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Abstract

We propose a model based on the charge disorder of the high-Tc superconductors to

explain the weak ferromagnetic signal observed in compounds such as YBa2Cu3O6+x. In

order to set the framework, we develop the basic elements of second quantization for

fermions, and introduce important elements of both the microscopic and phenomenologi-

cal theory of superconductivity. Our basic model relies on an electronic phase separation

with the formation of low and high density domains. At low temperatures this system

may act as a granular superconductor where the grains are formed by isolated regions with

varying charge density and superconducting amplitudes. These isolated regions may have

different local critical temperatures (Tc), that is, not the same onset of superconducting

amplitudes, forming a Josephson network and the whole system undergoes the supercon-

ducting or resistivity transition through phase coherence among the grains. The main

point of this dissertation is that the low electronic density of the grains in conjunction

with intrinsic electronic disorder, two well known properties of cuprates, may produce a

negative Josephson coupling that provokes spontaneous frustration. Spontaneous current

loops are produced that are responsible for the overall observed weak ferromagnetic order.

We show that this model provides a novel explanation and reproduces the experimental

data of the observed magnetic signal.



Resumo

Sugerimos um modelo para os supercondutores de altas temperaturas cŕıticas para ex-

plicar o sinal ferromagnético fraco observado em compostos como YBa2Cu3O6+x. Afim

de estabelecer o cenário, desenvolvemos elementos básicos da teoria microscópica da su-

percondutividade. O modelo base se firma numa separação eletrônica com domı́nios de

baixas e altas densidades. A baixas temperaturas esse sistema pode se comportar como

um supercondutor granular, onde os grãos são formados por regiões isoladas com densi-

dade de carga e amplitude supercondutora variável, formando uma rede Josephson e o

sistema sofre uma transição supercondutora através do estabelecimento de coerência de

fase entre os grãos. O ponto principal desta dissertação afirma que a baixa densidade

dos grãos em conjunção com desordem eletrônica intŕınseca – duas caracteŕısticas bem

conhecidas dos cupratos – produzem um acoplamento Josephson negativo que provoca

frustração espontânea. Circuitos espontâneos são produzidos e são responsáveis pelo

sinal ferromagnético fraco observado. Mostramos que este modelo provê uma explicação

inovadora e reproduz os dados experimentais do sinal magnético observado.
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CHAPTER 1

Introduction

1.1 Historical background

Superconducting phenomena were discovered more than a century ago, in 1911 by the

Dutch physicist Heike Kamerlingh Onnes. Below we list three major characteristics that

define a superconductor in its context of discovery:

1. Kamerlingh noted that for certain metals, the electric resistance vanished abruptly

below a critical temperature Tc, see figure 1.1;

2. Walther Meissner and Robert Ochsenfeld discovered in 1933 that a superconductor

can behave as a perfect diamagnet (Meissner effect) when exposed to a magnetic

field, see figure 1.1;

3. Pure superconductors have a gap in energy of width 2∆ centred about the Fermi

energy in the set of allowed one-electron levels. This means that electrons form

pairs, called Cooper pairs that are the basic current unit in superconductors, and

one needs an energy ∆ to extract an electron from a superconductor.

These three characteristics summarize the properties of a superconductor, which is much

more than simply a perfect conductor. Also, superconductors are categorized into two

types.

• Type 1: Those who expel an external magnetic field completely from the bulk;

• Type 2: Those who lock little vortices of magnetic strands into the bulk in a certain

temperature range to minimize the overall free energy.
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Figure 1.1: Left: As Onnes reduced the temperature of mercury, he saw an abrupt
transition to zero resistance at 4.2 K. Right: Diagram of the Meissner effect. Magnetic
field lines, represented as arrows, are excluded from a superconductor when it is below its
critical temperature Tc.

Many theories emerged to describe this new state of matter. In 1935, the London

brothers, Fritz and Heinz, developed an electromagnetic theory of superconductors. How-

ever, only in 1950, Vitaly Lazarevich Ginzburg and Lev Landau developed a successful

phenomenological theory, which described the thermodynamics of the phase transition

from the normal to the superconducting state. This guaranteed the Nobel prize of 1962

to Ginzburg. A fundamental microscopic theory of superconductivity arose in 1956, when

Leon Cooper discovered that the basic mechanism for superconducting condensation con-

sisted of pairing electrons with bound energy ∆. Due to him, these pairs are called Cooper

pairs and account for the resistance free current. Finally, in 1957, John Bardeen, Leon

Cooper and Robert Schrieffer (the BCS trio) presented a complete quantum mechanical

theory of superconductivity able to describe conventional superconductors, which were

the ones known by that time. This theory, BCS theory, was held as a triumph, because of

the vast application it has. Until 1975, a variety of superconductors were discovered that

BCS theory embraced well – this is refereed to as the ”classic” era of superconductivity.

Classic superconductors are characterized by a number of common properties; below we

list the most important ones:

1. The vast majority of classic superconductors have a transition temperature Tc below

25 K;

2. The normal state is described by Landau Fermi-liquid theory;

3. The superconducting phase transition is isolated from other phase transitions;

4. The order parameter is of the s-wave type (constant superconducting amplitude ∆);
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5. Cooper pairs are formed by an attractive interaction resulting from the exchange of

virtual phonons;

6. Crystal structure is simple.

Everything changed in 1986, when Johannes Georg Bednorz and Karl Alexander Müller

discovered a new class of superconductors – the cuprates – that violate all of the six

conditions above, with critical temperatures above the previous known superconductors.

This inaugurated the quest in understanding the basic mechanism behind high-Tc super-

conductors, which BCS theory did not cover.

1.2 The cuprates

The discovery of the first high-Tc superconductor La2−xSrxCuO4, by Berdnorz and Müller

[5], was of huge impact, not just because of the critical temperature of 32 K, but mainly

because it was a group of materials that with zero doping (x = 0) are insulators and

present anti-ferromagnetic order at low temperatures (see figure 1.2). In 1987, Chu et. al.

synthesized a new cuprate YBa2Cu2O4−x, which has a critical temperature of 94 K [51].

This was the first superconductor with a critical temperature beyond the barrier of liquid

nitrogen (77K). For this reason, the compund YBa2Cu2O4−x gained increasing attention

because of its technological implications. Since then, several families of cuprates were

discovered; all characterized by cooper-oxide (CuO2) crystal planes.

Figure 1.2: Left: Evolution of superconductors. Right: Schematic phase diagram of
high-Tc superconductors, temperature versus hole doping concentration. The left AF
region shows the anti-ferromagnetic region, the superconducting dome in the middle,
with the crossover temperature T ∗ of the ”normal” pseudogap phase.

With time it became evident that cuprates are more complex than expected. Differ-

ently from metallic conventional superconductors where the normal phase is described in

therms of the properties of the Fermi liquid, the cuprates presents a normal phase with
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new properties that remains a challenge for over 25 years. Simply put, the properties of

the normal state: specific heat, magnetic susceptibility, electric resistivity, etc..., differ

from a metal. Even due the increasing experimental techniques, the origin of supercon-

ductivity and the description of the basic properties is still an open problem. However,

valuable knowledge about the cuprates was constructed over the past three decades. This

knowledge is summarized below [31]:

• Superconductivity in the cuprates is due to formation of Cooper pairs;

• The main location of superconductivity in the cuprates is the CuO2 planes;

• The order parameter is a spin singlet;

• The orbital symmetry of the order parameter is strongly suspected to be dx2−y2 ;

• The formation of Cooper pairs takes place independently within different multilay-

ers;

• The electron-phonon interaction is not the dominant mechanism of the formation

of Cooper pairs.

1.3 Pseudogap and inhomogeneity

Beyond the different properties of cuprates, two completely new features were observed:

1. Unlike conventional superconductors where the gap is an exclusive property of the

superconducting phase of matter, high-Tc superconductors present partial gaping

above Tc;

2. Inhomogeneous electronic distribution.

In conventional metallic superconductors, the superconducting gap amplitude ∆(T )

is an exclusive feature of the superconducting phase of matter. However, in the cuprates,

there also are local stable gaps above the critical temperature. This feature is referred to

as partial gaping. In other words, an energy gap ∆(T > Tc) is observed in the supposed

”normal” phase of cuprates, which caused great perplexity [47]. There is no clear vision

of the nature of these local gaps. This partial (pseudo) gap appears at a temperature

denoted by T ∗(x) and extents way above Tc(x), see figure 1.2. One of the challenges is

explaining the dome-like shape of the superconducting critical temperature versus the hole

concentration. This continues as a major focus condensed matter physics. More thwarting

is the lack of a thorough explanation of the ”normal” state of high-Tc superconductors –

the pseudogap phase.
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In this dissertation we present a model of electronic phase separation, which is capable

to explain many features of the mysterious pseudogap region. Our model relies essentially

on the intrinsic electronic charge distribution in the cooper-oxide planes of cuprates.

This is still a hot topic of debate. However, the inhomogeneous charge distribution was

measured by several different experiments that indicate that the local densities of high-

Tc superconductors is disordered, varying at nanoscales [7, 25]. This differs radically

from a metal, where the charge distribution is uniform. Increasing evidence suggest

that the inhomogeneity is intrinsic to cuprates, and is not related with impurities or

crystallographic defects [49, 6, 43, 42, 37, 33, 22, 39, 12, 28, 24].

There is a general consensus that the unveiling of the nature the pseudogap region

is crucial to the understanding of high-Tc superconductors. A reason for the lack of a

widely accepted theory for the pseudogap is because of the intrinsic complexity of the

electronic distribution of high-Tc superconductors. Such systems are not easily treated

mathematically. Mathematical methods such as quantum field theory, present itself effec-

tive for homogeneous systems. Quantum field theory relies on simplifications, which wash

out the existence of inhomogeneity – a crucial factor for treating high-Tc superconductors

mathematically. An important issue about the pseudogap is whether the gaps measured

in the normal state are evidence of a new state of matter, which therefore would compete

with superconductivity. Here we adopt the thesis that the local gaps are superconducting

in nature, announcing and abrupt phase transition to come.

1.4 Ferromagnetic signal

Among the many unexplained features of the pseudogap phase is the weak ferromagnetic

signal observed in compounds such as YBa2Cu3O6+x. The diamagnetic and paramagnetic

characters of high-Tc superconductors are known, but the weak ferromagnetism lacks

a theoretical explanation. This signal was measured by two independent experimental

techniques [44, 52], which suggest that this weak magnetic signal might be related with

the properties of the pseudogap. Therefore, understanding the underlining mechanism

of this ferromagnetic signal should shed light on the nature of the pseudogap phase.

This is the main issue addressed in this dissertation. We suggest a new model for

high-Tc superconductors to explain the weak ferromagnetic signal observed

compounds such as YBa2Cu3O6+x.

1.5 Overview

This dissertation is organized in the following sequence: introduction, formalism, phe-

nomenology, problem, conclusion. We would like to state that most of chapters 2 to 4

was developed with the aim to help to understand the aspects of the problem.
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Chapter 2 sets the mathematical framework that is suitable for the quantum theory of

superconductivity. We develop the properties of creation an annihilation operators that

are adequate to describe collective systems. We limit ourselves to electrons, which will

suffice. The fundamental anti-commutation relations are established. Furthermore, we

show how to represent dynamical variables in this framework. Lastly, we introduce the

approximation methods that will be convenient throughout this dissertation.

In chapter 3 we apply the formal framework to develop the microscopic (quantum)

theory of superconductivity for both conventional metallic and unconventional cuprate

superconductors. We open with the Cooper problem, which is a cornerstone for all su-

perconducting phenomena. Then we develop the BCS theory in a suitable notation that

can be naturally extended beyond the BCS framework. Fundamental concepts such as

the superconducting ground state, the Bogoliubov equations, phase fluctuations, and the

BCS equation are discussed. We switch to the formal framework of high-Tc supercon-

ductivity with a brief intermission on d-wave symmetry, in contrast to the conventional

BCS s-wave symmetry. The extended Hubbard model is introduced, which is especially

useful for strongly correlated electron systems. We develop and apply the formalism of

Bogoloubov deGennes to the two dimensional copper-oxide lattice, which is responsible

for the properties of cuprates, and permits us to determine the local gap ∆(i).

In chapter 4 we develop the essential elements of the elegant and powerful phenomeno-

logical theory of superconductivity developed by Ginzburg and Landau. The theory’s

main results that are relevant for this dissertation are presented, which includes: flux

quantization, boundary conditions, and the Josephson (tunnelling) effect. Again, to

make the transition of the phenomenological description of conventional to unconven-

tional (cuprate) superconductors, we present an intermission surveying the most recent

experimental data, which support our fundamental model of electronic phase separation.

Then, we use the ideas of Ginzburg and Landau of their description of second order phase

transition to construct our quantitative model of electronic phase separation, which is the

basic background to solve our main problem.

With the background model laid, we attack our main problem in chapter 5 – the

description of the weak ferromagnetic signal of high-Tc superconductors. The role of

strong correlation effects due to phase fluctuations are discussed. We show that our system

will behave as a network of frustrated π-junctions, which is the underlining mechanism

responsible for the weak signal. This discussion finally integrates the phenomenological

background model, the effects of spontaneous frustration with the formalism of Bogoliubov

deGennes that will yield a theoretical confirmation to the experiments.

We conclude stating the most important result result of our calculations presented in

chapter 5 and we discuss some perspectives for future working using some of the concepts

learned in this dissertation.
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CHAPTER 2

Second quantization for fermions

2.1 Introductory remarks

Here we deal only with fermions. Superconductivity is a cooperative phenomena between

many fermions – the electrons. Therefore, before developing basic elements of the physics

of superconductivity, we set a mathematical framework to describe fermionic systems

(superconductors in our case). We need a formalism that focuses on just a few degrees

of freedom, but treats the system’s total number of particles as a dynamical variable

[3]. This because the number of electrons will vary at a critical temperature that marks

the superconducting phase transition. Pascual Jordan and Eugene Wigner created our

mathematical structure of interest - the formalism of creation and annihilation operators,

also known as second quantization. This formalism permits mathematical manipulations

with ease. It is nice because it keeps track of the anti-symmetrization requirement for

fermions, which reads

Ψ (r2, r1) = −Ψ (r1, r2) . (2.1)

Second quantization is applicable both to fermions and bosons. However, we will restrict

ourselves to fermions, because this is all we need. The name second quantization alludes

to the fact that some operators will obey a Schrödinger-like equation. Let us start by

looking at the space in which our states live.

2.2 Properties

The orthonormal basis vectors of Fock space can be summarized as follows:
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• A single state with no particles in it |0〉;

• A complete set of one-particle vectors {|α〉};

• A complete set of two-particle state vectors {|α〉 ⊗ |β〉};

• A complete set of three-particle state vectors {|α〉 ⊗ |β〉 ⊗ |γ〉}.

The numbers α, β and γ are any natural numbers that stand for all necessary quantum

numbers to describe a certain state. Since all sets contain only fermions, they are complete

in the anti-symmetric invariant subspace. Also note that Fock space is much larger than

Hilbert space because it is the direct sum of all Hilbert spaces of each fermion. Now let

us develop the basic properties of our formalism beginning with some basic definitions.

2.2.1 Basic definitions

We define a creation operator C†α, that when acted upon a vector that does not contain

the state |α〉, will create it. In the most simple case

C†α|0〉 = |α〉. (2.2)

The fact that C†α is the hermitian adjoint of an other operator Cα is a convention. We

say that C†α occupies the α orbital of a quantum state. If C†α acted upon the state with

occupied β orbital, we would write

C†α|β〉 = C†αC
†
β|0〉 = |αβ〉 (2.1)

= −|βα〉. (2.3)

This last step is crucial and shows anti-symmetrization under interchange. We can con-

tinue inductively and write

C†α|βγ〉 = C†αC
†
βC
†
γ|0〉 = |αβγ〉 = −|αγβ〉 = |γαβ〉. (2.4)

For the sake of exercise, the normalized three-particle state |αβγ〉 can be expressed as

|αβγ〉 =
1√
6

(
|α〉|β〉|γ〉 − |β〉|α〉|γ〉 − |α〉|γ〉|β〉

− |γ〉β〉|α〉+ |γ〉|α〉|β〉+ |β〉|α〉|γ〉
)
,

(2.5)

where |α〉|β〉|γ〉 is an abbreviation for |α〉⊗ |β〉⊗ |γ〉. In coordinate representation, where

〈r |α〉 = φα(r), a two-particle state vector reads

〈r1, r2|αβ〉 =
φα(r1)φβ(r2)− φβ(r1)φα(r2)√

2
=

1√
2

∣∣∣∣∣φα(r1) φβ(r1)

φα(r2) φβ(r2)

∣∣∣∣∣ , (2.6)
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where the last term was written in terms of the slater determinant for a two-particle

state – which is especially useful to generalize to state vectors with more particles. The

properties of the creation operator can be neatly written as

C†α|A〉 = |αA〉, (2.7)

where A stands for ”anything”, but it must be the same on both sides of the equation.

We know from the Pauli exclusion principle that when C†α acts on a vector with the α

orbital occupied this must yield zero, because two identical states cannot occupy the same

orbital. Indeed

C†α|αA〉 = |ααA〉 (2.1)
= −|ααA〉 = 0. (2.8)

Equations (2.7) and (2.8) fully define the creation operator, which enables us to deduce

the properties of Cα that in advance will be called the annihilation operator. We introduce

a notation to indicate a state with a specific orbital unoccupied. For instance, the vector

|α̃A〉 is a generic state, but with the α orbital empty. The symbol tilde above the α stands

for ”not.” Then we would have C†α|α̃A〉 = |αA〉 and write

〈αA|C†α|α̃A〉 = 1,

〈ψ|C†a|α̃A〉 = 0, if 〈ψ|αA〉 = 0,
(2.9)

where the state |ψ〉 is arbitrary, but different from |A〉. From (2.7) we see that 〈αA|Cα =

0, and in the same way we rewrite equations (2.9) as

〈α̃A|Cα|αA〉 = 1,

〈α̃A|Ca|ψ〉 = 0, if 〈ψ|αA〉 = 0.
(2.10)

Obviously, if 〈αA|Cα = 0 then

〈αA|Cα|ψ〉 = 0. (2.11)

Let us analyse the information that equations (2.10) and (2.11) contain for three relevant

cases: |ψ〉 = |0〉, |ψ〉 = |α〉 and |ψ〉 = |α̃A〉 respectively.

If we take |ψ〉 = |0〉, then the second equation of (2.10) tells us that Cα|0〉 is orthogonal

to any vector with the α orbital unoccupied. Simultaneously, equation (2.11) says that

the very same vector Cα|0〉 is also orthogonal to any state vector in which the α orbital

is occupied. As an inevitable consequence, we must conclude that Cα|0〉 = 0.

The second interesting case to consider is the one in which |ψ〉 = |α〉. Equation

(2.11) asserts that Cα|α〉 is orthogonal to any state vector in which the α orbital is filled.

Nevertheless, the second equation of (2.10) shows us that Cα|α〉 is orthogonal to all vector

with unoccupied α orbital – except one, which is 〈0|Cα|α〉 = 1 – according to the first
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equation of (2.10). It is imminent that Cα|α〉 = 0. By means of a similar argument one

shows that Cα|αA〉 = |α̃A〉.
The last relevant case, |ψ〉 = |α̃A〉, in the same line of reasoning gives us Cα|α̃A〉 = 0.

Hence, Cα destroys the vector if the α orbital is occupied, and empties the α orbital if it

is occupied. Now the name annihilation operator is justified.

To summarize, the creation operator C†α adds a fermion to the α orbital if it is empty.

Its hermitian adjoint, the annihilation operator Cα, removes a fermion from the α orbital

if it is occupied; otherwise, these operators yield zero.

2.2.2 The anti-commutation relations for fermions

It should be easy to see from (2.4) that the anti-commutator
{
C†α, C

†
β

}
|0〉 = 0. Now we

are able to extend the application of the anti-commutator on |0〉 to a completely general

state |ψ〉. We can see from (2.8) that C†αC
†
α|ψ〉 = 0. Since |ψ〉 is arbitrary we safely write

C†αC
†
α = 0, and consequently CαCα = 0. Now it is interesting to consider

{
C†α, C

†
β

}
|ψ〉,

because it will summarize some of the properties of these operators. We have

(
C†αC

†
β + C†βC

†
α

)
|ψ〉 = |αβψ〉+ |βαψ〉 = |αβψ〉 − |αβψ〉 = 0. (2.12)

This leads to

{
C†α, C

†
β

}
= 0 and {Cα, Cβ} = 0, (2.13)

which are the first two anti-commutation relations. At last, we inspect the last case{
Cα, C

†
β

}
involving a creation and an annihilation operator. We will examine the cases

α = β and α 6= β separately. For α = β we must separate the analysis in two cases, one

where |ψ〉 = |αA〉 and another with |ψ〉 = |α̃A〉:

•
(
CαC

†
α + C†αCα

)
|αA〉 = 0 + C†α|α̃A〉 = |αA〉;

•
(
CαC

†
α + C†αCα

)
|α̃A〉 = Cα|αA〉+ 0 = |α̃A〉.

It is clear that
{
Cα, C

†
α

}
= I, where I is the identity matrix. From our previous result

(2.13) it is apparent that
{
Cα, C

†
β

}
will yield zero if either the α orbital is empty or the

β orbital is occupied. Thus, it is only necessary to examine its effect on |αβ̃A〉. In our

notation, it is not important where to place α̃ in the argument of | 〉, because the orbital is

unoccupied. However, special attention must be given to the order of an occupied orbital

in | 〉. This observation is important for the following manipulations. We have
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(
CαC

†
β + C†βCα

)
|αβ̃A〉 = Cα|βαA〉+ C†β|α̃β̃A〉

= −Cα|αβA〉+ C†β|α̃β̃A〉

= −|α̃βA〉+ |α̃βA〉 = 0.

Both cases are summarized by the equation

{
Cα, C

†
β

}
= δαβI. (2.14)

Equations (2.13) and (2.14) constitute the anti-commutation relations for fermions

and they contain all necessary information about this formalism for fermions.

2.2.3 The number operator

At last, note that all vectors in Fock space are eigenvectors of the operator C†αCα. If

acted on |α̃A〉 the eigenvalue is zero; and if acted on |αA〉 the eigenvalue is one. For this

reason, it is quite intuitive to call C†αCα the number operator for the α orbital. The total

number operator is equal to

N =
∑
α

C†αCα. (2.15)

One could ask why we did not define the number operator N as CαC
†
α. As we know,

there are zero particles in the vacuum state |0〉, which would not be the case with CαC
†
α

as the number operator.

2.3 Change of basis – field operators

Until now we have defined our creation and annihilation operators with respect to a

particular set of discrete one-particle state vectors |α〉 = C†α|0〉. Sometimes it is much

more convenient to use other state vectors as basis. Let us consider an important case.

Instead of considering operators that create ”discrete” one-particle states as C†α does, let

us see what happens with a continuous case; that is, the family of operators ψ†(r) that

create position eigenvectors |r〉. The new creation operator ψ†(r) creates the position state

vector |r〉 at position r in ordinary configuration space. For this reason the operators ψ

are called field operators. These operators should not be confused with the wavefunction.

We want to perform the following change of basis

|α〉 = C†α|0〉 −→ |r〉 = ψ†(r)|0〉. (2.16)
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We change from a discrete base |α〉 to a continuous one |r〉. Let us relate the two bases.

Since both bases span Fock space, we can express |r〉 as a linear combination of the |α〉
in the usual way as

|r〉 =
∑
α

〈α|r 〉 |α〉 ⇒ ψ†(r)|0〉 =
∑
α

〈α|r 〉C†α|0〉. (2.17)

From here we can write the new operators as linear combinations of the old ones

ψ†(r) =
∑
α

〈α|r 〉C†α; ψ(r) =
∑
α

〈r |α〉Cα. (2.18)

In condensed matter applications the coefficients 〈r |α〉 are usually assumed to be Block

waves. The new operators (2.18) must also obey the fermi anti-commutation relations

(2.13) and (2.14), since these characterize the essential properties of creation and annihi-

lation operators. They read

{
ψ†(r), ψ† (r ′)

}
= 0 (2.19a)

{ψ(r), ψ (r ′)} = 0 (2.19b){
ψ(r), ψ† (r ′)

}
= δ (r− r ′) I. (2.19c)

In analogy to the number operator in the discrete case, ψ†(r)ψ(r) is the number density

operator. The total number operator (2.15) is equal to

N =

∫
dr ψ†(r)ψ(r), (2.20)

where dr is a volume element and should not be confused with a line element.

2.4 Representation of operators

Let us see how dynamical variables are represented in second quantized form.

2.4.1 Additive one-body operator

Our states are expressed utilizing creation and annihilation operators. Accordingly, the

representation of our dynamic variables, such as momentum, kinetic energy, potential, the

Hamiltonian, etc., also must involve creation and annihilation operators. Some would say

that these operators must undergo second quantization. The simplest operator represen-

tations in our formalism will be those who are additive over each particle. For instance,

in the conventional Schrödinger treatment, the kinetic energy is expressed as
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K = − ~2

2m

n∑
i=1

∇2
i . (2.21)

Each element of this sum acts only on a single particle, which means that each particle

is labelled with an index i. Nonetheless, one of the foundational aspects of the formalism

of second quantization is that there is absolutely no significance in labelling the particles

– they are identical. We need an operator representation that does not tag particles, and

does not depend on particle number. In particular for the kinetic energy, the following

form covers both requirements:

K = − ~2

2m

∑
α

∑
β

〈
α
∣∣∇2
∣∣β〉C†αCβ. (2.22)

Let us show that the conventional Schrödinger kinetic energy (2.21) operator is equiv-

alent to the second quantized kinetic energy (2.22). First, we have to confirm that K in

second quantized form is invariant under change of basis. Writing K in another basis we

have

K ′ = − ~2

2m

∑
j

∑
k

〈
j
∣∣∇2
∣∣k〉 γ†jγk. (2.23)

Transforming the γ’s similar to (2.18), but now for discrete operators, we have

K ′ = − ~2

2m

∑
α

∑
β

∑
j

∑
k

〈α|j〉
〈
j
∣∣∇2
∣∣k〉 〈k|β〉C†αCβ. (2.24)

Here, the completeness relations
∑
|i〉〈i| are explicit. Using them we get

K ′ = − ~2

2m

∑
α

∑
β

〈
α
∣∣∇2
∣∣β〉C†αCβ = K. (2.25)

We have used the kinetic energy to illustrate the invariance under change of basis of

an additive operator. Our illustration is valid for any general operator that sums over

individual particles. We can choose any convenient basis to demonstrate the equivalency

between the Schröginger form and the second quantized one. Have us choose the basis

vectors {|i〉} with associated creation and annihilation operators b to diagonalize the single

particle operator ∇2: ∇2|i〉 = k2
i |i〉, which from (2.22) yields

K = − ~2

2m

∑
i

k2
i b
†
ibi = − ~2

2m

∑
i

k2
i ni, (2.26)

where ni is the occupancy of the i orbital. This is clearly in agreement with the matrix

elements of (2.21) provided that
∑

i ni = N is finite. We have chosen the kinetic energy

operator as an additive one-body operator to represent it in second quantized form (2.22).
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The same is valid for any generic additive one-body operator R =
∑

iRi in ordinary

representation. Thus, any general additive one-body operator has

R =
∑
α

∑
β

〈
α
∣∣R1

∣∣β〉C†αCβ, (2.27)

as its second quantized form.

2.4.2 Additive pair operator

There is another kind of operator that must be considered. The most important one is

the interaction potential V , which is an additive pair operator . In ordinary representation

such a pair operator reads generically

V =
1

2

∑
i

∑
j

i 6=j

v (ri, rj) . (2.28)

In terms of creation and annihilation operators we suggest

V =
1

4

∑
α

∑
β

∑
γ

∑
δ

〈αβ|v|γδ〉C†αC
†
βCδCγ. (2.29)

In order to show that (2.29) is equivalent to (2.28) we choose a reprsentation that

diagonalizes 〈αβ|v|γδ〉, so that 〈αβ|v|γδ〉 = 〈αβ|v|αβ〉δαβ,γδ, where we have introduced a

variant of the Kroenecker delta with the property that 〈αβ|v|αβ〉δαβ,γδ = 1 only if |αβ〉
and |γδ〉 describe the same state. Taking this into consideration we write

V =
1

4

∑
α,β

[
〈αβ|v|αβ〉C†αC

†
βCβCα + 〈αβ|v|βα〉C†αC

†
βCαCβ

]
=

1

2

∑
α,β

〈αβ|v|αβ〉C†αCαC
†
βCβ.

(2.30)

This is the second quantized form of (2.28) and will be used extensively throughout this

work.
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2.5 A product of four Fermi operators

Such products are frequent and there are a variety of techniques to address them. This

section is devoted to establish the means by which a product of four Fermi operators will

be treated here.

2.5.1 Wick’s theorem

A product of four (or more) creation/annihilation operators as found in the interaction

potential (2.29) is difficult to handle. In this section we present a theorem due to Wick,

that simplifies such products considerably. We show Wick’s Theorem only for products

of two and four operators, because this is all we need. It can be extended to a general

product of operators which is essential in quantum field theory and developing Feynman

diagrams.

Let us begin stating Wick’s Theorem for two operators and subsequently explain it.

The product of two operators A and B can be written as

AB = N(AB) + 〈AB〉, (2.31)

where N(AB) is the normal product of the operators A and B and 〈AB〉 is the expectation

value of AB calculated in the ground state |G〉, which in this case is |0〉. The normal

product of a product of creation and annihilation operators puts the creation operators

to the left of the annihilation operators, multiplying by a factor (−1) for every pair

interchange for fermions. For instance, N
(
CαC

†
α

)
= −C†αCα. Also, the expectation value

in the ground state 〈AB〉, in this case the vacuum matrix element 〈0|AB|0〉, is generally

called a contraction. As we will see, this nomenclature suits Wick’s Theorem’s context.

One can verify that with |G〉 = |0〉, the only non-zero contraction involves a creation and

an annihilation operator.

We state Wick’s Theorem in words and then show it for the statement (2.31). Wick’s

Theorem for fermi operators says that:

A product of a finite number of fermi operators can be written as the sum of

the normal products from which 0,1,2,3... contractions have been removed in

all possible ways.

In equation (2.31) we wrote the normal product N(AB) and then removed the only

possible contraction 〈AB〉. Note that 〈N(A)〉 = 0, which reflects that the only non-zero

contraction is 〈CC†〉. For the cases in which AB is of the type CC or C†C†, the validity

of (2.31) is easy to see. The less obvious case is the one in which AB is of the type CC†.

To see that this case satisfies (2.31) we may write CC† =
{
C,C†

}
− C†C. The effect of
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{
C,C†

}
over a state is the same as 〈CC†〉, because

{
C,C†

}
|ψ〉 = I|ψ〉 = 〈0|CC†|0〉. (2.32)

Therefore we have shown the validity of (2.31). According to Wick’s Theorem stated

above, a product of four fermion operators would yield:

ABCD = +

no contraction︷ ︸︸ ︷
N(ABCD)

+N(AB)〈CD〉 −N(AC)〈BD〉+N(AD)〈BC〉

+N(BC)〈AD〉 −N(BD)〈AC〉+N(CD)〈AB〉

+ 〈AB〉〈CD〉 − 〈AC〉〈BD〉+ 〈AD〉〈BC〉.

(2.33)

An immediate corollary of this is

〈ABCD〉 = 〈AB〉〈CD〉 − 〈AC〉〈BD〉+ 〈AD〉〈BC〉, (2.34)

which often is also referred to as Wick’s theorem. It is of utter importance to have in

mind that Wick’s theorem is defined with respect to a particular ground state, which in

this section is |0〉. However, we could have chosen any suitable state that we would have

wanted.

2.5.2 The quadratic mean field approximation

Another useful way to deal with a product of four fermion operators is the mean field

approach. The main disadvantage with respect to Wick’s theorem is that it is not exact.

On the other hand, it is much simpler and more convenient in certain contexts. In fact,

throughout the literature, this is the preferred approach [32, 18]. The mean field approach

writes the product of two fermion operators as

AB = 〈AB〉+

δ︷ ︸︸ ︷
(AB − 〈AB〉), (2.35)

where δ is supposed to be small and terms of order O (δ2) will be neglected. At first this

can seem strange since 〈AB〉 is a number and AB is not. However, what we are saying

is that when δ acts on a state of interest, its effect will be negligible. The expectation

values 〈 〉 are taken with respect to any preferred state. This provides an advantage over

Wick’s theorem, because the latter is useful for the expectation values taken with respect
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to |G〉. Therefore, we can write a product of four fermi operators as

ABCD = [〈AB〉+ (AB − 〈AB〉)] [〈CD〉+ (CD − 〈CD〉)]

= 〈AB〉CD + 〈CD〉AB − 〈AB〉〈CD〉+ δ2.
(2.36)

When ABCD is part of the Hamiltonian, as is the case for the interaction potential,

then the constant term 〈AB〉〈CD〉 will not contribute to the dynamics of the Hamiltonian.

However, it would contribute to expectation values; but in such a case it would be much

more interesting to use Wick’s theorem’s corollary (2.34). For this reason, the mean field

approximation[2] is mostly encountered as [36]

ABCD −→ 〈AB〉CD + 〈CD〉AB, (2.37)

which is clearly simpler than Wick’s theorem (2.33).

Particular case: The interaction potential

Let us analyse a particular case of interest. Generally, the interaction potential has the

form c†αcαc
†
βcβ, or equivalently c†αc

†
βcβcα and −c†αc

†
βcαcβ. Therefore, according to the mean

field approximation (2.37) we could have the following cases

c†αcαc
†
βcβ →


〈c†αcα〉c

†
βcβ + 〈c†βcβ〉c†αcα

〈c†αc
†
β〉cβcα + 〈cβcα〉c†αc

†
β

−〈c†αc
†
β〉cαcβ − 〈cαcβ〉c†αc

†
β

which could be written as

3c†αcαc
†
βcβ = + 〈c†αcα〉c

†
βcβ + 〈c†βcβ〉c

†
αcα + 〈c†αc

†
β〉cβcα

+ 〈cβcα〉c†αc
†
β − 〈c

†
αc
†
β〉cαcβ − 〈cαcβ〉c

†
αc
†
β.

(2.38)

These two lines are part of (2.33), but with no normal ordering and is sometimes called

the Hartree-Fock-Bogoliubov[53] approximation. Furthermore, if α 6= β, then we can

rewrite this neatly as

NαNβ =
1

3

(
〈Nα〉Nβ + 〈Nβ〉Nα + 2〈c†αc

†
β〉cβcα + 2〈cβcα〉c†αc

†
β

)
. (2.39)

The question is then, which approximation should we use? According to Annett[2],

we use the approximation that contains the terms responsible for the physics of interest.

In advance for the case of Cooper pairing, the amplitude of interest is 〈c†αc
†
β〉, because it

describes the formation of a pairs of electrons. The other ”uninteresting” amplitudes, such

as 〈c†αcα〉 are not included because they are part of the physics of the normal state. Since

we are studying specific properties of the superconducting state, we drop such terms.
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2.6 Concluding remarks

In this chapter we have developed a mathematical method called second quantization

suitable to treat quantum mechanical systems with many particles. This method does

not label particles, which guarantees that all particles involved are indistinguishable.

At the same time it incorporates the anti-symmetrization postulate for fermions into

the two basic anti-commutation relations that summarize all properties of creation and

annihilation operators. We showed how to represent operators in this formalism and

presented some useful methods approximations that can be used to treat a product of

four Fermi operators.
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CHAPTER 3

Microscopic theory of superconductivity

3.1 Introductory remarks

In this chapter we present well established aspects of the theory of superconductivity

that are relevant for this dissertation. We begin with the foundational aspects of BCS

theory that describe successfully conventional superconductors. The acronym BCS refers

to Bardeen, Cooper and Schrieffer, which are the ones who submitted a first coherent

explanation of superconductivity [26]. First, we discuss the Cooper Problem – a corner-

stone in the theory of superconductivity. With this ground laid, we develop the most

important elements of uniform superconductivity (BCS theory) in a language and nota-

tion that is easily extended to the formalism of nonuniform superconductivity – the self-

consistent mean field method of Bogoliubov-deGennes. We transition from conventional

to unconventional superconductivity with an intermission on d-wave symmetry. Finally,

we introduce the extended Hubbard model, which is almost regarded as the ”standard

model” for strongly correlated electron systems. This model is suitable to study the evo-

lution of superconductivity in a plane. Computational simulation will give us the relevant

parameters of the microscopic theory: the d-wave gap ∆δ and hole concentration ρ in the

copper-oxide planes.

3.2 BCS theory

3.2.1 The Cooper problem

Leon Cooper addressed the problem of considering two electrons with momenta k1 and k2

above a filled Fermi sea up to kF [10]. Cooper’s calculation showed that these two electrons
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present a bound state (the Cooper pair) in the presence of an arbitrarily weak attractive

potential. In the superconducting condensate, this attractive potential is provided by

the electron-phonon interaction, and can be reviewed for instance in Taylor [46]. In our

discussion, however, the nature of the attractive potential will not be explicit, but rather

postulated. Our discussion follows closely references [13, 29]. In order to describe the two

electrons at positions r1 and r2, Cooper proposed the time independent wavefunction

ψ (r1, σ1, r2, σ2) = φ(r1 − r2)eikcm·Rcm |χ(σ1, σ2)〉, (3.1)

where φ(r1 − r2) is the wave-packet embodying the two electrons, kcm and Rcm are the

momenta and position of the center of mass representing the wave-packet, and the spin

wavefunction |χ〉. These three parts allow three simplifications:

1. We expand φ(r1 − r2) in terms of Bloch waves;

2. The minimum energy will correspond to a pair of electrons with kcm = 0;

3. And lastly, we assume for the sake of simplicity that the spin wavefunction is in the

singlet state |χ〉 = 1√
2

(| ↑↓〉 − | ↓↑〉). (This is indeed the case of most conventional

metallic superconductors.)

With this in mind, Fermion antisymmetry implies that ψ(r1, r2) = −ψ(r2, r1) and hence

φ(r1 − r2) = φ(r2 − r1). Therefore, we rewrite (3.1) as

ψ(r1, r2) =

φ(r1−r2)︷ ︸︸ ︷∑
k

g(k)eik·(r1−r2), with g(k) = g(−k). (3.2)

Since both electrons hover above the Fermi level, the energy of the electron at r1(2)

is E1(2) =
~2k2F
2m

+ ε1(2), where ε1(2) is the electron’s energy above the Fermi surface. With

this, in advance, we define the bound state energy ε = ε1 + ε2, which will turn out to

be negative. Now we write the Schrödinger equation for (3.2) assuming translational

invariance for the potential, that is V (r1, r2) = V (r1 − r2), in the same way we have for

φ(r1 − r2). This gives[
− ~2

2m

(
∇2

r1
+∇2

r2

)
+ V (r1 − r2)

]
ψ(r1, r2) =

(
ε+ 2

~2k2
F

2m

)
ψ(r1, r2). (3.3)

In this equation we explicitly wrote the bound state energy ε because this is the quantity

that we are ultimately interested in. We substitute the simplified wavefunction (3.2) into

(3.3) to obtain

∑
k

[
~2

m
k2 + V

]
g(k)eik·(r1−r2) =

(
ε+

~2k2
F

m

)∑
k

g(k)eik·(r1−r2). (3.4)
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Figure 3.1: Left: The wave packet φ(r1 − r2) embodying the two electrons at r1 and
r2, with energies ε1 and ε2 above the Fermi level εF . Right: The Cooper problem: two
electrons outside a fully occupied Fermi sea, but restricted to a band ~ωD due to the
attractive potential provided by the electron-phonon interaction.

The form of the exponentials suggest that we can simplify this substantially using the

exponential definition of the delta function. Carrying on with this idea we multiply this

equation by e−ik
′·(r1−r2) and integrate over d(r1 − r2) to obtain

~2

m

∑
k

k2g(k)

L3δkk′︷ ︸︸ ︷∫
d(r1 − r2)ei(k−k

′)·(r1−r2)

+
∑
k

g(k)

Vkk′︷ ︸︸ ︷∫
d(r1 − r2)V (r1 − r2)ei(k−k

′)·(r1−r2)

=

(
ε+

~2k2
F

m

)∑
k

g(k)

L3δkk′︷ ︸︸ ︷∫
d(r1 − r2)ei(k−k

′)·(r1−r2) . (3.5)

Here we have introduced the quantity Vkk′ . This big equation simplifies to

~2

m
k2g(k) +

∑
k′

g(k′ )Vkk′ = (ε+ 2εF )g(k), (3.6)

which is known as the Bethe-Goldstone equation for the two-electron problem. Also

remember that g(k) = 0 for k < kF . It is not easy to treat this problem for general Vkk′ .

Because of this, let us continue in our journey of the art of mathematical simplifications

without loosing the essential physics. Therefore, we set
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Vkk′ =

{
− V
L3 ,

~2k(′)2
2m

< εF + ~ωD
0, otherwise

This interaction is attractive and constant in an energy band ~ωD above the Fermi

surface, see figure 3.1. Substituting this into equation (3.6) we obtain

g(k) =
V

L3

1
~2k2
m
− ε− 2εF

∑
k′

g (k′) . (3.7)

Summing over k on both sides of this equation we are left with the self-consistency

condition

V

L3

∑
k

1
~2k2
m
− ε− 2εF

= 1. (3.8)

For the sake of brevity we define ξ = ~2k2
2m
− εF , which is the energy above the Fermi level.

Now we convert the sum in (3.8) into an integral. For this we must introduce the density

of states per spin N (ξ) whose exact form is not relevant. With this

V

∫ ~ωD

0

dξ
N (ξ)

2ξ − ε
= 1. (3.9)

Since N (ξ) does not vary much from the Fermi surface, we can assume that N (ξ) ≈ N (0).

We easily carry out the integration to obtain

1

2
N (0)V ln

(
ε− 2~ωD

ε

)
= 1. (3.10)

At last, we assume that |ε| � ~ωD, an therefore equation (3.10) simplifies to

ε = −2~ωD e−
2

N (0)V . (3.11)

This is our desired bound state energy for two electrons above but near the Fermi

surface subjected to an attractive potential. This result was unexpected, because two

electrons in free space would not bind with the same weak attractive interaction. Some

observations are worth to point out. The sign of the binding energy ε is negative as ex-

pected. A bound state generally implies a discrete energy spectrum, which is consistent

with the exponentially falling heat capacity observed experimentally. And impressively,

we obtain a bound state regardless of how small V is! Moreover, our final result (3.11)

could not be obtained by perturbation methods, because (3.11) cannot be expanded in

power series in V . Also, note that if we write the the energy of the electron at position r1

we have E1 = εF +ε1. However, we know that ε = ε1 +ε2 < 0 and therefore E1 < εF . This

is an apparent paradox, since we started with the impression that E1 > εF . The paradox

is resolved by understanding that the electron pair has in fact condensed into a different
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state of matter – a bose like state. This provided the foundation for the development of

the theory of superconductivity. The Cooper problem is a historical foundation for the

description of a different state of matter - the superconducting condensate. This conden-

sate consists of a cooperative phenomena between all condensed Cooper pairs governed

by a single wavefunction.

3.2.2 The BCS Hamiltonian

The objective of this section is to develop the basic machinery used to describe conven-

tional superconductors. The interaction Hamiltonian responsible for Cooper pairing will

be of crucial importance. In order to introduce the elements of the BCS Hamiltonian we

define an operator ψ
(†)
σ (r), which annihilates (creates) an electron of spin σ at position r.

Evidently, these field operators will obey the anti-symmetric commutation relations

{
ψσ(r), ψ†σ′ (r

′)
}

= δ (r− r ′) δσσ′ I. (3.12)

{ψσ(r), ψσ′ (r
′)} = 0. (3.13)

In the section below we develop the appropriate pairing (BCS) Hamiltonian which will

lead us to the equation that describes the superconducting state. We start our discussion

at zero temperature, and then introduce thermal averages to treat calculations at finite

temperatures. At last, we will apply the equations that describe superconductivity to a

uniform superconductor. This discussion is mainly inspired by reference [36].

The Hamiltonian

We split our Hamiltonian H into two parts: H0 and Hc. The term H0 includes the

dynamics of the electrons in the normal state of matter, including interactions. In second

quantized form, we write

H0 =

∫
dr
∑
σ

Kψ†σ(r)ψσ(r), with K =
p2

2m
+ U − µ. (3.14)

Here, U represents the interactions present between electrons in the normal state of mat-

ter, and µ is the Fermi level. The more interesting part, Hc, is the coupling Hamiltonian

that contains the interactions responsible for Cooper pairing. Let us take a closer look on

this term.

Following the definition (2.30), the electron-electron coupling Hamiltonian in terms of

electron creation(annihilation) field operators is written as

Hc =
1

2

∫
dr

∫
dr ′
∑
σ

∑
σ′

〈σσ′|v (r− r ′ ) |σσ′〉ψ†σ(r)ψσ(r)ψ†σ′(r
′)ψσ′(r

′). (3.15)

23



We simplify Hc until we retain the essential physics. Having this in mind, we set

1

2
〈σσ′|v (r− r ′ ) |σσ′〉 = −V

2
δ (r− r ′ ) δσ,−σ′ . (3.16)

The minus sign is motivated from the attractive potential in the Cooper problem induced

by phonons. We rearrange the operators using the commutation relations to pair up the

opposite spins, which will yield the relevant amplitudes. We get

Hc = −V
2

∫
dr
∑
σ

ψ†σ(r)ψ†−σ(r)ψ−σ(r)ψσ(r). (3.17)

Since we have introduced the most important element of the Cooper problem, that is, the

attractive potential between pairs, the Hamiltonian (3.17) should be responsible for the

condensation of Cooper pairs above the Fermi sea as discussed in the previous section.

Let us work out some simplifications by starting with the mean field approximation (2.37)

ψ†σ(r)ψ†−σ(r)ψ−σ(r)ψσ(r) −→ ψ†σ(r)ψ†−σ(r) 〈ψ−σ(r)ψσ(r)〉

+
〈
ψ†σ(r)ψ†−σ(r)

〉
ψ−σ(r)ψσ(r),

(3.18)

where the averages now are supposed to be taken in the superconducting ground state

|G〉 at zero temperature where thermal fluctuations do not exist. We perform the sums

over σ =↑, ↓ in (3.17), having in mind that 〈ψ↓ψ↑〉 = −〈ψ↑ψ↓〉 to obtain

Hc = −V
∫

dr
[
〈ψ↓(r)ψ↑(r)〉ψ†↑(r)ψ†↓(r) +

〈
ψ†↑(r)ψ†↓(r)

〉
ψ↓(r)ψ↑(r)

]
. (3.19)

At last, we introduce the following fundamental quantity below

∆(r) = −V 〈ψ↓(r)ψ↑(r)〉

∆∗(r) = −V
〈
ψ†↑(r)ψ†↓(r)

〉
,

(3.20)

and arrive at

Hc =

∫
dr
(

∆(r)ψ†↑(r)ψ†↓(r) + ∆∗(r)ψ↓(r)ψ↑(r)
)
. (3.21)

The function ∆ is the central parameter defining Hc and therefore this must be the pa-

rameter that measures the strength of condensed Cooper pairs. Indeed, ∆ is called the

superconducting amplitude, or simply gap. As it must be, for a free non-interacting elec-

tron gas, ∆ is zero since the total numbers of particles is fixed. The nature of paired

electrons is very different from free ones. At a critical temperature Tc the number of

electrons flow from one state of matter (the normal state) to another one (the supercon-

ducting state) regulated by a chemical potential µ. Throughout the discussion we hope
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to develop an intuition for ∆.

At last, we write the full Hamiltonian as

H =

∫
dr

[∑
σ

Kψ†σ(r)ψσ(r) + ∆ψ†↑(r)ψ†↓(r) + ∆∗ψ↓(r)ψ↑(r)

]
=

∫
dr
[
Kψ†↑(r)ψ↑(r) +Kψ†↓(r)ψ↓(r) + ∆ψ†↑(r)ψ†↓(r) + ∆∗ψ↓(r)ψ↑(r)

]
.

(3.22)

This is the effective (mean field) Hamiltonian that describes the physics of pairing. Fur-

thermore, we can write (3.22) neatly by introducing a spinor and a Hamiltonian matrix

respectively written as

Ψ(r) =

(
ψ↑(r)

ψ†↓(r)

)
, and H =

(
K ∆

∆∗ −K∗

)
. (3.23)

In order to see this better we rewrite (3.22) using the anti-commutation relations (3.12)

as

H =

∫
drKδ(0) +

∫
dr
[
Kψ†↑ψ↑ −Kψ↓ψ

†
↓ + ∆ψ†↑ψ

†
↓ + ∆∗ψ↓ψ↑

]
= K(0) +

∫
dr Ψ†H Ψ,

(3.24)

where we have used the property that K = K∗.

3.2.3 The Bogoliubov transformation

Observe that, as any mean field Hamiltonian, equation (3.24) is quadratic in the ψ’s. For

this reason, we can diagonalize H by a transformation B such that

Ψ(r) =
∑
n

Bn(r)Φn, where Φn =

(
γn↑

γ†n↓

)
. (3.25)

Note that Φn is similar to Ψ, but does not depend on r, which means that the γnσ’s are

not field operators. The quantum number n stands for all quantum numbers necessary

to completely described a given state. Evidently, the γnσ’s must also obey the fermi

anti-commutation relations since they are fermi operators. Also we must have that

Φn =

∫
dr B−1

n (r)Ψ(r), (3.26)

which implies the orthogonality relations

∑
n

B−1
n (r)Bn(r′) = δ (r− r′ ) I (3.27)
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∫
dr B−1

n (r)Bm(r) = δnmI, (3.28)

where I is just the identity matrix. One can verify that the matrices

Bn(r) =

(
un(r) −v∗n(r)

vn(r) u∗n(r)

)
and B−1

n (r) =

(
u∗n(r) v∗n(r)

−vn(r) un(r)

)
(3.29)

do satisfy the orthogonality relations above. The matrix Bn is known as the Bogoliubov

transformation. The normalization condition on the matrix elements is fixed by (3.28),

which is expressed as ∫
dr
(
|un(r)|2 + |vn(r)|2

)
= 1. (3.30)

We can also observe that the Bogoliubov transformation Bn is unitary
(
B−1 = B†

)
.

More importantly, B diagonalizes the mean field Hamiltonian (3.24) into

H =
∑
n

∑
σ

εnγ
†
nσγnσ, (3.31)

where the corresponding eigenvalue of H – the energy E – is measured from the ground

state. In the same way we have done with equation (3.22), we can express this in terms

of matrices. Again, we use the anti-commutation relations to obtain

H =

K(0)︷ ︸︸ ︷∑
n

εn +
∑
n

εn

(
γ†n↑γn↑ − γn↓γ

†
n↓

)
= K(0) +

∑
n

εnΦ
†
nσzΦn, (3.32)

where σz is the Pauli matrix

σz =

(
1 0

0 −1

)
. (3.33)

Now we must establish a proper connection of the full mean Hamiltonian with the diag-

onalized Hamiltonian.

3.2.4 The Bogoliubov equations

We compare equations (3.24) and (3.32) to determine un, vn and εn. We substitute the

transformation (3.25) into (3.24), and find

H = K(0) +

∫
dr
∑
n

∑
m

Φ†n B†n(r)H(r)Bm(r)Φm
(3.32)
= K(0) +

∑
n

εnΦ
†
nσzΦn. (3.34)
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Here we have established the essential connection between the two equivalent Hamiltoni-

ans. In this comparison we see that we have to require

∑
m

∫
dr B†n(r)H(r)Bm(r) = εnδmnσz. (3.35)

Therefore, we operate Bm(r) to the left of (3.35) and obtain the so called Bogoliubov

Equation:

H(r)Bn(r) = εn Bn(r)σz. (3.36)

This equation determines un, vn and εn. Writing the matrices we get(
K ∆

∆∗ −K∗

)(
un −v∗n
vn u∗n

)
= εn

(
un −v∗n
vn u∗n

)(
1 0

0 −1

)
. (3.37)

The essential information contained in this is expressed by the two Bogoliubov equations

that read

εnun(r) = Kun(r) + ∆vn(r) (3.38)

εnvn(r) = −K∗vn(r) + ∆∗un(r). (3.39)

We also can rewrite this in standard matrix form as

εn

(
un(r)

vn(r)

)
=

(
K ∆

∆∗ −K∗

)(
un(r)

vn(r)

)
. (3.40)

An important fact to notice about our discussion is that we have mapped the problem

of pairing of electrons into a problem of free fermions, which are called quasi-particles

created by γ†nσ. It should be clear that solving (3.40) is a nonlinear problem. In most

useful applications, there is almost no hope for an analytical solution. For this reason,

this problem often involves computational techniques. Before exploring the Bogoliubov

equations further, we examine the nature of the superconducting ground state.

3.2.5 The ground state

In order to infer the properties of the ground state, let us investigate the occupation of

quasi-particles along the energy spectrum. The occupation number is naturally given by

the Fermi distribution

fn = 〈γ†nσγnσ〉 =
1

eβεn + 1
, (3.41)

where β = 1/kBT and the brackets are thermal averages, not a ground state average.

From the Fermi distribution (3.41) we see that at T = 0, the number of quasi-particles is

zero. With this, the ground state |G〉 must be such that γnσ|G〉 = 0. Let us consider the
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particular case in which σ =↑. In this case, from equation (3.26) we have

γn↑ =

∫
dr
[
u∗n(r)ψ↑(r) + v∗n(r)ψ↓(r)

]
. (3.42)

Our discussion will proceed smoother in momentum space. Therefore, let us Fourier

transform this making

ψσ(r) =
1√
V

∑
k

eik·r ψσ(k)

un(r) =
1√
V

∫
dk eik·r un(k),

(3.43)

where V is the correspondent volume in momentum k-space. One should pay special

attention in distinguishing the operators un(r) and ψσ(r), which live in configuration

space, from un(k) and ψσ(k), which live in Fourier transformed k-space. We substitute

(3.43) into (3.42), identify the δ-functions in the integrals and obtain

[
u∗n(k)ψ↑(k) + v∗n(k)ψ†↓(k)

]
|G〉 = 0, (3.44)

which is the condition from which we can suggest a ground state |G〉. Let us consider as

a test ground state the Fermi sea |F 〉 described by

|F 〉 =

k<kF∏
k,σ

ψ†σ(k)|0〉. (3.45)

As one can easily verify, |F 〉 cannot be |G〉 because it does not satisfy the fundamental

condition (3.44). Bardeen, Cooper and Schrieffer [26] suggested the following BCS ground

state

|G〉 ≡ |BCS〉 =
∏
k,n

(
un(k) + vn(k)ψ†↑(k)ψ†↓(−k)

)
|0〉, (3.46)

which satisfies (3.44). One also can show that 〈G|G〉 = 1. This ground state gives a

well defined physical meaning to the coefficients un(k) and vn(k). The quantity |un(k)|2

is the probability of a state n of a pair of electrons with opposite momenta and spin to

be unoccupied. Obviously, |vn(k)|2 is the probability of this Cooper pair to be occupied.

Since the number of Cooper pairs in the system of half of the number of condensed

electrons, we must have

〈G|N |G〉 = 2
∑
n,k

|vn(k)|2 . (3.47)

The BCS ground state is not an eigenstate of the number operator N . This is an important

characteristic, because |G〉 does not have a well defined number of particles. We explore

the nuances associated to the number operator in the next section.
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3.2.6 Conjugate variables

In this section we attempt to identify the uncertainty principle relevant to BCS theory.

Every quantum description of matter has an uncertainty principle associated to it. When

an operator has a large variance in its spectrum of eigenvalues, then there must be another

operator conjugated to the first that has a small variance. This is Heisenberg’s uncertainty

principle. It is not clear from our discussion, however, what operators are conjugated to

one another. To address this problem, let us look at a fundamental quantity in BCS theory

– the gap ∆(r). This gap amplitude is the complex superconducting wave function, which

implies that it always can be written as

∆(r) = |∆(r)| eiϕ(r), (3.48)

where ϕ(r) is the phase of the order parameter and |∆(r)| is the amplitude. We can

associate a physical interpretation to the phase ϕ(r): the phase of condensed Cooper

pairs described as

|ϕ〉 =
∏
k,n

(
|un(k)|+ eiϕ|vn(k)|ψ†↑(k)ψ†↓(−k)

)
|0〉, (3.49)

which is a state with a well defined phase ϕ. If we take the product in this last equation

seriously, it can be rewritten as

|ϕ〉 =
∑
M

∑
k1,...kM

∏
k,n

|un(k)|
∏
k′,n

eiϕ|vn(k′)|︸ ︷︷ ︸
C(k1,k2,...,kM )

∏
M

ψ†↑(kM)ψ†↓(−kM). (3.50)

The C (k1,k2, . . . ,kM) are constants where k runs over the unoccupied states and k′ over

the occupied states. Here M is the number of states available for k. If the total number

of electrons is N , then we have N/2 states occupied by Cooper pairs, such that

C (k1,k2, . . . ,kM) = ei
N
2
ϕ
∏
k,n

|un(k)|
∏
k′,n

|vn(k′)|. (3.51)

Therefore, we can shorten equation (3.50) with convenient notation to obtain

|ϕ〉 =
∑
N

ei
N
2
ϕ|CN ||N〉, (3.52)

which gives the state with a well defined phase as a linear combination of states with

well defined number. This means that the number and phase operators are related, and

speculate that they are conjugate to each other. To confirm this we Fourier transform
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(3.52), which yields

|N〉 =
1

|CN |

∫ π

−π

dϕ

2π
e−i

N
2
ϕ|ϕ〉. (3.53)

The physical interpretation of the Fourier transform is simple – by integrating over ϕ,

we make the phase uncertain, and the number of particles N becomes fixed. Therefore,

the Heisenberg uncertainty relation is δNδϕ > 1. This discussion shows us that the

superconducting phase as an operator will be conjugated with the number operator. This

implies the commutation relation

[N,ϕ] = 1 (3.54)

for the number and phase operator. Observe that the BCS ground state (3.46) has a well

defined phase (ϕ = 0) and an ill defined number of particles.

3.2.7 Calculations at finite temperature

To extend our discussion to finite temperatures we have to introduce thermal states as in

(3.41), which are excited states at a certain temperature T . Observe that the thermal av-

erages 〈γnσγmσ′〉 are zero. The only relevant thermal averages are 〈γ†nσγmσ′〉 = δnmδσσ′fn.

Now that we have mapped the problem into quasi-particles, we could write any opera-

tor in terms of the quasi-particles operators γ. As an example of this machinery, let us

calculate the number of electrons in the system N and its thermal average 〈N〉. Therefore

N =

∫
dr
∑
σ

ψ†σψσ =

∫
dr δ(0) +

∫
dr Ψ†σzΨ

= 1 +

∫
dr
∑
n

Φ†nB†nσz BnΦn

= 1 +
∑
n

∫
dr

{(
|un|2 − |vn|2

)∑
σ

(
γ†nσγnσ −

1

2

)
− 2unvnγn↓γn↑ − 2u∗nv

∗
nγ
†
n↑γ
†
n↓

}
.

(3.55)

Remembering (3.30) and the properties of thermal averages, we write

〈N〉 = +2
∑
n

(
fn −

1

2

)∫
dr
(
|un|2 − |vn|2

)
= 1 + 2

∑
n

(
fn −

1

2

)(
1− 2

∫
dr |vn|2

)
= 2

∑
n

[
fn + tanh

(
βεn
2

)∫
dr |vn|2

]
.

(3.56)
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This reduces precisely to (3.47) at T = 0. Now let us calculate ∆(r) = V 〈ψ↑ψ↓〉. We

Bogoliubov transform this again from (3.25) such that(
ψ↑

ψ↓

)
=
∑
n

(
unγn↑ − v∗nγ

†
n↓

v∗nγ
†
n↑ + unγn↓

)
. (3.57)

This equation shows the Bogoliubov transformation explicitly. With this we write

∆(r) = V
∑
n

unv
∗
n(1− 2fn) = V

∑
n

unv
∗
n tanh

(
βεn
2

)
. (3.58)

The complete solution of the problem depends on (3.40) together with (3.58). For real

life problems, all the integrals are converted into sums for computational implementation.

The translational invariant problem

Figure 3.2: Behaviour of elementary quasiparticle excitations: Dashed line - normal state
with ∆ = 0; Continuous line - superconducting state where ∆ 6= 0.

We want to solve the self-consistent problem, that is, equation (3.40) in conjunction

with (3.58). To simplify our discussion, we consider the gap parameter to be constant

troughout our superconducting sample, that is ∆(r) = ∆. This allows us to write the

Bogoliubov equations (3.40) as(
K − εk ∆

∆∗ −K∗ − εk

)(
uk

vk

)
= 0. (3.59)

In this last equation we have Fourier transformed the un(r) to uk and the quantum number
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n is now k itself. Assuming that K ≡ ξk is real, we avoid trivial solutions by imposing

det

(
ξk − εk ∆

∆∗ −ξk − εk

)
= 0 ⇒ ε2k = ξ2

k + |∆|2, (3.60)

which is the dispersion relation of the quasi-particle excitations. Moreover, equation (3.59)

together with the Fourier transformed normalization condition |uk|2 + |vk|2 = 1 fix the

values of uk and vk. Consider the two lines of (3.59). We isolate ∆ from the second line

and substitute it into the first. Multiply the first line by u∗k and use the normalization

condition. This procedure gives |uk|2. An analogous procedure gives |vk|2. With this

done, we obtain:

|uk|2 =
1

2

(
1 +

ξk
εk

)
|vk|2 =

1

2

(
1− ξk

εk

)
.

(3.61)

These equations enable us to write the fundamental BCS equation that determines ∆. To

do so we substitute the coefficients (3.61) into (3.58) to obtain

∆ =
1

V
∑
k

V∆

εk
tanh

(
βεk
2

)
. (3.62)

For zero temperature, the solution of |∆(0)| for the fundamental BCS equation (3.62) is

identical to the Cooper solution (3.11). We also can evaluate the integral equivalent to

(3.62) numerically to plot the temperature dependence of the gap. This looks like figure

3.3.

Figure 3.3: Left: The BCS wave function parameters |uk|2 and |vk|2 for k near the Fermi
surface. Right: Temperature dependence of the energy gap in the BCS theory.
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3.3 Intermission – d-wave superconductors

One of the essential open question regarding unconventional superconductors is: Is the

superconducting pairing mechanism in these materials of the familiar BCS s-wave type,

or is some other form of pairing, of which the most likely appears to be d-wave pairing?

There is no doubt that the superconducting mechanism of high-Tc superconductors is

based on Cooper pairs q = 2e with zero net momentum because the usual Josephson

frequency q∆V/~ is observed. Also, experiments show pairing is of the spin singlet form

as in BCS theory [48].

High-Tc cuprate superconductors have gained attention since its discovery. Although

all the enlightening efforts invested until now, it is fair to say that our knowledge of the

essential points is limited. However, there is one aspect that is becoming well established

– the so called d-wave state – because of the overwhelming experimental evidence and

nice symmetry arguments from the theoretical point of view. Even more intriguing is the

fact that the superconducting phase emerges from a strongly correlated electron system

with a pronounced trend towards anti-ferromagnetism.

Unconventional superconductors have Cooper pairs with lower symmetry in contrast

to the the conventional BCS ground state (3.46), which is the most symmetric Cooper pair

possible. As we saw in BCS theory, the gap parameter ∆ is independent of k. However,

we can easily generalize this to a symmetry depended gap ∆k. Given a certain symmetry

operation R̂ that acts on the first Brillouin zone of a crystal, conventional symmetry is

defined as ∆R̂k = ∆k. Conversely, unconventional superconductors satisfy the condition

∆R̂k 6= ∆k for at least one symmetry operation R̂. In practice, one simply refers to the

pairing symmetries as s-wave (l = 0), p-wave (l = 1), d-wave (l = 2) or f-wave (l = 3). Un-

fortunately, these nomenclatures are mathematically relaxed [2]. Experimental evidence

suggest that high-Tc superconductors such as La2−xSrxCuO4 and YBa2Cu3O7 present d-

wave symmetry. These materials are complex in structure. However, a common feature

is that they contain two dimensional layers of copper and oxygen (CuO2), which confer

fundamental properties for unconventional pairing. Therefore, any kz dependence can be

neglected. To examine the energy gaps, we can restrict ourselves to a two-dimensional

square. Below we list some of the known pairing states

Symmetry Short Proportion Gap l
BCS s-wave s 1 ∆k = ∆ 0
Extended s-wave s− k2

x + k2
y ∆k = ∆

2
(cos kxa+ cos kya) 0

d-wave symmetry dx2−y2 k2
x − k2

y ∆k = ∆
2

(cos kxa− cos kya) 2
dxy-wave symmetry dxy kxky ∆k = ∆ sin kxa sin kya 2

Table 3.1: Table of some of the possible pairing states.The quantity a is the crystal lattice
constant of the square cooper-oxide plane.

We give special attention to d-wave symmetry in as depicted in figure 3.4 because it
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is the most important symmetry in this dissertation. In this case ∆k changes sign under

rotation of the square by π/2 (kx → ky, ky → −kx). Also note that ∆k vanishes at four

point on the Fermi surface. Alternative pairing mechanisms and strong correlation effects

are key elements to prevents electrons from undergoing conventional s-wave pairing.

Figure 3.4: Left: Part of the lattice structure of yttrium barium copper oxide. Right:
d-wave symmetry of the gap parameter with four gap nodes on the Fermi surface. The
square is the first Brillouin zone.

3.4 The Bogoliubov-deGennes formalism

In this section we develop the formalism of Bogoliubov-deGennes [13, 18] that is an ex-

tension of BCS theory for inhomogeneous superconductors. In BCS theory we wrote the

Hamiltonian as (3.22) and inferred an adequate matrix H to simplify our mathematical

discussion. However, for a Hamiltonian describing inhomogeneous superconductors, infer-

ring a matrix is difficult. Because of this, we develop a formalism where no inferences are

made. This method allows us to treat intrinsic inhomogeneities – which are supposed to

be characteristic of high-Tc superconductors – without appealing to complex mathemati-

cal methods. Our objective aims to determine the local hole doping ρ in the copper-oxide

planes. This approach also permits us to calculate the local gap parameters in inhomo-

geneous systems. Since electrons in high-Tc superconductors are strongly correlated, we

use an adapted (extended) Hubbard model to describe our two dimensional lattice (the

planes) [20].
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3.4.1 The Hubbard model

In simple metals it is easy for the electron-phonon interaction to overcome the Coloumb

repulsion. In so called strongly correlated electron systems, electrons retain more of their

localized character. In this case the Coloumb interaction is larger, such that the attractive

electron-phonon interaction will not suffice.

The Hubbard model is almost the standard model for strongly correlated systems

[40]. The reason of its popularity is the inclusion of electron correlation, its simplicity

and the rich physics contained in the model. Here we present this model briefly. It can

be solved exactly in one dimension, which is not our case. For this reason, we present

the Hubbard model for a two dimensional discrete square lattice, which will be used to

model the copper-oxide plane. Let us first write the Hamiltonian describing a system of

non-interacting fermions. Inspired on equation (2.22), we can write this Hamiltonian as

H0 =
∑
i,k

∑
σ

t(i, k)c†σ(i)cσ(k), (3.63)

where i and k are labels of the lattice’s sites, and c†σ(i)
(
cσ(i)

)
creates (annihilates) a

fermion in a single particle orbital φi localized at site i. In condensed matter applications

one can assume the φi’s to be Wannier weave functions (Fourier transform of Bloch

orbitals). Obviously, the operators obey {c†σ(i), cσ′(k)} = δikδσσ′ . Other anti-commutators

equals zero. The coefficients t(i, k) characterize the single-particle matrix elements and is

called the hopping of charges between sites given by

t(i, k) =

〈
i

∣∣∣∣ (−~2∇2

2m
+ V̂

)∣∣∣∣ k〉 =

∫
dr φi(r)

(
−~2∇2

2m
+ V (r)

)
φk(r). (3.64)

Now, let us consider the electron-electron interaction HU . The most general form of

interaction in second quantization representation that can be added to H0 is of the form

of equation (2.30). The most important contribution of all possibilities is

HU = U
∑
i

n↑(i)n↓(i). (3.65)

In the limit of large U , the charge fluctuations are frozen and only the spin of electrons

can fluctuate, thereby reducing to spin physics described by the so called t-J model.

At last, we add a term containing the chemical potential µ(i) that regulates the filling.

Therefore, we write the full Hubbard Hamiltonian as

HH =
∑
i,k

∑
σ

t(i, k)c†σ(i)cσ(k) + U
∑
i

n↑(i)n↓(i)−
∑
i,σ

µ(i)nσ(i). (3.66)

This is the Hubbard model, which has vast applications in systems with strongly correlated
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electrons. Our task, now, is to extend this model to include the effective interaction V (i)

expected from the theory of phase separation, whose phenomenology will be introduced

in the next chapter.

3.4.2 The extended Hubbard Hamiltonian

Here in particular, we extend the Hubbard model to describe d-wave superconductors.

We prefer to work with a discrete space for computational convenience. One can always

rewrite the Hamiltonian in continuous (integral) form if necessary. The discrete extended

Hubbard Hamiltonian reads

H =

HH︷ ︸︸ ︷∑
〈i,k〉

∑
σ

t(i, k)c†σ(i)cσ(k)−
∑
i,σ

µ(i)nσ(i) + U
∑
i

n↑(i)n↓(i)︸ ︷︷ ︸
HU

+

HV︷ ︸︸ ︷
1

2

∑
〈i,k〉

∑
σ,σ′

σ 6=σ′

V (i)nσ(i)nσ′(k) .

(3.67)

The term HV is the extended part that provides the interaction V (i) between the charges

within the first few neighbours denoted by 〈i, k〉. The chemical potential µ(i) regulates

the local density, and U is the one site Coulomb repulsion. If we make V (i) = 0 and

U < 0, the gaps are of the s-wave type [21]. Here, where V (i) < 0 and U > 0 we also will

obtain d-wave gaps [20]. In order to hope for a relatively simple solution of the model,

we perform a number of simplifications on each term of (3.67). We start with HV .

Simplifying the extended Hamiltonian HV

Summing HV over the spins σ and σ′ gives

1

2

∑
〈i,k〉

∑
σ,σ′

σ 6=σ′

V (i)nσ(i)nσ′(k) =

1

2

∑
〈i,k〉

V (i)

[
c†↑(i)c↑(i)c

†
↑(k)c↑(k) + c†↓(i)c↓(i)c

†
↓(k)c↓(k)

+ c†↑(i)c↑(i)c
†
↓(k)c↓(k) + c†↓(i)c↓(i)c

†
↑(k)c↑(k)

]
.

(3.68)

This last equation should lead to an interesting superconducting amplitude. By inspecting

the four terms we see that there is nothing special about the fist two terms. However, the
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last two terms should yield some interesting new physics. Both last terms share the same

structure and since we will take thermal averages of pairs of operators, it will suffice to

consider only the last term to retain the essential physics. Therefore,

HV =
∑
〈i,k〉

V (i)

2
c†↑(k)c†↓(i)c↓(i)c↑(k). (3.69)

A product of four field (site) operators is not pleasant to handle. For this reason we apply

the mean field approximation (2.37) with thermal averages to (3.69), which yields

HV =
∑
〈i,k〉


∆∗δ(i)︷ ︸︸ ︷

V (i)

2

〈
c†↑(k)c†↓(i)

〉
c↓(i)c↑(k) +

∆δ(i)︷ ︸︸ ︷
V (i)

2
〈c↓(i)c↑(k)〉 c†↑(k)c†↓(i)

 , (3.70)

where we have defined the amplitude ∆δ(i) that in advance is the d-wave gap parameter.

Simplifying the on-site repulsive Hamiltonian HU

To simplify the term responsible for the onsite repulsion we recur to the sometimes so

called Hartree-Fock Bogoliubov approximation (2.39) [53]. Doing so, we write

HU =
U

3

∑
i

[
〈n↑〉n↓ + 〈n↓〉n↑ + 2〈c↓c↑〉c†↑c

†
↓ + 2〈c†↑c

†
↓〉c↓c↑

]
. (3.71)

In this equation we have omitted the argument because it is the same for all operators. If

there are no external electromagnetic fields, then 〈n↑〉 = 〈n↓〉. This permits us to resume

our notation further defining n = n↑+n↓ =
∑

σ nσ. With these considerations we rewrite

equation (3.71) defining new amplitudes:

HU =
∑
i

U6 〈n〉n+
2U

3
〈c↓c↑〉︸ ︷︷ ︸

∆U (i)

c†↑c
†
↓ +

2U

3
〈c†↑c

†
↓〉︸ ︷︷ ︸

∆∗U (i)

c↓c↑

 . (3.72)

The gap appears naturally with energy dimensions. If U < 0 and V (i) = 0, then ∆U(i)

would simply be the isotropic s-wave gap.

Writing the effective Hamiltonian He

The term
∑

i
U
6
〈n〉n from (3.72) can be combined with the similar term −

∑
i,σ µ(i)nσ(i)

from (3.67) to give
∑

i µ(i)n, where

µ(i) = µ(i)− U

6
〈n〉n (3.73)
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is the chemical potential that contains the Hartree-shift [21] U
6
〈n〉n and has to be used

for an inhomogeneous charge distribution ρ(i). With this in mind, we assemble equations

(3.70) and (3.72) back into equation (3.67) obtaining now our effective extended Hubbard

Hamiltonian

He =
∑
〈i,k〉

∑
σ

t(i, k)c†σ(i)cσ(k)−
∑
i

µ(i)n(i)

+
∑
〈i,k〉

[
∆δ(i)c

†
↑(k)c†↓(i) + ∆∗δ(i)c↓(i)c↑(k)

]
+
∑
i

[
∆U(i)c†↑(i)c

†
↓(i) + ∆∗U(i)c↓(i)c↑(i)

]
.

(3.74)

In the next section we diagonalize this Hamiltonian using the Bogoliubov transformation.

We will obtain the Hamiltonian’s eigenvalues En and eigenvectors. Our mission now is to

calculate ∆U(i), ∆δ(i), ρ(i) and 〈ρ〉.

3.4.3 Bogoliubov equations

The effective Hamiltonian (3.74) is now quadratic in the operators. Let us introduce the

generalized Bogoliubov transformation in neat notation in analogy to (3.57) as

cσ(i) =
∑
n

[
un(i)γnσ − σ v∗n(i)γ†n,−σ

]
, (3.75)

where the γnσ’s are quasi-particle operators, and un(i) and vn(i) are probability ampli-

tudes to be determined. The spin σ as usual can assume two possibilities: up ↑ with a

plus sign, and down ↓ with a minus sign. Remember that that the quantum number n

summarizes all necessary quantum numbers necessary to describe the system. Equation

(3.75) diagonalizes (3.74) into

HD
e =

∑
n,σ

Enγ
†
nσγnσ, (3.76)

where the eigenvalue of HD
e is measured from the ground state. This structure is pleasing

because it reminds the quantum mechanics of the harmonic oscillator. Our next task is

to establish proper communication between (3.74) and (3.76), which must be the same.

We strategically calculate the commutators [c↓(i),He] and
[
c↓(i),HD

e

]
. Then, we Bogoli-

ubov transform and equate them. This will lead us to the Bogoliubov equations that

we are seeking for. In the process of these calculations, commutators such as
[
γnσ,HD

e

]
will appear. Therefore, we calculate the following two commutators using (3.76) and{
γ†nσ, γmσ′

}
= δnmδσσ′ in advance to give

38



[
γnσ,HD

e

]
= Enγnσ and

[
γ†nσ,HD

e

]
= −Enγ†nσ. (3.77)

Now let us proceed and calculate
[
c↓(i),H(D)

e

]
, where we have chosen the case σ =↓ for no

special reason. We would arrive at the same result calculating
[
c†↑(i),H

(D)
e

]
. First, using

the diagonal form of the effective Hamiltonian (3.76) together with (3.75) and (3.77) gives

[
c↓(i),HD

e

]
=
∑
n

En

(
un(i)γn↓ − v∗n(i)γ†n↑

)
. (3.78)

In the same way we calculate [c↓(i),He] using (3.74) and after some longer manipulation

we get

[c↓(i),He] =
∑
k

t(i, k)c↓(k)− µ(i)c↓(i)−
∑
k

∆δ(i)c
†
↑(k)−∆U(i)c†↑(i). (3.79)

The first two terms were obtained from the frist line of equation (3.74), and the other

terms from the other two lines. In order to compare (3.79) with (3.78) we must Bogoliubov

transform it giving

[c↓(i),He] =∑
n

(∑
k

un(k)t(i, k)− µ(i)un(i) +
∑
k

vn(k)∆δ(i) + vn(i)∆U(i)

)
γn↓+

∑
n

(∑
k

v∗n(k)t(i, k)− µ(i)v∗n(i)−
∑
k

u∗n(k)∆δ(i)− u∗n(i)∆U(i)

)
γ†n↑.

(3.80)

We establish our so desired communication by comparing the coefficients γn↓ and γ†n↑ in

(3.78) and (3.80), obtaining

Enun(i) =
∑
k

un(k)t(i, k)− µ(i)un(i) +
∑
k

vn(k)∆δ(i) + vn(i)∆U(i), (3.81)

and

− Env∗n(i) =
∑
k

v∗n(k)t(i, k)− µ(i)v∗n(i)−
∑
k

u∗n(k)∆δ(i)− u∗n(i)∆U(i). (3.82)
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These two equations are the Bogoliubov Equations of our problem. As customary, we

wish to write this in standard matrix notation as(
K ∆

∆∗ −K∗

)(
un(i)

vn(i)

)
= En

(
un(i)

vn(i)

)
. (3.83)

The effect of the operators K and ∆ over the amplitudes un and vn is established by

comparing equations (3.81) and (3.82) with (3.83). For (3.81) this yields

Enun(i) =

Kun(i)︷ ︸︸ ︷∑
k

un(k)t(i, k)− µ(i)un(i) +

∆vn(i)︷ ︸︸ ︷∑
k

vn(k)∆δ(i) + vn(i)∆U(i), (3.84)

and an analogous equation for (3.82). By definition En ≥ 0. The equations (3.83)

are the Bogoliubov-deGennes equations for our problem. They provide the eigenvalue

excitation energy spectrum {En}. Also, they determine the eigenvector composed of the

quasi-particle amplitudes (
un(i)

vn(i)

)
. (3.85)

This is done with computational implementation. Once we know {En} and (3.85), we can

write ∆U(i), ∆δ(i), ρ(i) and 〈ρ〉 in terms of these quantities. This quantifies all necessary

parameters to describe the system.

3.4.4 The gaps and the electronic density

Calculation of the gap amplitude ∆U(i)

In perfect analogy to (3.58) we can calculate the gap ∆U(i) = U〈c↓(i)c↑(i)〉, where the

constant was absorbed into the potential U . We have

∆U(i) = −U
∑
n

un(i)v∗n(i) tanh

(
βEn

2

)
. (3.86)

Calculation of the gap amplitude ∆δ(i)

We proceed calculating ∆δ(i) = V (i) 〈c↓(i)c↑(k)〉. Bogoliubov transforming this and re-

membering the properties of thermal averages (〈γ†nσγmσ′〉 = δnmδσσ′fn), we get

∆δ(i) = V (i)
∑
n

[v∗n(i)un(k)fn − un(i)v∗n(k) (1− fn)] . (3.87)

We can simplify this by establishing a relashionship between the coefficients. We know

that {c↓(i), c↑(k)} = 0. If we Bogoliubov transform this we obtain the relationship
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un(i)v∗n(k) = un(k)v∗n(i). With this we have

∆δ(i) = −V (i)
∑
n

un(i)v∗n(k) tanh

(
βEn

2

)
. (3.88)

Symmetry

One can see from (3.74) that ∆δ(i) is summed over the nearest neighbours 〈i, k〉. Now

is the convenient time to define those neighbours. We can explicitly identify them by

writing k ≡ i+ δ, where δ is a vector pointing from the point i to the nearest neighbour

k ≡ i + δ. If we consider a two dimensional square lattice, then the point i has four

nearest neighbours, namely i± x̂ and i± ŷ. One can easily verify that ∆x̂(i) = ∆−x̂(i+ x̂).

Therefore, the components of ∆δ(i) present the symmetry

∆δ(i) = ∆−δ(k), (3.89)

which is characteristic for d-wave gaps.

Calculation of ρ(i) = 〈n(i)〉

At last we calculate ρ(i) = 〈n(i)〉, which yields

ρ(i) = 2
∑
n

[
|un(i)|2fn + |vn(i)|2 (1− fn)

]
. (3.90)

The d-wave gap ∆δ(i) and the hole concentration ρ(i) are determined and compared by

computer simulations.

3.4.5 Numerical evaluation

Equations (3.88) and (3.90) were numerically evaluated in self-consistent manner using the

Fortran programming language over a square lattice of many sizes [34], which represents

a section of the cooper-oxide plane, characteristic of all cuprates. In figure 3.5 we show

typical results for calculations with T = 50 K and T = 190 K, respectively. These figures

show the correlation between the hole concentration and the d-wave superconducting gap

in the pseudogap region. One can clearly see that a higher hole concentration ρ generates

a higher gap value. The reddish plateaus are the regions with low electronic charge

densities (high hole concentration ρ), separated by the bluish valleys. This shows that

the electronic inhomogeneity plays a crucial role in studying the local gaps throughout

the sample – the pseudogap region.

One of the great advantages of the formalism of Bogoliubov-deGennes is that it permits

us to analyse a problem where the charge density varies. Another interesting graph is

shown in figure 3.6. Here we show the evolution of the d-wave gap parameter. According
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Figure 3.5: Top left: The values of the gap of ∆δ(i) varying in a 24 x 24 square lattice
at temperature 50 K. Top right: Correspondent hole concentration ρ(i) also at 50 K.
Bottom left: The gaps at 190 K. Bottom right: Hole concentration at 190 K.

to figure 3.5 we see that the gap varies throughout the plane. This means that randomly

chosen sites will have different initial values. However, whatever initial value the gap has,

all will vanish at the same temperature around 165 K, as shown in figure 3.6.

In chapter five we will use the formalism discussed here to predict the onset of spon-

taneous ferromagnetism observed in YBCO samples.
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Figure 3.6: The temperature evolution of ∆δ(i) at five randomly chosen locations i of an
average ρ = 0.15 compound. The mean field Bogoliubov-deGennes calculations vanish at
the same temperature T ∗(0.15) = 165 K, above Tc(0.15) = 92 K.

3.5 Concluding remarks

In this chapter we surveyed relevant elements of the microscopic theory of superconductiv-

ity for this dissertation. The Cooper problem provided the foundation for the description

of the superconducting condensate. Further, we introduced some elements of BCS theory

in such a way that the formalism of Bogoliubov-deGennes could be naturally followed.

The basic machinery of this chapter showed us how to determine the correct Bogoliubov

equations for a given Hamiltonian. The Bogoliubov equations consist of two non-linear

coupled equations that must be solved self-consistently with the definition of the gap

parameters. The simulations obtained by the formalism of Bogoliubov-deGennes will in-

tegrate nicely with the experiments and theory of electronic phase separation presented

in the next chapter.
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CHAPTER 4

Phenomenological theory of superconductivity

4.1 Introductory remarks

In this chapter we introduce the phenomenological theory of superconductivity, which will

include the general Ginzburg-Landau theory of second order phase transitions, the Joseph-

son effect, a short survey on recent experiments about the pseudogap region and intrinsic

inhomogeneity of high-Tc superconductors, and a model of electronic phase separation to

describe the features of copper-oxide planes of cuprates.

4.2 Ginzburg-Landau theory

The Ginzburg-Landau theory is a general approach to the theory of second-order phase

transitions, that is, where the order parameter varies continuously under a phase transi-

tion. In the case of a ferromagnet, a suitable order parameter would be the magnetization.

In the case of superconductivity, however, the order parameter was proposed to be the

wavefunction ψ(r), which was Ginzburg’s genius choice. In the words of Tinkham, ”this

theory was a triumph of physical intuition”[48]. Although very successful, this theory

was given limited attention because of its phenomenological foundation. This changed

in 1959, when Gor’kov derived the Ginzburg-Landau theory from the microscopic BCS

Theory near Tc. He showed that the order parameter ψ is essentially the same as the

gap parameter ∆, except for some numerical constants [23]. This allowed to write the

superconducting wavefunction as

ψ(r) = |∆(r)|eiϕ(r), (4.1)
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where ϕ is the phase of the superconductor. The order parameter describes the phase of

matter of interest obtained by a second-order phase transition at a critical temperature

Tc. In our case, the wavefunction ψ(r) describes the the macroscopic condensed super-

conducting state below a critical temperature Tc. Since there is no condensing of Cooper

pairs in the normal state above Tc, the order parameter is assumed to obey

ψ =

{
0 T > Tc

ψ(T ) 6= 0 T < Tc.

This makes sense, since equation (4.1) implies that Cooper pairs with binding energy

∆ only appear below Tc. The basic postulate of Ginzburg and Landau was that the

superconducting free-energy density fs(T ) could be expanded in terms of the wavefunction

ψ(r) as

fs(T ) = fn(T ) + a(T )|ψ(r)|2 +
b(T )

2
|ψ(r)|4 +

1

2m

∣∣∣∣(~
i
∇− qA

)
ψ(r)

∣∣∣∣2 +
B2

2µ0

. (4.2)

The first term fn(T ) is the normal state free energy density, a(T ) and b(T ) are phe-

nomenological parameters, the third term is associated with gradients in the magnitude

of the order parameter and electronic transport; and the last term accounts for external

magnetic influence. Note that if ψ(r) = 0, equation (4.2) reduces to

fs(T ) = fn(T ) +
B2

2µ0

, (4.3)

which is simply the normal state free energy subjected to external magnetic influences.

Let us examine the features of (4.2) first considering ∆f ≡ fs(T )−fn(T ) with no gradients

and no magnetic influences.

4.2.1 The phenomenological parameters

Without the last two terms of equation (4.2), we have

∆f = a(T )|ψ(r)|2 +
b(T )

2
|ψ(r)|4. (4.4)

Proper inspection of this shows us that b(T ) must be positive if the theory is to be useful;

otherwise the free energy density would have no minimum. We are left to examine the

cases in which a(T ) > 0 and a(T ) < 0. In the first case one sees that there is one

minimum for ∆f at ψ = 0. More interestingly, in the second case, we have two minima

where |ψ|2 = −a/b. The parameter a plays a crucial role in the behaviour of the system.

For this reason, Landau and Ginzburg assumed that a(T ) > 0 characterizes the normal

state, while a(T ) < 0 characterizes the superconducting state.
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Figure 4.1: Left (Equation 4.4): The free energy density difference between the super-
conducting and the normal state. The dashed line describes the normal state in which
a(T ) > 0, admitting one minimum. The continuous line describes the superconducting
state in which a(T ) < 0 with two minima at ±

√
α(Tc − T )/β. Right (Equation 4.5): The

order parameter magnitude |ψ| as a function of the temperature in the Ginzburg-Landau
model. This is worth comparing with figure 3.3.

Assuming that the parameters a(T ) and b(T ) change smoothly at the critical temper-

ature Tc we can Taylor expand these to obtain a(T ) ≈ α(T −Tc) + . . . and b(T ) ≈ β+ . . .

Note that both α and β are positive. Therefore, we obtain

|ψ|2 =
α(Tc − T )

β
, for T < Tc. (4.5)

This permits us to rewrite (4.4) as

∆f = −α
2

2β
(Tc − T )2, (4.6)

which means that fs < fn, as expected. Figure 4.1 shows the basic idea of phase separation

used in the Cahn Hilliard theory discussed further. As one can see on the left there are two

solutions with the same minimum value of the Ginzburg-Landau free energy corresponding

to two equilibrium values of the order parameter.

4.2.2 The Ginzburg-Landau differential equations

Equations (4.5) and (4.6) describe our simplified model with no electronic transport and

no magnetic influence. Evidently, such a model is useless for superconducting samples.

For a useful theory of superconductivity we must find the minima of equation (4.2). This

will yield differential equations to which one can provide appropriate boundary conditions

to describe the system of interest.
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Derivation

In order to minimize the free energy for the general case (4.2), we employ the method

provided by functional derivatives. First we write the total free energy

∆F (T ) =

∫
dr

(
a(T )|ψ(r)|2 +

b(T )

2
|ψ(r)|4 +

1

2m

∣∣∣∣(~
i
∇− qA

)
ψ(r)

∣∣∣∣2 +
B2

2µ0

)
. (4.7)

Recalling the basic axiom of functional derivatives, which are

δ

δf(r)
f(r′) = δ(r− r′ ) or equivalently

δ

δf(r)

∫
dr f(r′ )η(r′ ) = η(r), (4.8)

where both f and η are well behaved functions, we calculate the functional derivatives

δ

δψ∗ (r)
∆F = 0 and

δ

δAν(r)
∆F = 0, (4.9)

that will give us the Ginzburg-Landau differential equations. The subscript ν just stands

for a generic component of A. After some lengthy calculations we obtain the Ginzburg-

Landau differential equations:

a(T )ψ(r) + b(T ) |ψ(r)|2 ψ(r) +
1

2m

(
~
i
∇− qA(r)

)2

ψ(r) = 0 (4.10)

qi~
2m

(ψ∗∇ψ − ψ∇ψ∗) +
q2

m
|ψ|2A +

1

µ0

∇×B = 0. (4.11)

In the second equation (4.11) we have used the fact that B = ∇ × A. In the same

equation, we can identify the current µ0J = ∇ × B from Ampères Law with negligible

displacement current. If one wants to study the effects of a varying external magnetic

field, then the displacement current must be included. We also know that the current is

given by J = ρv, where ρ is the (super)-current density. We can identify v in (4.11) by

rewriting it in terms of the phase ϕ. Therefore, we substitute ψ = |∆|eiϕ in (4.11) to

obtain

J =
q

m
|∆|2 (~∇ϕ− qA) = q|∆|2 v. (4.12)

We also identify ρ = q|∆|2. The charge unit q in superconductivity is a Cooper pair, and

therefore q ≡ 2e.

Boundary conditions

When applying the Ginzburg-Landau theory to a superconducting sample one must pro-

vide the appropriate boundary conditions to the two differential equations established

above. The two most common boundary interfaces are: the superconductor-insulator in-
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terface, and the superconductor-metal interface. In the superconductor-insulator interface

one must be sure that no current passes through the surface. Investigation of equation

(4.12) suggests the following boundary condition(
~
i
∇− qA

)∣∣∣∣
n

ψ = 0. (4.13)

If one deals with a superconductor-metal interface one must generalize this to(
~
i
∇− qA

)∣∣∣∣
n

ψ =
i~
b
ψ, (4.14)

where the value of b will depend on the nature of the material to which contact is made,

approaching zero for a magnetic material, and infinity for an insulator.

4.2.3 Flux quantization

Let us study the features of a current flowing through a closed loop with no spacial

extension. Since we are dealing with a loop, and the current density is given by (4.12),

let us investigate the line integral
∮
C

dl · J. From equation (4.12) we have the condition∮
C

dl ·
(
∇ϕ− q

~
A
)

=

∮
C

dl · mv

~
. (4.15)

We can rewrite this as

δϕ− q

~
Φ =

∮
C

dl · mv

~
, (4.16)

where δϕ is the change of phase of ψ after going around the loop and Φ is the magnetic

flux which we identified by applying Stoke’s theorem to the second term. Since the

macroscopic wavefunction ψ = |∆|eiϕ must be defined uniquely, we must have δϕ = 2πn,

where n is an integer. Therefore

Φ = n

Φ0︷︸︸︷
h

q
−
∮
C

dl · mv

q
, (4.17)

where we have used the definition of the reduced Planck constant ~ = h/2π. The funda-

mental result here is that the magnetic flux Φ is quantized in steps of Φ0.
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4.3 The Josephson Effect

In the year of 1962, Brian David Josephson predicted that a supercurrent of the type

Is = Ic sin ∆ϕ (4.18)

flows between two superconductors separated by a thin barrier. Here, Ic is the maximum

critical current that the junction can manage, and ∆ϕ is the phase difference of ψ = |∆|eiϕ

between the two superconductors. This phenomena was somehow expected because of the

well known phenomena of quantum tunnelling. It was a remarkable prediction since Is

maintains itself with no potential difference across the junction. Josephson predicted that

if a potential difference ∆V were maintained, then ∆ϕ evolves according to

d

dt
∆ϕ =

q

~
∆V, (4.19)

with q ≡ 2e. In this case the supercurrent would have the form

Is = Ic sin (∆ϕ+ νt) , (4.20)

which is an alternating current of amplitude Ic and frequency ν = q∆V/~. These two

cases, (4.18) and (4.20) are respectively known as the dc and ac Josephosn effects.

Figure 4.2: Left: Diagram of a single Josephson junction. A and B represent supercon-
ductors, and C the weak link between them. Right: Boundary conditions of the junction
as described by equation (4.24).

The barrier (junction) could be insulating, metallic, or another ”weak link”of a dif-

ferent nature. In the high-Tc superconductors, a simple grain boundary can serve as a

weak link because these materials have such short coherence lengths. One can calculate

the electrical free energy stored in the junction. Using equation (4.20) we calculate

F =

∫ t

0

dt′ Is ∆V = EJ [cos ∆ϕ− cos (∆ϕ+ νt)] , (4.21)
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where EJ ≡ ~Ic/q measures how strongly the two phases are coupled through the weak

link. Note that the free energy F is minimum when the two phases are equal.

4.3.1 Deriving the Josephson equations

Here we derive the equations presented above from the Ginzburg-Landau theory intro-

duced in the previous section. To do so, we first define a conveniently normalized wave

function ψn = ψ/ψm, where ψm is the wavefunction describing a stable superconducting

state with minimized free energy, that is, |ψm|2 = −a/b, where |ψn|2 = 1. Now we rewrite

the first Ginzburg-Landau differential equation (4.10) in terms of ψn considering ψ real

to obtain (
ξ

i
∇− qA

)2

ψn + ψn − ψ3
n = 0, with ξ =

~√
2ma

. (4.22)

The quantity ξ is called the coherence length. In order to simplify the discussion further

we assume uniformity over the cross section A of the junction. Therefore, we can treat

our junction in one dimension with length L. With this, the last equation becomes(
ξ

i

d2

dx2
− qA(x)

)2

ψn + ψn − ψ3
n = 0. (4.23)

We can assume that both left and right superconductors connected by the junction are in

equilibrium with minimized energy, but may have different phases (see right figure 4.2).

Therefore, the boundary conditions for equation (4.23) are

ψn(0) = 1 and ψn(L) = exp i

(
∆ϕ− 2π

Φ0

∫ L

0

dl A(x)

)
. (4.24)

In the second boundary condition at x = L we have absorbed the influence of A into the

wavefunction. See reference [35] for a review on this. Further, if L � ξ, then the term

with ξ2 dominates over all the others. Thus, the differential equation (4.23) reduces to

Laplace’s equation d2ψn/dx
2 = 0, for which the most general solution is ψn = a + bx.

Applying the boundary conditions (4.24) we obtain the solution

ψn =

left︷ ︸︸ ︷(
1− x

L

)
+

right︷ ︸︸ ︷
x

L
exp i

(
∆ϕ− 2π

Φ0

∫ L

0

dl A(x)

)
. (4.25)

We finally use the second Ginzburg-Landau differential equation (4.11) to obtain

Is = Ic sin

(
∆ϕ− 2π

Φ0

∫ L

0

dl A(x)

)
where Ic = −q~

m

a

b

A

L
> 0. (4.26)
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Let us examine what happens if we apply a constant electric field E0 in the x direction.

From the electromagnetic relation E = −∂A/∂t we have that A(x) = −E0 t. Substituting

this into equation (4.26) we have

Is = Ic sin

(
∆ϕ+

2π

Φ0

∆V t

)
, (4.27)

where ∆V ≡ LE0. This equation is precisely the same as (4.20). Observe that a static

(dc) electric field has produced an alternating (ac) current.

4.4 Intermission – experimental survey

Before presenting the theory of electronic phase separation, we shortly survey some of the

most prominent experiments on the pseudogap and electronic inhomogeneities of high-Tc

superconductors.

4.4.1 Evidence for the pseudogap from ARPES

Simply put, Angle-resolved photoemission spectroscopy (ARPES) is a direct experimental

technique to observe the charge distribution in k-space of solids. It is one of the most

effective methods, until now, to study the electronic structure of the surface of solids. This

technique is regarded as a refinement of the ordinary photoemission spectroscopy. It has

shown itself very useful to study cuprates, because it yields the energy and momentum

of the filled electronic states below the Fermi surface. This makes it possible to analyse

the copper-oxide planes of cuprates, which is the main locus of superconductivity in these

materials.

Figure 4.3 illustrates several measurements performed along the red line in the Bril-

louin zone that trespasses the Fermi surface as depicted in (c). The graphs show the

probability of extracting an electron as a function of the energy. The gap, with zero

probability around the Fermi energy is clearly visible.

4.4.2 Evidence for inhomogeneity

In this section we wish to describe the inhomogeneity (disorder) observed in high-Tc super-

conductors by many experiments. There is substantial evidence from many experiments

on different materials that support the existence of intrinsic inhomogeneities. We list the

most important experiments below:

• Neutron diffraction [49, 6];

• Muon spin relaxation [43];
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Figure 4.3: Left: An experimental setup of ARPES. Right: ARPES measurements
through the Fermi surface (c) of a film of Bi2212 showing the superconducting gaps
defined by the dots in (a) and (b) [27].

• Nuclear quadrupole resonance [42];

• Nuclear magnetic resonance [37];

• Scanning tunnelling microscopy (STM) measured spatial variations of the gap am-

plitude ∆(~r ), which is possibly related to the charge inhomogeneities [33, 22, 39];

• Angle resolved photon emission spectroscopy (ARPES) found a large anisotropy in

k-space [12, 28];

• Electronic Raman scattering showed that the nodal gap is connected with Tc and

the antinodal gap with the pseudogap temperature T ∗ [24].

Below we summarize the most important features of some of these experiments.

Neutron diffraction

This experimental technique is an application of neutron scattering to determine the

atomic and magnetic structure of a material. The sample to be analysed is placed in a

beam of neutrons to obtain a diffraction pattern that provides information of the ma-

terial’s structure. The technique is similar, but more powerful than X-ray diffraction.

Recent measurements have detected small variations in the diffraction signals that were

interpreted as small variations in the charge distributions around the ions in the copper-

oxide planes of the La2−xSrxCuO4 series. Bozin et. al. [7] reported local structural
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evidence that supports the fact that the charges are inhomogeneous in the underdoped

and optimally doped region of the La2−xSrxCuO4 phase diagram, consistent with the

presence of charge domains or dynamic charge stripes.

In this context, stripe configurations were discovered [49]. Stripes are linear segments

that lack holes. In the regions with high density of charges, anti-ferromagnetic order is

destroyed and these distinct regions remain separated by barriers, which are periodically

spaced. See figure 4.4.

Figure 4.4: Left: Idealized diagram of the spin and charge stripe pattern within a Ni2
plane observed in hole doped La2Ni4 with the hole density of 25%. Right: Hypothesized
stripe pattern in a copper-oxide plane of hole doped oxygen atoms, which surround the
metal sites in a square planar array. Arrows indicate the orientation of magnetic moments
on metal atoms, which are locally anti-parallel.

The discovery of stripe configurations had a major impact and was confirmed by other

research groups [6].

Nuclear quadrupole resonance

Singer et. al. [42] reported experimental evidence for the spatial variation of hole concen-

tration of under-doped compounds (xhole in their notation) in the high-Tc superconductor

La2−xSrxCuO4 (0.04 ≤ x ≤ 0.16). They showed that the variation ∆xhole increases below

500 K. Moreover, this experiment is capable to estimate the length scale of the spatial

variation of the hole concentration.

This experiment is important because it probes the spatial inhomogeneity at short

length scales in the cooper-oxide planes. Most of the theoretical debates rely on the
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assumption that holes are homogeneously doped in the cooper-oxide planes of cuprates.

We already saw that the stripe configurations of the previous section [49] is a strong

and widely accepted counterexample. The importance of quadrupole resonance is that

it provided an independent, accurate and more general evidence for intrinsic electronic

inhomogeneity. It determines the inhomogeneity of the charge density as a function of the

temperature. They measure a nuclear resonance frequency of nucleons that is unique if

the nucleon’s neighbours are of the same kind (electrons). If the neighbourhood changes,

the frequency varies – indicating surrounding charge inhomogeneities.

Figure 4.5: Temperature dependence of the distribution in local hole concentration ∆xhole

as deduced by 63Cu nuclear quadrupole resonance in La2−xSrxCuO4 [(N) x = 0.04, (◦)
x = 0.07, (•) x = 0.115, (4) x = 0.16].

Contrary to common assumptions that doped holes are uniformly distributed (i.e.

∆xhole = 0), figure 4.5 shows that ∆xhole 6= 0 exists at all temperatures in the graphs range.

Also, the nuclear quadrupole resonance spectrum is consistent with our theory of phase

separation, where the spatial variation in xhole takes the form of patches in the copper-

oxide plane. Some of these patches are metallic, and other are insulating in character.

This experiment indicates a temperature dependent electronic phase transition occurring

in high-Tc superconductors, which is an essential assumption for this dissertation.

Scanning tunnelling microscopy

A scanning tunneling microscope (STM) images surfaces at atomic precision. Good STM

precision is held to be around 0.1 nm, which means that individual atomes can be mapped

and manipulated. The basic principle used by the microscope is quantum tunneling that

permits to map the local density of states of a superconducting sample. Observe the

gap measurements over a sample of Bi2Sr2CaCu2O8+x on the 50 nm copper-oxide square

planes in figure 4.6. These images help us elucidate how the microscopic electronic in-

homogeneity is distributed on the planes, which is a fundamental problem for high-Tc

superconductivity. Beyond that, McElroy et. al. [33] showed how the electronic distribu-
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tion evolves upon doping. Many STM experiments confirmed a check-board like charge

order in strongly correlated superconducting Bi2Sr2CaCu2O8+x [38, 33, 22]. These ex-

periments reported the presence of electronic inhomogeneity that is manifested as spatial

variations in both the local density of states spectrum and the superconducting gap am-

plitude. Moreover, they show that their data suggests that the measured inhomogeneity is

not due to crystallographic errors or impurities; but rather indicates a universal behaviour

of cuprates. This was confirmed after repeating the experiment over different samples.

These STM studies show two important aspects:

1. The inhomogeneity in the local density of states is present from underdoped to

overdoped compounds;

2. Local gaps vary substantially with doping.

Furthermore, they reported a strong spatial correlation between the local density of states

(LDOS) and the superconducting gap by observing the similar patters in each map. Re-

cent STM experiments [33] provided important informations regarding the evolution of a

Mott insulator into a d-wave superconductor under doping.

Figure 4.6: Measured ∆(r), gap maps, of four different hole dopings: (a) 89 K with
ρ = 0.19; (b) 79 K with ρ = 0.15; (c) 75 K with ρ = 0.13; and (d) 65 K with ρ = 0.11
[33].
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4.5 Theory of electronic phase separation

In this section we present a model of electronic phase separation to describe the features

of the copper-oxide planes of cuprates. This model considers the two anomalous charac-

teristics of cuprates: the anti-ferromagnetic normal phase with pseudogap regions, and

the intrinsic electronic inhomogeneity.

4.5.1 Cahn-Hilliard theroy of phase separation

To simulate the STM measurements shown in the last section, Mello et. al. [16] introduced

a model of phase separation based on the theory of Cahn-Hilliard [9]. As we mentioned

in Section 4.2.1, this theory is based on the Ginzburg Landau expansion (4.2) and the

two minima in the free energy corresponding to two phases as shown in figure 4.1 and in

the inset of figure 4.7. They showed that the potential responsible for the second order

electronic phase separation, also generates an effective interaction between the charges

responsible for superconductivity at high temperatures. Similarly to the Ginzburg-Landau

theory, there should appear a local potential that separates the charge densities into two

regions: one with low and another with high density of electrons per unit cell. Therefore,

the charges are segregated into specific regions – the grains – and the potential barrier

generates an effective attraction between the charges in a single grain – originating a

stable superconducting amplitude throughout the grain.

As we saw in figure 1.2, cuprates with a low hole concentration have the antiferro-

magnetic phase destroyed with the insluator-metal transition, which completely changes

the electronic transport properties. There are two possibilities for a doped cuprate: it

presents a homogeneous charge distribution, or inhomogeneous with metallic domains in a

anti-ferromagnetic background. According to several experiments, the second case is more

likely [49, 6, 43, 42, 37, 33, 22, 39, 12, 28]. Mello et al [15] showed that the free energy

of the inhomogeneous system is lower than the homogeneous one when the temperature

is lower than the pseudogap curve T ∗(x). The lower free energy of the inhomogeneous

distribution provides a physical interpretation for the origin of the thermodynamic elec-

tronic phase separation. In order to quantify the regions with different dopings as a

function of the temperature, we employ a suitable framework for phase separations – the

Cahn-Hilliard theory [9, 16].

Calculation procedure

In order to introduce a quantitative parameter – the order parameter – of our second

order phase transition, we define the variation in the charge density in the site i of the

square lattice as

u = ∆ρ(i, T ) ≡ ρ(i, T )− ρ
ρ

, (4.28)
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where u is our order parameter, ρ(i, T ) is the local density of holes, and ρ is the average

density of the compound. Clearly |u| ≤ 1. The case with u(i, T ) = 0 corresponds to a

homogeneous system above the phase separation temperature TPS(ρ). Then, the typical

Ginzburg-Landau free energy functional, in analogy to equation (4.2) with no external

magnetic, can be written as

f [u] =

V [u]︷ ︸︸ ︷
A2(T )

2
u2 − B2

4
u4 +

1

2
ε2|∇u|2, (4.29)

where V [u] is the potential responsible for the origin of Cooper pair formation in cuprates.

The form of the phenomenological constants were so defined for convenience. We Taylor

expand the phenomenological parameter A2 to give

A2(T ) ≈ α (TPS(ρ)− T ) , (4.30)

where now α and B are constants that lead to lines of fixed values of A(T )/B, parallel to

TPS(ρ), as shown in figure 4.7. The parameter ε determines the size of the grain boundaries

between the low and high density phases. The energy barrier between the grains of distinct

phases is Eg(T ) = A4(T )/B, which is proportional to (TPS − T )2 near the transition, and

becomes nearly constant for temperatures close to TPS(ρ).

Figure 4.7: Electronic phase diagram for cuprates. The temperature TPS(ρ) marks the
onset of phase separation into two main densities corresponding to the two minima of the
Ginzburg-Landau potential. As the temperature decreases below TPS(ρ), the potential
barrier Eg increases and the two minima ±A(T )/B separate from each other.

Following the Ginzburg-Landau equation (4.29) and the order parameter in (4.28),

Cahn-Hilliard [9] derived a differential equation that governs the phase separation of the

system from a homogeneous state u = 0 into two phases with u = ±A(T )/B. This can

be elegantly achieved in terms of a continuity equation ∂tu+∇ · J = 0, because the total

number of charges is fixed, the volume integral over the charge density distribution is
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fixed. Therefore, we identify the current density as

J = M∇
(
δf

δu

)
, (4.31)

where M is the mobility or the charge transport coefficient. With this, we obtain

∂u

∂t
= −M∇2

(
ε2∇2u+ A2(T )u−B2u3

)
, (4.32)

which is called the Cahn-Hilliard equation.

Figure 4.8: Left: The charge density on a 105 x 105 square lattice system after 6400 time
steps. The fraction A(T )/B = 0.6, which corresponds to values of T close to the line T1

plotted in figure 4.7 – with 0.05 < ρ < 0.18. The dark blue grains are in the verge of
becoming insulators (low density) and the red ones have metallic character (high density).
Right: Density profile of the local free energy in the same location and temperature as
in the left figure. The red lines show the potential barrier between the grain boundaries.
The system becomes a mixture of two disordered metals with high and low densities
(DM1+DM2).

Equation (4.32) is numerically solved, which is well described by Mello in [18]. The

Cahn-Hilliard approach provides a quantitative approach to describe the motivated elec-

tronic phase separation, which in turn is capable to explain many features of the pseudogap

phase of cuprates. A central point of this approach is that the free energy potential of

segregation or confining V [u] is the dominant factor of the creation of Cooper pairs in

cuprates. This idea is based in experiments on Bi cluster [50].
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4.6 Concluding remarks

We analysed different experimental techniques which support the case for intrinsic in-

homogeneous high-Tc superconductors. Nuclear quadrupole resonance [42] in particular,

suggests a temperature dependent electronic phase separation [18] as the mechanism be-

hind the inhomogeneities. According to this, the charges are segregated into specific

regions called grains. This generates low and high density regions separated by a thin

potential barrier. A typical simulation of the potential responsible for the segregation of

charges is depicted in figure 4.7.

As discussed by Ginzburg-Landau and Cahn-Hilliard, the phase separation process

is caused by the two minima of the free energy corresponding to two phases [18]. In

a real system this corresponds to the segregation of the electronic charges in low and

high density domains, or islands bounded by free energy barriers. The formation of

these isolated islands, where the charges are confined in nanometre domains, favours the

development of a sustainable superconducting amplitude. This is analogous to a granular

superconductor. The difference is that instead of impurities assuming the role of grains,

the local charge densities act as grains. These little charge islands, the grains, may be

weakly connected with the other grains. The barriers act as ”weak links” and the system

resembles a granular superconductor with very small grains. These little charge islands

can be modelled by Josephson junctions. As a consequence, one models the whole sample

as a network of Josephson junctions [34].

This chapter laid the relevant elements of the phenomenological theory describing

superconductors. The basic model proposed in chapter five relies on the Josephson mech-

anism. The phenomenological character of the Ginzubrg-Landau permits a relatively

intuitive interpretation of the Josephson effect. The ideas developed in this chapter will

be useful in understanding chapter five.
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CHAPTER 5

Ferromagnetism in high temperature superconductors

In this chapter we use the model for high-Tc superconductors developed in the last chapter

to describe the weak ferromagnetic signal observed in some compounds of the YBCO

family.

5.1 Introductory remarks

Understanding the ”normal” state pseudogap phase of high-Tc superconductors endures

as a major problem in condensed matter physics. The reason is the existence of localized

energy gaps above Tc and below a certain temperature T ∗ that marks the crossover tem-

perature of the pseudogap phase. The lack of a largely accepted theory persists because of

the nanoscale complexity and intrinsic inhomogeneous electronic distributions that vary

according to specific families of cuprates [11].

Many anomalies are present in the normal pseudogap phase that are not understood,

which do not have a widely accepted explanation. Here we address the spontaneous

weak ferromagnetic signal observed in YBa2Cu3O6+x. Such measurements were made by

sensitive experiments, namely zero-field muon spin relaxation (µSR)[44] and polar Kerr-

effect (PKE) [52]. Both experiments identify a hole concentration ρ dependent signal Ts

that agrees closely with the crossover values of T ∗(ρ) from many experiments [47, 30]. In

figure 5.1, the authors of [52] identify that the signal Ts is much larger than Tc in the

underdoped region, but decreases rapidly with increasing ρ, and becomes smaller than Tc

near the optimally doped concentration which is ρ = 0.16. It is worth noting that ρ is a

monotonic function of the oxygen concentration x.

In this dissertation, we attempt to reproduce the measured signals from references [44]

and [52] from theoretical grounds.
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Figure 5.1: Left: The onset of the polar Kerr-effect signal Ts in circles and Tc as red
squares for YBa2Cu3O6+x samples [52]. Right: The same behaviour is confirmed by zero
field muon spin relaxation [44].

5.2 Paramagnetic effect in cuprates

After its discovery, high-Tc superconductors were in the form of powder and only more

recently single crystals large enough to be measured were synthesized. The powders were

formed by grains of typically micrometers in diameters. Therefore, early susceptibility

measurements in cuprates discovered an unusual weak paramagnetic response, also called

Wohllenben effect [41]. Sigrist and Rice [41] explained that this effect is due to the random

crystal orientations of the many grains and the d-wave symmetry of the superconducting

order parameter. Neighbour grains form weak links and are connected by Josephson

coupling that depends on the relative phase of the superconducting wave function. The

combination of crystal orientation and superconducting phase may lead to what is known

as a π-junction.

The π-junction

Simply defined, a π-junction is a Josephson junction with a negative critical (coupling)

current. In equation (4.18) the super-current threading the junction was described by

a strictly positive critical current, that is, Is = |Ic| sin ∆ϕ. Since, by definition, the

Josephson coupling in a π-junction is negative, we write Iπs = −|Is| sin ∆ϕ, which is the

super-current for a π-junction. This can be equivalently written as

Iπs = |Is| sin (∆ϕ− π) , (5.1)
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which is simply a Josephson junction with a π-shift in the phase. Therefore, the name

π-junction is justified in contrast to the regular (Josephson) 0-junction.

Standard granular superconductors are often modelled as a network of 0-junctions.

Good coupling between the sample’s grains guarantees the percolation of superconduc-

tivity throughout the whole granular sample. If we consider that each grain i is described

by a phase ϕi, a simplified model for the Hamiltonian of such a network would be

H = −
∑
i,j

|Eij| cos (ϕi − ϕj) . (5.2)

Such a system is unfrustrated, and the lowest energy state is for ϕi constant throughout

all i, minimizing the energy of all junctions simultaneously. One way to frustrate this

network would be to apply an external magnetic field. The the phase ϕi is subject to

gauge effects:

ϕi − ϕj −→ ϕi − ϕj −
2π

Φ0

∫ j

i

dl ·A. (5.3)

In such a system, there is a phase shift (not necessarily π) induced by the vector potential

A, and the energy cannot be minimized for each junction independently and is frustrated.

However, in the case of powder-like high-Tc superconductors this is not the case. Since

Sigrist and Rice already supposed the pairing wavefunction to be of the d-wave type,

measurable consequences should arise. In ordinary s-wave grain boundaries, electrons

tunnel perpendicularly through the junction. Nevertheless, the Josephson tunnelling is

a direction sensitive effect. This means that for d-wave twin boundaries, the strength of

Josephson tunnelling will depend on a weighted average over the d-wavefunction, weighted

in favour of electronic momenta in this perpendicular direction. Sigrist and Rice showed

that such a twin boundary, as shown in figure 5.2, generates a π-junction. The internal

angular structure of the pair wavefunction leads to intruguing new effects. We will discuss

the π-junction and its connection with frustration effects in more detail in section 5.4.

Figure 5.2: Josephson junction between two d-wave superconductors. The circles show
the orientation of the crystal lattice and the pair wave function ψ(k) ∝ cos kx− cos ky on
both sides of the junction. This example corresponds to a π-junction.

Thus it is possible that this weak paramagnetic effect in the magnetic susceptibility

is associated to frustration of the Josephson network [41]. In ordinary granular super-
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conductors, frustration of the Josephson network arise due to the misorientation of the

crystal axis with respect to the d-wave order parameter. Sigrist and Rice [41] demon-

strated this frustration through a simplified model in an array of π-junctions, which are

a direct consequence of d-wave symmetry. These π-junctions give a negative contribution

to the junction’s energy because of the phase shift π. In this case the current is negative.

They also showed that there is no way to minimize the free energy of all junctions in an

array of an odd numbers of junctions. Therefore, an array of odd π-junctions is frustrated,

and a spontaneous current may arise if the coupling is sufficiently strong.

5.3 Phase fluctuations

We cannot apply the ideas above about paramagnetism to our Josephson network of grains

of low or high local densities because they are formed in single crystals and consequently

all these grains have the same crystal orientation. In this context, π-junctions cannot be

generated by the mechanism described by Sigrist and Rice [41]. However, there is another

mechanism particular to electronic inhomogeneities that leads to a negative Josephson

coupling (a π shift).

We saw in section 3.2.6 that the number operator N is the conjugate variable to

the phase ϕ, such that [N,ϕ] = 1. A specific region R is characterized by a phase

angle ϕR, and its dynamically conjugate variable NR [19, 1]. The ”stiffness” of the

system to phase fluctuations is determined by the local density of charges; the smaller the

superfluid density, the more significant the phase fluctuations. In our case the isolated

grain islands are characterized by low charge densities, and hence the local phase fluctuates

substantially. Spivak and Kivelson showed that large fluctuations in the local densities

lead to a negative Josephson coupling [45]. They considered the case of two Josephson-

coupled grains. The Josephson current is guaranteed to be positive in the absence of

spin-orbit coupling. However, if the electron tunneling is indirect, through a localized

state between the grains (the junction), the transfer Hamiltonian can be modelled by

HT =
∑
j=1,2

∑
k,s

Tk(j)
(
c†k,σ(j) cσ(I) + c†σ(I)ck,σ(j)

)
+ ε0n0 + U, (5.4)

where c†k,σ(j) creates an electron with spin σ and other quantum numbers represented by

k on grain j which assumes the values 1 or 2. The other operator c†σ(I) creates an electron

of spin σ in the junction which is the localized intermediate state. The number n0 = 0, 1

or 2 is the number of electrons in the junction. Tk(j) is the hopping matrix element, ε0 is

the energy of the junction, and U is a very large interaction energy. Spivak and Kivelson

assumed that Tk(j) is a small perturbation. By using perturbation theory up to fourth

order, they showed that correlation effects produce a negative Josephson coupling J across

the junction – a π-junction. We can demostrate the appereance of the negative sign using
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arguments from second quantization, that is, from the ant-commutation relations. In one

of the figures of [45], Spivak and Kivelson show the tunneling process from one grain to

another, mediated by the junction. We reproduce a similar table in 5.3.

Figure 5.3: A schematic example of a sequence of intermediate sates for a Cooper pair
tunnelling across a barrier that contains a spin up and leads to a negative coupling along
the junction. Between steps c and d it is necessary to permute the two electrons to be in
canonical order of a pair, and this exchange is responsible for the negative sign [45].

In summary, the electronic phase separation generates regions with strong fluctuations

in the charge densities due to [NR, ϕR] = 1, which generate π-junctions. We explore the

mechanism of π-junctions better in the next section.

5.4 Spontaneous frustration

Figure 5.4: Superconducting loop with three π-junctions. If there were only two junctions,
the system would manage to minimize the overall free energy and no current would arise.
With an odd number of junctions (three in this case) the system is frustrated and the
overall effect of one junction generates a spontaneous current around the loop.

We saw in equation (4.21) that the free energy of a junction of two coupled supercon-

ductors is proportional to − cos ∆ϕ, where ∆ϕ is the phase difference between the two

superconductors. In our case, these two superconductors are grains. These two grains
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are connected by a π-junction through the strong fluctuations in the charge densities.

Thus, the electrical free energy stored in this junction is proportional to − cos(∆ϕ− π).

Nevertheless, the fact that the weak link is a π-junction does not lead to any special ob-

servable effects. Let us explain that. The phases of both grains would simply manage to

minimize the junction’s free energy by setting ∆ϕ = π. We cannot measure the existence

of a π-junction directly. It merely is equivalent to a phase change in one of the grains by

π, such that one would return to a normal 0-junction.

However, measurable consequences arise in multiply connected geometries, for in-

stance, an array of π-junctions. The phase change transmitted along the array by the

π-junctions will be noticed. In the case of a loop with three connected grains, that is,

grain one is connected with grain two, grain two with grain three, and grain three with

grain one, there is no way to remove all three π-junctions. At least one π-junction has to

survive. Therefore, a loop of connected grains is frustrated and may produce spontaneous

currents! See figure 5.4.

Figure 5.5: The simplest model for a frustrated loop with a single junction.

Sigrist and Rice [41] analysed the simplest case of frustration and spontaneous currents

in multiply connected geometries. Consider a single loop with a single junction see figure

5.5. This could be the idealization of a loop with many strong and just one rather weak

junction. As the weakest link, it will determine the properties of the whole loop. We

assume that the current I that flows through the loop is I � Ic. Inspired on equation

(4.21) we can write the loop’s electrical free energy as

F (I,∆ϕ) =

Current︷ ︸︸ ︷
1

2
LI2

π-Junction︷ ︸︸ ︷
−Φ0Ic

2π
cos(∆ϕ− π), (5.5)

where L is the self-inductance of the loop and Ic is the critical current tolerated by the

junction. Note that the Josephson coupling energy EJ = Φ0Ic/2π is exactly the same as

in (4.21) but written in terms of the flux quantum Φ0. The relation between the phase

difference ∆ϕ and the current I can be found from equation (4.15) which reads∮
C

dl ·
(
∇ϕ− 2π

Φ0

A

)
=

∮
C

dl · mv

~
. (5.6)
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The path C is deep enough inside te superconductor so that the velocity v vanishes due

to the Meissner screening effect. Therefore equation (5.6) gives

∆ϕ =
2π

Φ0

Φ =
2π

Φ0

(Φex + LI) . (5.7)

We have used Stoke’s theorem for the second term on the left hand side of (5.6) and

identified the magnetic flux. Substituting this back to equation (5.5) we obtain an explicit

expression for the electrical free energy in terms of the current. This reads

F (I,∆ϕ) =
1

2
LI2 − Φ0Ic

2π
cos

(
2π

Φ0

(Φex + LI)− π
)
. (5.8)

In order to obtain an equation that relates the current threading the loop with an external

magnetic influence Φex we minimize F (I,∆ϕ) with respect to I for a given Φex. This gives

us

γ + γc sin

(
2π

Φex

Φ0

+ γ − π
)

= 0, (5.9)

where the dimensionless parameters γ and γc are given by

γ(c) = 2π
LI(c)

Φ0

. (5.10)

The parameter γ is proportional to the current I passing through the loop, and γc is a

parameter that is proportional to the critical current Ic tolerated by the π-junction. We

are interested in the case where Φex ≈ 0 because the contribution from the other loops

should be small. From figure 5.6 it is possible to see that for γc > 1, spontaneous currents

arise. The onset of spontaneous currents, a consequence of frustration, may be the reason

for the appearance the ferromagnetic signal. Therefore we restate this dissertation’s main

point: the low electronic density of the grains in conjunction with correlation

effects, produce a negative Josephson coupling that provokes spontaneous

frustration.

As the dimensionless parameter γc increases above one, a spontaneous current flows

around frustrated loops producing weak local magnetic signals. The first few spontaneous

currents that arise in the sample generate a magnetic field that will dictate the direction

of the adjacent currents. Therefore, there will be several small local inhomogeneous

ferromagnetic signals throughout the sample that arise near T ∗. Such a magnetic signal

was observed by sensitive muon spin relaxation [44] and polar Kerr effect [52] and is much

weaker than the paramagnetic response to external fields [41]. To compare our proposal

with these experimental results we need to study the temperature and doping dependence

of γc.
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Figure 5.6: The induced current in a frustrated loop for three values of the parameter γc
as a function of the external flux. For the zero flux case Φex = 0, the figure shows that
for γc > 1 a spontaneous current may arise while there is none for γc < 1.

5.5 Doping and temperature dependence

We saw that the parameter γc controls the arising of spontaneous currents. Therefore, we

must investigate how Ic depends on T and ρ. This was studied in detail for d-wave su-

perconductors by many authors [4, 8]. Bruder et al [8] calculated the supercurrent tunnel

matrix elements up to second order perturbation theory for two d-wave superconductors

with amplitudes

∆δ,R(L)(i, T, φ) = ∆0(i, T ) cos
[
2
(
φ− φR(L)

)]
, (5.11)

where R(L) refers to the right(left) superconductor, and the angles φR and φL determine

the relative orientation of the two superconductors. In our case we make φR(L) = 0,

because the electronic domains are in a single crystal. They show that the dominant

contribution to Ic is from ”node to node” tunnelling. For this reason, the overall behaviour

is like an s-wave superconductor. This result is in agreement with the calculations of an

s-wave Josephson junction [29], where

Ic ∝
∆R∆L

∆R + ∆L

. (5.12)

5.6 Bogoliubov-deGennes calculations

According to the formalism of Bogoliubov deGennes studied in the previous chapter, the

values of ∆δ(i) in (3.89) vary in a system with electronic inhomogeneity [15, 14]. Review

figure 3.6. The inhomogeneity of the local gaps is responsible for different values of the

tunnelling matrix elements between different grains. Consequently, the parameter γc also
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Figure 5.7: The temperature evolution of ∆δ,max(ρ, T ) of six different values of the av-
erage doping ρ. The line at ≈ 40 meV shows the experimental onset of spontaneous
magnetization and the intersections yield the temperature onset for different compounds.

varies through the sample. The values of the γc increases with ∆δ(i, T ), while the temper-

ature is lowered. Spontaneous currents reach their maximum value for maximum ∆δ(i, T ),

causing some loops to have γc,max ≥ 1 at zero external field. In such an inhomogeneous

system, an analytical expression for γc(i) is difficult to achieve. However, it is reasonable

to assume that ∆δ(i, T ) is the only parameter that controls γc(i) as the hole doping ρ

varies. Since underdoped systems are generally more inhomogeneous, there may be more

loops that influence the ferromagnetic signal. Indeed, the Polar Kerr-effect signal Ts is

much stronger than in the optimally doped region.

Since the ferromagnetic signal vanishes about ρ = 0.18, we use the gap values ∆δ(i, T )

that trigger the spontaneous current at ∆δ,max(ρ = 0.18, T = 0) ≈ 40 meV. With this

minimum energy established, we guarantee γc ≥ 1. We then can follow the temperature

evolution of the maximum gap of each compound with the horizontal line drawn in figure

5.7. The results for five doping values are shown in the right figure 5.8, together with

the experimental results from muon spin relaxation (open circles) and polar Kerr-effect

(black squares). This is the main result of this dissertation and shows that our results are

in good agreement with the experimental data [17].
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Figure 5.8: This dissertations’ main result [17]: The calculated onset of spontaneous
magnetization derived from from the intersections in figure 5.7. The results from polar
Kerr-effect are drawn as black squares, while muon spin relaxation is indicated by open
circles. The line connecting the theoretical points is just a guide to the eye. The insets
from left to right are respectively from polar Kerr-effect and muon spin relaxation.

5.7 Concluding remarks

We used the fact that cuprate superconductors have an intrinsic inhomogeneous state

where the charges are segregated into a few nanometers of high and low density grains,

separated by thin potential barriers. As in Bi-clusters [50] this charge confinement may be

the origin of the local superconducting interaction. We then calculate the superconduct-

ing properties by the Bogoliubov deGennes method using a phenomenological two-body

potential proportional to the energy barriers between the grains. The distinct regions

are coupled forming a Josephson network that promotes the resistivity transition at low

temperatures. The phase-number quantum fluctuations together with correlation effects

are large enough to frustrate arrays of π-junctions. This leads to spontaneous currents

with an overall magnetization. These theoretical calculations provide an interpretation

to this intriguing weak ferromagnetic phenomenon in good quantitative agreement with

the experiments.
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CHAPTER 6

Conclusion and perspectives

We have proposed a theory on the onset of ferromagnetic order detected in two very

sensitive experiments and, as far as we know, without an explanation. The main ingredient

of our model is a phase separation transition that segregates the system into islands of low

and high densities where the charges can be confined and Cooper pairs develop locally.

These regions are connected by Josephson coupling as in a granular superconductor.

Since the charge density is very low in these regions, a well known feature of high-Tc

superconductors, the superconducting phase of each grain has a large uncertainty, what

causes the spontaneous formation of π-junctions and frustration effects.

This approach is also in agreement with many experimental facts of the high-Tc super-

conductors, like the pseudogap phase that is composed of local superconducting ampli-

tudes without phase coherence. This model has shown itself to be effective in explaining

the features of cuprate superconductors. The general model described here to deal with

the spontaneous ferromagnetism may also provide some clues to the important problem

that is the pseudogap phase of high-Tc superconductors. In this context we gave a new

interpretation for the pseudogap region of YBa2Cu3O6+x, capable to set a framework to

explain experimental data [44, 52] that were lacking a theoretical model.

The studies and simulations developed in this dissertation have a general scope of

applications and can be used to deal with other unconventional properties of high-Tc

superconductors measured by experiments. Therefore we expect to apply it in the near

future to interpret other measurements that so far have not a consensus explanation. High-

Tc superconductivity is one of the major problems of Condensed Matter Physics and we

believe that using this model of phase separation and inhomogeneous superconductivity

can help to understand the physics of these materials.
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[19] V. J. Emery and S. A. Kivelson. Importance of phase fluctuations in superconductors
with small superfluid density. Nature, 374(6521):434–437, March 1995.

[20] M Franz, C Kallin, and A J Berlinsky. Impurity scattering and localization in d-wave
superconductors. Physical review B Condensed matter, 54(10):4, 1996.

[21] Amit Ghosal, Mohit Randeria, and Nandini Trivedi. Inhomogeneous pairing in highly
disordered s-wave superconductors. Physical Review B, 65(1):1–13, November 2001.

[22] Kenjiro K Gomes, Abhay N Pasupathy, Aakash Pushp, Shimpei Ono, Yoichi Ando,
and Ali Yazdani. Visualizing pair formation on the atomic scale in the high-Tc
superconductor Bi2Sr2CaCu2O8+delta. Nature, 447(7144):569–72, May 2007.

[23] Lev P. Gor’kov. Microscopic Derivation of the Ginzburg-Landau Equations in the
Theory of Superconductivity. Soviet Physics JETP, 36(9)(6), 1959.

[24] W. Guyard, A. Sacuto, M. Cazayous, Y. Gallais, M. Le Tacon, D. Colson, and
A. Forget. Temperature Dependence of the Gap Size near the Brillouin-Zone Nodes
of HgBa2CuO4+δ Superconductors. Physical Review Letters, 101(9):1–4, August
2008.

[25] C. Howald, P. Fournier, and a. Kapitulnik. Inherent inhomogeneities in tunneling
spectra of Bi2Sr2CaCu2O8-x crystals in the superconducting state. Physical Review
B, 64(10):100504, August 2001.

[26] J. R. Schriefer J. Bardeen, L. N. Cooper. Theory of superconductivity. Physical
Review, 108(5), 1957.

72



[27] Kanigel, U. Chatterjee, M. Randeria, M. Norman, G. Koren, K. Kadowaki, and
J. Campuzano. Evidence for Pairing above the Transition Temperature of Cuprate
Superconductors from the Electronic Dispersion in the Pseudogap Phase. Physical
Review Letters, 101(13):137002, September 2008.

[28] Kanigel, U. Chatterjee, M. Randeria, M. Norman, S. Souma, M. Shi, Z. Li, H. Raffy,
and J. Campuzano. Protected Nodes and the Collapse of Fermi Arcs in High-Tc
Cuprate Superconductors. Physical Review Letters, 99(15):1–4, October 2007.

[29] J B Ketterson and S N Song. Superconductivity. Cambridge University Press, New
York, 1999.

[30] S A Kivelson, I P Bindloss, V Oganesyan, J M Tranquada, A Kapitulnik, and
C Howald. How to detect fluctuating stripes in the high-temperature supercon-
ductors. Reviews of Modern Physics, 75(4):1201–1241, October 2003.

[31] A. J. Leggett. Quantum Liquids. Oxford Univesrity Press, New York, 2011.

[32] Deltlef Lehman. Mathematical Methods of Many-Body Quantum Field Theory. Chap-
man & Hall/CRC, London, 2005.

[33] K. McElroy, D.-H. Lee, J. Hoffman, K. Lang, J. Lee, E. Hudson, H. Eisaki, S. Uchida,
and J. Davis. Coincidence of Checkerboard Charge Order and Antinodal State De-
coherence in Strongly Underdoped Superconducting Bi2Sr2CaCu2O8+δ. Physical
Review Letters, 94(19):1–4, May 2005.

[34] E V L De Mello. Description and connection between the oxygen order evolution
and the superconducting transition in La 2 CuO. 98, 2012.

[35] HJW Müller-Kirsten. Electrodynamics: an introduction including quantum effects.
World Scientific, 2004.

[36] Antonio H. Castro Neto. Elementary Condensed Matter Physics, 2003.

[37] Rinat Ofer and Amit Keren. Nutation versus angular-dependent NQR spectroscopy
and impact of underdoping on charge inhomogeneities in YBa {2}Cu {3}O {y}.
Physical Review B, 80(22):1–8, December 2009.

[38] S H Pan, J P O’Neal, R L Badzey, C Chamon, H Ding, J R Engelbrecht, Z Wang,
H Eisaki, S Uchida, A K Gupta, K W Ng, E W Hudson, K M Lang, and
J C Davis. Microscopic electronic inhomogeneity in the high-Tc superconductor
Bi2Sr2CaCu2O8+x. Nature, 413(6853):282–5, September 2001.

[39] Aakash Pushp, Colin V Parker, Abhay N Pasupathy, Kenjiro K Gomes, Shimpei
Ono, Jinsheng Wen, Zhijun Xu, Genda Gu, and Ali Yazdani. Extending universal
nodal excitations optimizes superconductivity in Bi2Sr2CaCu2O8+delta. Science
(New York, N.Y.), 324(5935):1689–93, June 2009.

[40] J Quintanilla and C Hooley. The strong-correlations puzzle. Physics World, (June),
2009.

[41] Manfred Sigrist and TM Rice. Unusual paramagnetic phenomena in granular high-
temperature superconductors—A consequence of d- wave pairing? Reviews of Mod-
ern Physics, 67(2):503–513, 1995.

73



[42] P. Singer, A. Hunt, and T. Imai. 63Cu NQR Evidence for Spatial Variation of Hole
Concentration in La2-xSrxCuO4. Physical Review Letters, 88(4):4–7, January 2002.

[43] J. Sonier, M. Ilton, V. Pacradouni, C. Kaiser, S. Sabok-Sayr, Y. Ando, S. Komiya,
W. Hardy, D. Bonn, R. Liang, and W. Atkinson. Inhomogeneous Magnetic-Field
Response of YBa2Cu3Oy and La2-xSrxCuO4 Persisting above the Bulk Supercon-
ducting Transition Temperature. Physical Review Letters, 101(11):2–5, September
2008.

[44] J E Sonier, J H Brewer, R F Kiefl, R I Miller, G D Morris, C E Stronach, J S Gardner,
S R Dunsiger, D a Bonn, W N Hardy, R Liang, and R H Heffner. Anomalous
weak magnetism in superconducting YBa2Cu3O6+x. Science (New York, N.Y.),
292(5522):1692–5, June 2001.

[45] B I Spivak and S A Kivelson. Negative local superfluid densities: The difference
between dirty superconductors and dirty Bose liquids. Physical Review B, 43(4):3740–
3743, 1991.

[46] Philip L. Taylor and Olle Heinonen. A Quantum Approach to Condensed Matter
Physics. Cambridge University Press, New York, 2002.

[47] T Timusk and B W Statt. The pseudogap in high-temperature superconductors: an
experimental survey. Reports on Progress in Physics, 62(1):54, 1999.

[48] Michael Tinkham. Introduction to Superconductivity. Dover Publications, Inc, New
York, second edition, 1996.

[49] J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida. Evidence
for stripe correlations of spins and holes in copper oxide superconductors. Nature,
375(6532):561–563, June 1995.

[50] B. Weitzel and H Micklitz. Superconductivity in granular systems built from well-
defined rhombohedral Bi-clusters: Evidence for Bi-surface superconductivity. Physi-
cal Review Letters, 66(3):385–388, January 1991.

[51] M. Wu, J. Ashburn, C. Torng, P. Hor, R. Meng, L. Gao, Z. Huang, Y. Wang, and
C. Chu. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound
system at ambient pressure. Physical Review Letters, 58(9):908–910, March 1987.

[52] Jing Xia, Elizabeth Schemm, G Deutscher, S A Kivelson, D A Bonn, W N Hardy,
R Liang, W Siemons, G Koster, M M Fejer, and A Kapitulnik. Polar Kerr-Effect
Measurements of the High-Temperature YBa2Cu3O6+x Superconductor : Evidence
for Broken Symmetry near the Pseudogap Temperature. Physical Review Letters,
100(12):3–6, 2008.

[53] V. Yukalov and E. Yukalova. Mesoscopic phase separation in anisotropic supercon-
ductors. Physical Review B, 70(22):1–12, December 2004.

74


	Introduction
	Historical background
	The cuprates
	Pseudogap and inhomogeneity
	Ferromagnetic signal
	Overview

	Second quantization for fermions
	Introductory remarks
	Properties
	Basic definitions
	The anti-commutation relations for fermions
	The number operator

	Change of basis – field operators
	Representation of operators
	Additive one-body operator
	Additive pair operator

	A product of four Fermi operators
	Wick's theorem
	The quadratic mean field approximation

	Concluding remarks

	Microscopic theory of superconductivity
	Introductory remarks
	BCS theory
	The Cooper problem
	The BCS Hamiltonian
	The Bogoliubov transformation
	The Bogoliubov equations
	The ground state
	Conjugate variables
	Calculations at finite temperature

	Intermission – d-wave superconductors
	The Bogoliubov-deGennes formalism
	The Hubbard model
	The extended Hubbard Hamiltonian
	Bogoliubov equations
	The gaps and the electronic density
	Numerical evaluation

	Concluding remarks

	Phenomenological theory of superconductivity
	Introductory remarks
	Ginzburg-Landau theory
	The phenomenological parameters
	The Ginzburg-Landau differential equations
	Flux quantization

	The Josephson Effect
	Deriving the Josephson equations

	Intermission – experimental survey
	Evidence for the pseudogap from ARPES
	Evidence for inhomogeneity

	Theory of electronic phase separation
	Cahn-Hilliard theroy of phase separation

	Concluding remarks

	Ferromagnetism in high temperature superconductors
	Introductory remarks
	Paramagnetic effect in cuprates
	Phase fluctuations
	Spontaneous frustration
	Doping and temperature dependence
	Bogoliubov-deGennes calculations
	Concluding remarks

	Conclusion and perspectives

