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Abstract

We shall present a theoretical description of paraxial beams, showing the propaga-

tion modes that arise from the solution of the paraxial equation in free space. We then

discuss the angular momentum carried by light beams, with its decomposition in spin

and orbital angular momentum and its quantization.

We present the polarization and transverse modes of a beam as potential degrees

of freedom to encode information. We define the Spin-Orbit modes and explain the

experimental methods to produce such modes. We then apply the Spin-Orbit modes to

perform a BB84 quantum key distribution protocol without a shared reference frame.

We propose a Bell-like inequality criterion as a sufficient condition for the spin-orbit

non-separability of a classical laser beam. We show that the notion of separable and

non-separable spin-orbit modes in classical optics builds a useful analogy with entan-

gled quantum states, allowing for the study of some of their important mathematical

properties. We present a detailed quantum optical description of the experiment in

which a comprehensive range of quantum states are considered.

Following the study of Bell’s inequalities we consider bipartite quantum systems

characterized by a continuous angular variable θ. We show how to reveal non-locality

on this type of system using inequalities similar to CHSH ones, originally derived

for bipartite spin 1/2 like systems. Such inequalities involve correlated measurement

of continuous angular functions and are equivalent to the continuous superposition

of CHSH inequalities acting on two-dimensional subspaces of the infinite dimensional

Hilbert space. As an example, we discuss in detail one application of our results, which

consists in measuring orientation correlations on the transverse profile of entangled

photons.
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Resumo

Apresentaremos uma descrição teórica dos feixes paraxiais, mostrando os modos de

propagação que surgem da solução da equação paraxial no espaço livre. Em seguida

discutiremos o momento angular contido nos feixes de luz, e sua decomposição em parte

orbital e de spin, e também sua quantização.

Apresentaremos os modos de polarização e modos transversos de um feixe como

graus de liberdade em potencial para codificar informação. Definiremos os modos Spin-

Órbita e explicaremos os métodos experimentais utilizados para produzir estes modos.

Aplicaremos então os modos Spin-Órbita à implementação de um protocolo BB84 de

distribuição de chave quântica sem um referencial compartilhado.

Propomos um critério em forma de desigualdade tipo-Bell, como condição suficiente

para a não-separabilidade dos modos Spin-Órbita em um laser clássico. Mostraremos

que a noção de modos Spin-Órbita separáveis e não-separáveis em ótica clássica pode

formar uma analogia útil com os estados quânticos emaranhados, e portanto permite o

estudo de algumas de suas propriedades matemáticas. Apresentaremos uma descrição

detalhada do nosso experimento, de acordo com a Ótica Quântica, onde uma larga

gama de estados quânticos será considerada.

Continuando no estudo de desigualdades de Bell, consideraremos sistemas quânticos

bipartidos caracterizados por uma variável angular θ. Mostraremos como revelar não-

localidade nesse tipo de sistema usando desigualdades similares às CHSH, original-

mente derivadas para sistemas bipartidos de spin 1/2. Tais desigualdades envolvem

medidas correlacionadas de funções angulares cont́ınuas e são equivalentes a uma su-

perposição cont́ınua de desigualdades CHSH atuando em subespaços 2-dimensionais do

espaço de Hilbert infinito-dimensional. Como exemplo, discutiremos em detalhe uma

aplicação dos nossos resultados que consiste em medir correlações em orientação no

perfil transverso de fótons emaranhados.
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Résumé

Dans une première partie introductive, nous rappelons la description théorique de la

propagation de faisceaux optiques en terme des modes solutions de l’équation de prop-

agation dans l’approximation paraxialle. Dans ce cadre, nous présentons les notions

de moment cinétique transporté par les faisceaux lumineux, et de sa décomposition en

moment cinétique intrinsèque (ou spin) et en moment angulaire.

La seconde partie est consacrée au codage de l’information dans les degrés de libertés

de polarisation et de modes transverses des faisceaux optiques. Les modes spin-orbites

sont définis et un dispositif expérimental optique pour produire ces modes est présenté.

Les modes spin-orbites sont alors exploités pour implémenter un protocole de distribu-

tion de clés BB84 ne nécessitant pas le partage à priori d’une base de référence.

Dans une troisième partie, nous proposons un critère de type inégalité de Bell,

qui constitue une condition suffisante pour caractériser la non-séparabilité en spin-

orbite d’un faisceau optique classique. Nous montrons ensuite que la notion de modes

spin-orbite séparable ou non-séparable constitue une analogie pertinente avec la notion

d’intrication d’états quantiques et permet l’étude de certaines de ses propriétés fonda-

mentales. Enfin, une implémentation expérimentale de cette simulation de tests de Bell

avec des faisceaux optiques classiques est présentée, ainsi que sa description détaillée

dans le cadre de l’optique quantique.

Dans une dernière partie, nous nous intéressons à des inégalités de Bell, pour des

états quantiques de systèmes quantique à deux parties, qui sont caractérisées chacune

par une variable continue de type angulaire (périodique). Nous montrons comment

détecter la non-localité sur ce type de système, avec des inégalités qui sont similaires aux

inégalités CHSH; inégalités qui avaient été développées originellement pour des systèmes

de type spin 1/2. Nos inégalités, sont construites à partir de la mesure de la corrélation

de fonctions angulaires. Nous montrons qu’elles sont en fait la superposition continue

d’inégalités CHSH de type spin 1/2. Nous envisageons une possible implémentation

expérimentale, où les corrélations mesurées sont les corrélations angulaires du profil

transverse des photons intriqués.
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man, qui m’ont accueillie en France pendant mon stage, et qui m’ont aidée à m’initier
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avoir rencontrés.
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Introduction

The first descriptions of light phenomena date back to the ancient Greece, and the

earliest known lenses were developed in ancient Mesopotamia [1] around the year 700

BC. Optics was first described in a geometrical form, with the concept of light rays,

and despite it being the very first theoretical description of light, it is remarkable how

much geometrical optics can explain. Starting with the basic examples of reflection and

refraction, it is also possible to describe telescopes, microscopes, the human eye and so

on.

The first important work to deviate from the geometrical view was Christiaan Huy-

gens’s Treatise on light, published in 1690, which founded the wave theory of light[2, 3].

In this treatise he presented what is known as Huygens principle, a fundamental con-

cept in the analysis of waves, which states that each point in the wave front behaves as

a punctual source for a spherical wave. The interference of all these secondary waves

emitted by all the points in a wave front will give the propagation of the wave. Thomas

Young and Augustin Fresnel, through their work on interference and diffraction, helped

to consolidate the wave theory as the main theory of light.

In 1861, Maxwell was able to unify light and the electromagnetic theory when

he deducted the existence of electromagnetic waves which propagated with the same

velocity as light. This fact was experimentally confirmed by Hertz, who was able

to produce electromagnetic waves in the radio frequency, and prove that these waves

had the same properties as light. Ironically, it was in the experiments performed by

Hertz that the first evidences of the photoelectric effect appeared, pointing again to a

corpuscular theory of light.
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1. INTRODUCTION

In fact, it was the difficulty in explaining a radiation phenomenon, the black body

radiation, with classical physics that lead Planck to the idea of quanta. Later Einstein

explained the photoelectric effect applying Planck’s idea of quanta to light, and the

photon was born.

Quantum theory made it possible to explain several phenomena such as atomic

structure and the process of light emission by an atom, and it reconciled the corpuscular

and the wave natures of light as coexistent aspects. However some of the aspects of

quantum theory were still doubtful from the point of view of great scientists such as

Einstein. Together with Podolski and Rosen, Einstein proposed in 1935 a gedanken

experiment to evidence what they thought was a clear sign that quantum mechanics

was an incomplete theory [4]. They made evident that quantum mechanics predictions

would not satisfy locality and realism conditions at the same time, so they concluded

that the quantum mechanical description of a physical system should be supplemented

by postulating the existence of “hidden variables”. These hidden variables would allow

one to predetermine the results of measurements made on any observable of the system.

It was only in 1964 that John Bell proposed a quantitative way to test whether

any local realistic theory could account for the results seen and predicted by quantum

mechanics. To test his theorem, Bell developed a set of inequalities [5], that were

later generalized and put into a form more suitable to experiments by Clauser, Horne,

Shimony and Holt (CHSH) [6].

The discovery of laser as a source of light in the 60’s has brought Optics back as an

important and very active field of research, due to its innumerable applications. The

laser helped to develop the fields of non-linear and quantum optics, which investigate

the interaction of light and matter. Quantum optics has been a very fruitful field

to explore fundamental issues of quantum mechanics, and in 1982 a quantum optics

experiment performed by Aspect et al finally measured the CHSH inequalities [7]. The

field of Quantum Information has also profited from the optical experiments, specially

the protocols requiring communication, such as the quantum key distribution protocols

[8].

The work composing this thesis is based on optical implementations for quantum

information protocols, and it is specially focused on Bell’s inequalities. To properly in-

troduce the theoretical background needed for the understanding of this work, we will

discuss in this introductory chapter some fundamentals on paraxial optics, the angular

2



1.1 Paraxial Optics

momentum of light, its decomposition and quantization. In Chapter 2 we present the

polarization and transverse modes as carriers of qubits of information, and we discuss

the combined 4 dimensional basis of Spin-Orbit modes, including a discussion of ex-

perimental methods to produce such modes, and their quantization. In Chapter 3 we

present one application of the spin-orbit modes to implement a quantum key distribu-

tion protocol without a shared reference frame between the two parties. In Chapter

4 we introduce the concept of Bell’s inequalities and present a Bell-like inequality cri-

terion for the non-separability of the spin-orbit modes, with experimental results. In

Chapter 5 we develop a continuous variable inequality using bounded spectrum oper-

ators and propose an experimental setup to measure the inequality using correlations

on the transverse profile of entangled photons.

1.1 Paraxial Optics

The Maxwell equations are the laws which describe the dynamics of the electromagnetic

field. From these basic laws we can derive a wave equation, suggesting the existence of

electromagnetic waves. The small part of the electromagnetic spectrum which is visible

to the human eye is what we call light. [9]

In homogeneous media and in the absence of charges or currents, the Maxwell

equations can be written as [10]:

∇ ·E = 0 ; (1.1)

∇×E = −∂B

∂t
; (1.2)

∇ ·B = 0 ; (1.3)

∇×B = µ0ε0
∂E

∂t
. (1.4)

We can take the rotational of Eq. (1.2) and using Eq. (1.4) we get:

∇2E− µ0ε0
∂2E

∂t2
= 0 , (1.5)

which constitutes a wave equation for the field E, with propagation speed c = 1√
µ0ε0

,

which is the speed of light. We can perform similar calculations to obtain an identical

wave equation for the field B.

In this work we are interested in monochromatic waves, very concentrated along

the direction of propagation, because this is the type of radiation emitted by a laser

3



1. INTRODUCTION

source, as the one used in our experiments. In this case we can make some useful

approximations. First we describe the electric field as a sum of two complex quantities,

such that:

E(r, t) = E(+)(r, t) + (E(+)(r, t))∗ , (1.6)

where

E(+)(r, t) = e−i(ωt−kz)εu(r)E(z, t). (1.7)

In this notation ε is the polarization vector, u(r) is the transverse beam structure,

normalized upon integration of its modulus over the transverse plane and E(z, t) is

the field envelope that gives the ‘slow’ variations in amplitude (on the scale of the

wavelength) over the direction of propagation and over time.

In a homogenious medium, for a free-propagating monochromatic beam, E(z, t) is

a constant. In this case, substituting (1.7) in the wave equation (1.5) we get [11]:

∇2[u(r)eikz] + k2[u(r)eikz] = 0 , (1.8)

where k = ω/c.

For a plane wave, u(r) will be constant. However, for physically realizable beams

u(r) will vary with x, y and z, but if the diffraction of the beam is sufficiently small,

it may vary slowly with z. In this case, we can assume that |∂2u/∂z2| � 2k|∂u/∂z|.
Neglecting the term ∂2u/∂z2 in the Helmholtz equation (1.8) we find that u(r) satisfies

the paraxial equation:

∇2
tu(s, z) + 2ik

∂u(s, z)

∂z
= 0, (1.9)

where s refers to the transverse coordinates s ≡ (x, y) or s ≡ (ρ, φ) we choose, and ∇2
t

is the corresponding laplacian operator associated with the transverse coordinates.

The simplest solution for this equation, in cartesian coordinates, is the fundamental

gaussian mode, given by [12]:

u0(x, y, z) =

√
2

π

1

w(z)
exp

[
−x

2 + y2

w2(z)
+ ik

x2 + y2

2R(z)
− i arctan

(
z

zR

)]
, (1.10)

where R(z) is the curvature radius of the beam given by

R(z) = z

(
1 +

z2
R

z2

)
, (1.11)

4



1.1 Paraxial Optics

w(z) is the beam waist given by

w(z) = w0

√(
1 +

z2

z2
R

)
, (1.12)

w0 is the minimum waist of the beam, defined at the plane z = 0, and the last parameter

zR is the Rayleigh length, given by

zR =
πw0

λ
. (1.13)

The fundamental mode can be regarded as a paraxial-spherical wave, and it is the best

approximation to the mode generated by a laser source. However, (1.10) is only the

lowest order solution among an infinite family of solutions to Eq. (1.9).

1.1.1 Paraxial Modes: Hermite-Gauss and Laguerre-Gauss families

The ensemble of all possible solutions of Eq. (1.9) constitute a basis for the transverse

modes of a paraxial beam in free space. The expression in cartesian coordinates for a

mode of arbitrary order is given below, and these are called Hermite-Gaussian (HG)

modes:

um,n(x, y, z) =
Anm
w(z)

Hm

[√
2x

w(z)

]
Hn

[√
2y

w(z)

]
exp

{
−x

2 + y2

w2(z)

}
×

× exp

{
ik
x2 + y2

2R(z)

}
e−iφmn(z) , (1.14)

where Amn is a normalization factor and Hk is the Hermite polynomial of order k. The

order of the HG mode is defined as m+ n and φmn(z) is the Gouy phase given by

φmn(z) = i(m+ n+ 1) arctan

(
z

zR

)
. (1.15)

In cylindrical coordinates we can obtain a different family of solutions, called the

Laguerre-Gaussian (LG) modes:

ulp(ρ, φ, z) =
Alp
w(z)

(√
2ρ

w(z)

)|l|
L|l|p

[
2ρ2

w2(z)

]
exp

{
− ρ2

w2(z)

}
×

× exp

{
ik

ρ2

2R(z)

}
eilφe−iφpl(z) , (1.16)
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1. INTRODUCTION

Figure 1.1: Intensity transverse profiles for HG and LG modes

where the integer p ≥ 0 is the radial index and the integer l is the azimuthal index. Alp

is a normalization factor and L
|l|
p are the generalized Laguerre polynomials [13]. The

order of the LG mode is defined as 2p+ |l| and the Gouy phase is given by

φpl(z) = (2p+ |l|+ 1) arctan

(
z

zR

)
. (1.17)

When l 6= 0, because of the factor eilφ the LG modes present a helicoidal wavefront

around the z axis. This suggests, as we shall see in detail in Section 1.2, that they

carry orbital angular momentum proportional to l.

The intensity transverse profile for these two families of modes are shown in Fig.

1.1, from zero to second order.

It is interesting to note the analogy between the Hermite-Gaussian modes and the

two-dimensional harmonic oscillator eigenstates [14, 15]. Let us rewrite eq. (1.14):

um,n(x, y, z) = exp

{
ik
x2 + y2

2R(z)
− i(m+ n+ 1) arctan

(
z

zR

)}
×

1

w(z)
ψm

[√
2x

w(z)

]
ψn

[√
2y

w(z)

]
, (1.18)

where

ψm(ξ) = (2mm!
√
π)−1/2e−ξ

2/2Hm(ξ). (1.19)
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1.2 Angular Momentum of light

The function ψm(ξ) is the eigenstate of the harmonic oscillator, defined by the

Hamiltonian

H =
1

2

(
− ∂2

∂ξ2
+ ξ2

)
, (1.20)

and it is straightforward to generalize it to the two-dimensional case. The mode ex-

pression in (1.18) has three parameters that depend on the z coordinate, the beam

radius R(z), the Gouy phase and the beam waist w(z). We can see that the differ-

ence between the beam propagation and the evolution of the harmonic oscillator are

in these terms, as they describe the effect of diffraction of the beam, absent in the

harmonic oscillator eigenfunctions, due to the confining harmonic potential. However,

the variation of the term arctan
(
z
zR

)
, which multiplies the equivalent of the energy

level (m + 1/2) + (n + 1/2), is analogous to the phase Ωt gained by the oscillator of

frequency Ω with time. Since the Gouy phase goes from −π/2 to π/2 during a free

propagation from −∞ to∞, this evolution is equivalent to half a cycle of the oscillator.

This analogy offers the possibility of applying the operator algebra of the harmonic

oscillator to the paraxial beam optics. In this context, the LGlp modes are the eigen-

states of the orbital angular momentum operator and each photon in this mode carries

an orbital angular momentum of l~. The index p represents the energy of the oscillator,

and l represents the difference between the right-hand and the left-hand excitations, so

it goes from −p to p.

In a quadratic index medium with the form n2 = n2
0[1−g2(x2+y2)] we obtain steady-

state solutions [16], i.e., without the diffraction terms. In this case the quadratic index

acts as the quadratic potential of the two-dimensional harmonic oscillator, spatially

containing the states.

1.2 Angular Momentum of light

The rotational characteristics of a light beam are generally expressed by the angular

momentum of the optical field. In order to discuss the angular momentum of a light

beam, we must examine some of its general properties. In classical electromagnetic

theory, the time averaged linear momentum density and angular momentum density

7



1. INTRODUCTION

are given by [17]:

p = ε0〈E×B〉 , (1.21)

j = ε0(r× 〈E×B〉) = r× p , (1.22)

and the total linear and angular momenta are obtained by the integration of these

quantities over all space:

P =

∫
d3rp , (1.23)

J =

∫
d3rj . (1.24)

Making use of the complex notation of Eq. (1.7), and using Maxwell’s equation

iωB(+) = ∇×E(+), we can write the linear and angular momenta as

P = Re
ε0

2iω

∫
d3r E(+)∗ ×

(
∇×E(+)

)
, (1.25)

J = Re
ε0

2iω

∫
d3r r×

[
E(+)∗ ×

(
∇×E(+)

)]
. (1.26)

Using partial integration and the fact that E is a transverse field, and considering that

the fields vanish as |r| → ∞ we obtain [11, 18]

P = Re
ε0

2iω

∫
d3r

∑
j=x,y,z

E
(+)∗
j ∇E

(+)
j , (1.27)

J = Re
ε0

2iω

∫
d3r

∑
j=x,y,z

E
(+)∗
j (r×∇)E

(+)
j

+ Re
ε0

2iω

∫
d3r E(+)∗ ×E(+) . (1.28)

It is clear from the expression above the separation between the orbital angular

momentum (OAM) represented by the first term of J, and the spin angular momen-

tum, represented by the second term. The OAM is related to the macroscopic energy

circulation caused by the beam’s spatial configuration, and depends on the phase gra-

dient. The spin term is clearly independent of the choice of reference point or origin of

coordinates, so it is considered an intrinsic property of the beam and it is associated

with light beams that carry circular or elliptic polarization.

The distinction between spin and orbital angular momentum is sometimes mistaken

for the distinction between intrinsic and extrinsic angular momentum. To explain the

8



1.2 Angular Momentum of light

latter, we shall look at the total angular momentum with respect to a different reference

point, denoted r0. From Eq. (1.26) we have

J(r0) = Re
ε0

2iω

∫
d3r (r− r0)×

[
E(+)∗ ×

(
∇×E(+)

)]
= Re

ε0
2iω

∫
d3r r×

[
E(+)∗ ×

(
∇×E(+)

)]
− r0 × Re

ε0
2iω

∫
d3r E(+)∗ ×

(
∇×E(+)

)
= J(0)− r0 ×P . (1.29)

As we can see, the first term of this equation is the angular momentum J from Eq.

(1.28), which encompasses the OAM and the spin term. However there is also a new

orbital term, which depends explicitly on r0. We can express the OAM and spin

components as:

Lo(r0) = Re
ε0

2iω

∫
d3r

∑
j=x,y,z

E
(+)∗
j (r×∇)E

(+)
j − r0 ×P , (1.30)

Ls = Re
ε0

2iω

∫
d3r E(+)∗ ×E(+) . (1.31)

Now we can write the OAM with respect to another reference point r′0 as Lo(r′0),

and look at the difference ∆Lo

∆Lo = Lo(r′0)− Lo(r0) = (r′0 − r0)×P (1.32)

We can define the z direction as the direction of the total linear momentum P, i.e.,

P = Pεz. In this case, ∆Loz = [(r′0− r0)×P] · εz = 0, which means that the variation

over the OAM due to a shift in the reference point only has transverse components

with respect to the total linear momentum direction. In this sense we can consider the

Loz component of the OAM as intrinsic [19]. In that way, a decomposition of the total

angular momentum in intrinsic and extrinsic components would be

J = JI + JE , (1.33)

where

JI = Ls + Lozεz ;

JE = Lo⊥ ≡ Lo − Lozεz . (1.34)

9
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The OAM is associated with the helical structure of the wavefront and also to the

existence of a vortex over the axis [20, 21], i.e., a phase singularity where the intensity

of the field is zero. A detailed calculation of the spin-orbit decomposition is found in

[11].

1.3 Quantization of the Angular Momentum

Performing the canonical quantization of the electromagnetic field, we can represent

the fields E, B and A as operators. We will work in the Coulomb gauge, therefore the

vector field A satisfies the wave equation

∇2A(r, t)− 1

c2

∂2A(r, t)

∂t2
(r, t) = 0 (1.35)

and

∇ ·A(r, t) = 0, (1.36)

and the electric and magnetic fields are given by

E(r, t) = −∂A

∂t
(r, t), (1.37)

B(r, t) = ∇×A(r, t). (1.38)

The expansion for the field operators Ê(r, t), B̂(r, t) and Â(r, t) can be written as

[11]:

Ê(r, t) =
1

L3/2

∑
k

∑
s

(
~ω
2ε0

)1/2

[iâks(0)εkse
i(k·r−ωt) + h.c.]; (1.39)

B̂(r, t) =
1

L3/2

∑
k

∑
s

(
~

2ωε0

)1/2

[iâks(0)(k× εks)e
i(k·r−ωt) + h.c.]; (1.40)

Â(r, t) =
1

L3/2

∑
k

∑
s

(
~

2ωε0

)1/2

[âks(0)εkse
i(k·r−ωt) + h.c.], (1.41)

where L is the size of the quantization box, âks(t) and â†ks(t) are the annihilation and

creation operators and h.c. stands for hermitian conjugate.

Now we can find a quantized form for the orbital and spin parts of the angular

momentum using the expressions above. The classical form of Lo and Ls given by Eqs.

10



1.3 Quantization of the Angular Momentum

(1.30) and (1.31) can also be written as [11]:

Lo(r0) = ε0
∑

i=x,y,z

∫
Ei(r×∇)Aid

3r − r0 ×P , (1.42)

Ls = ε0

∫
E×Ad3r . (1.43)

Performing the symmetrization we can define the Hermitian spin angular momentum

operator as:

L̂s =
1

2
ε0

∫
L3

(Ê× Â− Â× Ê)d3r . (1.44)

For the orbital part we have

L̂o(r0) = L̂o(0)− r0 × P̂ , (1.45)

with

L̂o(0) =
1

2
ε0

∫
L3

{Êi(r×∇)Âi + [(r×∇)Âi]Êi}d3r . (1.46)

1.3.1 Spin Angular Momentum Operator

Using the mode expansions of Eq. (1.39) we can rewrite Eq. (1.44) as:

L̂s =
1

2L3

∑
k,k′

∑
s,s′

(
~ω
2

)1/2( ~
2ω′

)1/2 ∫
L3

[iâks(0)εkse
i(k·r−ωt) + h.c.]

× [âk′s′(0)εk′s′e
i(k·r−ωt) + h.c.]d3r + h.c. . (1.47)

Performing the volume integral and using the commutation relations between âk′s′ and

â†k′s′ we have

L̂s = i~
∑
k,s

∑
s′

(â†ks′ âks +
1

2
δss′)(εks × ε∗ks′) . (1.48)

In order to simplify the expression of L̂s we can choose to examine two special cases

of polarization basis. If εk1 and εk2 are real, orthogonal unit vectors, corresponding to

two orthogonal linear polarizations, then

εks × ε∗ks′ = ±κ(1− δss′) , (1.49)

where κ is the unit vector in the direction of the wave vector k. Substituting this result

in Eq. (1.48) we obtain

L̂s = i~
∑
k

κ(â†k2âk1 − â†k1âk2) , (1.50)

11
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which shows that each component of the L̂s operator is in the wave vector direction.

Now it is interesting to look for a polarization basis in which the L̂s operator

is diagonal in terms of Fock states. To achieve that, we must find the polarization

vectors such that εks × ε∗ks′ ∝ δss′ . It turns out that the circular polarization vectors

εkλ(λ = ±1) defined below fulfill this condition:

εk,+1 =
1√
2

(εk1 + iεk2) (1.51)

εk,−1 =
1√
2

(iεk1 + εk2) . (1.52)

These vectors represent right-hand and left-hand circularly polarized light and they

satisfy the condition

εkλ × ε∗kλ′ = −iλκδλλ′ , (1.53)

which, substituted into Eq. (1.48), leads to

L̂s =
∑
k,λ

~κλ(â†kλâkλ +
1

2
)

=
∑
k

~κ(n̂k,+1 − n̂k,−1) , (1.54)

where n̂kλ = â†kλâkλ is the number operator. We can interpret the above equation and

observe that each photon with right-hand(left-hand) circular polarization contributes

with +(−)~κ to the total spin angular momentum. The projection of the spin angular

momentum on the direction of propagation is the helicity and the parameter λ = ±1

is the spin of the photon. The spin angular momentum per photon can be ±~. Since

L̂s can be written as a function of the number operators n̂kλ, it commutes with the

Hamiltonian operator Ĥ for the free electromagnetic field, and therefore is a constant

of the motion.

1.3.2 Orbital Angular Momentum Operator

For the orbital part of the angular momentum operator the expansion in plane waves

is not as suitable as for the spin part. The fact that the quantization was made with a

box with a discrete set of modes breaks the symmetry of the directions of propagation.

Since the OAM depends on the space functions of the modes, we have to resort to a

12



1.3 Quantization of the Angular Momentum

continuous mode decomposition of the field operators. In a continuous Fock space we

have:

Â(k, t) =
∑
s

â(k, s)ε(k, s)e−iωt , (1.55)

where k is a continuous variable. With this expansion the OAM operator can be

expressed as [22]:

L̂o(0) = − i~
2

∫ [
Â
†
i (k, t)(k×∇k)Âi(k, t)− h.c.

]
d3k , (1.56)

where ∇k is the gradient operator with respect to k.
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2

Spin-Orbit Entanglement in

Paraxial Modes

In the field of Quantum Information, photonic systems are frequently used to perform

experiments. There are many degrees of freedom of a photon that can be useful such

as polarization, transverse mode, frequency, path of propagation and so on. In our

work we exploit the polarization state of light and the transverse profile modes. In the

first section of the chapter we will show how these two properties can be described as

a qubit, making way to Quantum Information applications.

2.1 Polarization and Transverse Mode Qubits

The qubit is a fundamental concept for Quantum Information and Quantum Compu-

tation [23]. It is a mathematical object defined as an arbitrary superposition, with

weights that are complex numbers, of two possible orthogonal states. The interest of

such an object is that in Quantum Physics, several systems allow the definition of a

subspace of this type, such as two energy levels of an atom, the alignment of a nuclear

spin in a uniform magnetic field, and also the polarization of a photon. The qubit has

a geometrical representation called the Bloch sphere. If we write the arbitrary state of

one qubit as

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 , (2.1)

then the numbers θ and φ define a point in the surface of the sphere shown in Fig. 2.1.
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2. SPIN-ORBIT ENTANGLEMENT IN PARAXIAL MODES

Figure 2.1: Bloch Sphere

The arbitrary state of Eq. (2.1) is expressed in terms of the computational basis

{|0〉, |1〉}, also called the Z basis, because it is formed by the eigenvectors of the Pauli

operator σz. Another possible choice of basis is the set {|+〉, |−〉} where |+〉 = |0〉+|1〉√
2

and |−〉 = |0〉−|1〉√
2

. This is known as the X basis, composed by the eigenvectors of σx.

The polarization state of a photon presents the same mathematical structure of a

qubit, and has its own geometrical representation, called the Poincaré sphere [9]. In

this representation, the cartesian coordinates of a point in the sphere correspond to the

Stokes parameters that describe the polarization state.

In [24] Padgett and co-workers develop an analog of the Poincaré sphere to represent

the first order transverse modes, presented in Section 1.1. To build this representation,

they defined new Stokes parameters where the LG modes play the role of the circular

polarization, and each HG mode substitutes the linear polarization presenting the same

orientation. The definition follows:

o1 =
IHG0◦

10
− IHG90◦

10

IHG0◦
10

+ IHG90◦
10

,

o2 =
IHG45◦

10
− IHG135◦

10

IHG45◦
10

+ IHG135◦
10

,

o3 =
ILG1

0
− ILG−1

0

ILG1
0

+ ILG−1
0

, (2.2)

where IHG and ILG are the intensities associated with the mode indicated in the sub-

script. The two Poincaré spheres are shown in Figure 2.2.
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2.2 Spin-Orbit Modes

Figure 2.2: Poincaré Sphere and Transverse modes Sphere

2.2 Spin-Orbit Modes

We can label the polarization unit vectors according to their orientation, denoting the

horizontally oriented unit vector as εH and the vertical one as εV . Similarly, we can

denote the HG10 mode as ψh and HG01 mode as ψv, also evidencing their natural

orientation. The pair of modes {ψh, ψv} forms a basis for the first-order subspace of

transverse modes. In Fig. 2.3 we can see how to decompose different modes in the

{ψh, ψv} basis. Combining the spin-orbit degrees of freedom we can define an arbitrary

spin-orbit mode E(r) for the electromagnetic field [25] as

E(r) = αψh(r)εH + βψh(r)εV + γψv(r)εH + δψv(r)εV . (2.3)

Figure 2.3: Decomposition of the ψ45◦ , ψ135◦ , ψ+1 and ψ−1 transverse modes in the

{ψh, ψv} basis

We can also define two types of spin-orbit modes, the separable (S) and non-

separable (NS) ones. If the polarization part and the orbital part can be described

17



2. SPIN-ORBIT ENTANGLEMENT IN PARAXIAL MODES

separately, then the mode is called separable. It means that one single state of polar-

ization is attributed to the entire wave front, in contrast with the NS case, where the

modes exhibit a polarization gradient leading to a polarization-vortex behavior [26].

An arbitrary separable mode is of the form:

ES(r) = [αhψh(r) + αvψv(r)](βHεH + βV εV ). (2.4)

The criteria to distinguish between separable and non-separable is analogous to the

concurrence [27]. For the mode in Eq. (2.3), the quantity C is defined as

C = 2|αδ − βγ| . (2.5)

It is important to note that, even for maximally non-separable (MNS) modes, with

C = 1, the concept of entanglement does not apply. The modes described here represent

classical amplitudes. The quantum aspect will only arise if we excite these modes with

single photons, as will be discussed in Section 2.4.

The MNS modes have a mathematical structure analog to the one of maximally

entangled states. One example of MNS mode is

EMNS(r) =
1√
2

[ψh(r)εH + ψv(r)εV ]. (2.6)

There is an SO(3) representation of the MNS modes, developed in [28, 29] where each

point in the volume of the SO(3) sphere corresponds to a MNS mode and two points

diametrically opposite are identified. This representation in terms of optical modes

allowed the experimental demonstration of the double connected nature of the SO(3)

rotation group and the investigation of the topological phase acquired by a laser beam

passing through a cycle of spin-orbit transformations [25].

Due to the similarity with the mathematical structure of the Bell states [23], we

can define a set of four MNS modes as Bell modes, as follows:

EΦ+(r) =
1√
2

[ψh(r)εH + ψv(r)εV ] ,

EΦ−(r) =
1√
2

[ψh(r)εH − ψv(r)εV ] ,

EΨ+(r) =
1√
2

[ψh(r)εV + ψv(r)εH ] ,

EΨ−(r) =
1√
2

[ψh(r)εV − ψv(r)εH ] . (2.7)

These modes form an alternative basis for the subspace of first order spin-orbit modes.
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2.3 Experimental Production of Spin-Orbit Modes

2.3 Experimental Production of Spin-Orbit Modes

Now that we have presented the kind of modes of the electromagnetic field we are

interested in, it is important to describe their production in the laboratory. For the

polarization degree of freedom, the techniques applied are quite simple. We have a

laser source which already provides us with a fairly well polarized beam. Even if it is

not the case, we can separate two polarized components of a beam using a polarizing

beam splitter (PBS). Starting from a well known linearly polarized beam, it is possible

to manipulate its polarization with half-wave plates (HWP) and quarter-wave plates

(QWP). In fact, with a set of two QWP and one HWP it is possible to perform any

unitary operation over the polarization state [30].

2.3.1 Holographic masks to generate LG and HG modes

In this subsection we briefly describe the techniques to access the orbital degree of

freedom necessary to our experiments. First of all, we must be able to generate the

modes we will work with, that is, the first order HG and LG modes. One of many

possible ways to accomplish that is to build holographic masks that, once in the path

of the beam, generate the desired mode. There are many types of masks, which can be

produced with different techniques [31, 32]. The general idea is to create an interference

pattern of the desired beam profile with a reference beam, usually a plane wave. The

pattern is computationally generated using the analytic description of the desired mode.

The final result is a density plot of the squared modulus of the sum of the amplitudes

of the interfering beams. The calculated interference can be normal or tilted, if the

beams are incident with a relative angle. In the second case, the generated beam will

propagate in a different direction from the incident beam, reconstructing the geometry

of the generation of the hologram. Two examples of interference patterns, one normal

and one tilted, are shown in Figure 2.4.

The interference pattern can be miniaturized and printed in a microfilm, which

constitutes an amplitude mask. The transmission coefficient in each point of the mask

depends on the amplitude of the interference. It is simpler to make a binary transmis-

sion coefficient, so the mask is black where the normalized amplitude is bigger than

0.5, and transparent everywhere else. This binary pattern can also be engraved into

a phase mask, substituting the black and white areas with thicker and thiner areas,
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2. SPIN-ORBIT ENTANGLEMENT IN PARAXIAL MODES

(a) Normal interference pattern be-

tween a plane wave and an LG1
0

mode

(b) Tilted interference pattern be-

tween a plane wave and an LG1
0

mode

Figure 2.4: Interference patterns for holographic masks

forming a relief. The propagation through the thicker parts gives the beam a phase of

π relative to the thinner ones.

A peculiar aspect of the binary masks is the generation of a multiplicity of modes,

as a diffraction grating. This aspect can be undesirable if we are interested in just one

of the modes, as we end up loosing a significant part of the initial intensity of the beam.

However in some experiments this multiple generation of modes can be an advantage,

if we are interested in more than one of them [25]. One possible way to reduce the loss

of intensity to the higher order diffraction modes is to use a blazed mask. It represents

a compromise between the simpler binary mask and the full hologram generated by the

interference pattern.

In our experiments we have used phase masks produced by a member of the lab-

oratory, Carlos Eduardo R. de Souza, and the detailed description of the process can

be found in [33]. It is possible to produce masks to generate both LG and HG modes,

and their profile is shown in Figs. 2.5(a) and 2.5(b).

Once we have a starter mode, we can obtain other modes through some manipu-

lations. One way to transform the transverse mode of a beam is to use a Dove prism

[34]. Inside the prism, the beam suffers a refraction, then a total internal reflection,

and finally another refraction as it exits the prism. The net effect is to invert the image

with respect to the plane of reflection. So if the prism is rotated at an angle θ with
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(a) HG mask (b) LG mask

Figure 2.5: Masks

respect to the vertical it will reflect the image in an apparent rotation of 2θ.

It is interesting to note that, for an LG mode, even though it presents rotational

symmetry, it can still be affected by the Dove prism. Two Dove prisms, rotated with

respect to each other by an angle θ rotate the passing beam by an angle 2θ. If the

beam has a term eilφ it becomes eil(φ+2θ), so the two Dove prisms give the LG beam

an l dependent phase [35].

To create a mode such as the one in Eq. (2.3) we must be able to superpose coher-

ently each of the four components, and also we must be able to choose the parameters

α, β, γ and δ. We can see an example of setup in Fig. 2.6. In this setup an HG10 mode

is produced by a holographic mask and then a Mach-Zender interferometer manipulates

this mode in two different ways: in one arm, the polarization is rotated with a HWP,

going from horizontal to vertical, and in the other arm the transverse mode is rotated,

going from HG10 to HG01. The two resulting modified modes are superimposed in the

last beam splitter (BS), and the final mode is

E(r) =
1√
2

[ψh(r)εV + ψv(r)εH ], (2.8)

which is one example of maximally non-separable mode.

2.3.2 Q-plates and other experimental methods

Other devices for manipulating the OAM degree of freedom include cylindrical lenses

[21], spiral phase plates [36] and q-plates [37]. The q-plates are a very interesting and

successful example of these methods since they are meant not only to generate OAM

modes, but also to couple the orbital and spin degrees of freedom of a photon. It

enables in one device a kind of process that was only possible through interferometric
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HG mask

PBS

BS

DP@π/4 HWP@π/4

Laser

HWP@θ

[ ]+

-[ ]

Figure 2.6: Mach-Zender interferometer with a half wave plate (HWP) oriented at π/4

radians and a Dove prism (DP) also oriented at π/4 radians. The arrows close to the

transverse profile pictures represent the polarization orientation.
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techniques before. The q-plate is made from a birefringent material inducing a phase

retardation of δ. It presents an optical pattern characterized by two indices, q and

α0. q is the number of rotations that the optical axis exhibits in a path circling once

around the center of the plate, and α0 is the initial optical axis orientation with respect

to some reference orientation, i.e., α0 is the angle that the optical axis forms at a

reference angular position.

The plate has its optimal tuning when δ = π. In this situation, an incoming beam

carrying circular polarization has its OAM state changed. The azimuthal index l will

change by an amount ∆l = ±2q, where the sign is positive for left-circular and negative

for right-circular polarization. The handedness of the output circular polarization is

also inverted.

2.4 Quantization of the Spin-Orbit Modes

In a quantum mechanical description of light, the electromagnetic field is quantized

so we must define the spin-orbit modes described in Section 2.2 in this context. We

remind here the expression given in Section 1.1 for the classical electric field:

E(r, t) = E(+)(r, t) + (E(+)(r, t))∗ , (2.9)

where

E(+)(r, t) = e−i(ωt−kz)εu(r)E(z, t). (2.10)

The quantum field operator Ê(+)(r, t) is analog to the complex field E(+)(r, t) with the

classical amplitude E(z, t) being substituted by an amplitude operator â for each mode.

The expansion of Ê(+)(r, t) in plane wave modes is given by:

Ê(+)(r, t) = i
∑
i

√
~ωi
2ε0

fi(r)âie
−iωit , (2.11)

where

fi(r) = L−
3
2 εie

iki·r (2.12)

is the spatial function, normalized inside the quantization box.

The plane wave expansion is the most simple, but it is not very physical, since the

wave front in these modes is infinite. As we work with laser beams, we are interested

in expanding the field operator in terms of either the LG modes or the HG modes,
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that obey the paraxial equation, and were introduced in Section 1.1. We can restrict

ourselves to a monochromatic field for the purpose of all the experiments described

here. In this case we can rewrite the field operator of a given frequency ω as:

Ê(+)(r, t) = i
∑
λ,σ

√
~ω

2ε0L
εσuλ(r)âλσe

−iω(t−z/c) (2.13)

The mode amplitudes carry the indices σ for the polarization and λ for the transverse

distribution. λ can represent a set of indices, depending on the choice of transverse

basis. If we choose the HG modes, λ = {m,n} with m,n = 0, 1, 2, ...,∞, and alterna-

tively, if we choose the LG basis, λ = {p, l} with p = 0, 1, 2, ...,∞ and l can be any

integer from −p to p.

In this work we restrict ourselves to the first order transverse modes subspace.

Adding the polarization, we have a 4 dimensional complex space, for which we can

chose several different basis. The first and perhaps most simple one is the one used in

Eq. (2.3). In this basis, the electric field operator is expressed as:

Ê(r) = ψh(r)εH âhH + ψh(r)εV âhV + ψv(r)εH âvH + ψv(r)εV âvV . (2.14)

We can also choose the rotated basis {εα+, εα−} and {ψβ+, ψβ−} combined, to express

the field operator. With the relations

εα+ = εH cosα+ εV sinα ,

εα− = −εH sinα+ εV cosα ,

ψβ+(r) = ψh(r) cosβ + ψv(r) sinβ ,

ψβ−(r) = −ψh(r) sinβ + ψv(r) cosβ , (2.15)
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2.4 Quantization of the Spin-Orbit Modes

we can derive the relations between the amplitude operators in the two basis:

Ê(r) = ψβ+(r)εα+âβ+α+ + ψβ+(r)εα−âβ+α−

+ψβ−(r)εα+âβ−α+ + ψβ−(r)εα−âβ−α−

= ψh(r)εH [cosα cosβ âβ+α+ − sinα cosβ âβ+α−

− cosα sinβ âβ−α+ + sinα sinβ âβ−α−]

+ψv(r)εH [cosα sinβ âβ+α+ − sinα sinβ âβ+α−

+ cosα cosβ âβ−α+ − sinα cosβ âβ−α−]

+ψh(r)εV [sinα cosβ âβ+α+ + cosα cosβ âβ+α−

− sinα sinβ âβ−α+ − cosα sinβ âβ−α−]

+ψv(r)εV [sinα sinβ âβ+α+ + cosα sinβ âβ+α−

+ sinα cosβ âβ−α+ + cosα cosβ âβ−α−] .

(2.16)

Looking at Eq. (2.14) we can identify the terms in brakets with the operators âhH ,

âvH , âhV and âvV .

One important alternative basis is the Bell basis, presented in Eq. (2.7), which is

formed by four different maximally non-separable modes. The field operator in this

basis is:

Ê(r) =
1√
2

[ψh(r)εH + ψv(r)εV ]âΦ+ +
1√
2

[ψh(r)εH − ψv(r)εV ]âΦ−

+
1√
2

[ψh(r)εV + ψv(r)εH ]âΨ+ +
1√
2

[ψh(r)εV − ψv(r)εH ]âΨ− . (2.17)

If we again isolate the terms ψh(r)εH , ψv(r)εH , ψh(r)εV and ψv(r)εV as in Eq. (2.16),

we can find the relations:

âhH =
1√
2

(âΦ+ + âΦ−) ;

âvV =
1√
2

(âΦ+ − âΦ−) ;

âhV =
1√
2

(âΨ+ + âΨ−) ;

âvH =
1√
2

(âΨ+ − âΨ−) . (2.18)
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Note that there is no choice of values for the angles α and β in Eq. (2.16) that

leads to this Bell basis. It is reminiscent of the fact that there are no local rotations

that can transform a separable 2-qubit state into an entangled state.

Now that we have defined the annihilation operators âλσ for each of the modes of

our 4-dimensional basis, we can also define their hermitian conjugates â†λσ, and the

number operators n̂λσ = â†λσâλσ. The tensor product of the eigenstates of the number

operator |nλσ〉 over the four modes of the basis forms a Fock state:

|{n}〉 =
⊗
λ,σ

|nλσ〉 , (2.19)

where {n} is the set of occupation numbers nσ1λ1 , nσ2λ1 , ... for all four modes. We can

build a Fock state by applying repeatedly the creation operators â†λσ over the vacuum

state |{0}〉, with the proper normalization:

|{n}〉 =
⊗
λ,σ

[
(â†λσ)nλσ√

(nλσ)!

]
|{0}〉 . (2.20)

We can also build a coherent state on one of the possible modes, which written in

the Fock basis has the form:

|νλσ〉 = e−|ν|
2/2

∞∑
nλσ=0

(νâ†λσ)nλσ√
(nλσ)!

|0〉 . (2.21)

Let us now analyze which states can be generated by the experimental setup of

Figure 2.6. If we pump the apparatus with a single photon source, the state generated

will be the Fock state:

|1Ψ+〉 = â†
Ψ+ |0〉 . (2.22)

This is an entangled state if we make the partition between polarization and transverse

mode, as we can see by rewriting it in the {hH, hV, vH, vV } basis:

|1Ψ+〉 =
1√
2

(â†hV + â†vH)|0〉 =
1√
2

[|0hH , 1hV , 0vH , 0vV 〉+ |0hH , 0hV , 1vH , 0vV 〉] . (2.23)

We can also pump the apparatus with a gaussian beam at the fundamental mode

of the laser, which can be approximated by a coherent state. After the mask and the

MZ interferometer, this fundamental mode has been transformed into the MNS mode

(2.8), so the final state is

|νΨ+〉 = e−|ν|
2/2

∞∑
nΨ+=0

(νâ†
Ψ+)nΨ+√
(nΨ+)!

|0〉 . (2.24)
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We can look at the first terms of the sum, and write the â†
Ψ+ operator in terms of the

set {â†hH , â
†
vH , â

†
hV , â

†
vV }:

|νΨ+〉 = e−|ν|
2/2

[
1 + νâ†

Ψ+ +
(νâ†

Ψ+)2

2
+ ...

]
|0〉 (2.25)

= e−|ν|
2/2

1 + ν

(
â†hV + â†vH√

2

)
+
ν2

2

(
â†hV + â†vH√

2

)2

+ ...

 |0〉
= e−|ν|

2/2

[
|0〉+ ν

(
|0hH , 1hV , 0vH , 0vV 〉+ |0hH , 0hV , 1vH , 0vV 〉√

2

)
+ ...

]
.

From this derivation we can see that the 1 photon term is the same entangled state

that we obtained in Eq. (2.23).

We can also write the full coherent state |νΨ+〉 in terms of the modes ψhεV and

ψvεH . Using again the relation between â†
Ψ+ , â†hV and â†vH , we have:

|νΨ+〉 = e−|ν|
2/2

1 + ν

(
â†hV + â†vH√

2

)
+
ν2

2

(
â†hV + â†vH√

2

)2

+ ...

 |0〉
= e−|ν|

2/2
∞∑
N=0

N∑
k=0

(ν/
√

2)N√
k!(N − k)!

|khV , (N − k)vH〉

= e−|ν|
2/2

∞∑
k=0

∞∑
l=0

(ν/
√

2)k+l

√
k!l!

|khV , lvH〉

= |(ν/
√

2)hV , (ν/
√

2)vH〉 . (2.26)

So, even if the 1 photon part of this state is maximally entangled in the {hV, vH}
subspace, the complete state is a product state.
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3

Quantum Cryptography with

Spin-Orbit Modes

The problem of secure communication exists long before quantum information theory.

With the advent of quantum information algorithms, the problem of cryptography was

touched twice: in one hand, the modern cryptography schemes based on the difficulty

to factorize big numbers was threatened by the possibility of a much faster quantum

factorization algorithm. On the other hand, quantum information provided a new solu-

tion to the problem, with the fundamentally secure quantum key distribution protocol.

An introduction to the problem of quantum cryptography can be found in [23].

In this chapter we describe the BB84 quantum key distribution protocol in its orig-

inal form, and afterwards we present the proposal to perform such a protocol without

a shared reference frame between the two parties. This implementation follows the

idea of decoherence-free subspaces and was done in collaboration with Dr. Leandro

Aolita and Dr. Stephen Walborn from the UFRJ Quantum Optics group, who first

proposed the logical encoding allowing the communication without a shared reference

frame [38]. We will describe the experimental setup, exploring the polarization and

transverse modes of laser beams, and finally show our results. The work present in this

chapter is published in [39].
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3.1 BB84 Protocol

A Quantum Key Distribution protocol is based in the private key cryptography system.

A simple and effective private key cryptosystem is the Vernam cipher. The idea is that

if two parties, Alice and Bob, share a secret key in the form of a random string of

bits, they can add this string to any message they want to communicate using a public

channel. Since the other party also knows the key, it can subtract the key from the

encrypted message to get the original message. If Alice and Bob are the only ones who

have the key, the protocol is secure.

The question that arises is then how to produce and share such a key. Of course,

if Alice and Bob can meet, they can produce two copies of a key and share it. But if

they need to do the same thing being apart, then they need a secure way to share this

information. If they have a public quantum channel through which they can send qubits

with an error rate lower then a certain threshold, then the security is guaranteed by

the properties of quantum information. The two properties that guarantee the security

of the protocol are the no-cloning theorem and the fact that attempts to intercept the

information made by a third party (Eve) introduce disturbance to the signal, and are

eventually noticed [23].

Let us now describe the BB84 protocol, proposed by Bennett and Brassard [40] in

more detail. Alice wants to send a string of n bits to Bob. She can encode these bits

in n qubits, choosing randomly between two basis, X and Z for example. The encoding

follows Table 3.1 below:

0 1

X basis |+〉 = |0〉+|1〉√
2

|−〉 = |0〉−|1〉√
2

Z basis |0〉 |1〉

Table 3.1: Encoding table

Since the four possible states that Alice can send are not all mutually orthogonal,

no measurement can distinguish between them with complete certainty. When Bob

receives the qubits, he has to choose in which of the two possible basis he will measure.

Every time he chooses the same basis that Alice used in the encoding, his result will be

accurate, i.e., will correspond to the bit Alice wanted to encode. When he chooses the
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wrong basis, the result is right with only 50% probability, i.e., he has no real information

about the bit encoded.

After the communication of the sequence of n qubits, Alice and Bob compare their

choice of basis for each qubit sent/measured. They discard all the bits of the sequence

where there was no coincidence of basis, and keep the ones encoded and measured in

the same basis. For the latter, they can be sure that the information was transmitted

correctly. Note that the public announcement of the basis chosen, made after the

transmission of the qubits is complete, gives Eve no information.

To guarantee that there has been no eavesdropping, Alice and Bob have to sacrifice

some of the successful bits. They publicly announce a sequence of randomly chosen

bits and compare the results. If the number of disagreements is bigger than a given

boundary they must abort the protocol and start over. The boundary is determined

by the information reconciliation and privacy amplification algorithms that they can

perform.

3.2 Spaces Free of Decoherence

A very common way to implement the cryptography protocol described above is to use

the transmission of polarized single photons. This implementation requires that Alice

and Bob have aligned their reference frames, so that they can agree on the orientation

of a given state of polarization. The lack of alignment between the two parties is

equivalent to a collective random rotation over the qubits in the channel, a kind of

global decoherence.

The idea of decoherence-free subspaces was developed to circumvent this kind of

problem. One can envisage a logical qubit, encoded in a multi-qubit system, with the

appropriate symmetry properties so that the state is invariant under the decoherence

process. In the case of rotation-noise or lack of alignment it is interesting to find a

logical qubit that is rotationally invariant.

The proposal in [38] makes use of two degrees of freedom (polarization and trans-

verse spatial mode) of the same photon, so that a single photon carries two qubits. The

logical qubit states will be in fact two-qubit states. It is assumed that Alice and Bob

have established a common propagation direction through which they will send pho-

tons. This is important because in the paraxial approximation both the polarization
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and the transverse spatial mode of the photons are defined in the plane transverse to

the propagation direction. For example, the state of linear polarization of a photon can

be described by an observer as:

|Ψ〉 = cos θ|H〉+ sin θ|V 〉 (3.1)

where θ is the polarization orientation. In a different reference frame, rotated by an

angle δ from the first, the angle used to describe the same polarized photon would be

θ + δ instead of θ.

The transverse spatial mode can also be used to encode a qubit. We can use the

first order HG modes as a basis that spans all the first order modes, as discussed in

Section 2.2. These modes are also defined relative to their reference frame, and we can

define as |h〉 the HG10 mode and as |v〉 the HG01, which is equivalent to the HG10

after a 90◦ rotation. The state of a photon in a HG mode oriented at an angle θ is

given by:

|ψ〉 = cos θ|h〉+ sin θ|v〉 (3.2)

and similarly to the polarization, the angle used to describe this state will change if

the observer is in a rotated reference frame. In our notation, the upper case letters

designate polarization states and lower case letters designate transverse mode states.

Now we can define the logical qubit, combining the two degrees of freedom described

above. We have seen that a rotated reference frame will have the same effect over both

physical qubits. This is further guaranteed by the the fact that these two qubits can be

encoded in the same photon, so there is no distance between them. The computational

logical basis is defined as:{
|0L〉 =

|0〉|1〉 − |1〉|0〉√
2

, |1L〉 =
|0〉|0〉+ |1〉|1〉√

2

}
(3.3)

If we identify the horizontal states |H〉 and |h〉 with the |0〉 state in the Bloch sphere, and

consequently the states |V 〉 and |v〉 with the |1〉, then a rotation around the propagation

direction by an angle θ would be equivalent to a rotation Ry(2θ) around the y axis on

the Bloch sphere:

Ry(2θ)|0〉 = cos θ|0〉+ sin θ|1〉

Ry(2θ)|1〉 = cos θ|1〉 − sin θ|0〉 (3.4)

All states in the subspace generated by the basis in (3.3) are invariant under arbi-

trary bilateral rotations of the type Ry(2θ)⊗Ry(2θ).
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3.3 Alignment-free BB84

In order to establish a perfect shared reference frame it is necessary to exchange an

infinite amount of information [41, 42]. It is clear that a protocol which does not depend

on this would be valuable.

Our scheme uses the logical states defined in (3.3), with the two qubits being the

polarization and the transverse spatial mode of the same photon. We also need another

logical basis, {|+L〉, |−L〉}, to complete the protocol, analogously to what was outlined

in Section 3.1. These states are also eigenstates of Ry(θ)⊗Ry(θ) , so the entire protocol

is fault tolerant, since it occurs within the logical subspace. The protocol is implemented

in a “plug-and-play” configuration: Bob prepares |0L〉 as the initial state, sends it to

Alice, who encodes the information by transforming it into one of the four possible

states and then returns it to Bob. We chose this kind of setup because it is technically

simpler and it also makes the no-reference aspect more clear.

In Figure 3.1(a) we show a logical quantum circuit that describes the implementa-

tion of the protocol. The upper wire of the circuit represents the polarization qubit

and the lower represents the transverse mode. In the first box, Bob prepares the logical

state |0L〉 by performing a controlled-not (CNOT) over the product state |−〉|v〉. It is

shown in [38] that a rotation over the logical space RyL(θ) is equivalent to perform a

rotation Ry(θ) over the first qubit and do nothing with the second. So, in the second

box, Alice performs a rotation over the polarization qubit, thus rotating the logical

qubit. The angle θ of this rotation determines which logical qubit she encodes. Finally,

Bob chooses in which basis he will perform the measurement. This is done by choosing

the angle φ of a rotation over the polarization qubit, then performing a CNOT gate

and a Hadamard rotation on the polarization. The final measurement is always in the

H/V basis, hence the rotation before the measurement to select the basis.

Figure 3.1(b) shows the experimental setup. We used a He-Ne laser with a wave-

length of 632,8 nm and a holographic mask described in Section 2.3 to produce the first

order HG mode |v〉. To complete the preparation of the initial state of the quantum

circuit, we use a polarizing beam splitter (PBS) oriented at −45◦, so the polarization

transmitted is |−〉. The next step is the CNOT gate, which is implemented by a Mach-

Zender (MZ) interferometer. The control qubit is the polarization, so each path of

the interferometer corresponds to a different polarization, |H〉 or |V 〉. In the V-path,
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there is a Dove prism (DP), always oriented at 45◦, that transforms the HG-mode of

the photons as |v〉 → |h〉 and |h〉 → |v〉. In the H-path, nothing happens, as expected

from a CNOT gate. After the recombination of the two polarization components in

the last PBS, the state that exits the MZ is the |0L〉. The relative phase between the

two components is controlled by the piezoelectric translator (PZT) attached to one of

the mirrors, and is kept at zero. A nonzero phase changes the effect of the CNOT,

generating a state outside the logical subspace. The phase can be monitored at an aux-

iliary detector M, before the beam is attenuated to the single photon regime, without

affecting the protocol.

RRy(θ) RRy(φ) HH

v

_ H/V

prepare

0L

Alice

encode
Bob

measure

a)

PBSDP

HWP@α

HWP@α+θ

laser

HG mask

PBS

Alice

Bob

HWP@22.5°

PBS

HWP@β

HWP@β+φ
M

BS

attenuator

,v_

b)

T

R

PZT

0
L

PBS@45°

Figure 3.1: (a) Quantum circuit illustration of the BB84 protocol with logical states.

The upper wire represents the polarization and the lower wire the transverse mode of the

same photon. (b) Setup of the experiment. α and β are the angles of Alice’s and Bob’s

reference frames. M is a detector used for monitoring the phase of Bob’s interferometer.

After this preparation, Bob can send the photon in state |0L〉 to Alice. Alice’s

“encoding-station” consist of only two half wave plates (HWP), one oriented at an angle

α and the other at α + θ. Even though one wave plate can change the polarization of

the photon, it requires two to make a real rotation operator. We can describe in matrix
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notation the action of a single HWP oriented at angle α. In this notation we have

|H〉 =

(
1
0

)
, |V 〉 =

(
0
1

)
(3.5)

and

HWP (α) =

(
cos 2α sin 2α
sin 2α − cos 2α

)
. (3.6)

Two consecutive HWPs at angles α and α+ θ give

HWP (α+ θ)HWP (α) =

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)
(3.7)

which is equivalent to the rotation Ry(4θ) over the polarization qubit, and equivalently

a RyL(4θ) rotation on the logical subspace. So, the two HWPs can transform the state

|0L〉 into |0L〉, |1L〉, |+L〉 = (|0L〉+ |1L〉)/
√

2 or |−L〉 = (|0L〉 − |1L〉)/
√

2 if the relative

angle between them is θ = 0◦, 45◦, 22.5◦ or −22.5◦. Note that since the rotation depends

only on the angle θ, the angle α is free to vary. In fact, if we change the angle α we are

rotating the two HWPs together, simulating a change in the reference frame of Alice’s

laboratory. This will be useful in the final discussion.

After the encoding stage it is imperative to maintain the security of the transmission,

so at this point there should be an attenuator to guarantee that each bit will be carried

by single photons. After the transmission, Bob receives the state and must choose either

the 0L/1L or the +L/−L basis to perform the measurement. The choice is represented

by the angle φ, which is the relative angle between two HWPs in Bob’s laboratory. If

φ = 0◦ the measurement is performed in the 0L/1L basis, which is the standard basis

of the setup. In order to change basis Bob must make φ = 22.5◦, thus performing the

logical rotation RyL(4φ), and mapping the +L/−L states into the 0L/1L ones. Again,

there is a free angle parameter β that determines the orientation of Bob’s HWPs, and

can thus be used to rotate Bob’s reference frame.

The measure itself consists of a CNOT gate with the polarization qubit being the

control, and a Hadamard rotation. The CNOT gate is the same as the one used in

the preparation, so Bob can in fact use the same setup going in the opposite sense

through the unused entrance and exit ports of the MZ interferometer. However, in this

sense, the DP is in the H-path, so the effect of the MZ is equivalent to a XpCNOTXp
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logical operation, where Xp is the first Pauli operator acting on the polarization qubit.

Applying the XpCNOTXp transforms the states as

|0L〉 →
(|H〉 − |V 〉)√

2
|h〉 = |−〉|h〉, (3.8)

|1L〉 →
(|H〉+ |V 〉)√

2
|v〉 = |+〉|v〉. (3.9)

These two states can be distinguished by polarization measurements performed using

a HWP oriented at 22.5◦ and a PBS. The HWP acts as the Hadamard rotation in the

logical circuit. With this mapping, detector R will register |0L〉 and detector T will

register |1L〉.
First we look at the results assuming that Alice’s and Bob’s laboratory angles are the

same (α = β = 0◦) and then we show that the results do not depend on the laboratory

orientation. We have always used an intense laser, but attenuation to the single-photon

regime is straightforward and was already mentioned in the setup description.

Figure 3.2 shows the images taken with a charge-coupled-device (CCD) camera of

the intensity profiles that appear at positions R and T. In Figure 3.2(a) are the results

for β = 0◦ and φ = 0◦, which means that Bob is measuring in the 0L/1L basis. We

can see that when Alice sends either states |0L〉 or |1L〉, Bob detects light in just one

detector, with good visibility. When Alice sends the |±L〉 states, then both detectors are

illuminated with similar intensities. This split between the two detectors is necessary

for the security of the BB84 protocol. Similarly, when Bob chooses φ = 22, 5◦, he is

measuring in the +L/−L basis, so he can distinguish the |±L〉 states and no longer the

|0L〉 and |1L〉 states, as we can see in Figure 3.2(b). In both Figure 3.2(a) and Figure

3.2(b) the measurement is repeated while the angle of Alice’s station is rotated by

α = {0◦, 30◦, 60◦, 90◦}, changing the relative orientation between the two laboratories.

The images show that the measurement results are independent of this rotation.

To achieve a more quantitative proof of the independency on the relative angle,

we measured the intensities at positions R and T with an optical power meter. In

Figure 3.3 we can see the intensities in detectors R and T as a function of the angle

α when Alice sends the state |0L〉, for the two measurement basis. In all cases, the

intensity remains nearly constant while α is varied. We can also see that there is a

small probability (∼ 0.068) that Bob gets the wrong result even if he chooses the right

basis. This is mostly due to errors in the alignment of the interferometer.
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3.3 Alignment-free BB84

(a) Images from a CCD camera at detection

positions R and T when Bob measures in

the 0L/1L logical basis and Alice’s laboratory

frame is rotated by α = 0◦, 30◦, 60◦, and 90◦.

(b) Images from a CCD camera at detection

positions R and T when Bob measures in the

+L/−L logical basis and Alice’s laboratory

frame is rotated by α = 0◦, 30◦, 60◦, and 90◦.

Figure 3.2: Image results

Alice’s participation on the protocol consists only of a Ry(θ) operator, which de-

pends only on the relative angle θ between her two half wave plates and is thus inde-

pendent of the orientation angle α of Alice’s station. However, the equivalence between

the physical Ry(θ) operator on the first qubit and the logical operator RyL(θ) is a trait

of the logical basis defined in Eq. 3.3. Thus, the “alignment-free” aspect of the experi-

ment relies in the logical encoding. It is interesting to note that a similar plug-and-play

experiment (where Bob takes care of the preparation and measurement, and Alice just

rotates the state) using only photon polarization would allow the implementation of

a reference-free BB84 scheme, provided that Bob prepares and measures the photons

relative to the same reference frame. The logical states defined in Eq. 3.3, on the other
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Figure 3.3: Intensity measured with a power meter as a function of Alice’s laboratory

angle α. Solid lines are linear curve fits.

hand, are invariant even for different preparation and measurement reference frames,

and even if the state suffers undesired rotations during propagation.

As in the usual BB84 protocol, an eavesdropper Eve can attempt many different

types of attacks. Considering some of the possible eavesdropping strategies particular

to our protocol we see that, since each photon is in a polarization-mode entangled state,

no information is available if Eve measures only the polarization or transverse mode

of the photons. Also, any operation which removes the state from the logical subspace

defined by |0〉L and |1〉L will produce errors in the key string and will be detected by

Alice and Bob in the error-check procedure. The only advantageous strategies available

to Eve are those that are analogous to the usual BB84 attacks, such as intercept-resend

or cloning, for which the allowable quantum bit error rates for secure communication

are well-known [43].
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4

Spin-Orbit Bell Inequality

In this chapter we will first introduce and make a brief review on Bell inequalities.

Later we discuss the analogy between the usual quantum mechanical context of Bell

inequalities and our classical spin-orbit counterpart. Our spin-orbit inequality can show

the non-separability of the spin-orbit degrees of freedom of a classical laser beam. We

make use of the definition of separable and non-separable spin-orbit modes presented

in Section 2.2. Afterwards we discuss our experimental setup and results for the mea-

surement of such an inequality [44].

4.1 Introduction to Bell’s inequalities

The concept of Bell’s inequalities has its roots in the famous Einstein-Podolsky-Rosen

(EPR) Gedanken experiment [4, 45]. In this paper, the authors point out a “spooky

action at a distance” in Einstein words, that would arise according to the predictions of

Quantum Mechanics (QM). They were in fact evidencing for the first time the strange

properties of entangled states. At the time of the EPR paper QM was still being

questioned, and the possibility of a different theory obeying local realism had to be

tested. Since then there have been several experiments that confirm QM’s predictions,

and they do so through the violation of Bell’s inequalities [7, 46, 47]. Currently, the

interest in this subject is no longer to confirm QM (although there are still loopholes to

close [48]), but to use Bell’s inequalities as a tool to investigate new physical systems

and establish their possibilities in the realm of Quantum Information.
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4. SPIN-ORBIT BELL INEQUALITY

In the following we will draw an outline of the derivation of Bell’s theorem, and

consequently of Bell’s inequalities in the CHSH form [5, 6, 49]. We must start with

EPR-Bohm’s gedankenexperiment [50], that will be presented here in an optical form:

we have a source that emits two photons in different directions. Each photon will

go through a polarization analyzer followed by two detectors. The measurement for

each photon has then two possible outcomes, +1 or −1, representing two orthogonal

polarizations. Suppose that the polarizations state of the two photons is:

|Ψ〉 =
1√
2

(|HH〉+ |V V 〉) (4.1)

and we will denote by a and b the orientations of the two analyzers.

It is a simple matter to derive QM’s predictions for the probabilities of single de-

tections P±(a) and P±(b) and for the joint detections P±±(a, b) in any set of analyzer

orientations a and b. We have:

P+(a) = P−(a) =
1

2

P+(b) = P−(b) =
1

2
(4.2)

and

P++(a, b) = P−−(a, b) =
1

2
cos2(b− a)

P+−(a, b) = P−+(a, b) =
1

2
cos2(b− a) (4.3)

Now we can build a correlation coefficient using these probabilities:

M(a, b) = P++(a, b) + P−−(a, b)− P+−(a, b)− P−+(a, b) (4.4)

and using QM’s predictions we have

MQM (a, b) = cos[2(b− a)] (4.5)

So we can see that even though the single detection probabilities give us a completely

random set of results, the two measurements can be very correlated, depending on the

relative orientation. For the case where a = b, the correlation is perfect and MQM = 1.

Einstein believed that the probabilistic nature of QM was in fact a lack of information

in the theory. So he proposed that there should be a Local Supplementary Parameters
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4.1 Introduction to Bell’s inequalities

Theory that could predict with 100% of certainty the result of a measurement, if all

the variables of the problem are known. Bell’s inequalities were designed to test if such

a Local Supplementary Parameters Theory was possible. Bell explicitly introduced

supplementary parameters and with the locality assumption he derived results from

such a theory.

We can represent the result of each measurement by a bi-valued function:

A(λ, a) = ±1

B(λ, b) = ±1 (4.6)

that depend on the analyzer orientation and the supplementary parameter λ. We

assume that the variable λ has a probability distribution over the emitted photons

given by ρ(λ). The correlation function has then the form:

M(a, b) =

∫
dλρ(λ)A(λ, a)B(λ, b). (4.7)

Now consider the quantity

s(λ, a, a′, b, b′) = A(λ, a)B(λ, b)−A(λ, a)B(λ, b′) (4.8)

+ A(λ, a′)B(λ, b) +A(λ, a′)B(λ, b′)

= A(λ, a)[B(λ, b)−B(λ, b′)] +A(λ, a′)[B(λ, b) +B(λ, b′)].

Considering all the sixteen possible combinations of values for A(λ, a), A(λ, a′), B(λ, b)

and B(λ, b′), we can see that

s(λ, a, a′, b, b′) = ±2. (4.9)

so, taking the average of s(λ, a, a′, b, b′) over all the values of λ, we get

S(a, a′, b, b′) =

∫
dλρ(λ)s(λ, a, a′, b, b′)

= M(a, b)−M(a, b′) +M(a′, b) +M(a′, b′) (4.10)

and

−2 ≤ S(a, a′, b, b′) ≤ 2 (4.11)

We can conclude that, if there is a variable (or set of variables) λ, unknown to QM,

that can determine the results of all the measurements, then the quantity S(a, a′, b, b′)
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4. SPIN-ORBIT BELL INEQUALITY

is limited by (4.11). This form of inequality is the generalization of Bell’s inequalities

made by Clauser, Horne, Shimony and Holt [6].

For some sets of the orientation parameters a, a′, b, b′, QM’s predictions violate the

inequality above, thus conflicting with the Local Supplementary Parameters Theory.

We are left to conclude that QM is a nonlocal theory.

The next step is to test the inequality experimentally. The first experiment to

faithfully reproduce the proposal of EPR and successfully obtain a violation was done

by Aspect et al [7] using the correlations in polarization of pairs of photons emitted in

a radiative cascade. It is interesting to look for the set of orientations a, a′, b, b′ that

allows for the maximal violation of the inequality. It can be shown that to obtain the

extreme values of SQM :

b− a = a′ − b = b′ − a′ = θ (4.12)

and

θ = ±π
8

for SQM = 2
√

2

θ = ±3π

8
for SQM = −2

√
2 (4.13)

The important quantities here are the relative angles, which are depicted in Figure 4.1.

Figure 4.1: Relative orientations to maximize the value of SQM and obtain maximum

violation of Bell’s inequalities

Once the violation is obtained there are some points to discuss. First we should

interpret this result, and we can do that by looking at the assumptions necessary to

derive the inequality:
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4.2 The Spin-Orbit Inequality

• distant correlations can be understood with the introduction of the parameter λ

that carries information necessary to the outcome of measurements.

• the functions A(λ) , B(λ), and ρ(λ) obey the locality condition, i.e. the function

that decides the outcome of the detector of one of the parties cannot depend on

the choice of orientation of the polarizer of the other party, since they are spatially

separated.

So we can conclude that QM presents a kind of non-locality. One could think that

this means that QM allows for faster than light communication, but in fact it doesn’t,

and causality is maintained [51].

4.2 The Spin-Orbit Inequality

The majority of proposed experiments to violate Bell’s inequalities relies on a pair of

entangled quantum particles, so the particles can be sent far away from each other, and

the violation becomes a genuine non-locality test [52].

Entanglement in single particle degrees of freedom has already been investigated in

[53], where a Bell-like inequality was violated by entangling the spin and the beam path

of single neutrons in an interferometer. The same kind of single particle scheme has

been proposed for photonic setups using the polarization and transverse (spin-orbit)

modes [54]. Simulations of Bell-inequalities in classical optics have also been discussed

in waveguides [55] and imaging systems [56]. The ability to produce and transform

beams carrying orbital angular momentum has allowed for the development of impor-

tant techniques with potential applications to quantum information [39, 57]. We have

proposed and experimentally tested a setup to investigate the spin-orbit separability of

a laser beam [44], which will be presented in this Chapter.

Following ref. [25] and Section 2.2, we make use of the definition of separable and

non-separable modes. The separable modes are those that can be written in the form

ES(r) = ψ(r)ε, where ψ(r) is a normalized c-number function of the transverse spatial

coordinates (transverse mode) and ε is a normalized polarization vector.

A criteria for the separability of the spin-orbit modes was also defined in Section

2.2. Let us take the arbitrary spin-orbit mode:

E(r) = A1ψv(r)εV +A2ψv(r)εH +A3ψh(r)εV +A4ψh(r)εH , (4.14)
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4. SPIN-ORBIT BELL INEQUALITY

for which C = 2|A2A3 − A1A4|, where Ai (i = 1 ... 4) are complex numbers satisfying∑4
i=1 |Ai|2 = 1. For non-separable modes 0 < C ≤ 1, C = 1 corresponds to a maximally

non-separable mode and C = 0 corresponds to a separable mode.

To develop the spin-orbit inequality we will use the rotated basis defined in (2.15):

εα+ = εH cosα+ εV sinα ,

εα− = −εH sinα+ εV cosα ,

ψβ+(r) = ψh(r) cosβ + ψv(r) sinβ ,

ψβ−(r) = −ψh(r) sinβ + ψv(r) cosβ , (4.15)

Consider the following normalized mode

EMNS(r) =
1√
2

[ψv(r)εV + ψh(r)εH ] . (4.16)

Re-writing this maximally non-separable mode in the rotated basis we get:

EMNS(r) =
1√
2
{cos[(β − α)](ψβ+(r)εα+ + ψβ−(r)εα−)

+ sin [(β − α)](ψβ−(r)εα+ − ψβ+(r)εα−)} . (4.17)

Let I(±)(±)(α, β) be the squared amplitude of the ψβ(±)(r)εα(±) component in the

expansion of EMNS(r) in the rotated basis. They play the same role as the detection

probabilities (4.3) in the quantum mechanical context. Due to the orthonormality of

{ψβ+, ψβ−} and {εα+, εα−} it can be easily shown that:

I++(α, β) + I+−(α, β) + I−+(α, β) + I−−(α, β) = 1 . (4.18)

Following the analogy with the usual quantum mechanical CHSH [6] inequality for spin

1/2 particles, we can define

M(α, β) = I++(α, β) + I−−(α, β)− I+−(α, β)− I−+(α, β) = cos [2(β − α)] , (4.19)

and derive a Bell-type inequality for the quantity

S = M(α1, β1) +M(α1, β2)−M(α2, β1) +M(α2, β2) . (4.20)

For any separable mode, the quantity S is limited as −2 6 S 6 2. This is to be

expected because having well defined states of polarization and transverse mode is
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4.3 The MZIM

equivalent to the Local Realism condition over quantum variables, since the results of

the measurements are pre-determined even if you don’t know them, and the choice of

basis for one variable will never interfere with the other. However this condition can

be violated for non-separable modes. A maximal violation of the previous inequality,

corresponding to S = 2
√

2, can be obtained for the set α1 = π/8 , α2 = 3π/8 , β1 =

0 , β2 = π/4 as discussed in Section 4.1.

4.3 The MZIM

In the two-photon experiment outlined in Section 4.1 there are two measurements of

the same kind of physical property, i.e., polarization of two different photons. In our

case the two degrees of freedom are of different nature, requiring a different apparatus.

So, in order to measure the proposed quantity S (4.20) we needed a “transverse mode

polarizing beam splitter (PBS)” and a “transverse mode half wave plate (HWP)”. The

second is quite easily achieved, consisting of a Dove prism (DP), but the first is less

simple.

We achieved our goal with the apparatus proposed in [58], which consists of a

Mach-Zender interferometer with an additional mirror (MZIM), as depicted in Figure

4.2.

BS

BS PZT

Figure 4.2: Mach-Zender interferometer with an additional mirror (MZIM) and a piezo-

electric transducer (PZT) in one mirror to control the relative phase.

The MZIM functioning is based on the parity of the modes. Parity is evaluated

according to the eigenvalue of the respective mode under reflection over the horizontal

plane. Each reflection gives a π phase to the odd modes and no phase to the even
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4. SPIN-ORBIT BELL INEQUALITY

modes, thus decomposing the incident beam into even and odd components. In our

case of interest, the odd modes of the basis are ψh(r)εV and ψv(r)εH and the even are

ψh(r)εH and ψv(r)εV . If we place a PBS at each exit of the MZIM, we can sort all four

modes of the basis and measure their intensities separately.

4.4 The Bell Measurement

The experimental setup to observe maximal violation of the non-separability inequal-

ity (4.20) is shown in Figure 4.3 and is composed by two stages: preparation of the

LASER

HWP@45
o

αHWP@

DP@45
o

DP@β

Preparation

φ

χ

Mask

BS1

BS4

BS3

MZIM

M2

M1

PBS2

PBS1

D1

D2
D3

D4

BS2

Measurement

Figure 4.3: Experimental setup for the Bell-type inequality violation using a non-

separable classical beam. HWP - half-wave plate, DP - Dove prism, (P)BS - (polarizing)

beam splitter, D1, D2, D3, and D4 - photo-current detectors.

maximally non-separable mode and measurement of the intensities I(±)(±)(α, β).

4.4.1 Preparation of the MNS mode

The preparation stage consists of a Mach-Zender (MZ) interferometer with a half-wave

plate (HWP@45◦) oriented at 45◦ with respect to the horizontal plane in one arm and

a Dove prism (DP@45◦) also oriented at 45◦ with respect to the horizontal plane in
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4.4 The Bell Measurement

the other arm. Before the MZ interferometer, the horizontally polarized TEM00 beam

from a high stability laser (Lightwave 142H-532-400SF) at 532nm passes through a

holographic mask [31, 59, 60] and produces mode E(r) = ψv(r)εH at the first diffraction

order. In the MZ interferometer, the half-wave plate converts εH into εV and the Dove

prism changes ψv(r) into ψh(r) so the resulting mode at the output BS2 is:

E(r) =
1√
2

[
ψh(r)εH + eiφψv(r)εV

]
, (4.21)

where φ is the phase difference between the two arms of the MZ interferometer. Mirror

M1 is mounted on a piezoelectric transducer (PZT) to allow fine control of the phase

difference φ. The other output of BS2 is used to check the alignment between the two

components of the mode prepared.

4.4.2 Measurement

The measurement stage is composed by a Dove prism oriented at a variable angle β/2

(DP@β/2), a half-wave plate oriented at a variable angle α/2 (HWP@α/2), a Mach-

Zender interferometer with an additional mirror (MZIM) [58], and one polarizing beam

splitter (PBS) after each of the MZIM outputs. Four photo-current detectors (D1,

D2, D3 and D4) are used to measure the intensities at the PBS outputs. HWP@α/2

combined with DP@β/2 define in which basis we are going to measure our initial mode.

We want MZIM to work as a parity selector delivering odd modes ψv(r)εH and

ψh(r)εV in one port and even modes ψv(r)εV and ψh(r)εH in the other port. Let χ

be the optical phase difference between the two arms of the MZIM. Note that proper

functioning of the MZIM as a parity selector occurs only when χ = 2nπ (n = 0, 1, 2,...).

For χ = (2n+ 1)π, the even and odd outputs are interchanged.

After propagating through DP@β/2 and through HWP@α/2, the maximally non-

separable mode given by Eq. (4.16) transforms to:

E′(r) = A+
e (φ)ψv(r)εV +A−o (φ)ψv(r)εH +A+

o (φ)ψh(r)εV +A−e (φ)ψh(r)εH , (4.22)

where

A±e (φ) = eiφ/2{cos(φ/2) cos[(β − α)]± i sin(φ/2) cos[(β + α)]} ,

A±o (φ) = eiφ/2{± cos(φ/2) sin[(β − α)] + i sin(φ/2) sin[(β + α)]} . (4.23)
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4. SPIN-ORBIT BELL INEQUALITY

If MZIM phase χ = 0, then the four amplitudes above would be the ones measured

by the detectors since MZIM interferometer together with PBS1 and PBS2 would sepa-

rate the modes ψv(r)εV , ψv(r)εH , ψh(r)εV and ψh(r)εH . But we will still consider the

case in which χ may differ from zero, and then the corresponding intensities normalized

to the total intensity are given by:

I1 = I2 = cos2
(χ

2

)
|A±e (φ)|2 + sin2

(χ
2

)
|A±o (φ)|2,

I3 = I4 = sin2
(χ

2

)
|A±e (φ)|2 + cos2

(χ
2

)
|A±o (φ)|2. (4.24)

We can test the violation of the non-separability inequality by making measurements

in the bases (α1, β1), (α1, β2), (α2, β1) and (α2, β2) and obtaining the values of M(α, β)

and subsequently S. The value of S for arbitrary φ and χ is given by:

S(χ, φ) = 2
√

2 cosχ cos2(φ/2) . (4.25)

Thus maximal violation of the non-separability inequality is accomplished for φ = χ =

0. This is a key result because it shows that experimental errors in the phases will only

diminish the violation, not increase it.
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Figure 4.4: Experimental results for the maximally non-separable initial mode, measured

in the (α1, β1) basis. Time parameterizes the MZIM phase χ.

In our experiment the MZIM phase χ is continuously varied by applying a voltage

ramp to the PZT on M2 while intensities I1 through I4 are monitored at the oscilloscope.
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4.5 The Inequality for the Quantized Modes

Table 4.1: Mean values for M and S for maximally non-separable and separable modes.

Maximally Non Separable Separable

M(α1, β1) 0.609± 0.006 0.490± 0.008

M(α1, β2) 0.486± 0.009 0.000± 0.005

M(α2, β1) −0.522± 0.004 −0.56± 0.01

M(α2, β2) 0.482± 0.009 0.000± 0.004

S 2.10± 0.03 1.05± 0.03

An example of our experimental results is presented in Fig. 4.4, showing the oscillations

caused by the variation of χ. We know from the intensities dependence on φ and χ that

χ = 0 corresponds to the peaks in the graphics, and φ = 0 corresponds to a maximal

visibility of these oscillations. Since we have repetitions of these peaks, we obtain an

ensemble of intensities which allows us to calculate the averages and standard deviations

of M(α, β) and S. For this end, we take thirty points distributed over the ten peaks

measured. This procedure is repeated for all four bases and the results are shown in

Table 4.1. The value of S obtained for the MNS mode is 2.10 ± 0.03, which violates

the inequality by 3.3 standard deviations. In this table we also show our experimental

results for a separable mode ψV (r)εV , which is easily obtained by blocking the Dove

Prism arm of the preparation MZ interferometer.

4.5 The Inequality for the Quantized Modes

To describe our experiment in a complete quantum mechanical frame, we must take

into account all possible inputs, and describe the evolution of the field operators inside

the apparatus. In our notation, the mode amplitudes that enter the interferometer

are âiσλ where the index i represents the input, σ stands for polarization and λ for

transverse mode. In Fig. 4.5 the input and output modes are indicated in the sketch

of the measurement setup.

The output mode amplitude b̂jµν is a combination of the input amplitudes with

coefficients uiσλjµν . Therefore, the field amplitude Êj at output j is

Êj =
∑
µ,ν

b̂jµνεµψνe
i ~kj ·~r, (4.26)

49



4. SPIN-ORBIT BELL INEQUALITY
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Figure 4.5: Input and output modes of the measurement apparatus.

where

b̂jµν =
∑
i,σ,λ

uiσλjµν â
i
σλ. (4.27)

Since the intensities are expectation values calculated in normal ordering, all input

modes in the vacuum state (â1
hV , â1

vH , â2
σλ, â3

σλ, and â4
σλ) will not contribute. Assuming

that MZIM is set for proper functioning (χ = 0), the only occupied output modes are:

b̂1hH = cosα cosβ â1
hH + sinα sinβ â1

vV ,

b̂2vV = sinα sinβ â1
hH + cosα cosβ â1

vV ,

b̂3vH = sinα cosβ â1
hH − cosα sinβ â1

vV ,

b̂4hV = cosα sinβ â1
hH − sinα cosβ â1

vV . (4.28)

The only nonzero contributions to the normalized detected intensities Ij = 〈Ê†j · Êj〉/I0

are:

I1 = 〈b̂1†hH b̂
1
hH〉/I0 ,

I2 = 〈b̂2†vV b̂
2
vV 〉/I0 ,

I3 = 〈b̂3†vH b̂
3
vH〉/I0 ,

I4 = 〈b̂4†hV b̂
4
hV 〉/I0 , (4.29)

where I0 =
∑4

j=1〈Ê
†
j · Êj〉.
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4.5 The Inequality for the Quantized Modes

To evaluate the inequality, according to the CHSH prescription, we calculateM(α, β) =

I1 + I2 − I3 − I4 for the four bases and S as given by Eq. (4.20). With the description

of the inequality above, we can calculate the theoretical value of S for different input

quantum states.

4.5.1 Coherent state

For measurements made within its coherence length, the laser source can be described

by a coherent state, so we use a coherent state to represent the intense laser beam

prepared in the maximally non-separable mode

|ν〉MNS = e
−|ν|2

2

∞∑
n=0

νn(a†MNS)n

n!
|0〉 , (4.30)

where a†MNS is the creation operator associated with the MNS mode. Using the Bell

basis notation (2.18), this particular MNS mode can be represented by the Φ+ mode,

so a†MNS ≡ a†
Φ+ . Its action on the vacuum state |0〉 produces a one-photon Fock state

in the Φ+ mode. Since this mode is decomposed as in Eq. (4.16), its corresponding

creation operator can be written as a†
Φ+ = (a†vV + a†hH)/

√
2, where the first index

corresponds to the transverse mode and the second to the polarization mode. Following

the calculations of Eq. (2.26) we can show that

|ν〉MNS = |ν/
√

2〉vV |ν/
√

2〉hH , (4.31)

which is the product of coherent states at modes ψh(r)εH and ψv(r)εV with complex

amplitude ν/
√

2. We can use this state to calculate the mean values of Eq. (4.29),

knowing that the complex amplitude ν =
√
I0, where I0 is the total initial intensity of

the laser. The results are in the equations below:

I1 = I2 =
1

2
cos2 (β − α) ,

I3 = I4 =
1

2
sin2 (β − α) . (4.32)

They give S = 2
√

2 for the same choice of bases used in the experiment, showing maxi-

mal violation for the two-mode coherent state. Since this state is a tensor product, this

violation cannot be attributed to entanglement. In fact, we will see that this violation

is closely related to optical coherence when we investigate the statistical mixture case.
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Performing the Fock state decomposition of |ν〉MNS , analogous to what is done in

Eq. (2.26), we have:

|ν〉MNS = e
−|ν|2

2 [|0〉+
ν√
2

(|1hH0vV 〉+ |0hH1vV 〉) + ...] (4.33)

As expected, we find that the single photon component is maximally entangled. There-

fore, post-selection of single photon states from |ν〉MNS followed by the experimental

setup used here allows one to investigate the usual Bell inequality from probability

measurements.

4.5.2 Single photon Fock state

Let us now assume the input mode prepared in a single photon state â†MNS |0〉 =

1√
2
(|1hH0vV 〉 + |0hH1vV 〉). As we already mentioned, this state is clearly entangled.

In this regime, the intensity measurements translate to photocounts associated with

the detection probabilities in each output port of the measurement device. These

probabilities violate the CHSH inequality and one is left in the traditional framework

of Bell’s experiments, in this case for the spin-orbit degrees of freedom of single photons

[61]. The detection probabilities are proportional to the mean values of the intensity

operator in each output port and they are easily calculated to be the same as the

normalized intensity values shown in Eq. (4.32), obviously giving the same value S =

2
√

2.

4.5.3 Statistical Mixture

It is interesting to investigate the spin-orbit separability for a statistical mixture of two

coherent states like

ρ =
1

2
(|ν/2, 0〉〈ν/2, 0|+ |0, ν/2〉〈0, ν/2|) (4.34)

where the first and second slots in the kets correspond to the hH and vV mode re-

spectively. Such statistical mixture can model two independent lasers (random relative

phase) prepared in modes hH and vV , and combined in a beam splitter. The results

for the intensity calculations of Eq. (4.29) are shown below:

I1 = I2 =
1

2
(cos2 α cos2 β + sin2 α sin2 β) ,

I3 = I4 =
1

2
(sin2 α cos2 β + cos2 α sin2 β) . (4.35)
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For the bases used in the experiment, they give S =
√

2 which does not violate the

separability inequality. This shows that optical coherence plays an important role, so

that no violation would be obtained if the modes were incoherently combined.

The notion of separable and non-separable spin-orbit modes in classical optics builds

an useful analogy with entangled quantum states, allowing for the study of some of

their important mathematical properties. This analogy has already been successfully

exploited in our group to investigate the topological nature of the phase evolution of an

entangled state under local unitary operations [25]. Many quantum computing tasks

require entanglement but do not need nonlocality, so that using different degrees of free-

dom of single particles can be useful. This is the type of entanglement whose properties

can be studied in the classical optical regime allowing one to replace time-consuming

measurements based on photon count by the much more efficient measurement of pho-

tocurrents.

Although helpful, the notion of mode non-separability must not be confused with

genuine quantum entanglement. The discussion around Eq. (4.31) is intended to avoid

this confusion. On the other hand, its Fock state decomposition shows that the single

photon component exhibits entanglement that can be accessed through post-selection.
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5

Bell Inequality with Angular

Correlations

As discussed in Section 4.1, the gedankenexperiment in the seminal EPR paper dealt

with continuous variables (CV) q and p, but this original proposition was for some time

neglected in favor of the discretized versions of the problem, such as the implementation

with polarized photons, which benefitted from better detection efficiencies. In the

realm of discrete variables several Bell-type inequalities have been proposed, studied

and tested up to now. Each Bell-type inequality is suitable for revealing the non-local

nature of quantum mechanics in a different type of quantum system: bipartite two-level

systems [6, 62], bipartite discrete many level systems [63, 64, 65], multipartite systems

[66, 67] and also CV systems [68, 69, 70, 71].

The first attempts to build CV non-locality tests consisted on finding ways to dis-

cretize the continuum to reuse concepts developed for the discrete case. It was shown

in [69] that dichotomizing the phase space according to a state’s parity and its dis-

placement in phase space can lead to Bell type inequalities that can be violated by

gaussian continuous variable entangled states. Other phase space dichotomizations are

possible, as the one proposed in [72]. However, dichotomization does not correspond to

a genuine CV measurement, since it provides an observable with a discrete, rather than

a truly continuous spectrum. It is understood now that CV setups can provide advan-

tages such as higher intensity signals, which could help to solve the detection loophole

[73]. Most of these works are based on canonical unbounded variables, as (q, p). They

can correspond, for instance, to the sum and the difference of two quadratures of the
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electromagnetic field [45, 74, 75].

Sufficient inseparability criterion for CV based on variance inequalities, involving

EPR–like operators pairs, have been proposed by L. Duan et al. [76] and experimentally

tested [77].The Peres-Horodecki [78, 79] separability condition based on the positivity

of the partial transpose of a separable density matrix has been applied to CV systems

[80, 81]. Reid and co-workers [82] proposed variance based Bell-type inequalities which

can be applied to discrete or continuous variables without demanding dichotomization.

Their proposal is suitable for multipartite systems, and cannot be applied to bipartite

ones. In order to derive their variance based inequalities, they ingeniously combine

observables that can be easily measured for optical fields, for instance, to create other

observables with mathematical properties revealing non-locality in a simple way. Other

variance based inequalities can be found in [82, 83, 84]. Another possible approach are

entropy based inequalities that may be advantageous to detect entanglement in non-

gaussian states, since they go beyond the usual criteria that use second-order moments

[85, 86].

In this chapter we will discuss a theoretical proposal for Bell inequalities in bipartite

CV systems [87]. Up to now, most of the results on CV entanglement and non locality

have been devoted to the case of canonical variables with an unbounded spectrum, as

position and momentum. In this work, we consider a different type of CV. We deal

with two quantum systems, A and B, characterized by angular variables θi ∈ [−π, π[,

i = A,B on a circle, instead of a position q in the full real line. The variable θ can

represent different things, as we can apply the resulting inequality for a variety of

physical systems. For instance, θ can be the position of a particle on a circle, a rotator

on a plane (for example, molecules confined to a plane [88]), or the polar angle locating

the photon field in the plane transverse to its propagation, as illustrated in Fig. 5.1.

Our ideas can also be applied to reveal non-locality in a system of particles diffusing on

a one dimensional lattice (for example, an optical lattice) with period L. In that case,

we can define an angular variable related to the particle position q as θ = 2πq
L , and the

particle position could be the observable to be measured [89].

The main result presented here is the derivation of Bell-like inequalities which are

genuinely continuous, and do not make use of dichotomization or phase space parti-

tions. The particularity of the measured observables used here is that they present a
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Figure 5.1: Examples of physical systems for which our results can be applied: (a) The

transverse profile of a propagating light beam (b) Particles moving on a circle (as charged

particles in an electromagnetic trap) (c) rigid rotators confined to two dimensional motion.

bounded spectrum, so that one can derive CHSH-type inequalities for them.The in-

equality consists on correlated measurements of continuous, real and periodic angular

functions fi(θi) (i = A,B). As we will show, the derived inequalities share similarities

to CHSH-like ones as their general form is given by a properly balanced continuous

superposition of CHSH-type inequalities. Exploiting the possibility of revealing non

locality using angular measurements is an approach that can be particularly useful and

suitable for a number of physical systems in atomic and molecular physics, photonics

and mesoscopic systems in condensed matter physics.

5.1 Theoretical model

As a starting point, we recall the CHSH inequalities for a bipartite two-level system

presented in Section 4.1. We can write it in a simple form as |〈B(a, a′, b, b′)〉| ≤ 2, with:

B(a, a′, b, b′) = σa ⊗ σb + σa ⊗ σb′ + σa′ ⊗ σb − σa′ ⊗ σb′ (5.1)

where σα is the Pauli matrix in the direction α of the tridimensional space. a and a′ refer

to different directions of the spin projection of subsystem A while b and b′ are associated

to subsystem B. The inequality |〈B(a, a′, b, b′)〉| ≤ 2 is fulfilled in the framework of

local hidden variable (LHV) theories. The fact that there exist quantum states violating
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these inequalities disproof quantum mechanics as a local or EPR realistic theory. For

quantum mechanical systems, (5.1) is bounded by the Tsirelson bound of 2
√

2 [90].

We now consider a different situation of measurement providing continuous and 2π-

periodic outcomes. In other words, the underlying Hilbert space is the square integrable

2π-periodic functions space. Such functions can be spanned by the basis {|mi〉;mi ∈ Z},
which are angular momentum eigenstates: Jz|mi〉 = mi|mi〉, where Jz = −i~ ∂

∂θ is the

operator that represents the z component of the total angular momentum of the beam,

and i = A,B indicates each of the two subsystems. An alternative continuous basis is

{|θi〉; θi ∈ [−π, π[}, and it can be obtained from the |mi〉 basis by Fourier transform:

〈mi|θi〉 =
1√
2π
eimiθi . (5.2)

In this representation, a local observable for each party can be written as

Fi =

∫ π

−π
dθifi(θi)|θi〉〈θi|, (5.3)

with fi(θi) real, bounded and periodic.

Our guidelines to obtain continuous variables Bell inequalities is to build a CHSH [6]

Bell–operator similar to the one given by (5.1), but based on the correlated measure-

ments of an observable Fi for each particle. It is clear that, under the assumption that

the spectra of Fi are bounded, this property is preserved by every unitary transforma-

tion Ui(φi) such that

F (φi) = Ui(φi)FiU
†
i (φi). (5.4)

It is also straightforward to show that, for an LHV theory, we have [91]:

∣∣〈B(φa, φ
′
a, φb, φ

′
b)〉
∣∣ =

∣∣〈FA(φa)⊗ FB(φb) + FA(φ′a)⊗ FB(φb)

+ FA(φa)⊗ FB(φ′b)− FA(φ′a)⊗ FB(φ′b)
〉∣∣ ≤ 2, (5.5)

if the maximum value of fi(θi) is normalized to 1. What are the conditions the functions

fi(θi) and the transformed operators Fi(φi) should satisfy to violate (5.5) and allow

for non-locality and entanglement tests? In order to answer this question, we focus

on fi(θi) = cos(θi) which is a function that can be measured on a variety of physical

systems. The results derived in the following can be straightforwardly generalized to

all 2π periodic functions such that f(θ) = −f(θ − π) ∀θ ∈ [0, π].
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5.2 Example of application: the cosine operator

The observables C = Fi corresponding to fi(θi) = cos(θi), can be expressed on the |m〉
basis as:

C =
∑
m∈Z

1

2
(|m+ 1〉〈m|+ |m〉〈m+ 1|) . (5.6)

Indeed,

〈m′|C|m〉 =
1

2π

∫ π

−π
e−im

′θ e
iθ + e−iθ

2
eimθdθ =

1

2

[
δm′,m+1 + δm′,m−1

]
. (5.7)

For a particle rotating on a circle in the xy plane, the operator C corresponds to

the projection on the x axis of the particle position; it can also be related to the spatial

orientation of a two dimensional rotor, or to the phase of a superconducting circuit.

Operator C has a spectrum of doubly degenerated eigenstates |θ〉 and |−θ〉, both with

eigenvalue cos θ. For this operator, we can define an equivalent to the rotation of a

spin 1/2 system: it is the unitary operator eiJ
2
zφ, (that is, the free evolution operator

during a time t = 2~φ, for a free particle with unit mass and angular momentum Jz,

constrained to move on an unit circle). From C, we can define C(φi) ≡ Fi(φi) as:

C(φ) = eiJ
2
zφCe−iJ

2
zφ =

1

2

∑
m∈Z

ei(2m+1)φ|m〉〈m+ 1|+ e−i(2m+1)φ|m+ 1〉〈m|, (5.8)

and for a bipartite system (particles A and B) the Bell operator (5.5) reads:

B(φa, φ
′
a, φb, φ

′
b) = CA(φa)⊗ CB(φb) + CA(φ′a)⊗ CB(φb)

+CA(φa)⊗ CB(φ′b)− CA(φ′a)⊗ CB(φ′b), (5.9)

where CA(B)(φ) are operators defined as in Eq. (5.8) acting on the Hilbert space of

particle A(B). The spectrum of C(φ) does not depend on φ. Diagonalizing C(φ)

shows that its spectrum is bounded, with |〈C〉| ≤ 1. Thus, for an LHV theory,

|〈B(φa, φ
′
a, φb, φ

′
b)〉| < 2 holds. However, for some set of phases φis and some quan-

tum states, this inequality is violated. In order to show that, we calculate the spectra

of B(φa, φ
′
a, φb, φ

′
b) operators. Actually, such spectra depend only on the relative phases

φa − φ′a and φb − φ′b [92, 93]. We can define

B(ξa, ξb) = B(φ′a − φa, φ′b − φb) ≡ B(0, φ′a − φa, 0, φ′b − φb) =

eiJ
2
Azφa ⊗ eiJ2

BzφbB(φa, φ
′
a, φb, φ

′
b)e
−iJ2

Azφa ⊗ e−iJ2
Bzφb . (5.10)
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B(ξa, ξb) and B(φa, φ
′
a, φb, φ

′
b) are related by a unitary transformation. Therefore, the

variation of only the two phases (ξa, ξb) is enough to explore the spectrum of all the

B(φa, φ
′
a, φb, φ

′
b).

5.2.1 Finite dimension space

As a first approach to the study of the dependence of operators B(ξa, ξb) with the

phases ξi , we discretize the possible outcomes of the correlation measurements. This

step gives us intuition on the properties of the Bell operator proposed because it allows

numerical computations to be performed. For such, we consider that the measured

quantum states lie on a 2M + 1 finite dimension space generated by the basis set

{|m〉;m ∈ Z, |m| ≤M}. We thus define the projection C(M)(ξ) of the C(ξ) operator

on this reduced space as :

C(M)(ξ) =
1

2

∑
|m|≤M

ei(2m+1)ξ|m〉〈m+ 1|+ e−i(2m+1)ξ|m+ 1〉〈m| (5.11)

and C(M) = C(M)(0).

Working in this reduced subspace gives insight on the continuous case that is ex-

plored later. The 2M + 1 eigenstates |λk〉 of C(M) can be computed explicitly :

|λk〉 =

M∑
m=−M

ckm|m〉, (5.12)

with

ckm =
sin
[

(M−m+1)kπ
2(M+1)

]
√
M + 1

(5.13)

where each index k = 1, 2, · · · , 2M + 1 refers to one of the eigenvectors of C, with

eigenvalue λk = cos
[

kπ
2(M+1)

]
. We can see that k = 1 corresponds to the maximum

eigenvalue and k = 2M + 1 to the minimum one. Also, the spectrum of C is anti-

symmetric with respect to the middle eigenvalue (λM+1 = 0), i.e. λk = −λ2(M+1)−k.

We now make the correspondence |λ1〉 ≡ |λmax〉 and |λ2M+1〉 = |−λmax〉 ≡ |λmin〉
and call these states maximally oriented states. The angular distribution Pk(θ) =

|〈θ|λk〉|2 as a function of the polar angle θ for these two states are shown in Fig. 5.2 for

M = 2 and M = 5. We can see that maximally oriented states, even for relatively low

values ofM , present an angular distribution in the transverse plane very concentrated in
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Figure 5.2: Plot of angular distribution Pk(θ) = |〈θ|λk〉|2 parameterized by the polar

angle θ, for M = 2 in purple and M = 5 in blue.

one direction (around θ = 0 for |λmax〉 and around θ = π for |λmin〉). These maximally

oriented states are suitable for a semi-classical analogy with spin-states.

Using that −λmax ≤ 〈C(M)
i (ξi)〉 ≤ λmax with i = A,B, it is easy to show that, for

separable states,

|〈B(M)(ξA, ξB)〉sep| ≤ 2λ2
max, (5.14)

which constitutes a Bell inequality with a threshold that depends on the dimension

of the considered subspace (the value of M) and is equal to 2 in the continuous limit

(M →∞). We have defined B(M) the discretized Bell operator defined as in Eq.(5.10)

but with C(M)(ξ) instead of C(ξ) operators.

Discretization allows to explicitly compute the 2M + 1 eigenstates and correspond-

ing eigenvalues of C(M), providing a more intuitive physical image of the considered

operators. Also, it enables the numerical study of the spectrum of B(M)(ξa, ξb) and

its phase dependence. Defining b
(M)
max(ξa, ξa) as the highest eigenvalue of B(M)(ξa, ξb)

we see in Fig. 5.3 that, for M = 2 and M = 5, b
(M)
max(ξa, ξa) reaches its maximum

at ξa = ξb = π/2. We verified numerically that this fact is independent of M for

1 ≤M ≤ 20. In addition, |b(π/2, π/2)| increases as M increases, being already greater

than 2 (i.e., enabling the Bell-type inequality violation) for M = 2. Thus, for all

M , it is possible for non-separable and non-local states to violate the Bell inequality

(5.9) in the restricted subspace. We thus conclude that our discretized Bell operator

acts as an entanglement witness [94, 95] for bipartite 2M + 1 levels systems, since
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Figure 5.3: Plot of the maximum eigenvalue of B(M)(ξa, ξb), b
(M)
max, in the region of viola-

tion (b
(M)
max > 2) as a function of ξa and ξb for M = 2 (inner blue plot), and M = 5 (outer

red plot).

Tr(B(M)ρAB) > 2λ2
max only if ρAB is an entangled state.

The study of the discretized operators shows us that the point ξa = ξb = π/2 is the

one that provides the highest contrast between bmax(ξa, ξa) and the violation threshold

value of 2. This property is expected to be valid for all values of M and consequently,

also in the continuous case.

5.2.2 Continuous variables

We now move to the study of the continuous variable case, where the operators have a

continuous spectrum, which is our main purpose. We focus in the points ξa = ξb = π/2

to optimize the contrast of the violation and search for the corresponding non local

states that violate the inequality for this choice of phases. It is now convenient to

define the following operators :

σx(θ) = |θ〉〈θ|+ |θ〉〈θ|

σy(θ) = i
(
|θ〉〈θ| − |θ〉〈θ|

)
(5.15)

σz(θ) = |θ〉〈θ| − |θ〉〈θ|,

for θ ∈ [0, π[ and with θ ≡ θ− π. These operators constitute an orthogonal continuous

set of Pauli-like operators, and they fulfill relations analog to the usual Pauli matrices,
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including orthogonality:

σj(θ)σk(θ′) = iσl(θ)δ(θ − θ′), (5.16)

σj(θ)σj(θ′) = δ(θ − θ′)(|θ〉 〈θ|+
∣∣θ〉 〈θ∣∣), (5.17)

where (j, k, l) denotes circular permutations of (x, y, z).

With these definitions, we show in the Appendix A that the operators C and C(π2 ),

defined in Eqs. (5.6) and (5.8), can be simply written as:

C =

∫ π

0
dθ cos θ σz(θ) (5.18)

C
(π

2

)
= −

∫ π

0
dθ cos θσy(θ). (5.19)

Thus, the Bell operator Bm ≡ B(π2 ,
π
2 ) can be written as the following direct sum:

Bm =

∫ π

0

∫ π

0
dθdθ′ cos θ cos θ′X(θ, θ′) (5.20)

where

X(θ, θ′) =
[
σzA(θ)⊗ σzB(θ′)− σyA(θ)⊗ σzB(θ′)

− σzA(θ)⊗ σyB(θ′)− σyA(θ)⊗ σyB(θ′)
]
, (5.21)

and σjA(θ) and σjB(θ) (j = x, y, z) are operators defined by Eqs. (5.15) on the Hilbert

space of parties A and B respectively. The X(θ, θ′) operators are orthogonal:

X(θa, θb)X(θ′a, θ
′
b) = 4δ(θa − θ′a)δ(θb − θ′b)×

(|θa〉 〈θa|+
∣∣θa〉 〈θa∣∣)⊗ (|θb〉 〈θb|+

∣∣θb〉 〈θb∣∣) (5.22)

and completely analog to the usual 2–qubits (4-dimensional) CHSH operators. We

have thus the surprising result that the Bell operator Bm is the weighted continuous

direct sum of 2–qubit-like CHSH Bell operators X(θ, θ′), with the weights being given

by cos θ cos θ′. Thanks to the orthogonality property (5.22), finding the spectrum and

eigenstates of Bm is a simple task, as shown in Appendix B. Indeed, for each θ and θ′

it is enough to diagonalize the 4× 4 matrix representing X(θ, θ′). We find that Bm can

thus be written in diagonal form as:

Bm = 2
√

2
∑
n=±1

n

∫ π

0

∫ π

0
dθdθ′ cos θ cos θ′

∣∣χn(θ, θ′)
〉 〈
χn(θ, θ′)

∣∣ (5.23)
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where :

|χ±1(θ, θ′)〉 =
1

N±
[|θ〉 ⊗ |θ′〉+ |θ〉 ⊗ |θ′〉 ∓ i(

√
2∓ 1)

(
|θ〉 ⊗ |θ′〉+ |θ〉 ⊗ |θ′〉

)
] (5.24)

are the eigenvectors of X(θ, θ′) and of Bm with non-zero eigenvalues and where N± =

2
[
(2∓

√
2)
]1/2

is a normalization factor such that :

〈χn′(θ′a, θ′b)|χn(θa, θb)〉 = δnn′δ(θ
′
a − θa)δ(θ′b − θb). (5.25)

The same techniques could be employed for other observables connected to C and C(π2 )

by a unitary transformation [92].

Therefore, the spectrum of Bm is continuous and equal to [−2
√

2, 2
√

2]. |〈Bm〉| is

thus bounded by 2
√

2 as in the 2-qubit CHSH inequality. The extreme values ±2
√

2

cannot be exactly reached by physical states since they are composed of perfectly ori-

ented states, namely |0〉 and |π〉, that correspond to delta functions in the angular

representation (〈θ|θ′〉 = δ(θ − θ′)). However, they can be reached with arbitrary pre-

cision by considering localized wave packets. It is thus interesting to investigate the

relation between the localization around θ = 0, π of the transverse profile and the

violation of our Bell inequality, this is the subject of the next section.

5.2.3 States violating the Bell Inequality

In order to explicitly construct physically sound states violating our Bell inequality, we

consider a continuous superposition of eigenstates |χ+1(θ, θ′)〉, with θ and θ′ localized

around θ = θ′ = 0, the point of the maximum eigenvalue of Bm. An example of such

wave packet is given by:

|Ψ〉 =

∫ π

0
dθ

∫ π

0
dθ′ga(θ)gb(θ

′)|χ+1(θ, θ′)〉. (5.26)

where ga(θ) and gb(θ) are normalized L2(]0, π[, dθ) functions with support containing

θ = 0. The expectation value of Bm for this state is

〈Bm〉Ψ = 2
√

2

∫ π

0
dθ

∫ π

0
dθ′ cos θ cos θ′|ga(θ)|2|gb(θ′)|2 (5.27)

The wave packet (5.26) can be produced making a linear combination of the one–particle

wave packets

|g〉 =

∫ π

0
dθg(θ)|θ〉 and |g〉 =

∫ π

0
dθg(θ)|θ〉, (5.28)
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Figure 5.4: Amplitude mask with angular aperture δθ.

taking the same coefficients of Eq. (5.24):

|Ψ〉 =
1√

2N+

[(|ga〉 ⊗ |gb〉+ |ga〉 ⊗ |gb〉)− i(
√

2− 1) (|ga〉 ⊗ |gb〉+ |ga〉 ⊗ |gb〉)]. (5.29)

It is useful now to obtain a simple relation between the wave packet localization

and the violation of the Bell inequality. For such, we take for g(θ) the ideal case of an

angular slit with aperture δθ as shown in Fig. 5.4, given by :

ga(θ) = gb(θ) =

{
1√
δθ

for θ < δθ

0 otherwise
(5.30)

The mask can either be oriented with the slit between θ = 0 and θ = δθ or its symmetric

with respect to the origin, between θ = −π and θ = −π+δθ, to create the superpositions

|g〉 and |g〉. Because of the mask shape and orientation, the sate |Ψ〉 given by Eq. (5.29),

encompasses the eigenstates of Bm with eigenvalues close to 2
√

2.

Using Eq. (5.27), the value of 〈Bm〉Ψ can be written as function of the aperture δθ

of the slit as follows:

〈Bm〉Ψ = 2
√

2

(
sin δθ

δθ

)2

. (5.31)

This equation above shows that we can obtain values of 〈Bm〉Ψ > 2, violating the

Bell inequality, with an aperture of δθ < 18◦ which is not a too restrictive condition.

There is thus a relatively broad collection of simple two–particles non local pure states

involving coherent superposition of one–particle wave packets localized around θ = 0

and θ = π that violate the derived Bell inequality.

We now study the example of even more realistic states, which are non-pure ones,

establishing some conditions for them to violate the derived Bell-type inequalities. We

consider the analog of the Werner states [96, 97] :

ρ(η) = ηρA ⊗ ρB + (1− η) |Ψ〉 〈Ψ| , (5.32)
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5. BELL INEQUALITY WITH ANGULAR CORRELATIONS

where

ρA(B) = TrB(A) [|Ψ〉 〈Ψ|] =
1

2

(∣∣ga(b)

〉 〈
ga(b)

∣∣+
∣∣ga(b)

〉 〈
ga(b)

∣∣) , (5.33)

with |Ψ〉 given by (5.29). As 〈χn(θa, θb)|ρA⊗ρB|χn(θa, θb)〉 does not depend on n = ±1

for all θa, θb ∈ [0, π], then the contributions form n = +1 and n = −1 will cancel each

other out in the sum, as we can see from the expression for Bm in (5.23). Consequently,

Tr [BmρA ⊗ ρB] = 0 and the expectation of Bm for the state ρ(η) is simply given by

(1 − η)〈Bm〉Ψ. When ga and gb are given by (5.30), the maximal allowed value of the

mixing coefficient η for the Bell equation to be violated is a simple function of the slit

aperture :

Tr [Bmρ(η)] > 2⇒ η < 1− 1√
2

(
δθ

sin δθ

)2

, (5.34)

providing conditions for this type of mixed states to violate non-locality. In the next

section we will give an example of how this kind of Werner state could be a source of

noise in our proposed experimental setup.

5.3 Proposal of experimental implementation with pho-

tons

The inequalities derived in this chapter can be applied to measure the correlations

between observables on the transverse profile of two photons. Significant experimental

work has been made over spatial correlations of photons, from the first demonstrations

of this kind of entanglement [98, 99], to the measurement of EPR correlations [84]

between the angular position and orbital angular momentum. All of these experiments

dealt with discrete variables.

In our proposal we measure the correlations between two observables with continu-

ous spectrum, related to the azimuthal distribution of the wave front of two entangled

photons. For the creation of the non local state we make use of the polarization en-

tanglement generated in a spontaneous parametric down conversion process with two

adjacent crystals, and we transfer it to the transverse profile degree of freedom.

5.3.1 Detection apparatus

To perform the measurement of the Bell operator we must be able to measure the

operator C(φ) for each photon simultaneously. This can be achieved with two Mach-
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5.3 Proposal of experimental implementation with photons

Zender interferometers, one in each of the photons paths. The proposed interferometer

is depicted in Figure (5.5) and consists of two Dove prisms (DP in the figure), one in

each arm and one programmable spatial light modulator (SLM) in one arm. The effect

of the two prisms over the state of the photon is a m dependent phase shift of ei2mφ

between the to arms of the interferometer, where m is the orbital angular momentum

eigenvalue [35]. Another phase shift eiφ, independent of m, can be achieved by a simple

imbalance of the lengths of the arms, controlled by a piezoelectric transducer (PZT) in

one of the mirrors. The SLM is programmed to raise by one unity of angular momentum

each OAM eigenstate, i.e., it acts as the operator
∑

m|m + 1〉〈m| = eiθ. This can be

done using a “fork” pattern, already well explored in many experiments [31, 98].

The evolution of an input basis state |m〉 is described step by step below, where the

lower path is denoted by a and the upper path by b. We also define the |vac〉 as being

the vacuum state, as 1 and 2 as the output modes of the interferometer.

|m〉 BS1−−−−→ 1√
2

[|m〉a|vac〉b + |vac〉a|m〉b] (5.35)

DP−−−→ 1√
2

[
|m〉a|vac〉b + ei(2m+1)φ|vac〉a|m〉b

]
SLM−−−−−→ 1√

2

[
eiθ|m〉a|vac〉b + ei(2m+1)φ|vac〉a|m〉b

]
BS2−−−−→=

1

2
[(eiθ − ei(2m+1)φ)|m〉1|vac〉2 + (eiθ + ei(2m+1)φ)|vac〉1|m〉2]

Calculating the intensities in the two output modes we get, for an arbitrary state:

I1 =
1

4
〈(e−iθ − e−i(2m+1)φ)(eiθ − ei(2m+1)φ)〉 =

1

2
〈1− C(φ)〉 (5.36)

I2 =
1

4
〈(e−iθ + e−i(2m+1)φ)(eiθ + ei(2m+1)φ)〉 =

1

2
〈1 + C(φ)〉 (5.37)

So, the operators measured in the two planes of detection are:

D1 = 1 + C(φ)

D2 = 1− C(φ) (5.38)

To measure the correlations C(φA, φB) = 〈CA(φA)CB(φB)〉 two interferometers as

the one described above are needed, one for each photon. The orientation of the Dove
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5. BELL INEQUALITY WITH ANGULAR CORRELATIONS

Figure 5.5: Mach-Zender interferometer designed to measure the operator C(φ). DP -

Dove prism; BS - beam splitter; SLM - spatial light modulator.

prisms in each interferometer allows to change the values of the phases φA and φB. We

have now four possible outputs from the pair of the interferometers, each one of them

providing different intensities for the transverse plane. In order to obtain a measure

of correlation between orientation operators with arbitrary values of φA and φB, such

intensities must be combined as follows:

〈CA(φA)CB(φB)〉 =
1

4
〈DA

1 D
B
1 +DA

2 D
B
2 −DA

2 D
B
1 −DA

1 D
B
2 〉 (5.39)

This shows that with the appropriate combinations of phases φA and φB we can

perform the full measurement of the Bell operator.

5.3.2 Preparing entangled orientation states

To experimentally produce the entangled state |Ψ〉 given by Eq. (5.29), we propose a

setup with non-linear crystals as a source of entangled photons, which can be manip-

ulated afterwards to obtain the final desired state. In this subsection we explain in

detail how this can be done.

Once we are able to create state |g〉 and |g〉 using, for instance, a mask acting as

suggested in Eq. 5.30, we must find a way to manipulate such states in a photon pair so

as to create |Ψ〉. A reasonably simple way to manipulate photons and create entangle-

ment is to use their polarization degree of freedom. The spontaneous parametric down
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5.3 Proposal of experimental implementation with photons

conversion process of two adjacent nonlinear crystals (type I) allows for the creation

of a polarization entangled state of the form 1√
2

[|H〉|H〉+ |V 〉|V 〉] if they are pumped

with a laser beam polarized at 45◦[100]. Since entanglement in this case is created due

to the ignorance regarding which crystal generated the photon pair, the other photonic

degrees of freedom, as OAM, are unentangled. The total state of the photon pair,

considering polarization and OAM degrees of freedom is thus

1√
2

[|H〉A|H〉B + |V 〉A|V 〉B] |Ψo〉A|Ψo〉B, (5.40)

where |Ψo〉i, i = A,B are gaussian states. We then use wave plates so as to create a

polarization state that shares the same coefficients of state |Ψ〉, with the form:

1

N+
[|H〉A|H〉B + |V 〉A|V 〉B+

−i(
√

2− 1) (|V 〉A|H〉B + |H〉A|V 〉B)
]
|Ψo〉A|Ψo〉B.

(5.41)

The transition from (5.40) to (5.41) requires the application of local unitary trans-

formations UA and UB performed by properly chosen wave plates, as shown in Fig.

5.6.

The next step is to transform the gaussian state into either |g〉 or |g〉, the choice

being controlled by the polarization. Both photons enter the same interferometer, as

shown in Fig. 5.6, but each one in a different port. Since the interferometer uses a

polarizing beam splitter, the path of the photon will be determined by its polarization.

Because the photons enter in different ports, the polarization of photon labeled B is

rotated before the PBS1. In that way, B photons that are initially H-polarized will go

through the same path as the H-polarized A photons.

In one arm of the interferometer the photon goes through a mask with a slit oriented

at θ = π with angular width of δθ, and its transverse state undergoes the transformation

|Ψo〉 → |g〉. In the other arm the mask is oriented at θ = 0 with the same angular width

and performs the transformation |Ψo〉 → |g〉. Each photon has two possible evolutions,
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5. BELL INEQUALITY WITH ANGULAR CORRELATIONS

Figure 5.6: Proposed setup to create the state |Ψ〉 and measure the correlations

CA(φA)CB(φB); NC - nonlinear crystals type I; HWP - half-wave plate; PBS - polarizing

beam splitter; CC - coincidence count.
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5.3 Proposal of experimental implementation with photons

summarized below:

|H〉A|Ψo〉A → |H〉A|g〉A

|V 〉A|Ψo〉A → |V 〉A|g〉A

|H〉B|Ψo〉B → |V 〉B|g〉B

|V 〉B|Ψo〉B → |H〉B|g〉B. (5.42)

It should be noted that, when presenting the final version of the experimental setup,

a set of lenses to image the masks of the preparation step into the detection planes will

be necessary. Our aim for the moment is to present a simple version of the experimental

setup, focusing on more fundamental aspects.

After the transformations, a hyper-entangled state is formed:

1

N+
[|H〉A|g〉A|V 〉B|g〉B + |V 〉A|g〉A|H〉B|g〉B+

−i(
√

2− 1) (|V 〉A|g〉A|V 〉B|g〉B + |H〉A|g〉A|H〉B|g〉B)
]
. (5.43)

With the PBS2 in the end of the interferometer, all photons labeled A come out from

the port on the left and photons labeled B from the right.

The final step is to transform polarization so as it becomes factorable, separable

from the OAM degree of freedom. This can be done, for instance, by putting a half

wavelength plate oriented at π/8 in the path of both photons and a PBS afterwards.

Thus, all the photons will have a 50% chance of being transmitted by the PBS3 and

PBS4, and once transmitted they will come out with the same polarization. We have

thus the resulting state |Ψ〉 given by Eq. (5.29) and can, in principle, use it for testing

the proposed Bell-type inequalities in a quantum optics set-up.

The detection of the two photons must be made in coincidence, in order to measure

in each side photons that belong to the same pair, created together in one of the

crystals. We can assume that there is a delay τ between the windows of detection

of the two photons. If this delay increases, the probability of detecting photons from

different pairs also increases. In that case, the final state measured is not |Ψ〉, but the

mixed state ρA⊗ρB given by Eq. (5.33). We can see that this is the case because if we

detect two photons created by two different processes, possibly in different crystals, the

state of the system right after the crystals is the maximally mixed state 1
4(|HH〉 〈HH|+

|HV 〉 〈HV |+|V H〉 〈V H|+|V V 〉 〈V V |). With the transformations described previously
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5. BELL INEQUALITY WITH ANGULAR CORRELATIONS

in this section, this initial state becomes ρA ⊗ ρB. So, with the variation of τ we can

investigate the Werner states of Eq. (5.32) with varying η.
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6

Conclusion

The work presented has its foundations on experiments in paraxial optics and the study

of propagation modes that may carry orbital angular momentum. The experience that

our research group has gained over the manipulation of such systems has allowed for

applications on the fundamentals of quantum mechanics and quantum information. In

particular we investigated two different approaches to Bell’s inequalities, the first with

a classical perspective of the problem and the last consisting on the development of

an inequality that makes use of continuous variables, and a subsequent experimental

proposal.

We presented the theoretical description of paraxial beams, showing two of the fam-

ilies of propagation modes that arise from the solution of the paraxial equation in free

space, namely the Hermite-Gaussian and the Laguerre-Gaussian modes. We discussed

the angular momentum carried by light beams, and we presented its decomposition in

spin and orbital components.

We showed that, analogously to polarization, the first-order transverse modes of a

beam can encode one qubit of information. These two degrees of freedom are combined

when we define the Spin-Orbit modes, forming a basis to a 4-dimensional subspace.

We showed how to experimentally produce such modes through the use of holographic

masks and interferometers.

The Spin-Orbit modes allow the encoding of two-qubits in one photon, and with

this extra resource we were able to perform a BB84 quantum key distribution protocol

without a shared reference frame.
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6. CONCLUSION

We have proposed a Bell-like inequality criterion as a sufficient condition for the

spin-orbit non-separability of a classical laser beam. The inequality was measured with

the apparatus we designed, and the violation was obtained. The notion of separable

and non-separable spin-orbit modes in classical optics builds a useful analogy with

entangled quantum states, allowing for the study of some of their important mathe-

matical properties. Many quantum computing tasks require entanglement but do not

need non-locality, so that using different degrees of freedom of single particles can be

useful. This is the type of entanglement whose properties can be studied in the classical

optical regime allowing one to replace time-consuming measurements based on single

photon detection by the much more efficient measurement of photocurrents. We have

presented a detailed quantum optical description of the experiment, analyzing the case

of measuring a coherent state, a Fock state and a mixed state, and we showed that

coherence was key to obtain our violation.

Following the study of Bell’s inequalities we considered bipartite quantum systems

characterized by a continuous angular variable θ. We showed how to reveal non-locality

on this type of system using inequalities similar to CHSH ones, originally derived for

bipartite spin 1/2 like systems. Such inequalities involve correlated measurement of

continuous angular functions. We discussed in detail the case of measuring orientation

correlations on the transverse profile of entangled photons, using the cosine as the

periodic function. We showed that our Bell inequality is equivalent to the continuous

superposition of CHSH inequalities acting on two-dimensional subspaces of the infinite

dimensional Hilbert space. The introduced Bell-type inequalities open the perspective

of new and simpler experiments to test non-locality on a variety of quantum systems

described by continuous variables.

We have worked in the frontier between the experiments and their theoretical devel-

opments and background, and hopefully we have built a more complete understanding

of the physical system we have in hands.

74



Appendix A

C and C(π2) operators

To write the operators C and C(π2 ) in terms of the Pauli operators σz(θ) and σy(θ)

defined in (5.15), we use the states:

|θ〉 =

∞∑
m=−∞

1√
2π
eimθ|m〉 (A.1)

|θ〉 =
∞∑

m=−∞

(−1)m√
2π

eimθ|m〉 (A.2)

We start by calculating U(π2 )|θ〉, which can be obtained in the following way

ei
π
2
J2
z |θ〉 =

∞∑
m=−∞

(i)m
2

√
2π

eimθ|m〉

=
1√
2

[
ei
π
4

∞∑
m=−∞

1√
2π
eimθ|m〉

+ e−i
π
4

∞∑
m=−∞

(−1)m√
2π

eimθ|m〉

]

=
1√
2

[
ei
π
4 |θ〉+ e−i

π
4 |θ〉

]
, (A.3)

where we have used (i)m
2

= 1√
2

[
ei
π
4 + (−1)me−i

π
4

]
. The same can be done for U(π2 )|θ〉

and we obtain:

ei
π
2
J2
z |θ〉 =

1√
2

[
ei
π
4 |θ〉+ e−i

π
4 |θ〉

]
(A.4)

Using the antisymmetry property of the spectrum of C and Eqs. (A.3) and (A.4),
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the following decompositions for C and C(π2 ) can be obtained:

C =

∫ π

−π
dθ cos θ |θ〉 〈θ|

=

∫ π

0
dθ cos θ

{
|θ〉 〈θ| −

∣∣θ〉 〈θ∣∣}
=

∫ π

0
dθ cos θσz(θ) (A.5)

C(
π

2
) = U(

π

2
)CU †(

π

2
)

= i

∫ π

0
dθ cos θ

{
|θ〉
〈
θ
∣∣− ∣∣θ〉 〈θ|}

= −
∫ π

0
dθ cos θσy(θ). (A.6)
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Appendix B

Eigenvalues of Bm

For each θ and θ′ the operator X(θ, θ′) defined in Eq. ((5.21)) can be represented in

the basis formed by the 4 orthonormal states: |θ〉 ⊗ |θ′〉, |θ〉 ⊗ |θ′〉, |θ〉 ⊗ |θ′〉, |θ〉 ⊗ |θ′〉
as the following 4× 4 matrix:

X(θ, θ′) =


1 i i 1
−i −1 −1 −i
−i −1 −1 −i
1 i i 1

 (B.1)

To justify this operation we can also decompose X(θ, θ′) in an arbitrary basis:

X(θ, θ′) =

∫ π

0

∫ π

0

∫ π

0

∫ π

0
dθadθbdθ

′
adθ
′
b

〈θ′a, θ′b|X(θ, θ′)|θa, θb〉
∣∣θ′a, θ′b〉 〈θa, θb| (B.2)

Calculating the matrix element 〈θ′a, θ′b|X(θ, θ′)|θa, θb〉 we obtain a set of 16 products of

delta functions, and upon integration they select the 16 operators represented by the

4× 4 matrix of Eq. (B.1).

Now we can easily obtain the eigenvalues and eigenstates of the above operator.

Because of the symmetry of X(θ, θ′) under the swap of A and B (equivalent to swapping

θ with θ′), the following antisymmetric states correspond to zero eigenvalues :

|ψa++(θ, θ′)〉 =
1√
2

[|θ〉 ⊗ |θ′〉 − |θ〉 ⊗ |θ′〉]

|ψa+−(θ, θ′)〉 =
1√
2

[|θ〉 ⊗ |θ′〉 − |θ〉 ⊗ |θ′〉]

(B.3)
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The two remaining symmetric eigenstates correspond to eigenvalues ±2
√

2. They can

be written as:

|χ±1(θ, θ′)〉 = (B.4)
1

N±
[|θ〉 ⊗ |θ′〉+ |θ〉 ⊗ |θ′〉

∓i(
√

2∓ 1)
(
|θ〉 ⊗ |θ′〉+ |θ〉 ⊗ |θ′〉

)
]

whereN± =
[
2(2∓

√
2)
]1/2

is a normalization factor such that 〈χn′(θ′A, θ′B)|χn(θA, θB)〉 =

δnn′δ(θ
′
A − θA)δ(θ′B − θB).
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