
kσckσ −

∑
k,k′

Jkk′

}2
s · S. (A.20)

We used the fact that the impurity terms in H0 will only shift the system energy

in the impurity single occupation limit to drop the εd and U terms. In the interacting

term, s denotes the conduction electron spins and S the impurity spin. The interacting

part in Hamiltonian Eq. (A.20) is denoted as the Kondo Hamiltonian (also known as s-d

model)[8].

One aspect of major importance about the exchange coupling is that it is negative.
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This assertion is proved by setting εk = εk′ = εF in Eq. (A.17), resulting [6]

JkFkF = −2

(
U

|εd| (U − |εd|)

)
< 0. (A.21)

This result entails an antiferromagnetic coupling between the band electrons and the

impurity one. The character of this interaction is responsible for the formation of a

singlet state at the d-impurity below the Kondo temperature TK .
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APPENDIX B -- Derivation of the

P (y = log(TK)) distribution

In order to derive the distribution of y = log(TK), it is useful to make use of the

following theorem from probability theory [100]:

Theorem 1 Let X be a continuous random variable with probability density f(x), where

f(x) > 0 for a < x < b. Suppose that y = H(x) is a strictly monotone (increasing or

decreasing) function of x. Assume that this function is di�erentiable (and hence continu-

ous) for all x. Then the random variable Y de�ned as Y = H(X) has a probability density

function g given by:

g(y) = f(x)

∣∣∣∣dxdy
∣∣∣∣ , (B.1)

where x is expressed in terms of y.

For our case, identifying X = eY = TK we have dx/dy = ey = TK , hence, making use

of the Theorem 1:

P (y = log(TK)) ∝ Tα−1
K TK ∝ TαK . (B.2)
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